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1 Introduction

Random effects models are a common tool for the modeling of heterogeneity and dependence of
responses in repeated measurements. We will focus on the ordinal response case which includes
binary responses. For ordinal response variables various models and estimation methods have
been proposed. Jansen (1990) and Tutz and Hennevogl (1996) considered cumulative type
random effects models, adjacent categories type models were considered by Hartzel et al.
(2001). However, the proposed methods apply only if few explanatory variables are included.
In particular for cumulative type models existence of parameter estimates is a problem if a
large number of explanatory variables is available and no selection procedure is used. Forward
selection procedures, which can be constructed for generalized linear models and extensions to
random effects models, have the disadvantage of being rather unstable.

One way to reduce the predictor space by variable selection is to use penalization techniques,
which are widely available for generalized linear models (GLMs) but not for random effects
models. Examples are the lasso for GLMs (Park and Hastie, 2006) or SCAD (Fan and Li,
2001). An alternative method uses boosting methods which have been developed in the machine
learning community. The stepwise fitting procedure, which improves only selected coefficients
within one step, implicitly selects predictors. But most procedures work for the linear model
or GLMs. In the present paper boosting algorithms are proposed that select variables in the
mixed model framework. The estimation methods necessarily differ from common boosting
procedures for GLMs because the mixture component has to be adapted within the stepwise
fitting procedure. We will consider two types of ordered models and different fitting procedures.

In Section 2 a short review of ordinal random effects models is given. In Section 3 the
fitting procedure is outlined and some simulation results that include comparison to established
estimation methods are reported. Applications are found in Section 4.

2 Ordinal Random Effects Models

A frequently encountered type of data is where the response variables are measured on an
ordinal scale. The following models for repeatedly assessed ordinal scores are based on the
threshold concept, which means that the observed category is assumed to be determined by
the value of a latent unobservable continuous response.

2.1 Models for Ordinal Response Variables

Several models for ordinal response variables are in common use. The most widely used model
is the cumulative model, which was propagated by McCullagh (1980). With the response Yi

taking values from {1, . . . , k} the cumulative model has the form

P (Yi ≤ r|xi) = F (γ0r + xT
i γγγ), r = 1, . . . , k (1)

where −∞ = γ00 ≤ γ01 ≤ · · · ≤ γ0k = ∞ are category-specific intercepts. The model may be
derived from an underlying latent regression model which has a noise term with distribution
function F . Then the categorical response Y is a coarser version determined by the ordered
thresholds γ00, . . . , γ0k (see for example McCullagh, 1980). For the logistic distribution function
the cumulative model is known as the proportional odds model. Alternative models are the
sequential model

P (Yi = r|Yi ≥ r,xi) = F (γ0r + xT
i γγγ), r = 1, . . . , q := k − 1

and the adjacent category model

P (Yi = r|Yi ∈ {r, r + 1}) = F (γ0r + xT
i γγγr), r = 1, . . . , q,

where F again is a strictly monotone distribution function and q = k − 1. An advantage of the
sequential and adjacent type model is that no order restriction on intercepts is needed.
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All of these models can be given in matrix form as multivariate generalized linear models
(GLMs) for categorical responses. For observation i one obtains

g(πππi) = Xiβββ or πππi = h(Xiβββ),

where πππT
i = (πi1, . . . , πiq), πir = P (Yi = r|xi), is the vector of response probabilities, g is

the (multivariate) link function, h = g−1 is the inverse link function and Xi is an appropriate
design matrix. The components of ηηηi = Xiβββ have the form

ηir = γ0r + xT
irγγγ or ηir = γ0r + xT

irγγγr, r = 1, . . . , q.

(for details see Fahrmeir and Tutz, 2001).

2.2 Incorporation of Random Effects

For clustered data let the ordinal response Yit ∈ {1, . . . , k} denote measurement t in cluster
i, i = 1, . . . , n, t = 1, . . . , Ti. In random effects models one assumes that the corresponding
model for observation Yit has the form

g(πππit) = Xitβββ + Zitbi,

where πππT
it = (πit1, . . . , πitq) denotes the vector of response probabilities with πitr = P (Yit =

r|Xit,Zit,bi), βββ is a fixed coefficient vector and bi is a s-dimensional cluster-specific random
effect, for which a distribution, for example bi ∼ N(0,Q) is assumed. The corresponding
linear predictor ηηηit = Xitβββ + Zitbi has components

ηitr = γ0r + xT
itγγγ + zT

itbi.

The simplest random effects model is a model that includes random intercepts only. It has
linear predictor ηitr = γ0r + xT

itγγγ + bi, where bi ∼ N(0, σ2). Thus each cluster is assumed to
have its own response level. More general one might assume that all effects are subject-specific
by assuming ηitr = γ0r + xT

itγγγ + xT
itbi.

The corresponding vectors xit and zit are easily derived. The q × (q + p) -dimensional
matrix Xit typically has the form

Xit =




1 xT
it

1
. . .

...

1 xT
it




= [Iq,111q ⊗ xT
it],

with parameter vector βββT = (γ01, . . . , γ0q, γγγ
T ). The form of Zit depends on the structure of

the cluster-specific effects.
For the t-th observation of cluster i we use the notation Yit, which takes values from

{1, . . . , k}, or yT
it = (yit1, . . . , yitq), where yitr = 1 if Yit = r and yitr = 0 otherwise. Then

the vector of probabilities is the mean πππit = E(yit). The observations can be summarized as
(yit,xit, zit), i = 1, . . . , n, t = 1, . . . , Ti. Observations of one cluster can be combined to yield

g(πππi) = Xiβββ + Zibi,

where ZT
i = [ZT

i1, . . . ,Z
T
iTi

], XT
i = [XT

i1, . . . ,X
T
iTi

] and πππT
i = (πππT

i1, . . . ,πππ
T
iTi

). For all observations
one obtains

g(πππ) = Xβββ + Zb,

where πππT = (πππT
1 , . . . ,πππT

n ), XT = [XT
1 , . . . ,XT

n ] and Z = diag(Z1, . . . ,Zn) is a block-diagonal
matrix. For the random effects vector bT = (bT

1 , . . . ,bT
n ) one assumes a normal distribution

with block-diagonal matrix Qb = diag(Q, . . . ,Q).
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Since the multinomial distribution is from the exponential family the models can be em-
bedded into the framework of multivariate generalized linear mixed models (GLMMs). The
conditional density of yit, given explanatory variables and the random effect bi, is of exponen-
tial family type

f(yit|Xit,bi) = exp

{
(yT

itθθθit − κ(θθθit))

ϕ
+ c(yit, ϕ)

}
, (2)

where θθθit = θ(πππit) denotes the natural parameter, κ(θθθit) is a specific function corresponding
to the type of exponential family, c(.) the log normalization constant and ϕ the dispersion
parameter, which in the present case of single multinomial responses is fixed as ϕ = 1 (compare
Fahrmeir and Tutz, 2001).

2.3 Estimation of Ordinal Random Effects Models

Estimates of random effects models can be obtained in various ways. When the dimension of
the random effect is low Gauss-Hermite and Monte Carlo methods can be used (for example
Tutz and Hennevogl, 1996). An alternative approach that can be extended to multivariate
generalized linear mixed models is penalized quasi-likelihood (PQL), which has been suggested
by Breslow and Clayton (1993), Lin and Breslow (1996) and Breslow and Lin (1995). Let
the covariance matrix Q(ϱϱϱ) of the random effects bi depend on an unknown parameter vector
ϱϱϱ which specifies the correlation. In penalization-based concepts the joint likelihood-function
is specified by the parameter vector ϱϱϱ and parameter vector δδδT = (βββT ,bT ). With yT

i =
(yT

i1, . . . ,y
T
iTi

) we obtain the corresponding log-likelihood

l(δδδ,ϱϱϱ) =

n∑

i=1

log

(∫
f(yi|δδδ,ϱϱϱ)p(bi, ϱϱϱ)dbi

)
, (3)

where p(bi, ϱϱϱ) denotes the density of the random effects. Approximation of (3) along the lines
of Breslow and Clayton (1993) yields the penalized likelihood

lpen(δδδ,ϱϱϱ) =
n∑

i=1

log(f(yi|δδδ,ϱϱϱ)) − 1

2
bT Q(ϱϱϱ)−1b, (4)

where the penalty term bT Q(ϱϱϱ)−1b is due to the approximation based on the Laplace method.
PQL usually works within the profile likelihood concept. It is distinguished between the

estimation of δδδ given the plugged-in estimate ϱ̂ϱϱ resulting in the profile-likelihood lP (δδδ, ϱ̂ϱϱ) and
the estimation of ϱϱϱ. The PQL method for univariate responses is implemented in the macro
GLIMMIX and proc GLMMIX in SAS (Wolfinger, 1994), in the glmmPQL and gamm functions of the
R-packages MASS (Venables and Ripley, 2002) and mgcv (Wood, 2006), see also Wolfinger and
O’Connell (1993), Littell et al. (1996) and Vonesh (1996).

An implementation of other approaches to fit ordinal random effects models via the Laplace
approximation or the adaptive Gauss-Hermite quadrature approximation is available within the
R-package ordinal (see Christensen, 2010) in the function clmm, which uses both approaches
to fit cumulative link mixed models. We will focus on the PQL approach and include variable
selection by boosting techniques.

3 Boosted Ordinal Random Effects Models

Boosting is a successful and flexible strategy to improve classification procedures. It has been
originally developed in the machine learning community. The idea of boosting has become more
and more important in the last decade as the issue of estimating high-dimensional models has
become more urgent. Since Freund and Schapire (1996) have presented their famous AdaBoost
algorithm many other variants in the framework of functional gradient descent optimization
have been developed (for example Friedman et al., 2000 or Friedman, 2001). Bühlmann and
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Yu (2003) and Bühlmann and Hothorn (2007) extended boosting to generalized linear and
additive regression problems based on the L2-loss, whereas Yuan-Chin et al. (2010) studied
on estimating the optimal stopping number of L2-boosting iterations. Tutz and Binder (2006)
proposed a likelihood-based procedure that works for all generalized linear models. The incor-
poration of random effects has been considered by Tutz and Reithinger (2007) for linear mixed
models, first attempts to fit univariate generalized linear models were proposed by Tutz and
Groll (2010). Here the case of multivariate mixed models with ordinal response is treated.

3.1 The Basic Algorithm

In the following we present a componentwise boosting algorithm which fits only one linear
component xitm of the p-dimensional predictor xT

it = (xit1, . . . , xitp) at a time. More precisely,
a random effects model containing γ01, . . . , γ0q and only one linear term xitmγm,m = 1, . . . , p,
is fitted in one iteration step. Let

Xitm =




1 xitm

1
. . .

...

1 xitm




= [Iq, xitm111q], m = 1, . . . , p,

denote the corresponding covariate matrix of observation t in cluster i. Hence we get the
predictor

ηηηit.m = Xitmβββm + Zitbi,

with βββT
m = (γ01, . . . , γ0q, γm) containing only the m-th fixed effect. Furthermore, we will use the

notation XT
i.m = [XT

i1m, . . . ,XT
iTim] for the design matrix of the m-th linear effect in cluster

i and analogously we define XT
..m = [XT

1.m, . . . ,XT
n.m] for the whole sample, m = 1, . . . , p.

Then for cluster i the predictor that contains only the m-th covariate has the form ηηηi..m =
Xi.mβββm + Zibi, and for the whole sample we obtain ηηη...m = X..mβββm + Zb.

In the following boosting algorithm the vectors βββT
m = (γ01, . . . , γ0q, γm) and δδδT

m = (βββT
m,bT )

contain only the m-th fixed effect. The algorithm aims at minimizing the likelihood function
by iterative fitting of residuals using “weak learners” that fit single candidate predictors. The
parameter ν, 0 < ν ≤ 1, controls the weakness of the learner and is usually set small, say e.g.
ν = 0.1. A selection step determines the predictor that is actually updated.

Algorithm OrdinalBoost

1. Initialization

Compute starting values β̂ββ
(0)

, b̂
(0)

, Q̂
(0)

(see Section 3.2.3) and set η̂ηη(0) = Xβ̂ββ
(0)

+Zb̂
(0)

.

2. Iteration
For l = 1, 2, . . . , lmax

(a) Refitting of residuals

i. Computation of parameters
For m ∈ {1, . . . , p} the model

g(πππ) = η̂ηη(l−1) + X..mβββm + Zb

is fitted, where η̂ηη(l−1) = Xβ̂ββ
(l−1)

+ Zb̂
(l−1)

is considered a known off-set. Es-
timation refers to δδδT

m = (βββT
m,bT ). In order to obtain an additive correction of
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the already fitted terms, we use one step in Fisher scoring with starting value
δδδm = 0. Therefore Fisher scoring for the m-th component takes the simple form

δ̂δδ
(l)

m = (Fpen (l−1)
m )−1s(l−1)

m (5)

with penalized pseudo Fisher matrix Fpen (l−1)
m and using the unpenalized version

of the penalized score function s
pen (l−1)
m = ∂lpen/∂δδδm (see Section 3.2.1). The

variance-covariance components are replaced by their current estimates Q̂
(l−1)

.

ii. Selection step

Select from m ∈ {1, . . . , p} the component j that leads to the smallest AIC
(l)
m

or BIC
(l)
m as given in Section 3.2.3. Let the corresponding vector (δ̂δδ

(l)

j )T be

denoted by
(
γ̂∗
01, . . . , γ̂

∗
0q, γ̂

∗
j , (b̂

∗
)T
)
.

iii. Update step
For r = 1, . . . , q set

γ̂
(l)
0r = γ̂

(l−1)
0r + γ̂∗

0r,

and

b̂
(l)

= b̂
(l−1)

+ b̂
∗

Set for m = 1, . . . , p

γ̂(l)
m =

{
γ̂

(l−1)
m if m ̸= j

γ̂
(l−1)
m + ν γ̂∗

m, if m = j, 0 < ν ≤ 1
(6)

which yields

δ̂δδ
(l)

=
(
γ̂

(l)
01 , . . . , γ̂

(l)
0q , γ̂

(l)
1 , . . . , γ̂(l)

p , (b̂
(l)

)T
)T

.

With A := [X,Z] update

η̂ηη(l) = Aδ̂δδ
(l)

(b) Computation of variance-covariance components

Estimates of Q̂
(l)

are obtained as approximate REML-type estimates or alternative
methods (see Section 3.2.2)

3.2 Computational Details of OrdinalBoost

In the following we give a more detailed description of the single steps of the OrdinalBoost

algorithm. First the derivation of the score function and the Fisher matrix are described. Then
we present two estimation techniques for the variance-covariance components, give the details
of the computation of the starting values and explain the selection procedure.

3.2.1 Score Function and Fisher Matrix

First we specify more precisely the single components which are used in step 2(a) of the

algorithm. For m ∈ {1, . . . , p} the penalized score function s
pen (l−1)
m = ∂lpen/∂δδδm, obtained by

differentiating the log-likelihood from equation (4), has vector components

s
pen (l−1)
βββm =

n∑

i=1

Ti∑

t=1

XT
itmDitΣΣΣ

−1
it (yit − π̂ππit),

s
pen (l−1)
im =

Ti∑

t=1

ZT
itDitΣΣΣ

−1
it (yit − π̂ππit) − Q−1b̂

(l−1)

i , i = 1, . . . , n,
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with Dit = ∂h(η̂ηηit)/∂ηηη,ΣΣΣit = cov(yit), and π̂ππit = h(η̂ηηit) evaluated at previous fit η̂ηηit =

Aitδ̂δδ
(l−1)

, where Ait := [Xit,Zit]. The vector s
pen (l−1)
βββm has dimension q + 1, while the vectors

s
pen (l−1)
im are of dimension s. Note that s

pen (l−1)
m could be seen as a penalized score function

because of the term Q−1b̂
(l−1)

i .

The penalized pseudo-Fisher matrix Fpen (l−1)
m , m ∈ {1, . . . , p}, which is partitioned into

Fpen (l−1)
m =




Fββββββm Fβββ1m Fβββ2m . . . Fβββnm

F1βββm F11m 0
F2βββr F22m

...
. . .

Fnβββm 0 Fnnm




,

has components

Fββββββm = −E

(
∂2lpen

∂βββm∂βββT
m

)
=

n∑

i=1

Ti∑

t=1

XT
itmDitΣΣΣ

−1
it DT

itXitm,

Fβββim = FT
iβββm = −E

(
∂2lpen

∂βββm∂bT
i

)
=

Ti∑

t=1

XT
itmDitΣΣΣ

−1
it DT

itZit,

Fiim = −E

(
∂2lpen

∂bi∂bT
i

)
=

Ti∑

t=1

ZT
itDitΣΣΣ

−1
it DT

itZit + Q−1,

with Dit = ∂h(η̂ηηit)/∂ηηη and ΣΣΣit = cov(yit) again evaluated at previous fit η̂ηηit = Aitδ̂δδ
(l−1)

.

3.2.2 Variance-Covariance Components

In this section we present two different ways how to update the variance-covariance matrix
Q in step 2(b) of the algorithm. Breslow and Clayton (1993) recommended to estimate the
variance by maximizing the profile likelihood that is associated with the normal theory model.
By replacing βββ with β̂ββ we maximize

l(Qb) = −1

2
log(|V(δ̂δδ)|) − 1

2
log(|XT V−1(δ̂δδ)X|)

−1

2
(η̃ηη(δ̂δδ) − Xβ̂ββ)T V−1(δ̂δδ)(η̃ηη(δ̂δδ) − Xβ̂ββ) (7)

with respect to Qb, using the pseudo-observations η̃ηη(δδδ) = Aδδδ + D−1(δδδ)(y − πππ(δδδ)) and with
matrices V(δδδ) = W−1(δδδ) + ZQbZ

T , W(δδδ) = D(δδδ)ΣΣΣ−1(δδδ)D(δδδ)T and with block-diagonal
matrices Qb = diag(Q, . . . ,Q), D = diag(D11, . . . ,D1Ti ,D21, . . . ,D2T2 , . . . ,DnTn) and ΣΣΣ =

diag(ΣΣΣ11, . . . ,ΣΣΣ1Ti ,ΣΣΣ21, . . . ,ΣΣΣ2T2 , . . . ,ΣΣΣnTn). Having calculated δ̂δδ
(l)

in the l-th boosting itera-

tion, we obtain the estimator Q̂
(l)

b , which is an approximate REML-type estimate for Qb.
An alternative estimate, which can be derived as an approximate EM algorithm, uses the

posterior mode estimates and posterior curvatures. One derives (Fpen (l))−1, the inverse of the

penalized pseudo Fisher matrix of the full model using the posterior mode estimates δ̂δδ
(l)

to

obtain the posterior curvatures V̂
(l)

ii . Now compute Q̂
(l)

by

Q̂
(l)

=
1

n

n∑

i=1

(V̂
(l)

ii + b̂
(l)

i (b̂
(l)

i )T ). (8)

In general, the Vii are derived via the formula

Vii = F−1
ii + F−1

ii Fiβββ(Fββββββ −
n∑

i=1

FβββiF
−1
ii Fiβββ)−1FβββiF

−1
ii ,

7



where Fββββββ ,Fiβββ ,Fii are the elements of the penalized pseudo Fisher matrix Fpen of the full
model, for details see for example Tutz and Hennevogl (1996) or Fahrmeir and Tutz (2001).
Anderson and Hinde (1988) demonstrated that the principle of the EM approach is generally
applicable for generalized linear mixed models.

3.2.3 Starting Values, Hat Matrix and Selection in OrdinalBoost

We compute the starting values β̂ββ
(0)

, b̂
(0)

, Q̂
(0)

from step 1. of the OrdinalBoost algorithm
by fitting a simple global intercept model with random effects given by

g(πitr) = γ0r + zT
itbi, i = 1, . . . , n; t = 1, . . . , Ti; r = 1, . . . , q. (9)

This can be done for example by using the R-function glmmPQL (Wood, 2006) from the MASS

library (Venables and Ripley, 2002).
For the derivation of information criteria one has to find the complexity of the fitted model.

Following Hastie and Tibshirani (1990) the effective degrees of freedom are determined by the
trace of the corresponding hat matrix. Therefore the hat matrix corresponding to the l-th
boosting step for the m-th component has to be derived (see also Tutz and Groll, 2010; Tutz
and Binder, 2006; Leitenstorfer, 2008).

Let A..m := [X..m,Z] and K = diag(0, . . . , 0,Q−1, . . . ,Q−1) be a block-diagonal penalty
matrix with a diagonal of q+1 zeros corresponding to the q different intercepts γ01, . . . , γ0q and

the m-th fixed effect γm and then n times the matrix Q−1. Then the Fisher matrix Fpen (l−1)
m

and the score vector s
pen (l−1)
m are given in closed form as

Fpen (l−1)
m = AT

..mWlA..m + K

and

spen (l−1)
m = AT

..mWlD
−1
l (y − π̂ππ(l−1)) − Kδ̂δδ

(l−1)

m ,

where Wl,Dl,ΣΣΣl and π̂ππ(l−1) are evaluated at the previous fit η̂ηηit = Aδ̂δδ
(l−1)

. For m = 1, . . . , p
the refit in the l-th iteration obtained by a single Fisher scoring step (5) is given by

δ̂δδ
(l)

m = (Fpen (l−1)
m )−1s(l−1)

m

=
(
AT

..mWlA..m + K
)−1

AT
..mWlD

−1
l (y − π̂ππ(l−1)).

We define the predictor corresponding to the m-th refit in the l-th iteration step as

η̂ηη(l)
...m := η̂ηη(l−1) + A..mΨΨΨνδ̂δδ

(l)

m ,

where ΨΨΨν = diag(1, . . . , 1, ν, 1, . . . , 1) is a diagonal-matrix ensuring that the update of the m-th
fixed effect is “weak”. Next, we can write

η̂ηη(l)
...m − η̂ηη(l−1) = A..mΨΨΨνδ̂δδ

(l)

m

= A..mΨΨΨν

(
AT

..mWlA..m + K
)−1

AT
..mWlD

−1
l (y − π̂ππ(l−1)).

Taylor approximation of first order h(η̂ηη) ≈ h(ηηη) + ∂h(ηηη)
∂ηηηT (η̂ηη − ηηη) yields

π̂ππ(l)
...m ≈ π̂ππ(l−1) + Dl(η̂ηη

(l)
...m − η̂ηη(l−1)),

η̂ηη(l)
...m − η̂ηη(l−1) ≈ D−1

l (π̂ππ(l)
...m − π̂ππ(l−1)),

and therefore

D−1
l (π̂ππ(l)

...m − π̂ππ(l−1)) ≈ A..mΨΨΨν

(
AT

..mWlA..m + K
)−1

AT
..mWlD

−1
l (y − π̂ππ(l−1)).
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Multiplication with W
1/2
l and using W1/2D−1 = ΣΣΣ−1/2 yields

ΣΣΣ
−1/2
l (π̂ππ(l)

...m − π̂ππ(l−1)) ≈ H̃
(l)

m ΣΣΣ
−1/2
l (y − π̂ππ(l−1)),

where H̃
(l)

m := W
1/2
l A..mΨΨΨν

(
AT

..mWlA..m + K
)−1

AT
..mW

1/2
l denotes the usual generalized

ridge regression hat-matrix. Defining M(l)
m := ΣΣΣ

1/2
l H̃

(l)

m ΣΣΣ
−1/2
l yields the approximation

π̂ππ(l)
...m ≈ π̂ππ(l−1) + M(l)

m (y − π̂ππ(l−1))

= π̂ππ(l−1) + M(l)
m [(y − π̂ππ(l−2)) − (π̂ππ(l−1) − π̂ππ(l−2))]

≈ π̂ππ(l−1) + M(l)
m [(y − π̂ππ(l−2)) − M

(l−1)
jl−1

(y − π̂ππ(l−2))],

whereas jl−1 ∈ {1, . . . , p} denotes the index of the component selected in boosting step l − 1.
The hat matrix corresponding to the global intercept model from equation (9) is

M(0) = A0(A
T
0 W1A0 + K0)A

T
0 W1,

with A0 := [Inq,Z], whereas IT
nq := [Iq, . . . , Iq] consists of n identity matrices of dimension q.

We also define the block-diagonal penalty matrix K0 := diag(0, . . . , 0,Q−1, . . . ,Q−1), with a
diagonal of q zeros corresponding to the q different intercepts γ01, . . . , γ0q and then n times the

matrix Q−1. As the approximation π̂ππ(0) ≈ M(0)y holds, one obtains

π̂ππ(1)
...m ≈ π̂ππ(0) + M(1)

m (y − π̂ππ(0))

≈ M(0)y + M(1)
m (I − M(0))y.

In the following, to indicate that the hat matrices of the former steps have been fixed, let
jl ∈ {1, . . . , p} denote the index of the component selected in boosting step l. Then we can

abbreviate Mjl
:= M

(l)
jl

for the matrix corresponding to the component that has been selected
in the l-th iteration. Further, in a recursive manner, we get

π̂ππ(l)
...m ≈ H(l)

m y,

where

H(l)
m = I − (I − M(l)

m )(I − Mjl−1
)(I − Mjl−2

) · . . . · (I − M(0))

= M(l)
m

l−1∏

i=0

(I − Mji) +
l−1∑

k=0

Mjk

k−1∏

i=0

(I − Mji)

=
l∑

k=0

Mjk

k−1∏

i=0

(I − Mji),

is the hat matrix corresponding to the l-th boosting step considering the m-th component,
whereas Mjl

:= M(l)
m is not fixed yet.

For a given hat matrix H, we can determine the complexity of our model by the following
information criteria:

AIC = −2 l(π̂ππ) + 2 trace (H), (10)

BIC = −2 l(π̂ππ) + 2 trace (H) log(n), (11)

where

l(π̂ππ) =
n∑

i=1

li(π̂ππi) =
n∑

i=1

log f(yi|π̂ππi) (12)

9



denotes the log-likelihood and li(π̂ππi) the log-likelihood contribution of (yi,Xi,Zi). Note that
the log-likelihood (4) is given with argument πππ instead of δδδ, that results from the definition of
the natural parameter θθθ = θ(πππ) in (2) and by using πππ = h(ηηη) = h(ηηη(δδδ)).

For multinomial distributed response the log-likelihood has the form

logf(yi|π̂ππi) =

Ti∑

t=1

yit1 log π̂it1 + . . .+yitq log π̂itq +(1−yit1 − . . .−yitq) log (1− π̂it1 − . . .− π̂itq).

Based on (12), the information criteria (10) and (11) used in the l-th boosting step, considering

the m-th component, have the form AIC
(l)
m = −2l(π̂ππ(l)

...m)+2trace(H(l)
m ), BIC

(l)
m = −2l(π̂ππ(l)

...m)+

2 trace (H(l)
m ) log(n) with l(π̂ππ(l)

...m) =
∑n

i=1 log f(yi|π̂ππ(l)
i..m).

In the l-th step one selects from m ∈ {1, . . . , p} the component jl that minimizes AIC
(l)
m

or BIC
(l)
m and obtains AIC(l) := AIC

(l)
jl

.

3.2.4 Stopping Criterion

As common in boosting we choose a large number lmax of maximal boosting steps, e.g. lmax =
1000, and stop the algorithm at iteration lmax. Then selection of the optimal number of
boosting steps, lopt, is based on 5-fold cross validation by use of the distance measure

Dl :=
n∑

i=1

Ti∑

t=1

∣∣∣Yit − arg min
r

{
π̂

(l)
it1 + · · · + π̂

(l)
itr ≥ 0.5

}∣∣∣,

which uses the estimate in boosting step l. Afterwards we fit the whole data set again using the
OrdinalBoost algorithm with lopt boosting iterations to obtain the corresponding parameter

estimate δ̂δδ
(lopt)

. Finally we fit a model corresponding to the non-zero parameters of δ̂δδ
(lopt)

by
performing simple Fisher scoring and obtain the final estimates δ̂δδ, Q̂ and the corresponding fit
π̂ππ.

3.3 Simulation Study

In the following we present two simulation studies to check the performance of the OrdinalBoost
algorithm, one for the cumulative and one for the sequential model. The algorithm is also com-
pared to alternative approaches. We set ν = 1 in all following simulation studies, since in our
experience smaller values hardly improve on the results but more boosting steps are needed
which increases the computational cost.

3.3.1 Cumulative Model

The underlying model is a random intercept cumulative logit-model with k = 6 response
categories and the following design:

ηitr =

p∑

j=1

γ0r + xitjγj + bi, r = 1, . . . , 5, i = 1, . . . , 20, t = 1, . . . , 5,

P (Yit = 1) = F (ηit1),

P (Yit = r) = F (ηitr) − F (ηit,r−1), r = 2, . . . , 5,

P (Yit = 6) = 1 − F (ηit5).

F is chosen as the logistic function, F (u) = exp(u)/(1+ exp(u)) yielding the proportional odds

model. We specify the parameter vector βββT = (γ01, γ02, γ03, γ04, γ05, γγγ
T ) = (−2.5, −1.2, 0, 1.2,

2.5,−15,−20, 35, 0, . . . , 0) with γj = 0, j = 4, . . . , 50. Therefore three predictors are influential.
We choose the different settings p = 3, 5, 10, 20, 50. For j = 1, . . . , 50 the vectors xT

it =

10



(xit1, . . . , xit50) follow a uniform distribution within the interval [−0.09, 0.09] and without
correlation. The number of observations is determined by n = 20, Ti := T = 5, i = 1, . . . , n.
The random intercepts have been specified by bi ∼ N(0, σ2

b ) with three different scenarios,
σb = 0.4, 0.8, 1.6.

The performance of estimators is evaluated separately for the structural components and
the variance. We compare the results of the OrdinalBoost algorithm with the results obtained
by the R-function clmm which is available in the ordinal package (Christensen, 2010). It is
able to fit cumulative random effects models using Laplace approximation or adaptive Gauss-
Hermite quadrature approximation. Both methods (denoted by clmmLP and clmmGH) were
used.

By averaging across 100 data sets we consider mean squared errors for βββ and σb given by

mseβββ := ||βββ − β̂ββ||2, mseσb
:= ||σb − σ̂b||2.

The results of both quantities for different scenarios of σb and for different numbers of noise
variables can be found in Table 1. Additional information on the performance of the algorithm
was collected in falseneg, the mean over all 100 simulations of the number of variables γj , j =
1, 2, 3, that were not selected and in falsepos, the mean over all 100 simulations of the number
of variables γj , j = 4, . . . , p, that were selected. As the clmm function is not able to perform
variable selection it always estimates all parameters γj , j = 1, . . . , p. For the computation
of the random effects variance σ2

b we used the two estimation techniques (7) and (8) given in
Section 3.2.2. The results can be found in the corresponding OrdinalBoost (EM) and (REML)
columns of Table 1.

Obviously the boosting estimates clearly outperform the estimates of the clmm function,
especially in those cases where many noise variables are present. For the case σb = 1.6, p =
50 the clmm function did not converge in almost half of the simulations for both Laplace
approximation and adaptive Gauss-Hermite quadrature approximation. For the remaining
simulations huge values of mean squared errors yielded (mseβββ ≈ 51500 and mseσb

≈ 22). As
a consequence the boxplots of Figure 3 for p = 50 are based on those 49 simulations only,
where clmm did converge for both techniques. In most of the simulations the REML-type
estimates of the parameter vector βββ turned out to perform slightly better than the EM-type
estimates and vice versa for the estimates of the standard deviations σb of the random effects.
The corresponding boxplots of mseβββ are shown in Figures 1-3, for different numbers of noise
variables and for different scenarios of σb. Figure 4 exemplarily shows the boxplots of the ratios
log(mseσb

(. . .)/mseσb
(clmm(LP))) corresponding to the σb = 0.4 case.

3.3.2 Sequential Model

The underlying model is a random intercept sequential logit-model with k = 6 response cate-
gories and the following design:

ηitr =

p∑

j=1

γ0r + xitjγj + bi, r = 1, . . . , 5, i = 1, . . . , 20, t = 1, . . . , 5,

P (Yit = 1) = F (ηit1),

P (Yit = r) = F (ηitr)
r−1∏

j=1

(1 − F (ηitj)) , r = 2, . . . , 5,

P (Yit = 6) =
5∏

j=1

(1 − F (ηitj)) .

Again we choose F to be the logistic function F (u) = exp(u)/(1+exp(u)), we choose the same

parameter vector βββT = (γ01, γ02, γ03, γ04, γ05, γγγ
T ) = (−2.5, −1.2, 0, 1.2, 2.5, −20, 35, 0, . . . , 0)

with γj = 0, j = 4, . . . , 50 as for the cumulative model and investigate the different settings
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Figure 1: Cumulative logit model: Boxplots of the ratios log(mseβββ(. . .)/mseβββ(clmm(LP))) for the
three different methods, for p = 3, 5, 10, 20, 50 covariables and σb = 0.4

p=3 p=5 p=10 p=20 p=50

−
8

−
6

−
4

−
2

0

log ( OrdinalBoost (EM) / clmm (LP) )

p=3 p=5 p=10 p=20 p=50

−
8

−
6

−
4

−
2

0

log ( OrdinalBoost (REML) / clmm (LP) )

p=3 p=5 p=10 p=20 p=50

−
8

−
6

−
4

−
2

0

log ( clmm (GH) / clmm (LP) )

Figure 2: Cumulative logit model: Boxplots of the ratios log(mseβββ(. . .)/mseβββ(clmm(LP))) for the
three different methods, for p = 3, 5, 10, 20, 50 covariables and σb = 0.8
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Figure 3: Cumulative logit model: Boxplots of the ratios log(mseβββ(. . .)/mseβββ(clmm(LP))) for the
three different methods, for p = 3, 5, 10, 20, 50 covariables and σb = 1.6
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Figure 4: Boxplots of the ratios log(mseσb(. . .)/mseσb(clmm(LP))) for p = 3, 5, 10, 20, 50 covariables
and σb = 0.4 for the cumulative logit model
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p = 3, 5, 10, 20, 50. For j = 1, . . . , 50 the vectors xT
it = (xit1, . . . , xit50) follow the same uniform

distribution on the interval [−0.09, 0.09]. The number of observations remains n = 20, Ti :=
T = 5, i = 1, . . . , n and the random intercepts have been specified by bi ∼ N(0, σ2

b ) with the
same three different cases σb = 0.4, 0.8, 1.6.

We use the same goodness-of-fit criteria as for the cumulative model to check the per-
formance of our OrdinalBoost algorithm and compare with the results obtained from the
R-functions glmmPQL and glmer. Both functions assume a binary response but it is well known
that the sequential model can be fitted as a binary response model by defining binary indi-
cators for the transitions (see for example Fahrmeir and Tutz, 2001). The glmmPQL function
is available in the MASS package (Venables and Ripley, 2002). It operates by iteratively call-
ing the R-function lme from the nlme library and returns the fitted lme model object for the
working model at convergence. For more details about the lme function, see Pinheiro and
Bates (2000) and Wood (2006). The glmer function available in the lme4 package (Bates
and Maechler, 2010). It features two different methods of approximating the integrals in the
log-likelihood function, Laplace and Gauss-Hermite, where we focused on the Gauss-Hermite
method in our simulations using 15 quadrature points. In some cases the glmer function did
not estimate random effects and set σb = 0. As a consequence we derived the mean squared
errors in Table 2 only for those cases where glmer did estimate random effects. Besides the
number of simulations, where no random (n. r.) effects were estimated can be found in the
corresponding column. Another function that is able to fit the underlying model is the glmmML
function supplied with the glmmML package (Broström, 2009). The function also features two
different methods of approximating the integrals in the log-likelihood function, Laplace and
Gauss-Hermite. For the first method the results coincide with the results of the glmmPQL rou-
tine, so we focused on the Gauss-Hermite method in our simulations. But as the estimates
of especially the random effects standard deviation σb have been a good deal worse as for the
glmer function we abstained on presenting its results. All other results are summarized in
Table 2.

It is obvious that both parameter and variance estimates of the two boosting methods
remain relatively stable when the number of noise variables is increasing, whereas the mean
squared errors of the estimates obtained by the two R-functions are drastically deteriorating.
This effect becomes distinct especially for the variance estimates. For p = 50 the mean squared
errors for the glmmPQL function explode yielding values of mseβββ > 9 · 1022 and mseσb

> 3 · 107.
The same happens for the glmer function just with a more moderate order of magnitude.
The results of mseβββ are illustrated in the Figures 5 - 7 which show boxplots of the ratios
log(mseβββ(. . .)/mseβββ(glmer)) for the different methods, for different numbers of noise vari-
ables and for different scenarios of σb. Figure 8 exemplarily shows the boxplots of the ratios
log(mseσb

(. . .)/mseσb
(glmer)) corresponding to the σb = 1.6 case.

Comparison of boosting procedures yields that the REML estimates of the parameter vector
are slightly more stable than the EM estimates, except for a high number of noise variables,
e.g. the p = 50 case. In this case the glmmPQL function did not provide satisfying estimates,
which let to the high values of the mean squared errors. In estimating the random effects
variance σ2

b the REML-type boosting clearly outperforms the EM-type for all numbers of noise
variables and in all three scenarios for σb, except for the scenario with p = 50, σb = 1.6.
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Figure 5: Sequential logit model: Boxplots of the ratios log(mseβββ(. . .)/mseβββ(glmer)) for the three
different methods, for p = 3, 5, 10, 20, 50 covariables and σb = 0.4
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Figure 6: Sequential logit model: Boxplots of the ratios log(mseβββ(. . .)/mseβββ(glmer)) for the three
different methods, for p = 3, 5, 10, 20, 50 covariables and σb = 0.8
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Figure 7: Sequential logit model: Boxplots of the ratios log(mseβββ(. . .)/mseβββ(glmer)) for the three
different methods, for p = 3, 5, 10, 20, 50 covariables and σb = 1.6
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Figure 8: Boxplots of the ratios log(mseσb(. . .)/mseσb(glmer)) for p = 3, 5, 10, 20, 50 covariables and
σb = 1.6 for the sequential logit model
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4 Applications to Real Data

In the following sections we apply our boosting method on different real data sets and compare
the results with other approaches. It should be noted that fixed effects of categorical predictors
and predictors that include polynomial terms are updated blockwise in step (6) of the boosting
algorithm. Moreover, we derive the optimal number of boosting steps by selecting the step lopt

for which AIC(l) is lowest instead of using cross-validation.

4.1 Recovery Data

The data set was published by Davis (1991). In the study the impact of different doses
of an anesthetic is analyzed for 60 children. As soon as the children enter the anesthetic
recovery room after a surgery their level of “awakeness” is measured followed by three further
measurements after 5, 15 and 30 minutes. The level of “awakeness” is given on a spectrum
ranging from 0 ( sleeping) to 6 (awake). For each child the categorical influence variable “Dose”
(dosage of the anesthetic; 15, 20, 25 or 30 mg/kg) as well as the metric influence variables
“Age” (in month) and “Duration of the surgery” (in minutes) have been observed. Finally
we include another categorical variable, the “Number of Replication”. We use a cumulative
random intercept model to fit the data allowing “Age” to have a non-linear effect by including
the variable “Age2”. The corresponding linear predictor is

ηitr = γ0r + Dose1itγ1 + Dose2itγ2 + Dose3itγ3 + Durationitγ4 + Ageitγ5 + Age2
itγ6

+Replication1itγ7 + Replication2itγ8 + Replication2itγ9 + bi, r = 1, . . . , 6.

“Dose4” (30 mg/kg) and “Replication4” are used as reference categories. Figure 9 shows the
corresponding coefficient paths for the OrdinalBoost algorithm (EM). The covariates have
been standardized by dividing them by their empirical standard deviation.
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Figure 9: Coefficient buildups of the EM-estimates for standardized covariates, recovery data

Table 3 shows the results of the estimates obtained by the R-function clmm, using Laplace (LP)
and Gauss-Hermite (GH), as well as the results obtained by our OrdinalBoost algorithm. The

18



estimates of the EM and the REML technique are very similar, with the main difference, that
the REML approach didn’t select the variables “Age” and “Age2”. For the R-function clmm

some convergence problems occur and for both methods (LP and GH) the warning message
is reported, that the variance-covariance matrix of the parameters is not defined, with the
consequence that the standard deviations of the estimates could not be derived. As is seen in
Figure 9 the OrdinalBoost algorithm using the EM technique does not select the variables
“Duration” and “Dose”. So in the final Fisher scoring (see Section 3.2.4) a model without
these two variables is fitted and both variables are not incorporated into the model.

clmmLP clmmGH
OrdinalBoost

(EM) (REML)
Intercept 1 -10.382 (NA) -10.389 (NA) -9.252 -8.749
Intercept 2 -6.412 (NA) -6.407 (NA) -5.722 -5.249
Intercept 3 -5.333 (NA) -5.325 (NA) 4.705 -4.244
Intercept 4 -3.767 (NA) -3.758 (NA) -3.258 -2.814
Intercept 5 -2.636 (NA) -2.625 (NA) -2.198 -1.769
Intercept 6 -1.263 (NA) -1.247 (NA) -0.901 -0.493
Dose 1 -1.700 (NA) -1.725 (NA) 0 0
Dose 2 -1.530 (NA) -1.559 (NA) 0 0
Dose 3 -0.632 (NA) -0.642 (NA) 0 0
Duration 0.016 (NA) 0.016 (NA) 0 0
Age 0.033 (NA) 0.033 (NA) 0.035 0
Age2 0.001 (NA) 0.001 (NA) 0.002 0
Replication1 6.482 (NA) 6.489 (NA) 5.882 5.805
Replication2 4.719 (NA) 4.727 (NA) 4.301 4.242
Replication3 2.992 (NA) 2.990 (NA) 2.710 2.677
σ̂b 3.444 (NA) 3.511 (NA) 3.259 3.237

Table 3: Estimates for the recovery data

4.2 Forest health Data

The forest health data has been considered in previous studies, for example in Kneib and
Fahrmeir (2010) and Kneib et al. (2009). In this application, the health status of beeches at
83 observation plots located in a northern Bavarian forest district has been assessed in visual
forest health inventories carried out between 1983 and 2004. Originally, the health status is
classified on an ordinal scale, where the nine possible categories denote different degrees of
defoliation. Figure 10 shows a histogram of the nine defoliation classes indicating that no trees
were observed in the last two categories. Therefore we use the categorical response variable
“defoliation” with seven categories by aggregating over the last three categories. In Kneib
et al. (2009) a brief description of the covariates in the data set is presented, which can be
found in Table 4.
We use a sequential random intercept model to fit the data, allowing “age” and “time” to have
not only strictly linear effects by including the variables “age2” and “time2” into our model.
Kneib et al. (2009) identified also nonlinear effects for canopy density and soil depth, so we
also incorporate the variables “canopy2” and “soil depth2” for our model. Figure 11 shows
the corresponding coefficient paths of the OrdinalBoost algorithm with REML approach for
standardized covariates. Due to our choice of ν = 0.1 the AIC did still slightly improve at a
high number of boosting steps, which also reflects the resistance against overfitting, which is
an important trail of boosting procedures. Step 135 was the last step where a new variable
(“Elevation”) entered the model and from step 267 on only the variables “age” and “age2”
were slightly updated, so the algorithm was stopped at step lmax = 1000.
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Figure 10: Relative frequencies of the nine defoliation classes for all observation plots and all time
points for the forest health data

Covariate Description

age age of the tree in years (continuous, 7 ≤ age ≤ 234)
time calendar time (continuous, 1983 ≤ time ≤ 2004)
elevation elevation above sea level in meters (continuous, 250 ≤ elevation ≤ 480)
inclination inclination of slope in percent (continuous, 0 ≤ inclination ≤ 46)
soil depth of soil layer in centimeters (continuous, 9 ≤ soil ≤ 51)
canopy density of forest canopy in percent (continuous, 0 ≤ canopy ≤ 1)
stand type of stand (categorical, 1 = deciduous forest, -1 = mixed forest)
fertilisation fertilisation (categorical, 1 = yes, -1 = no)
humus thickness of humus layer in 5 categories (ordinal, higher categories represent

higher proportions)
moisture level of soil moisture (categorical, 1 = moderately dry, 2 = moderately moist,

3 = moist or temporary wet)
saturation base saturation (ordinal, higher categories indicate higher base saturation)

Table 4: Description of covariates for the forest health data

Table 5 shows the results of the estimates obtained by the R-functions glmmPQL and glmer as
well as the results obtained by our OrdinalBoost algorithm. The estimates of the EM and the
REML technique are very similar, with the main difference, that the REML approach did not
select the variables “time” and “time2”.

Although fitting procedures for the full model still work, the main advantage of the boosting
procedure, selection of parameters, becomes obvious. REML boosting deletes 5 variables of
the 11 available variables.
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Figure 11: Coefficient buildups of the REML-estimates for standardized covariates, forest health
data

5 Concluding Remarks

Procedures for the fitting of binary and ordinal mixed models in high-dimensional designs were
proposed and examined. The selection procedures work quite stable and allow to select the
influential variables from a set of variables which includes irrelevant ones. They also work in
cases where common methods that are unable to select predictors fail.

The used method is an adaptation of likelihood-based boosting to generalized linear mixed
models. Alternatively one could use L1-penalty techniques by maximizing the penalized
marginal likelihood. A procedure of that type has been proposed more recently for the semi-
parametric linear mixed model (see Ni et al., 2010). The generalization to generalized linear
models seems not yet available.

One should also mention an alternative boosting scheme that is available in the mboost

package (see Hothorn et al., 2010 and Bühlmann and Hothorn, 2007). The package provides
a variety of gradient boosting families to specify loss functions and the corresponding risk
functions to be optimized. It has recently been extended to families with an additional scale
parameter, for example the PropOdds() family leads to the (fixed effects) proportional odds
model, see Schmid and Hothorn (2008) and Schmid et al. (2010). The gamboost function
from that package also allows to model heterogeneity in repeated measurements, but fits a
fixed parameter model. No distribution assumption for the random effects is used and thus no
estimates for the variance of the random effects can be derived (see also Kneib et al., 2009).
Therefore modeling and estimates are not comparable to the generalized mixed model approach
that has been proposed here.
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glmmPQL glmer
OrdinalBoost

(EM) (REML)
Intercept 1 2.892 (2.552) 3.390 (2.717) 0.113 -0.028
Intercept 2 5.017 (2.554) 5.571 (2.720) 1.882 1.737
Intercept 3 5.726 (2.559) 6.297 (2.725) 2.372 2.232
Intercept 4 7.061 (2.567) 7.666 (2.733) 3.567 3.427
Intercept 5 7.824 (2.581) 8.447 (2.748) 4.175 4.033
Intercept 6 9.263 (2.623) 9.916 (2.791) 5.661 5.541
time 0.024 (0.011) 0.025 (0.011) 0.015 0
time2 0.002 (0.001) 0.002 (0.002) -0.001 0
inclination 0.013 (0.030) 0.013 (0.032) 0 0
elevation -0.006 (0.006) -0.007 (0.006) -0.002 -0.001
soil 0.035 (0.038) 0.040 (0.041) -0.021 -0.019
soil2 -0.003 (0.002) -0.003 (0.003) 0.002 0.002
fertilisation 2.868 (1.017) 3.111 (1.095) 0 0
age -0.055 (0.006) -0.058 (0.006) -0.024 -0.024
age2 -0.000 (0.000) -0.001 (0.000) -0.000 -0.000
canopy 2.692 (0.496) 2.759 (0.519) 4.092 3.861
canopy2 0.136 (1.454) 0.387 (1.529) 3.23 2.447
stand -0.487 (0.482) -0.576 (0.512) 0 0
saturation1 -0.632 (0.631) -0.680 (0.671) -0.775 -0.768
saturation3 -0.124 (0.677) -0.168 (0.722) 0.413 0.439
saturation4 -0.060 (0.836) -0.095 (0.892) -0.128 -0.162
humus0 0.397 (0.125) 0.409 (0.131) 0 0
humus2 -0.069 (0.102) -0.070 (0.106) 0 0
humus3 -0.277 (0.121) -0.284 (0.127) 0 0
humus4 -0.239 (0.168) -0.248 (0.176) 0 0
moisture1 0.623 (0.650) 0.763 (0.698) 0.748 0.747
moisture3 -1.319 (0.459) -1.468 (0.490) -0.747 -0.723
σ̂b 2.214 (0.961) 2.358 1.448 1.421

Table 5: Estimates for the forest health data
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