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Abstract

Objective: This study aimed to identify sleep clusters based on objective multidimen-

sional sleep characteristics and test their associations with adolescent cardiometa-

bolic health.

Methods: The authors included 1090 participants aged 14.3 to 16.4 years (mean =

15.2 years) who wore 7-day accelerometers during the 15-year follow-up of the Ger-

man Infant Study on the influence of Nutrition Intervention PLUS environmental and

genetic influences on allergy development (GINIplus) and the Influence of Lifestyle fac-

tors on the development of the Immune System and Allergies in East and West

Germany (LISA) birth cohorts. K-means cluster analysis was performed across 12 sleep

characteristics reflecting sleep quantity, quality, schedule, variability, and regularity. Car-

diometabolic risk factors included fat mass index (FMI), blood pressure, triglycerides,

high-density lipoprotein cholesterol, high-sensitivity C-reactive protein, and insulin

resistance (n = 505). Linear and logistic regression models were examined.

Results: Five sleep clusters were identified: good sleep (n = 337); delayed sleep phase

(n = 244); sleep irregularity and variability (n = 108); fragmented sleep (n = 313); and

Received: 30 March 2023 Revised: 7 July 2023 Accepted: 18 August 2023

DOI: 10.1002/oby.23918

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2023 The Authors. Obesity published by Wiley Periodicals LLC on behalf of The Obesity Society.

200 Obesity (Silver Spring). 2024;32:200–213.www.obesityjournal.org

https://orcid.org/0000-0003-0638-6357
https://orcid.org/0000-0002-5345-2049
mailto:marie.standl@helmholtz-munich.de
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.obesityjournal.org
http://crossmark.crossref.org/dialog/?doi=10.1002%2Foby.23918&domain=pdf&date_stamp=2023-10-24


Communities, the 7th Framework Program:

MeDALL project; Federal Ministry for

Education, Science, Research and Technology

prolonged sleep latency (n = 88). The “prolonged sleep latency” cluster was associated

with increased sex-scaled FMI (β = 0.39, 95% CI: 0.15–0.62) compared with the “good
sleep” cluster. The “sleep irregularity and variability” cluster was associated with increased

odds of high triglycerides only in male individuals (odds ratio: 9.50, 95% CI: 3.22–28.07),

but this finding was not confirmed in linear models.

Conclusions: The prolonged sleep latency cluster was associated with higher FMI in

adolescents, whereas the sleep irregularity and variability cluster was specifically

linked to elevated triglycerides (≥1.7 mmol/L) in male individuals.

INTRODUCTION

Cardiometabolic risk factors may appear as early as childhood and

track into adulthood, increasing cardiovascular disease risk [1]. Accu-

mulating evidence has linked short sleep to increased cardiometabolic

risk in children and adolescents [2, 3]. Recently, the American Heart

Association added sleep duration as the eighth metric to cardiovascu-

lar health’s definition (Life’s Essential 8) [4]. Besides sleep duration,

other sleep characteristics, including sleep efficiency, timing, variabil-

ity, regularity, and wake time, have also been associated with adoles-

cent cardiometabolic health [5–8]. These sleep characteristics within

an individual were mainly assessed independently; however, they tend

to be correlated with each other [9].

Cluster analysis provides the ability to consider multidimensional

sleep characteristics from a holistic perspective [9]. To date, only one

study has applied this approach to identify sleep patterns and explored

their relationships with cardiometabolic health in children and adults

using accelerometry-measured sleep data [10]. Four patterns were iden-

tified, and the “overall good sleepers” pattern was associated with more

favorable body mass index (BMI) and metabolic syndrome severity score.

However, associations among sleep patterns and other cardiometabolic

risk factors such as fat mass index (FMI), high-sensitivity C-reactive pro-

tein (hs-CRP), or insulin resistance have not been investigated [2, 3]. For

instance, several studies have linked short sleep to higher CRP in chil-

dren and adolescents [2]. Additionally, earlier objective sleep midpoint

timing was associated with increased 1-year fat mass in youth [5]. How-

ever, adolescents with late objective sleep midpoint timing had increased

odds of developing insulin resistance within 2 years [6].

Therefore, we applied cluster analysis to identify sleep clusters

across 12 accelerometry-assessed sleep characteristics in 1090 ado-

lescents and investigated their associations with cardiometabolic risk

factors, including FMI, blood pressure (BP), lipids, hs-CRP, and

Homeostatic Model Assessment of Insulin Resistance (HOMA-IR).

METHODS

Study participants

We used data from the 15-year follow-up of two ongoing German

birth cohorts, the German Infant Study on the influence of Nutrition

Intervention PLUS environmental and genetic influences on allergy

development (GINIplus) and the Influence of Lifestyle factors on the

development of the Immune System and Allergies in East and

West Germany (LISA). More details of both studies have been

published [11]. Briefly, the GINIplus study recruited 5991 healthy

Study Importance

What is already known?

• Multiple objective sleep characteristics, including sleep

duration, efficiency, timing, variability, regularity, and

wake time, are associated with cardiometabolic risk in

children and adolescents.

• These sleep characteristics within an individual are often

assessed independently, although they tend to be corre-

lated with each other.

What does this study add?

• Five sleep clusters were identified in adolescents by clus-

ter analysis across 12 accelerometry-derived sleep char-

acteristics, i.e., “good sleep,” “delayed sleep phase,”
“sleep irregularity and variability,” “fragmented sleep,”
and “prolonged sleep latency.”

• The prolonged sleep latency cluster was associated with

increased fat mass index, and male individuals within the

sleep irregularity and variability cluster had higher odds

of having high triglycerides.

How might these results change the direction of

research or the focus of clinical practice?

• Considering the relationships among multidimensional

sleep characteristics and health from a holistic perspec-

tive deserves further investigation.

• Our results suggest that improvements in sleep latency,

variability, and regularity may enrich existing sleep-

targeted intervention strategies for cardiometabolic

health that mainly focus on improving adequate sleep.
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newborns in Munich and Wesel from 1995 to 1998, comprising an

intervention arm, which aimed to investigate the hydrolyzed formulae

effects for allergy prevention in infants with a family history of allergy,

and an observation arm, including newborns without a family history

of allergy and those whose parents declined to participate in the inter-

vention. The LISA study recruited 3094 healthy neonates in Munich,

Wesel, Leipzig, and Bad Honnef between 1997 and 1999. At the

15-year follow-up between May 2011 and July 2014, a subset of par-

ticipants (1247 in GINIplus and 435 in LISA) consented to wear accel-

erometers to measure sleep and physical activity (PA) in Munich and

Wesel. Finally, a total of 1090 participants with valid accelerometry-

measured sleep data and complete information on cardiometabolic

outcomes (except for HOMA-IR in a subsample, n = 505) were

included in the analyses. Participants were included only with at least

3 weekdays and 1 weekend day of valid accelerometry recording for

≥10 h/day [12]. More details are described in Figure 1. Both studies

were approved by the respective local ethics committees, and written

consents were provided by all participants and their families.

Sleep assessment and characteristics

Accelerometry

Nighttime sleep and daytime PA were measured by a triaxial accelerome-

ter (ActiGraph GT3X, Pensacola, Florida) during a regular school week, the

validity of which has been demonstrated in adolescents [13]. Participants

wore accelerometers for 7 consecutive days and nights, with

F I GU R E 1 Flowchart of participants. GINIplus, German Infant Study on the influence of Nutrition Intervention PLUS environmental and
genetic influences on allergy development; LISA, Influence of Lifestyle factors on the development of the Immune System and Allergies in East
and West Germany.

202 SLEEP CLUSTERS AND ADOLESCENT CARDIOMETABOLIC RISK

 1930739x, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oby.23918, W

iley O
nline Library on [25/07/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



accelerometers worn on the nondominant wrists at night, and kept sleep

diaries. Accelerometry protocol details have been provided elsewhere [12].

Sleep characteristics

Accelerometry-measured sleep data were analyzed with the ActiLife

software (version 5.5.5, firmware 4.4.0) using the Sadeh algorithm [14].

The sampling rate was set to 30 Hz, and measured accelerations were

stored at 1 Hz after conversion into proprietary “activity counts,”
which were summed over 60-s epochs. The “probability of sleep” was

computed as a score centered around zero for each minute partici-

pants indicated as time-in-bed in their diary (time between going to

bed and getting up). The minute was identified as “asleep” if the score

was equal to or greater than zero, and the minute was identified as

“awake” if the score was less than zero [14]. The following six sleep

characteristics were derived for each valid night:

1. Total sleep time (hours): the total number of minutes scored as

asleep by the algorithm, divided by 60;

2. Sleep efficiency (percentage): the ratio of algorithm-scored asleep

minutes to the total diary-recorded minutes in bed;

3. Sleep midpoint timing (24-h clock): the first minute algorithm-

scored as asleep, adding half of the total sleep time, then con-

verted to 24-h clock;

4. Sleep latency (minutes): the total number of minutes between

diary-recorded time of going to bed and the first minute algorithm-

scored as asleep;

5. Time awake per hour after sleep onset (minutes per hour): the total

number of algorithm-scored awake minutes after sleep onset

(WASO), divided by the hours in bed after sleep onset (total sleep

time + WASO/60);

6. Awakenings per hour after sleep onset: the number of algorithm-

scored different awakening episodes after sleep onset, divided by

the hours in bed after sleep onset.

For each of six daily sleep characteristics, the daily average was cal-

culated as mean value across all valid days, and the day-to-day variabil-

ity was calculated as standard deviation (SD) across all valid days. In

total, 12 sleep characteristics reflecting sleep quantity (total sleep time),

quality (sleep efficiency), schedule (sleep midpoint timing, sleep latency,

time awake per hour after sleep onset, and awakenings per hour after

sleep onset), variability (SD in total sleep time, SD in sleep efficiency,

SD in sleep latency, SD in time awake per hour after sleep onset, and

SD in awakenings per hour after sleep onset), and regularity (SD in

sleep midpoint timing) were used in subsequent cluster analysis.

Cardiometabolic risk factors

Participants’ body weight (kilograms), height (meters), systolic BP (SBP,

millimeters of mercury), and diastolic BP (DBP, millimeters of mercury)

were measured. Fat-free mass (kilograms) was assessed by means of

phase sensitive bioelectrical impedance (NutriBox, Data Input GmbH,

Pöcking, Germany), and fat mass (kilograms) was calculated by subtract-

ing fat-free mass from body weight. FMI was calculated as fat mass (kilo-

grams) per height squared (meters squared). Serum total cholesterol (TC,

millimoles per liter), triglycerides (TG, millimoles per liter), high-density

lipoprotein cholesterol (HDL, millimoles per liter), low-density lipoprotein

cholesterol (LDL, millimoles per liter), and hs-CRP (milligrams per liter)

were measured. Fasting glucose (millimoles per liter) and fasting insulin

(picomoles per liter) were measured, and HOMA-IR was calculated as fol-

lows: (glucose � insulin)/(22.5 � 6.945) [15]. Details on the measure-

ments are provided in online Supporting Information Methods.

Cardiometabolic risk factors were dichotomized based on estab-

lished cutoffs or sex-specific percentiles. According to three compo-

nents of metabolic syndrome definitions in children and adolescents by

the International Diabetes Federation (IDF) [16], high BP was defined

as SBP ≥ 130 mm Hg or DBP ≥ 85 mm Hg; high TG was defined as

TG ≥ 1.7 mmol/L; and low HDL was defined as HDL < 1.03 mmol/L at

ages 10 to 16 years and, at ages ≥16 years, <1.03 mmol/L in male indi-

viduals and <1.29 mmol/L in female individuals. High hs-CRP was

defined as hs-CRP ≥ 75% sex-specific percentile of the current popula-

tion with hs-CRP ≥ 0.2 mg/L (0.91 mg/L in male and 0.87 mg/L in

female individuals) [17]. High FMI was defined as FMI ≥ 75% sex-spe-

cific percentile (5.01 kg/m2 in male and 6.68 kg/m2 in female individ-

uals), and high HOMA-IR was defined as HOMA-IR ≥ 75% sex-specific

percentile (2.59 in male and 2.74 in female individuals).

Confounders

Sex, age at blood sampling, study (GINIplus observation arm, GINIplus

intervention arm, and LISA study), study center (Munich and Wesel),

season of sleep measurement (spring, summer, autumn, and winter),

parental highest education (low/medium: ≤10th grade; high: >10th

grade), and fasting status at blood sampling (yes, no) were collected

by questionnaires. Pubertal stage was categorized into two groups:

pre-, early, or midpubertal and late or postpubertal stage based on a

self-rated questionnaire [18]. Accelerometry-measured PA was classi-

fied into sedentary, light, moderate, and vigorous PA according to

published triaxial cutoffs by Aguilar-Farías [19] (for sedentary) and

Romanzini [20], and then moderate and vigorous PA were merged

into moderate-to-vigorous PA (MVPA) [12]. Average sedentary (hours)

and MVPA (minutes) across all valid days were included. Depressive

symptoms were evaluated by the Depression Screener for Teenagers

and defined as a score ≥ 12 [21]. Dietary information was assessed by

a self-administered food frequency questionnaire [22]. Total energy

intake (EI, kilocalories) was calculated [23], and carbohydrate intake

was expressed as its percentage in total EI (%EI).

Statistical analysis

All statistical analyses were performed in R (version 4.1.2, R Center

for Statistical Computing, Vienna, Austria). A total of 12 sleep
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T AB L E 1 Participant characteristics in total population and stratified by sex

Total Male Female p value

n 1090 489 601

Age (y) 15.2 ± 0.3 15.2 ± 0.3 15.2 ± 0.3 0.230

Weight (kg) 61.2 ± 11.0 64.1 ± 11.7 58.8 ± 9.9 <0.001

Height (cm) 171.4 ± 8.0 176.2 ± 7.4 167.5 ± 6.1 <0.001

FMI (kg/m2) 5.1 ± 2.1 4.1 ± 1.9 5.9 ± 1.9 <0.001

High FMI, n (%) 272 (25.0) 122 (24.9) 150 (25.0) 1.000

SBP (mm Hg) 118.5 ± 11.7 121.2 ± 12.3 116.3 ± 10.8 <0.001

DBP (mm Hg) 69.4 ± 8.9 68.7 ± 8.9 70.1 ± 9.0 0.010

High BP, n (%) 206 (18.9) 124 (25.4) 82 (13.6) <0.001

TC (mmol/L) 4.3 (3.8, 4.8) 4.1 (3.6, 4.6) 4.4 (3.9, 5.0) <0.001

TG (mmol/L) 1.0 (0.7, 1.3) 1.0 (0.7, 1.4) 1.0 (0.7, 1.3) 0.561

High TG, n (%) 130 (11.9) 70 (14.3) 60 (10.0) 0.036

HDL (mmol/L) 1.5 ± 0.4 1.4 ± 0.4 1.6 ± 0.4 <0.001

Low HDL, n (%) 84 (7.7) 56 (11.5) 28 (4.7) <0.001

LDL (mmol/L) 2.3 (1.9, 2.7) 2.2 (1.8, 2.6) 2.4 (2.0, 2.8) <0.001

hs-CRP (mg/L) 0.4 (0.2, 0.7) 0.4 (0.2, 0.7) 0.4 (0.2, 0.7) 0.305

High hs-CRP, n (%) 218 (20.0) 96 (19.6) 122 (20.3) 0.843

HOMA-IR 2.1 (1.5, 2.6) 2.0 (1.4, 2.6) 2.1 (1.6, 2.7) 0.095

High HOMA-IR, n (%) 128 (25.3) 61 (25.4) 67 (25.3) 1.000

Total EI (kcal/day) 2093.9 ± 645.2 2406.4 ± 643.4 1868.0 ± 544.9 <0.001

Carbohydrate intake (%EI) 53.0 ± 7.3 52.5 ± 7.2 53.4 ± 7.4 0.095

Sedentary (h) 8.2 ± 1.4 8.0 ± 1.5 8.4 ± 1.3 <0.001

MVPA (min) 50.4 ± 26.5 57.3 ± 25.4 44.7 ± 26.2 <0.001

Depression, n (%) 141 (13.9) 48 (10.6) 93 (16.5) 0.010

Fasting status (yes), n (%) 511 (46.9) 241 (49.3) 270 (44.9) 0.170

Sleep clusters, n (%) <0.001

Good sleep 337 (30.9) 109 (22.3) 228 (37.9)

Delayed sleep phase 244 (22.4) 103 (21.1) 141 (23.5)

Sleep irregularity and variability 108 (9.9) 43 (8.8) 65 (10.8)

Fragmented sleep 313 (28.7) 193 (39.5) 120 (20.0)

Prolonged sleep latency 88 (8.1) 41 (8.4) 47 (7.8)

Study, n (%) 0.278

GINIplus observation 414 (38.0) 179 (36.6) 235 (39.1)

GINIplus intervention 437 (40.1) 192 (39.3) 245 (40.8)

LISA 239 (21.9) 118 (24.1) 121 (20.1)

Study center, n (%) 0.136

Munich 625 (57.3) 293 (59.9) 332 (55.2)

Wesel 465 (42.7) 196 (40.1) 269 (44.8)

Season, n (%) 0.357

Spring 281 (25.8) 133 (27.2) 148 (24.6)

Summer 167 (15.3) 65 (13.3) 102 (17.0)

Autumn 353 (32.4) 158 (32.3) 195 (32.4)

Winter 289 (26.5) 133 (27.2) 156 (26.0)

Parental highest education, n (%) 0.824

Low/medium 337 (30.9) 149 (30.5) 188 (31.3)

High 753 (69.1) 340 (69.5) 413 (68.7)

204 SLEEP CLUSTERS AND ADOLESCENT CARDIOMETABOLIC RISK
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characteristics were standardized, and their Spearman correlation

was examined (Figure S1). Hierarchical cluster analysis was

conducted using Euclidean distance and Ward’s linkage (Ward.D2).

K-means cluster analysis was applied testing three, four, five, and

six clusters. The final number of sleep clusters was set to five, con-

sidering the combination of the following methods: 1) interpretabil-

ity of k-means results; 2) hierarchical cluster dendrogram

(Figure S2); 3) results of principal component analysis (Table S1;

5 components account for 80% cumulative percentage of variance);

and 4) sum of squares method (Figure S3, by minimizing the within-

cluster sum of squares and maximizing the between-cluster sum of

squares). More details are provided in online Supporting Information

Methods. In final k-means cluster analysis, the number of clusters

was specified as five, with 50 random initial centroids. One-way

ANOVA and Kruskal–Wallis rank sum test for continuous variables

and χ2 test for categorical variables were used to explore differ-

ences among sexes and sleep clusters, followed by Bonferroni-

adjusted post hoc tests.

Linear regression models were conducted to evaluate associations

among sleep clusters and continuous cardiometabolic markers, which

were examined for normality and naturally log-transformed as appropri-

ate. Outliers were detected visually using box plots (median ± 3 inter-

quartile range, outliers were not excluded). Three models were

performed: Model 1 was adjusted for sex, age, study, study center, and

parental highest education; Model 2 was additionally adjusted for sea-

son, pubertal stage, sedentary, MVPA, depression, fasting status (except

for HOMA-IR), total EI, and carbohydrate intake; and Model 3 was

Model 2 plus adjustment for FMI. For comparability, FMI (sex-specific),

SBP, DBP, and HDL (inverse) were scaled, and results were described

as β with 95% confidence intervals (CI). TC, TG, LDL, and HOMA-IR

were log-transformed, and the β estimate of linear models were then

back-transformed to means ratio (MR = exp[β]) with 95% CI. MR repre-

sents the ratio of the mean of the outcome variable in one group versus

the reference group. Considering the correlation among outcomes, the

number of independent tests was calculated as seven according to

Nyholt [24] using the R package “poolr” [25], yielding a Bonferroni-

T AB L E 1 (Continued)

Total Male Female p value

Pubertal stage, n (%) <0.001

Pre-, early, or midpubertal 202 (21.7) 178 (43.8) 24 (4.6)

Late or postpubertal 729 (78.3) 228 (56.2) 501 (95.4)

Note: The results are presented as mean ± SD, median (first quartile, third quartile), or n (percentage). The number of participants with available

information was as follows: HOMA-IR (505); total EI (865); carbohydrate intake (865); sedentary (1082); MVPA (1082); depression (1017); and pubertal

stage (931). P < 0.05 are highlighted in bold.

Abbreviations: BP, blood pressure; carbohydrate intake (%EI), carbohydrate as percentage of total energy intake; DBP, diastolic blood pressure; EI, energy

intake; FMI, fat mass index; GINIplus, German Infant Study on the influence of Nutrition Intervention PLUS environmental and genetic influences on

allergy development; HDL, high-density lipoprotein cholesterol; HOMA-IR, Homeostatic Model Assessment of Insulin Resistance; hs-CRP, high-sensitivity

C-reactive protein; LDL, low-density lipoprotein cholesterol; LISA, Influence of Lifestyle factors on the development of the Immune System and Allergies in

East and West Germany; MVPA, moderate-to-vigorous physical activity; SBP, systolic blood pressure; TC, total cholesterol; TG, triglycerides.

F I GU R E 2 Distributions of sleep characteristics in a week in five sleep clusters.

SLEEP CLUSTERS AND ADOLESCENT CARDIOMETABOLIC RISK 205
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corrected, two-sided α level of 0.007 (0.05/7; online Supporting

Information Methods). Given the highly skewed distribution of hs-CRP,

it was not tested in linear models.

To explore the vulnerable/extreme subgroups of cardiometabolic

outcomes, logistic regression models were used to assess associations

among sleep clusters and dichotomous cardiometabolic markers (high

FMI, high BP, high TG, low HDL, high hs-CRP, and high HOMA-IR),

with the same adjustment levels as in linear models. Results were

described as odds ratios (OR) with 95% CI. Bonferroni correction was

applied with the Nyholt method [24], yielding a two-sided α level of

0.010 (0.05/5).

Additionally, the interaction effects among sleep clusters and sex

were tested, followed by sex-stratified analyses. The following two

sensitivity analyses were performed: 1) restricted to only fasting par-

ticipants; and 2) sleep clusters were identified by sleep characteristics

only on weekdays. Multiple imputation by sex was applied to some

confounders with missing values (pubertal stage, sedentary, MVPA,

depression, total EI, and carbohydrate intake) using the R package

“mice” [26].

RESULTS

The overall prevalence of high BP, high TG, low HDL, and high hs-

CRP was 18.9%, 11.9%, 7.7%, and 20.0%, respectively (Table 1). Male

individuals had a higher prevalence of high BP, high TG, and low HDL

than female individuals, but female individuals had higher FMI, TC,

and LDL than male individuals (p < 0.05).

Five sleep clusters were identified and named by their character-

istics: “good sleep” (n = 337; average total sleep time = 7.6 h);

“delayed sleep phase” (n = 244; 7.2 h); “sleep irregularity and variabil-

ity” (n = 108; 6.9 h); “fragmented sleep” (n = 313; 6.9 h); and “pro-
longed sleep latency” (n = 88; 6.9 h; Table 1, Table S2). Figure 2

displays the distributions of sleep characteristics in a week in each

sleep cluster. The good sleep cluster was characterized by higher total

sleep time and sleep efficiency. The delayed sleep phase cluster was

characterized by higher sleep midpoint timing, SD in sleep midpoint

timing, and sleep efficiency. The sleep irregularity and variability clus-

ter exhibited higher SD in most sleep characteristics such as total

sleep time, sleep midpoint timing, and higher time awake per hour

after sleep onset. Furthermore, the fragmented sleep cluster had

higher time awake and awakenings per hour after sleep onset,

whereas the prolonged sleep latency cluster had higher sleep latency,

SD in sleep latency, and time awake per hour after sleep onset.

Figure S4 demonstrates the stability and robustness of the identified

sleep clusters in the present study by demonstrating that the distribu-

tions of sleep characteristics only during weekdays were similar to

those of the entire week (Figure 2). Table S3 shows the participant

characteristics in five sleep clusters.

In linear analyses, compared with the good sleep cluster, the pro-

longed sleep latency cluster was significantly associated with

increased sex-scaled FMI (β = 0.39, 95% CI: 0.15–0.62; Model

2, Table 2). The sleep irregularity and variability cluster was associatedT
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with higher HOMA-IR (MR = 1.19, 95% CI: 1.01–1.40, Model 2);

however, it was nonsignificant after adjustment for FMI. No signifi-

cant interaction with sex was found. Male and female individuals

within the prolonged sleep latency cluster had higher FMI (β = 0.38,

95% CI: 0.01–0.75; β = 0.41, 95% CI: 0.10–0.72), respectively, but

these associations were not significant after multiple testing correc-

tion (Table S4).

In logistic analyses, the sleep irregularity and variability cluster was

associated with increased odds of high TG (OR = 2.35, 95% CI: 1.24–

4.48, Model 2); however, it was not significant after adjustment for

FMI and multiple testing correction (Table 3). The association of the

prolonged sleep latency cluster with high FMI (OR = 1.98, 95%

CI: 1.14–3.45; Model 2, Table 3) was detected, but it did not reach the

significance threshold after multiple testing correction. Additionally, the

prolonged sleep latency cluster was associated with high HOMA-IR

(OR = 2.70, 95% CI = 1.17–6.25; Model 2, Table 3), but it was nonsig-

nificant after adjustment for FMI. A significant interaction effect

between sex and the sleep irregularity and variability cluster on high

TG was observed (p = 0.002), restricting this association only to male

individuals (OR = 9.50, 95% CI: 3.22–28.07; Figure 3, Table S5). In

female individuals, the association between the prolonged sleep latency

cluster and high FMI (OR = 2.23, 95% CI: 1.05–4.72), as well as the

association between sleep irregularity and variability cluster and high

hs-CRP (OR = 2.05, 95% CI: 1.02–4.14), were observed, but they were

nonsignificant after multiple testing correction (Figure 3, Table S5).

In sensitivity analyses, the overall findings did not change sub-

stantially when considering only fasting adolescents (Tables S6 and

S7) and when sleep clusters were limited to being defined based on

sleep characteristics on weekdays only (Tables S8 and S9).

DISCUSSION

Based on 1090 adolescents, five sleep clusters, i.e., “good sleep,”
“delayed sleep phase,” “sleep irregularity and variability,” “fragmented

sleep,” and “prolonged sleep latency,” were identified by applying

cluster analysis across 12 accelerometry-derived sleep characteristics.

The prolonged sleep latency cluster was associated with increased

FMI. Furthermore, the sleep irregularity and variability cluster was

associated with high TG (≥1.7 mmol/L) only in male individuals, but

this finding was not replicated in linear models.

We identified five sleep clusters using 12 sleep characteristics

reflecting sleep quantity, quality, schedule, variability, and regularity.

Several studies have identified sleep patterns by comprehensively

considering multiple objectively assessed sleep characteristics, includ-

ing cluster analysis [10, 27], latent class analysis [28, 29], and compos-

ite sleep scores considering self-reported sleep behaviors [30], but

only a few studies have been conducted in children and adolescents.

Matricciani et al. used cluster analysis to identify four sleep clusters

(overall good sleepers, short sleepers, late to bed, and long sleepers) in

F I GU R E 3 Associations among sleep clusters and dichotomous cardiometabolic risk factors in adolescents by sex. BP, blood pressure; FMI,
fat mass index; HDL, high-density lipoprotein cholesterol; HOMA-IR, Homeostatic Model Assessment of Insulin Resistance; hs-CRP, high-
sensitivity C-reactive protein; OR, odds ratio; TG, triglycerides.
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1043 Australian children aged 11 to 12 years, using four

accelerometry-measured sleep characteristics (period, efficiency, mid-

point timing, and sleep period variability) [10]. Furthermore, Thumann

et al. applied latent class analysis to classify four sleep subtypes (opti-

mal sleep, early birds, short sleep duration, and poor sleep quality)

among 559 European children aged 9 to 16 years, using five sleep

characteristics (duration, efficiency, latency, reported wake-up time,

and reported lights-off time) [29]. Other studies have detected various

sleep patterns in adults, but they all identified a cluster or group

named good sleep or healthy sleep [28, 30]. Our findings provided fur-

ther insights into more diverse sleep patterns by additionally including

time awake, awakenings, sleep latency, and their variabilities because

we were able to classify sleep profiles labeled fragmented sleep, pro-

longed sleep latency, and sleep irregularity and variability. Notably,

the identified delayed sleep phase cluster clearly presented the com-

mon phenotype of delayed sleep phase disorder in adolescents [31].

Furthermore, to enhance comparability among participants with vary-

ing total sleep time and effectively capture distinct sleep patterns, we

used the time awake per hour after sleep onset (ratio of WASO to

(total sleep time + WASO/60)) [12] rather than relying solely on

WASO. This standardized assessment approach was also applied to

the awakenings per hour after sleep onset.

The prolonged sleep latency cluster was significantly associated

with increased FMI in linear models, which was also observed in logis-

tic models but was nonsignificant after multiple testing correction,

possibly due to lower power. Previous studies have demonstrated an

association between short sleep and childhood obesity, but only a few

studies have examined the impact of objective sleep latency, an

aspect leading to sleep loss, on obesity [8]. One study showed no

association of accelerometry-measured long sleep latency with BMI

z scores among 107 Swedish children aged 2 to 6 years [32]. More-

over, Thumann et al. reported that accelerometry-measured sleep

latency was not associated with BMI z scores among 559 European

children aged 9 to 16 years [29]. However, in our study, the prolonged

sleep latency cluster (n = 88) was characterized by extremely high

sleep latency (46.4 min; Table S2) compared with the other four sleep

clusters (13.8–18.9 min). Possible mechanisms for this association

may include the following: 1) prolonged sleep latency can cause frus-

tration, anxiety, or stress, leading to emotional eating, preference for

energy-dense foods, and increased calorie intake [3, 33]; 2) prolonged

sleep latency may delay the onset of the first sleep stage and reduce

time spent in deep sleep (third sleep stage), impacting physical resto-

ration and leading to fatigue and decreased motivation for PA [34];

and 3) disruption of hormonal balance such as cortisol due to pro-

longed sleep latency can impact EI and expenditure [3].

Male individuals within the sleep irregularity and variability pat-

tern were at increased odds of high TG. Similarly, Spruyt et al. found

that accelerometry-determined sleep duration variability during school

days was correlated with TG among 47 children with obesity aged

4 to 10 years [35]. Duan et al. also observed a relationship between

short sleep and high TG (≥1.24 mmol/L) only in adolescent boys [36].

Furthermore, a recent review supported associations of greater sleep

variability and irregularity with obesity and adverse cardiometabolic

health in adolescence [7]. The underlying mechanism may involve

sociocultural and biological influences. Adolescents within the sleep

irregularity and variability cluster may have irregular breakfast behav-

iors, which were associated with higher TG [7, 37]. Additionally, it

may be explained by increased absorption of dietary lipids with

increased de novo synthesis of TG in the liver or decreased ability to

catabolize absorbed dietary fat in male individuals with sleep

deprivation [38]. Moreover, in our study, male individuals with a sleep

irregularity and variability pattern were more likely to be in late or

postpuberty (70.6% compared with 55.9% in the good sleep cluster),

whereas no difference in female individuals was found. This suggests

that, in male individuals with a sleep irregularity and variability pat-

tern, puberty may start earlier, leading to increased testosterone and

decreased sex hormone-binding globulin, and may potentially affect

TG level [39]. However, the causality needs to be verified to deter-

mine whether pubertal hormonal changes drive sleep behaviors

changes [40].

Although we found a significant association of sleep irregularity

and variability cluster with high TG (≥1.7 mmol/L) in male individuals,

this was not confirmed in linear analyses. We further explored poten-

tial reasons. The median TG values were similar across five sleep clus-

ters, but the prevalence of high TG in the sleep irregularity and

variability cluster (19.4%; Table S3) was higher than in other sleep

clusters (9.2%–14.8%). Additionally, this finding was only found in

male individuals and was consistent in fasting male individuals

(Figure S5). Regarding the cutoff for TG, the IDF recommended that

elevated TG (≥1.7 mmol/L) was most commonly observed in adults

with metabolic syndrome, and using adult levels was a wise, easy-

to-apply definition to identify children and adolescents at increased

risk [16]. Because linear models can only discover differences in the

mean TG, logistic models suggested a higher prevalence of extreme

values of TG, which could point toward vulnerable subgroups at risk.

Notably, the prolonged sleep latency cluster and the sleep irregu-

larity and variability cluster seemed to be associated with higher insu-

lin resistance, possibly due to increased adiposity, because

associations were nonsignificant after adjustment for FMI. The rela-

tionship among sleep, adiposity, and insulin resistance may be bidirec-

tional and potentially causal [41]. Sleep disturbance affects metabolic

pathways, increasing insulin resistance, potentially reducing energy

expenditure, and boosting appetite. Conversely, psychological and

endocrine abnormalities in individuals with obesity and/or diabetes

disrupt sleep, creating a harmful cycle.

This study investigated associations among sleep patterns identi-

fied by cluster analysis and cardiometabolic health in a large adoles-

cent population, with accelerometry-measured sleep data and a

comprehensive assessment of cardiometabolic risk factors. However,

some limitations should be noted. First, our cross-sectional, observa-

tional study was unable to infer causality. Notably, our previous study

found a bidirectional association between reported sleep difficulty

and overweight/obesity from adolescence to young adulthood [42].

Second, we used sex-specific upper quartiles to dichotomize FMI,

HOMA-IR, and hs-CRP to improve comparability across outcomes

because no standard thresholds are available in adolescents, which
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may limit comparability with other studies. Third, although the accel-

erometer is a practical approach to measure sleep in epidemiological

research [43], it differs from polysomnography (gold standard) [44].

Fourth, daytime sleep data were unavailable. Fifth, we assumed that

1-week sleep measurements estimated habitual sleep patterns over a

longer period [43], although the measurements of cardiometabolic risk

factors preceded sleep assessments in our study, with a mean age dif-

ference of 0.36 years. Sixth, caution should be exercised when gener-

alizing our findings to other age groups or cultures because our

participants are German adolescents aged 14 to 16 years.

CONCLUSION

We identified five distinctive sleep patterns by cluster analysis and

found that the cluster describing “prolonged sleep latency” pattern

was associated with higher fat mass in adolescents. Additionally, the

cluster describing “sleep irregularity and variability” pattern seemed

to be associated with high TG in male individuals. Our results suggest

that improvements in sleep latency, variability, and regularity may

enrich existing sleep-targeted intervention strategies for cardiometa-

bolic health that mainly focus on improving adequate sleep.O
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