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Abstract: A variety of new statistical methods from the field of machine learn-

ing have the potential to offer new impulses for research in the social, educa-

tional and behavioral sciences. In this article we focus on one of these methods:

model-based recursive partitioning. This algorithmic approach is reviewed and

illustrated by means of instructive examples and an application to the Mincer

equation. For readers unfamiliar with algorithmic methods, the explanation

starts with the introduction of the predecessor method classification and regres-

sion trees. With respect to the application and interpretation of model-based

recursive partitioning, we address the principle of parsimony and illustrate that

the model-based recursive partitioning approach can be employed to test whether

a postulated model is in accordance with Ockham’s Razor or whether relevant

covariates have been omitted. Finally, an overview of available statistical soft-

ware is provided to facilitate the applicability in social science research.
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classification and regression trees (CART); algorithmic methods; data analysis



2 Kopf/Augustin/Strobl

1. Introduction

The aim of this paper is to demonstrate the potential of model-based recursive

partitioning (Zeileis, Hothorn, and Hornik 2008), a new statistical method from

the field of machine learning, for applications in the social sciences. In particular,

we will point out that this algorithmic method provides a powerful tool to evaluate

whether relevant covariates have been omitted in a statistical model and, therefore,

whether a theoretically postulated model is in conflict with Ockham’s Razor.

As a prototypical example the method is employed for evaluating the appropriate-

ness of the so called Mincer equation (Mincer 1974), which explains different in-

come levels through rates of return from schooling and work experience by means

of a linear model. The analysis relies on data of the German Socio-Economic

Panel Study (SOEP) from 2008, provided by DIW Berlin (German Institute for

Economic Research).

Model-based recursive partitioning can be considered as an alternative to stan-

dard multiple regression approaches and is based on the successive segmentation

of the sample used: the data are split further as long as different groups of obser-

vations still display substantially different values of the estimated parameters of

the statistical model of interest.

For example, in our investigation of the Mincer equation we will see that the

intercept and the estimated coefficient for further education vary across groups

of men and women working full-time in east or west Germany. Thus additional

sociological and economic theories, such as discrimination in labor markets (e.g.

Aigner and Cain 1977; Phelps 1972), need to be considered for explaining these

differences.

The method of model-based recursive partitioning forms an advancement of clas-

sification and regression trees, which are widely used in life sciences (cf. e.g.

Hannöver, Richard, Hansen, Martinovich, and Kordy 2002; Kitsantas, Moore, and

Sly 2007; Romualdi, Campanaro, Campagna, Celegato, Cannata, Toppo, Valle,

and Lanfranchi 2003; Zhang, Yu, Singer, and Xiong 2001). Classification and re-

gression trees will be summarized briefly in the following section, beginning with

an informal description of the resulting tree-structure. After some technical de-

tails of classification and regression trees are reviewed, in Section 3 the advanced

method of model-based recursive partitioning is addressed, firstly by pointing out

the main differences and similarities to classification and regression trees. The
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review of model-based recursive partitioning will be continued by interpreting an

instructive example and recapitulating the statistical background. To facilitate

the use of this powerful algorithmic method in the social sciences, this article

highlights the interpretation with regard to the principle of parsimony in the con-

text of model construction (Section 4). Moreover, the application to the Mincer

equation in Section 5 demonstrates the potential of model-based recursive parti-

tioning in empirical research. For further research the available statistical software

is indicated in Section 6.

In summary, in this paper we show how model-based recursive partitioning al-

lows to decide whether a postulated model fails to describe the whole sample in

a suitable way, because the method may detect varying parameter estimates in

different subgroups of the sample. Model-based recursive partitioning therefore

offers a synthesis of the theory-based and the data-driven approach. In particu-

lar, it can be used for detecting violations of Ockham’s Razor. If subgroups with

different parameter estimates are found, the postulated model is too simple and

not appropriate for the entire sample.

2. Classification and regression trees

Classification and regression trees (cf. e.g. Breiman, Friedman, Olshen, and Stone

1984) are based on a purely data-driven paradigm. Without referring to a concrete

statistical model, they search recursively for groups of observations with similar

values of the response variable by building a tree structure. If the response is

categorical, one refers to classification trees; if the response is continuous, one

refers to regression trees. The basic principles of this approach will be explained

by means of an exemplary application in the following section.

2.1. Basic principles of classification and regression trees

As a first example, we consider the respondents of the SOEP study 2008 (see

Wagner, Frick, and Schupp 2007, for details about SOEP). In this data set, groups

of subjects vary with respect to whether they participate in full-time labor or not

(the latter including all categories like part-time or marginally employment, civil

or military service, vocational training and unemployment labeled here as ‘other’).

These groups can be described by means of covariates, such as age and gender.
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The covariates (here: age and gender), together with the response variable (full

time or other), are handed over to the algorithm. The resulting tree-structure is

displayed in Figure 1.
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Figure 1: Classification tree: Assessing different frequencies of full-time jobs in
Germany (SOEP 2008). The resulting tree-structure shows varying par-
ticipation rates in full-time labor in three splits according to the covari-
ates gender and age.

From the entire sample of about 19,553 respondents living in private households,

the covariate with the highest association (for technical details see Section 2.2) to

the response is chosen for the first split. It is the participant’s gender, and, thus,

9,318 male respondents (represented in the left branch) are separated from the

rest of the sample (10,235 female respondents, represented in the right branch).

In the next step the male group is further diversified: it is split into two new

subgroups, over the age of 62 or not (node 3 and node 4). Figure 1 also shows

that the majority of women in the lower age group respond differently (node 6)

compared to those in node 7. Here we stop the algorithm for simplicity.

The respective cutpoint for these splits depends on the type of the covariate:

while gender has only two categories – male and female – and thus offers only one

cutpoint, referring to age the algorithm must also find the ‘best’ cutpoint within

this variable. This optimal cutpoint turns out to be located at the threshold of
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Figure 2: Regression tree: Assessing different requested incomes of unemployed
respondents (SOEP 2008). Three different levels are obtained in groups
related to gender, age and marital status.

62 years for the male subsample and 60 years for the female subsample (technical

details are given below).

The resulting tree-structure is interpreted easily and shows groupwise frequencies

for full-time and non-full-time workers in the end nodes: the left node indicates

that the majority of men up to 62 years in Germany work full-time, while the ma-

jority of women up to 60 do not. Women over 60 years are hardly ever employed

full-time. The tree-structure in this example represents an interaction effect be-

tween gender and age (see e.g. Strobl, Malley, and Tutz 2009, for details on the

interpretation of main effects and interactions in classification trees).

In contrast to this classification problem, regression trees focus on continuous

response variables. Instead of regarding the frequencies of the categories, groups

with different average response values are separated and visualized, e.g. by means

of box plots (like in Figure 2). These groups are again detected automatically.

In this example the regression tree searches for different patterns of the (outlier

adjusted) requested income at which 950 unemployed respondents would take a job
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(outliers are defined as participants with a requested income higher than the third

quartile plus 1.5 times interquartile range). Additional covariates are handed over

to the algorithm are gender, age, nationality (nation) and marital status (marital).

Figure 2 again shows the first split in the variable gender (node 1). The second

split in the male subsample is again related to age (node 3 and node 4), while

the third split in the female subsample is associated with marital status (node 6

and node 7). The cutpoint in a categorical variable is chosen automatically in

an optimal way from all possible combinations of categories. Here the requested

mean income is associated with marital status, in particular the request of female

singles differs from the other categories (married, married but separated, divorced

and widowed). The latter categories have smaller values of the requested income

(median xmed = 800, mean x = 870) than female singles (xmed = 1200, x = 1166),

who seem to be in the same magnitude as men over 43 years (xmed = 1200, x =

1159). The highest average of requested income occurs within the male subsample

up to the age of 43 years (node 3, xmed = 1300, x = 1349). After these three

splits, all of the determined groups are homogeneous enough to let the algorithm

come to a stop, without further splitting, e.g. according to the nationality of the

respondent. This exemplifies another attractive feature of partitioning methods:

they implicitly perform a flexible variable selection.

A more detailed description of the technical procedure underlying classification

and regression trees is given in the next section.

2.2. Some technical details

Classification trees search for different patterns in the response variable according

to the available covariates. Since the sample is divided in rectangular partitions

defined by values of the covariates and since the same covariate can be selected for

multiple splits, classification trees can assess even complex interactions, non-linear

and non-monotone patterns.

The structure of the underlying data-generating process is not specified in advance,

but is determined in an entirely data-driven way. These are the key distinctions

between classification and regression trees, and classical regression models. The

approaches differ, firstly, with respect to the functional form of the relationship

that is limited to e.g. linear influence of the covariates in most parametric re-

gression models and, secondly, with respect to the pre-specification of the model
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equation in parametric models.

Historically, the foundations for classification and regression trees were first de-

veloped in the sixties as Automatic Interaction Detection (Morgan and Sonquist

1963). Later the most popular algorithms for classification and regression trees

were developed by Quinlan (1993) and Breiman et al. (1984). Here we concen-

trate on a more recent framework by Hothorn, Hornik, and Zeileis (2006b), which

is based on the theory of conditional inference developed by Strasser and Weber

(1999). The major advantage of this approach is that it avoids two fundamen-

tal problems of earlier algorithms for classification and regression trees: variable

selection bias and overfitting (cf. e.g. Strobl et al. 2009).

The algorithm of Hothorn et al. (2006b) for binary recursive partitioning can

be described in three steps: firstly, beginning with the whole sample, the global

null hypothesis that there is no relationship between any of the covariates and the

response variable is evaluated. If no violation of the null hypothesis is detected, the

procedure stops. If, however, a significant association is discovered, the variable

with the largest association is chosen for the split. Secondly, the best cutpoint in

this variable is determined and used to split the sample into two groups according

to values of the selected covariate. Then the algorithm recursively repeats the

first two steps in the subsamples until there is no further violation of the null

hypothesis, or a minimum number of observations per node is reached.

In the following, we briefly summarize which covariates can be analyzed using

classification and regression trees, how variables are selected for splitting and how

the cutpoint is chosen.

2.2.1. The response variable in the end nodes

As outlined in the previous section, classification trees search for groups of similar

response values with respect to a categorical dependent variable, whereas regres-

sion trees focus on continuous variables. Hothorn et al. (2006b) stress that their

conditional inference framework can be applied beyond that to situations of ordi-

nal, censored survival times and multivariate response variables.

Within the resulting tree-structure, all respondents with the same covariate values

– represented graphically in one end node – obtain the same prediction for the

response, i.e. the same class membership for categorical responses or the same

value for continuous response variables.
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2.2.2. Selection of splitting variables

The next question is how the variables for the potential splits are chosen and how

the related cutpoints can be obtained. As outlined above, Hothorn et al. (2006b)

provide a statistical framework for tests applicable to various data situations. In

the binary recursive partitioning algorithm, each iteration is related to a current

data set (beginning with the whole sample), where the variable with the highest

association is selected by means of permutation tests as described in the following.

The usage of permutation tests allows for evaluating the global null hypothesis H0

that none of the covariates has an influence on the dependent variable. If H0 holds

(in other words, if the independence between any of the covariates Zj (j = 1, . . . , l)

and the dependent variable Y cannot be rejected), the algorithm stops. Therefore

the statistical test acts both for variable selection and as a stopping criterion.

Otherwise the strength of the association between the covariates and the response

variable is measured in terms of the p-value that corresponds to the test of the par-

tial null hypothesis that the specific covariate is not associated with the response.

Thus, the variable with the smallest p-value is selected for the next split. The

advantage of this approach is that the p-value criterion guarantees an unbiased

variable selection regardless of the scales of measurement of the covariates (cf. e.g.

Hothorn et al. 2006b; Strobl, Boulesteix, and Augustin 2007; Strobl et al. 2009).

Permutation tests are constructed by evaluating the test statistic for the given

data under H0. Monte-Carlo or asymptotic approximations of the exact null-

distribution are employed for the computation of the p-values (see Hothorn, Hornik,

van de Wiel, and Zeileis 2006a; Hothorn et al. 2006b; Strasser and Weber 1999,

for more details).

2.2.3. Selection of the cutpoints

After the variable for the split has been selected, we need a cutpoint within the

range of the variable to find the subgroups that show the strongest difference

in the response variable. In the procedure described here, the selection of the

cutpoint is also based on the permutation test statistic: the idea is to compute

the two-sample test statistic for all potential splits within the covariate. In the

case of continuous variables it is reasonable to limit the investigated splits to a

percentage of potential cutpoints; in the case of ordinal variables the ordering of
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the categories is accounted for. The resulting split is located where the binary

separation of two data sets leads to the highest test statistic. This reflects the

largest discrepancy in the response variable with respect to the two groups.

In the case of missing data, the algorithm proceeds as follows: observations that

have missing values in the currently evaluated covariate are ignored in the split

decision, whereas the same observations are included in all other steps of the

algorithm. The class membership of these observations can be approximated by

means of so called surrogate variables (Hothorn et al. 2006b; Hastie, Tibshirani,

and Friedman 2008).

3. From classification and regression trees to model-based recursive partitioning

Model-based recursive partitioning was developed as an advancement of classifi-

cation and regression trees. Both methods originate from the field of machine

learning, which is influenced by both statistics and computer sciences.

The algorithmic rationale behind classification and regression trees is described by

Berk (2006, p. 263) in the following way:

”With algorithmic methods, there is no statistical model in the usual

sense; no effort has been made to represent how the data were gener-

ated. And no apologies are offered for the absence of a model. There is

a practical data analysis problem to solve that is attacked directly with

procedures designed specifically for that purpose.”

In that sense, classification and regression trees are purely data-driven and ex-

ploratory – and thus mark the entire opposite of the theory-based approach of

model specification that is prevalent in the empirical social sciences.

The advanced model-based recursive partitioning method, however, brings to-

gether the advantages of both approaches: at first, a parametric model is for-

mulated to represent a theory-driven research hypothesis. Then this parametric

model is handed over to the model-based recursive partitioning algorithm that

checks whether other relevant covariates have been omitted which would alter the

parameters of the model of interest.

Technically, the tree-structure obtained from classification and regression trees

remains the same for model-based recursive partitioning. However, instead of

splitting for different patterns of the response variable, now we search for different
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Figure 3: MOB: Assessing different relationships between age and requested in-
come of unemployed respondents in Germany (SOEP 2008). The line
pictures the estimated relationship in the current subsample and indi-
cates the varying parameters according to groups related to age and
marital status.

patterns of the association between the response variable and other covariates,

that has been pre-specified in the parametric model. Therefore the end nodes

in the model-based tree represent statistical models, such as linear models, and

no longer mere values of the response variable. The execution of a split in the

model-based tree then indicates a parameter instability in the original model, i.e.

the postulated model is too simple to explain the data.

3.1. Basic principles of model-based recursive partitioning

As an instructive example for a partitioned model, Figure 3 shows the tree-

structure for a sample of unemployed respondents from the SOEP study. The

model of interest here is the relationship between the requested income, at which

respondents would take on a new job, and the age. The functional form of this

relationship is fixed to a quadratic polynomial as often found intuitive for models
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relating age and income:

requested income = β0 + β1 · age + β2 · age2 + ε.

Additional covariates passed over to the algorithm are marital status, gender and

nationality.

Beginning with the whole outlier adjusted sample of 959 unemployed respondents

the model with the linear and quadratic term is fitted, where the estimated co-

efficients β̂0, β̂1, and β̂2 indicate parameter instability. The highest instability is

related to gender and thus a split in this variable is performed. While in the

sample of the male respondents (node 2) no more instabilities are detected, the

female subset is again divided into two subgroups with differing parameter esti-

mates. The end node in the middle shows the result for married but separated,

single or divorced women (node 4). The rightmost end node contains the linear

model for married and widowed women (node 5). Interestingly, even the direction

of the relationship changes from a parabola on the left, where men of higher age

tend to request less income, to a slight u-shape on the right, where married or

widowed women request more income in higher age. The attractive feature of im-

plicit variable selection is also maintained in model-based recursive partitioning:

the nationality does not occur in any split decision in this example.

node β̂0 β̂1 β̂2

2 1014.5837 22.5446 -0.3618

4 1212.6621 -0.0236 -0.0871

5 1390.9708 -25.3983 0.2737

Table 1: Coefficients of the models in the end nodes.

In Table 1 the parameter estimates for the different groups – represented in the end

nodes of the tree-structure – are displayed. The varying signs of the coefficients

confirm what is illustrated in Figure 3: the inverse u-shape holds only for part

of the sample and is reversed for other parts. Thus, the example illustrates that

model-based recursive partitioning is indeed able to detect different functional
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forms which might be masked when a single model is fit to the data.

The example also shows that, as opposed to classification and regression trees, the

end nodes in model-based recursive partitioning do not contain values of a response

variable, but represent a statistical model for each specific subpopulation. Between

these groups the estimated parameters of the common underlying model vary

significantly, but the postulated basic functional form (here polynomial) stated by

the researcher is fixed. Within the subgroups no significant parameter instability

is present.

Hence, the interpretation of a tree without any split is quite simple: there are no

significant parameter instabilities found in any of the covariates handed over to the

algorithm. If, however, a tree-structure is displayed, it reveals that the postulated

model is not appropriate for describing the entire sample. The variation of the

parameters highlights structural differences in the obtained subgroups, which can

be easily interpreted by examining the estimates or the graphical output.

In the next section, important steps of the model-based partitioning algorithm are

outlined. Then we take a closer look at the interpretation in social or behavioral

sciences in Section 4.

3.2. Some technical details

The model-based recursive partitioning algorithm maintains the fundamental steps

of the partitioning method reviewed in Section 2, but coherently extends them in

the light of the model-based paradigm. According to this paradigm, the recur-

sive process now estimates the basic statistical model beginning with all available

observations. The result of this step is the estimated parameter vector from the

optimization of the objective function, typically the (log-)likelihood. In almost the

same manner as classification trees, the recursive process starts: instead of testing

the association, now the parameter instability is assessed using so called general-

ized M-fluctuation tests. If the data indicate parameter instability, the split of the

parent node in two daughter nodes is executed. Relying on the data points in the

new subgroups only, the algorithm again searches for parameter instability until

no further significant instability is found, or another stopping criterion is fulfilled.

This brief overview about the similarities and differences in the algorithms leaves

some questions that have yet to be explained: Which models can be partitioned

recursively? How can we assess parameter instability and where are the optimal
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cutpoints in the covariates in model-based recursive partitioning? These questions

are addressed in the next subsections, which are structured in the same way as

Section 2.2.

3.2.1. The statistical model in the end nodes

The foundation of a general statistical framework for model-based recursive par-

titioning by Zeileis et al. (2008) allows using a variety of underlying statistical

models, such as linear and logistic regression models. The wide range of applica-

tions emerges from the inclusion of several widely used test statistics in a unified

approach (Zeileis 2005) called generalized M-fluctuation tests.

Technically, the generalized M-fluctuation test used for the split decisions relies

on the objective function Ψ(.) of the parameter estimation, like least-squares and

maximum-likelihood-estimation:

θ̂ = arg max
θ

n∑

i=1

Ψ(yi, θ), (1)

where yi (i = 1, . . . , n) symbolizes the vector of all values of the dependent and

independent variables in the postulated model for subject i, and θ represents the

(potentially vector-valued) parameter. To keep the notation simple, here we use

the full sample notation and do not distinguish whether the underlying obser-

vations are the entire sample or a specific subgroup arising from the recursive

application of the procedure.

The estimation process is based on the individual contributions of each subject i

to the score function

ψ(yi, θ) =
∂Ψ(yi, θ)

∂θ
,

as outlined below.

In addition to the model specification, the algorithm requires categorical or nu-

meric covariates – denoted as Zj (j = 1, . . . , l) – for potential splits in the model-

based tree.

3.2.2. Selection of splitting variables

After the first step of the algorithm – fitting the underlying model for the whole

sample and obtaining a preliminary estimate θ̂ – a test of parameter instability
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is performed. It is based on the statistical framework developed by Zeileis and

Hornik (2007) to detect structural changes by fluctuation tests. In econometrics,

these tests for structural changes are widely used to detect e.g. a drop in the

expected value of a time series for a stock exchange due to an economic crisis.

To detect a systematic change in the parameter over the range of a covariate

Zj, the observations are ordered according to their values of Zj. Under the null

hypothesis of parameter stability, no systematic structural change is present. The

null hypothesis is rejected if one or more parameters of the postulated model

change significantly over the ordering induced by the covariate Zj.

The construction of general test statistics relies on the partial derivatives of the

objective function, e.g. of the log-likelihood. The contributions of each individual

observation i to the derivative of the objective function (i.e., to the score function)

evaluated at the current parameter estimate, ψ
(
yi, θ̂

)
, are ordered with respect

to the potential splitting variable Zj. The individual contributions ψ
(
yi, θ̂

)
are

depicted as vertical dashed lines for an instructive example in Figure 4 (left).

Under the null hypothesis, the individual contributions ψ
(
yi, θ̂

)
should fluctuate

randomly around the mean zero, whereas in Figure 4 (left) a clear structural change

can be detected. To grasp this structural change statistically, we turn from the

individual contributions to their cumulative sums in Figure 4 (right). Zeileis and

Hornik (2007) proved the convergence of the cumulative sum process (also termed

decorrelated empirical fluctuation process)

Wj (t) = Ĵ−
1
2n−

1
2

bntc∑

i=1

ψ
(
yi, θ̂

)

against a k-dimensional Brownian bridge. The first part of the formula, Ĵ−
1
2 ,

denotes an estimator of the covariance Cov
(
ψ(Y, θ̂)

)
. The summation over all

bntc refers to the first n · t (with t ∈ [0; 1]) observations according to the order

with respect to covariate Zj (for example the first 50%, where the b.c indicates

that the integer part of n · t, i.e. the lower whole number, is used).

The instructive example in Figure 4 can be interpreted as the variation of income

before and after the simulated threshold of 40 years. The path of the cumulative

sum process increases until the age of 40 and decreases after that threshold, with a

sharp peak at the change-point 40. The strength of this peak is used as a statistical
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Figure 4: Structural change in the mean over age (artificial data). The left plot
displays the mean income over all age groups (dotted line) and the indi-
vidual deviations (dashed lines), the right the cumulated deviations over
the variable age.

measure for the strength of the parameter instability.

The asymptotic properties of the cumulative sum process allows for the construc-

tion of test statistics that are used for detecting the structural change. The test

statistic for numeric variables is directly build from the empirical fluctuation pro-

cess Wj (t), while the test statistic for categorical variables takes into account that

the categories and the observations within the category are not ordered. The

result of Zeileis et al. (2008) also permits the computation of p-values and thus

the statistical decision whether the parameters differ significantly from parameter

stability. If parameter instability is detected, the algorithm selects the variable

with the smallest p-value. Splitting continues until there is no further instability

in any current node.

3.2.3. Selection of the cutpoint

In case of a splitting decision the cutpoint can be sought by a criterion that also

includes the maximization of the objective function in the two potential subsam-

ples. In the case of ordered or numeric covariates, these subsamples can easily be

defined as L(ζ) = {i | zij ≤ ζ} and R(ζ) = {i | zij > ζ} for a candidate cutpoint ζ

and the component zij of zj.



16 Kopf/Augustin/Strobl

The optimal cutpoint ζ? is determined by maximizing

∑

i∈L(ζ)
Ψ
(
yi, θ̂

(L)
)

+
∑

i∈R(ζ)

Ψ
(
yi, θ̂

(R)
)

(2)

over all candidate cutpoints ζ. θ̂(L) and θ̂(R) are the estimated parameters in the

subsets. In case of unordered categorical covariates all potential binary partitions

need to be evaluated and the partition with the highest criterion is chosen for the

split (Zeileis et al. 2008).

Both parts of the binary split generate new parent nodes. Unless there is no

further parameter instability found or another stopping criterion is satisfied (such

as a minimum sample size in the current node) the algorithm continues searching

for instability and splitting the current (sub-)data set in daughter nodes.

4. Potential in the social sciences

The application of model-based recursive partitioning offers new impulses for re-

search in the social, educational and behavioral sciences. For the interpretation

of model-based recursive partitioning, we would like to point out the connection

to the principle of parsimony: following the fundamental research paradigm that

theories developed in the social sciences should yield falsifiable hypotheses, the

latter are translated into statistical models. The aim of model construction is

thus to simplify the complex reality.

The decision on the complexity of the formulated model can be guided by “a

working rule known as Occam’s Razor whereby the simplest possible descriptions

are to be used until they are proved to be inadequate” (Richardson 1958, p. 1247).

This rule implies the objective of parsimonious model formulation: a model should

be no more complex than necessary, but it also needs to be complex enough to

describe the empirical data.

In the regression context usually the usage of sparse and simple models with few

variables explaining the response are propagated (e.g. Gujarati 2003) – as long as

important and relevant explanatory variables are not omitted. The strength of

model-based recursive partitioning in this context lies in the power to let the data

decide this question. Indeed, it offers the possibility to detect whether the sug-

gested model is inadequate because relevant covariates are missing and it explicitly
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selects these relevant covariates. If the algorithm executes at least one split, we

obtain the statistical decision that the parameters are instable and the data are

too heterogeneous to be explained by the postulated model. In this case, the pre-

sumed functional form does not describe the entire sample in an appropriate way

and thus subgroups have to be constructed.

Moreover, the tree-structured results provide information which subgroups differ

in their association patterns. This information can either be integrated into a

revision of the substantial theory and the formulation of a new parametric model,

or it should be pointed out in the interpretation that the postulated model applies

only to a limited scope of subjects.

Consequently, model-based recursive partitioning can identify different shapes of

a parametric model stated by the researcher in different subgroups of the sam-

ple. Model-based recursive partitioning offers nothing less than a synthesis of the

theory-based and the data-driven approach that can be used for evaluating viola-

tions of the ‘working rule’ Ockham’s Razor: if the method detects no instability

of the model parameters, the postulated model is not rejected; but if the method

does detect instability, the model is too simple.

5. Empirical example

To illustrate the potential of model-based recursive partitioning further, we turn

to another example, based on an extension of the so called Mincer equation. In the

seminal econometric work of Mincer (1974) the logarithmic income is described as

a function of the variables years of schooling (time edu) and full-time experience

(included in linear and squared terms, full ex, full ex2).

The Mincer equation owes its popularity to the straightforward interpretation of

the coefficients as approximated rates of return from education (cf. Björklund and

Kjellström 2002, for a critical discussion). We focus on the following extension of

the Mincer equation that also includes a dummy variable for further education on

the job (further edu):

ln (income) = β0 + β1 time edu + β2 full ex + β3 full ex2 + β4 further edu + ε

Here we restrict the observations from the SOEP study to over 6000 respondents

in full-time employments who are not in vocational training and earn more than
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500 Euros monthly.

The examination of the Mincer equation, which is driven by the principle of parsi-

mony, via model-based recursive partitioning is illustrated in Figure 5. The model

formulation involves the effects (which are displayed as symbols in the end nodes)

of years of schooling, further education and work experience in full-time jobs (linear

and squared term) on the logarithmic gross income of fully employed respondents

in Germany. Again, further potentially influencing variables are passed over to the

algorithm, namely the location of the employer in east or west Germany, gender

and the size of the company. The results show significantly different parameter

estimates related to each of the additional covariates. These estimated coefficients

of the Mincer equation are approximated rates of return e.g. from schooling. A

closer look at the estimated parameters for the detected subgroups (Table 2) shows

quite similar effects on the logarithmic income for some covariates from the orig-

inal Mincer equation, such as the percentaged change for the time of education

on earnings (β̂1). However, the estimated coefficients for further education (β̂4)

and the intercept (β̂0) differ more strongly between the groups. In particular, the

effect of further education (β̂4) is higher for employers in east as opposed to west

Germany.

node β̂0 β̂1 β̂2 β̂3 β̂4

4 6.2743 0.0860 0.0430 -0.0009 0.2110

5 6.5620 0.0796 0.0335 -0.0005 0.1785

6 6.4486 0.0718 0.0369 -0.0007 0.1520

8 6.1543 0.0801 0.0340 -0.0006 0.2332

9 6.0173 0.0817 0.0258 -0.0004 0.2454

Table 2: Estimated coefficients of the models in the end nodes in Figure 5.

Our results match with current empirical social and economic research on het-

erogenous effects of further education for men in Germany by Kuckulenz and

Zwick (2005). Even though the estimated coefficients of the Mincer equation are
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Figure 5: Model-based recursive partitioning of the extended Mincer equation
(SOEP 2008). The symbols in the end nodes illustrate the estimated
coefficients in the subgroups related to the location of the employer,
gender and size of the company.
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relatively stable in the subgroups, in this situation the original model is not in

accordance with the principle of Ockham’s Razor because it is simpler than it

should be. Our findings suggest the inclusion of theories explaining the different

income levels in these subgroups, such as discrimination theories (e.g. Aigner and

Cain 1977; Phelps 1972), and a more specific investigation of further education.

One reason for the violation of a joint model for all respondents may lie in the

strong assumption of the Mincer equation that there is no relevant change in the

economy under research. In the SOEP study, this assumption is clearly violated by

the reunification of the eastern and western parts of Germany. As a consequence,

we find a split according to the location of the employer in east and west Germany

in Figure 5.

6. Software

The data analysis presented here uses the R system for statistical computing (R

Development Core Team 2009), which is freely available under terms of the GNU

General Public Licence (GPL) from the Comprehensive R Archive Network at

http://CRAN.R-project.org/. Methods for classification, regression and model-

based trees are provided in the package party. The conditional inference frame-

work is implemented in the function ctree() (Hothorn et al. 2006b), while the

model-based recursive partitioning algorithm is available via the function mob()

(Zeileis et al. 2008). At the moment the algorithm can be applied to various

types of generalized linear models, survival models or linear models. Moreover,

the authors allow the users to build their own model classes and pass them on

to the existing mob() function. A vignette explaining the use of the software for

linear regression and logistic regression trees including the R-code is also avail-

able (Zeileis, Hothorn, and Hornik 2010). Ongoing developments on the package

psychotree expand the application of the algorithm to psychometric models such

as the Bradley-Terry model for detecting different preference structures (Strobl,

Wickelmaier, and Zeileis 2010b) and the Rasch model for detecting different item

difficulties among subgroups of respondents (Strobl, Kopf, and Zeileis 2010a).
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7. Concluding remarks

Algorithmic procedures, such as classification and regression trees, have become

popular and widely used tools in many scientific fields. Our aim here was to high-

light that the recent development of model-based recursive partitioning allows to

combine the power of these algorithmic methods with that of theory-based para-

metric models by means of enhancing the purely data-driven approach towards a

segmentation procedure for postulated models. Our presentation has highlighted

the relation between this approach and the principle of parsimonious model con-

struction. The tree-structured results allow straightforward interpretations of po-

tential parameter instabilities that can be detected via empirical fluctuation tests.

The detection of parameter instability leads to the interpretation that the statis-

tical model under investigation cannot describe the whole sample appropriately,

because relevant covariates have been omitted. Thus, model-based recursive par-

titioning can be used as a diagnostic check for inadequately simple descriptions of

the relationship between response and explanatory variables.

The application in social science research is eased by the freely accessible and well

documented packages provided in the statistical software R.
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