ELSEVIER

Contents lists available at ScienceDirect

Stem Cell Research

Lab Resource: Animal Multiple Cell lines

Generation and characterization of two fibroblast-derived Baboon induced pluripotent stem cell lines

Jessica Jocher^a, Fiona C. Edenhofer^a, Stefan Müller^b, Philipp Janssen^a, Eva Briem^a, Johanna Geuder^a, Wolfgang Enard^{a,*}

^a Anthropology & Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, 82152 Martinsried, Germany
^b Institute of Human Genetics, Munich University Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany

ABSTRACT

Cross-species comparisons studying primate pluripotent stem cells and their derivatives are crucial to better understand the molecular and cellular mechanisms behind human disease and development. Within this context, Baboons (*Papio anubis*) have emerged as a prominent primate model for such investigations. Herein, we reprogrammed skin fibroblasts of one male individual and generated two induced pluripotent stem cell (iPSC) lines, which exhibit the characteristic ESC-like morphology, demonstrated robust expression of key pluripotency factors and displayed multilineage differentiation potential. Notably, both iPSC lines can be cultured under feeder-free conditions in commercially available medium, enhancing their value for cross-species comparisons.

1. Resource Table

Unique stem cell lines	MPC-PapAnu-C00001 (100A1)
identifier	MPC-PapAnu-C00002 (100B1.3)
Alternative name(s) of stem	100A1
cell lines	100B1.3
Institution	Faculty of Biology, Ludwig-Maximilians-
	Universität München
Contact information of	Prof. Dr. Wolfgang Enard: enard@bio.lmu.de
distributor	Jessica Jocher: jocher@bio.lmu.de
Type of cell lines	iPSCs
Origin	Baboon (Papio anubis)
Additional origin info	Sex: male
Cell Source	iPSCs were derived from baboon skin fibroblasts
Clonality	Clonal
Method of reprogramming	Integration-free sendai virus based OSKM vectors (CytoTune-iPSC 2.0 Sendai Reprogramming Kit, Thermo Fisher Scientific) were used for reprogramming
Evidence of the reprogramming transgene loss	PCR analysis for transgene detection (negative)
Associated disease	N/A
Gene/locus	N/A
Date archived/stock date	April 2021
Cell line repository/bank	N/A
Ethical approval	Fibroblasts were isolated during an autopsy in an unrelated project that was approved by the Government of Upper Bayaria, Munich, Germany
	(continued on part column)

(continued)

Unique stem cell lines	MPC-PapAnu-C00001 (100A1)
identifier	MPC-PapAnu-C00002 (100B1.3)
	(reference number 55.2–1-54–2532-184–2014, September 2015).

1.1. Resource utility

The utilization of two iPSC lines derived from one male Baboon skin sample enables cross-species comparisons, particularly for investigating the molecular and cellular evolution during early primate development. Additionally, these two lines offer the opportunity to evaluate clonal variation within the genetic background of one single Baboon.

2. Resource details

Comparative analyses of human and non-human primates (NHP) can provide valuable and unique information, allowing to gain insights into evolutionary and developmental mechanisms, as well as bridge the phylogenetic gap between humans and mice (Enard, 2012). The Baboon (*Papio anubis*) is a frequently used model in biomedical research, as well as in behavioral ecology (Fischer et al., 2019). However, availability of these animals is limited and obtaining comparable cells especially during development is practically and ethically challenging for many

* Corresponding author.

E-mail address: enard@bio.lmu.de (W. Enard).

https://doi.org/10.1016/j.scr.2024.103316

Received 6 September 2023; Received in revised form 21 December 2023; Accepted 16 January 2024 Available online 17 January 2024 1873-5061/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Table 1

С

Classification	Test	Result	Data
Morphology	Photography Bright	Normal colony	Fig. 1A
Dhanatar	field	morphology	Eia 1D
rnenotype	Qualitative analysis by	IPSUS Were	нıg. 1В
	minumocytochemistry	stained for	
		OCT3/4.	
		NANOG, SOX2,	
		TRA-1–60 and SSEA4	
	Quantitative analysis	% of total cells	Fig. 1C
	by	positive for	
	immunocytochemistry	pluripotency	
	counting	markers (mean	
		\pm SD):	
		OCT3/4: 97.9 %	
		± 2.9 %	
		(3,071 cell	
		counted)	
		NANOG: 98.2 %	
		$\pm 0.3 \%$	
		(3,070 Cell	
		SOX2: 99.1 % ±	
		0.6 %	
		(3,362 cell	
		counted)	
		100B1.3	
		+ 0.6 %	
		(3.725 cell	
		counted)	
		NANOG: 98.8 %	
		$\pm \ 1.1$ %	
		(2,845 cells	
		counted)	
		$50X2:98.9\% \pm 0.3\%$	
		(2.492 cells	
		counted)	
Genotype	Karyotype (G-banding)	2x	Fig. 1D and
	and resolution	inconspicuous	Supplementary
		male karyotype,	Fig. S1D
		42,XY	
		no recurrent	
		structural	
		aberrations,	
		after G-banding	
		analysis of more	
		than 45 cells per	
		cell line with up	
		approximately	
		400 bphs (bands	
		per haploid set)	
Identity	SINE-based genotyping	DNA profiling	Supplementary
	PCR	performed,	Fig. S1A
		matched	
		between iPSCs	
		fibroblasts	
	SNP analysis	Variant calling	Submitted in
		performed	archive with
		- resulting in	journal
		7000 high	Summary:
		quality SNPs	Supplementary
Matheatier	NI / A		Fig. S1B,C
mutation	IN/A N/A		
APPLICABLE)	11/71		
Microbiology	Mycoplasma	Mycoplasma	Fig. 1E
and virology		testing by PCR:	-
		negative	

[able]	1	(continued)	

Classification	Test	Result	Data
	Sendai virus	PCR analysis for Sendai virus presence:	Fig. 1F
Differentiation potential	Embryoid body formation	negative iPSCs are capable of differentiating into the three germ layers. Mesoderm: Smooth muscle actin (SMA) and COL1A1, Endoderm: α-feto protein (AFP) and SOX17,	Fig. 1G
		Ectoderm: β-III Tubulin and	
Donor screening (OPTIONAL)	N/A	PAX6	
Genotype additional info (OPTIONAL)	N/A N/A		

studies. Therefore, generating induced pluripotent stem cells (iPSCs) from NHPs can aid in establishing renewable sample resources and help to overcome these challenges (Juan et al., 2023).

Here, Baboon skin fibroblasts were reprogrammed to iPSCs using a commercially available Sendai virus kit to introduce the Yamanaka factors OCT3/4, SOX2, KLF4 and C-MYC into the cells. Following transduction, emerging colonies were picked, gradually transitioned to feeder-free culture conditions, and further characterized (Table 1). The resulting iPSC clones exhibit characteristic ESC-like features, including compact cellular packaging, defined colony borders and a high nuclear / cytoplasm ratio (Fig. 1A). To confirm pluripotency of the iPSCs, immunofluorescence (IF) staining was performed, affirming the expression of the pluripotency-associated proteins NANOG, OCT3/4 and SOX2, in addition to the presence of cell surface markers TRA-1-60 and SSEA4 (Fig. 1B). Quantitative analysis of the IF staining demonstrated a substantial proportion of cells (>95 %) are expressing NANOG, OCT3/4 and SOX2 (Fig. 1C). A primate-specific SINE-based PCR was conducted, confirming the same Baboon-specific ALU element insertions as the parental skin fibroblasts, thereby validating their origin from the same species (Herke et al., 2007) (Supplementary Fig. S1A). In addition, single nucleotide polymorphisms (SNPs) were called from bulk RNAsequencing (bulk RNA-seq) data to profile the genotype of the cell lines. Around 7000 high quality SNPs with high coverage in both clones and parental fibroblasts were retrieved (Supplementary Fig. S1B,C). All iPSCs were negative for mycoplasma contamination (Fig. 1E) and the absence of Sendai-based reprogramming vectors was proven by PCR (Fig. 1F). Karyotype analysis revealed no recurrent numerical or structural abnormalities (Fig. 1D). In addition, a detailed high resolution analysis of numerical and structural chromosome integrity was performed by FISH using selected human whole chromosome specific painting probes to further validate one of the cell lines. All chromosomes were stained as expected, with baboon chromosome 10 being stained with two probes based on an evolutionary fusion of human chromosome 20 and 22 homologs (Best et al., 1998) (Supplementary Figure S1D). To assess the differentiation potential of iPSCs, an in vitro differentiation to embryoid bodies (EBs) was performed, and subsequent staining for alpha-fetoprotein (AFP), SOX17, alpha-smooth-muscle actin (SMA), procollagen-1 alpha-1 (COL1A1), PAX6 and neuron-specific beta-III tubulin confirmed differentiation into the three germ layers (Fig. 1G). In

Fig. 1. Characterization of two Baboon iPSC lines. (A) Phase contrast microscopy images of iPSC colonies. Scale bar represents 500 µm. (B) Immunofluorescence staining for pluripotency markers. Scale bar represents 100 µm. (C) Immunofluorescence counting results for NANOG, OCT4 and SOX2. (D) Karyotype analysis. (E) Mycoplasma test. (F) PCR for Sendai-based reprogramming vectors. (G) Immunofluorescence staining for germ layer-specific markers. Scale bar represents 100 µm.

Table 2

Reagents details.

	Antibodies used for immunocytochemistry/flow-cytometry			
	Antibody	Dilution	Company Cat #	RRID
Pluripotency Markers	Rabbit anti-OCT4	1:400	Cell Signaling Technology, Cat# 2750S	RRID: AB_823583
	Mouse anti-SOX2	1:400	Cell Signaling Technology, Cat# 4900S	RRID: AB_10560516
	Rabbit anti-NANOG	1:400	Cell Signaling Technology, Cat# 4903S	RRID: AB_10559205
	Mouse anti-SSEA4	1:500	NEB, Cat# 4755S	RRID: AB_1264259
	Mouse anti-TRA-1-60	1:100	Stem Cell Technologies, Cat# 60064	RRID: AB_2686905
Differentiation Markers	Mouse anti-α-Smooth Muscle Actin	1:100	R&D Systems, Cat# MAB1420	RRID: AB_262054
	Sheep anti-COL1A1	1:200	R&D Systems, Cat# AF6220	RRID: AB_10891543
	Mouse anti-Neuron-specific beta-III Tubulin	1:100	R&D Systems, Cat# MAB1195	RRID: AB_357520
	Rabbit anti-PAX6	1:100	Thermo Fisher Scientific, Cat# 42-6600	RRID: AB_2533534
Secondary Antibodies	Mouse anti-alpha Fetoprotein	1:100	R&D Systems, Cat# MAB1368	RRID: AB_357658
	Rabbit anti-SOX17	1:500	Bio-Techne, Cat# NBP2-24568	RRID: AB_3075468
	Alexa Fluor 488 donkey anti-mouse IgG (H + L)	1:500	Thermo Fisher Scientific, Cat# A-21202	RRID: AB_141607
	Alexa Fluor 594 donkey anti-rabbit IgG (H + L)	1:500	Thermo Fisher Scientific, Cat# A-21207	RRID: AB_141637
	Alexa Fluor 488 donkey anti-sheep IgG (H + L)	1:500	Thermo Fisher Scientific, Cat# A-11015	RRID: AB_2534082
	Primers			
	Target	Size of band	Forward/Reverse primer (5'-3')	
Reprogramming factor clearance	Sendai Virus	180 bp	GGATCACTAGGTGATATCGAGC /	
			ACCAGACAAGAGTTTAAGAGATATGTATC	
	GAPDH (housekeeping gene)	450 bp ACCACAGTCCATGCCATCAC / TCCACCACCCTGTTGCTGTA		CCTGTTGCTGTA
Mycoplasma testing	Mycoplasma 16S	270 bp	TGCACCATCTGTCACTCTGTTAACCTC /	
			GGGAGCAAACAGGATTAGATACCCT	
Genotyping PCR	Alu (primate-specific SINE)	666 bp	TCTAAGGCAGCCATTGAGTG / CCAGGTTTGCCTCTGACTCC	

summary, these characteristics suggest the successful reprogramming of Baboon fibroblasts to two feeder-free iPSC lines.

3. Materials and methods

3.1. Reprogramming of fibroblasts and iPSC maintenance

Fibroblasts were cultured in DMEM/F12 (Fisher Scientific) supplemented with 10 % FBS, 100 U/ml Penicillin and 100 µg/ml Streptomycin (Thermo Fisher Scientific) on 0.2 % Gelatin-coated dishes at 37 $^\circ \mathrm{C}$ with 5 % CO₂. For reprogramming, the CytoTune[™]-iPS 2.0 Sendai Reprogramming Kit (Thermo Fisher Scientific) was used at a MOI of 5 following a modified protocol. Briefly, a suspension infection with the virus mix was conducted for 1 h at 37 °C, followed by seeding on feeder cell (mitomycin-C treated mouse embryonic fibroblasts) -coated wells. The culture medium was switched to mTesR1TM (STEMCELL Technologies) on day 5. Emerging colonies were manually picked on feeder cells in StemFit® Basic02 (Ajinomoto) supplemented with 100 ng/mL bFGF (Peprotech) and PenStrep. To generate feeder-free iPSCs, cells were split using 0.5 mM EDTA on 1 % Geltrex[™] (Thermo Fisher Scientific) -coated wells in feeder-conditioned StemFit. The ratio of normal to feederconditioned StemFit was increased by 25 % after every second passage, until iPSCs adapted to feeder-free culture conditions. Every 5-7 days, 0.5 mM EDTA was used for routine passaging at a ratio of 1:10–1:40, and the medium was exchanged every other day.

3.2. Immunocytochemistry

Cells at passage 20–25 were fixed with 4 % PFA for 15 min, permeabilized with 0.3 % Triton X-100 and blocked with 5 % FBS for 30 min. Cells were incubated with primary antibodies (Table 2) diluted in staining buffer (PBS containing 1 % BSA and 0.3 % Triton X-100) at 4 °C overnight. Following, cells were washed with PBS and incubated with secondary antibodies (Table 2) diluted in staining buffer for 1 h at RT. Nuclei were counterstained with 1 µg/mL DAPI. The percentage of positively-stained cells was quantified with the ImageJ software using the Cell Counter plugin. Between 2,492 and 3,725 cells were counted for each marker.

3.3. Embryoid body formation

One 6-well of iPSCs at passage 20-25 was dissociated to clumps and

cultured in sterile bacterial dishes containing StemFit w/o bFGF at 37 °C with 5 % CO₂. Medium was changed every second day during the first 8 days of floating culture. On day 8, EBs were seeded into 6-wells coated with 0.2 % Gelatin allowing outgrowth of the EBs. On day 16, differentiated cells were stained using specific antibodies for mesoderm, endoderm, and ectoderm (Table 2).

3.4. Karyotyping

Cells at 80 % confluency (passage 15-20) were incubated with 0.1 mg/mL Colcemid (Gibco) for 15 h, dissociated using AccumaxTM (Sigma Aldrich) and treated with hypotonic Na-Citrate / NaCl for 35 min at 37 °C. Subsequently, cells were fixed with methanol / acetic acid glacial (3:1) for 20 min at -20 °C and washed twice with methanol/acetic as stated above. A standard protocol for the preparation of differentially stained mitotic chromosome spreads using the G-banding technique was applied. Fluorescence in situ hybridization (FISH) was performed using human chromosome specific painting probes. In brief, mixtures of fluor conjugated paint probes were denatured at 75 °C for 5 min, added to the metaphase slide, covered with a cover slip and sealed with rubber cement. The slide was denatured at 75 °C for 2 min in a Hybrite (VYSIS, US) hybridization station and hybridized at 37 °C overnight, followed by a 2 min post-hybridization wash in 0.1xSSC buffer at 60 °C. Final slides were mounted in Vectashield embedding medium containing DAPI (Vector Laboratories, UK) and analyzed using an Axioplan 2 Imaging microscope (Zeiss, Germany).

3.5. Mycoplasma testing

The medium of one confluent 6-well with iPSCs at passage 19–22 was collected, pelleted, and resuspended in 100 μ L PBS. After an incubation for 5 min at 95 °C, 1 μ L was used for a screening PCR with specific primers for the Mycoplasma 16S rRNA (Table 2). A sample that had previously tested positive was used as an internal control.

3.6. Genotyping PCR

Total gDNA was isolated using the DirectPCR Lysis Reagent (VWR) supplemented with 20 mg/mL Proteinase K (Life Technologies), and a PCR (36 cycles) was conducted with primers for the primate-specific *Alu* SINE (Table 2).

3.7. SeV detection

Total RNA was isolated from one 6-well of iPSCs (passage 15–20) using the Direct-zol RNA Microprep Kit (Zymo Research) and cDNA was synthesized using the Maxima H Minus Reverse Transcriptase (Thermo Fisher Scientific). 50 ng cDNA were used to perform a PCR (36 cycles) with specific primers for SeV and GAPDH as housekeeping gene (Table 2).

3.8. Bulk RNA-sequencing and variant calling

iPSCs and parental fibroblasts were dissociated using Accumax, sampled in three biological replicates each and bulk RNA-seq libraries were generated using the Prime-seq workflow (https://www.protocols. io/view/prime-seq-81wgb1pw3vpk/v2). Bulk RNA-seq data of iPSCs and parental fibroblasts were used to call SNPs against the reference genome papAnu4 using GATK (Genome Analysis Tool Kit). High quality, biallelic SNPs were retained by joint genotyping of data from both iPSC lines and fibroblasts followed by quality filtering of the variants for high coverage (DP > 99) and quality by depth (QD > 2).

CRediT authorship contribution statement

Jessica Jocher: Conceptualization, Investigation, Methodology, Visualization, Writing - original draft, Writing - review & editing. Fiona C. Edenhofer: Investigation, Visualization. Stefan Müller: Investigation, Methodology, Visualization. Philipp Janssen: Data curation, Formal analysis, Visualization, Writing - review & editing. Eva Briem: Investigation. Johanna Geuder: Methodology. Wolfgang Enard: Conceptualization, Writing - original draft, Writing - review & editing, Supervision, Funding acquisition.

Declaration of competing interest

The authors declare the following financial interests/personal

relationships which may be considered as potential competing interests: Wolfgang Enard reports financial support, article publishing charges, and travel were provided by German Research Foundation.

Acknowledgements

This work was supported by DFG EN 1093/5-1 (project number 458247426). We are grateful to Dr. Jan-Michael Abicht and the team of the SFB Xenotransplantation at LMU clinic for kindly providing the primary material. We thank Vanessa Baltruschat for her substantial technical support in the lab.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scr.2024.103316.

References

- Enard, W., 2012. Functional primate genomics leveraging the medical potential. J. Mol. Med. https://doi.org/10.1007/s00109-012-0901-4.
- Best, R.G., Diamond, E., Crawford, F.S., Grass, C., Janish, T.L., Lear, D., Soenksen, A.A., Szalay, C.M Moore, 1998. Baboon/human homologies examined by spectral karyotyping (SKY): a visual comparison. Cytogenet. Cell Genet. https://doi.org/ 10.1159/000015070.
- Fischer, J., Higham, J., Alberts, S.C., Barrett, L., Beehner, J.C., Bergman, T.J., Carter, A. J., Collins, A., Elton, A., Fagot, J., Ferreira da Silva, M.J., Hammerschmidt, K., Henzi, P., Jolly, C.J., Knauf, S., Kopp, G.H., Rogers, J., Roos, C., Ross, C., Seyfarth, R. M., Silk, J., Snyder-Mackler, N., Staedele, V., Swedell, L., Wilson, M.L., Zinner, D., 2019. The Natural History of Model Organisms: Insights into the evolution of social systems and species from baboon studies. eLIFE. https://doi.org/10.7554/eLife.50989.001.
- Herke, S., Xing, J., Ray, D., Zommerman, J., Cordaux, R., Batzer, M., 2007. A SINE-based dichotomous key for primate identification. Gene. https://doi.org/10.1016/j. gene.2006.08.015.
- Juan, D., Santpere, G., Kelley, J., Cornejo, O.E., Marques-Bonet, T., 2023. Current advances in primate genomics: novel approaches for understanding evolution and disease. Nat. Rev. Genet. https://doi.org/10.1038/s41576-022-00554-w.