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Abstract: With the beginning of the COVID-19 pandemic, we became aware of the need for comprehen-
sive data collection and its provision to scientists and experts for proper data analyses. In Germany, the
Robert Koch Institute (RKI) has tried to keep up with this demand for data on COVID-19, but there
were (and still are) relevant data missing that are needed to understand the whole picture of the pan-
demic. In this article, we take a closer look at the severity of the course of COVID-19 in Germany, for
which ideal information would be the number of incoming patients to ICU units. This information was
(and still is) not available. Instead, the current occupancy of ICU units on the district level was reported
daily. We demonstrate how this information can be used to predict the number of incoming as well as re-
leased COVID-19 patients using a stochastic version of the ExpectationMaximization algorithm (SEM).
This, in turn, allows for estimating the influence of district-specific and age-specific infection rates as well
as further covariates, including spatial effects, on the number of incoming patients. The article demon-
strates that even if relevant data are not recorded or provided officially, statistical modelling allows for
reconstructing them. This also includes the quantification of uncertainty which naturally results from the
application of the SEM algorithm.
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1 Introduction

Albeit its atrocity, in its aftermath, the COVID-19 pandemic has taught Germany, among many
other countries, the shortcomings of inadequate data availability in its healthcare system. In fact,
in Germany, while intensive care unit (ICU) occupancy was provided by the DIVI e.V. (2021), the
numbers of newly hospitalized patients (incoming) and released patients (outgoing), either cured or
deceased, has (until now) not been included in the database. This can be criticized since a relevant
number, whichmeasures the pressure of the disease on the healthcare system—the number of incom-
ing patients—is not available to the public. We show, in this article, how to disentangle incoming and
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outgoing patients from pure occupancy data using statistical models. This, in particular, allows us
to investigate how hospitalizations depend on time, age, and spatial factors.

We assume that admission to- and release of the ICU units follow Poisson distributions with
inhomogeneous intensities. Consequently, the changes in ICU occupancy result from the difference
between incoming and outgoing patients. This in turn gives the framework of the Skellam distri-
bution, originally introduced by Skellam (1948). The distribution is described as resulting from the
difference of two independent Poisson distributed random variables. This distributional approach
has been used in different settings. For instance, in sports statistics Karlis and Ntzoufras (2009) ap-
ply the distribution for modelling the goal difference in football games. In network analysis, Gan
and Kolaczyk (2018) and Schneble and Kauermann (2022) look at network flows while Koopman
et al. (2014) utilize the idea to model financial trades. Further application areas include image anal-
ysis when comparing intensity differences of pixels, see for example, Hwang et al. (2007), Hwang
et al. (2011) or Hirakawa et al. (2009). Extensions towards bivariate Skellam processes are provided
for example, in Genest and Mesfioui (2014), see also Aissaoui et al. (2017). A general discussion on
the Skellam distribution and its application fields is provided in Tomy and Veena (2022). In this arti-
cle, we provide an application of the Skellam distribution for disentangling incoming and outgoing
patients in ICUs.

The occupancy of ICU units was a central component of the COVID-19 pandemic. Numerous
tools have been developed for forecasting the number of patients who require ICU admission, see for
example, Grasselli et al. (2020), Goic et al. (2021), Murray (2020) or Farcomeni et al. (2021) to just
mention a few. Our focus in this article is not primarily on prediction but on investigating the risk
of admission and how this depends on the infection rates and further covariates, including spatial
components. To do so we assume that the number of incoming and released patients comes from an
inhomogeneous Poisson process, but we only observe the difference between incoming and released
patients, leading to a Skellam distribution. Treating incoming and released patients as missing data,
allows us to simulate the patient flows (stochastic E step) and refit the model (M step). Parameter
estimation in the Skellam distribution is cumbersome due to its numerically complex formof the like-
lihood function, which requires the use of the Bessel function. Even though these are implemented
in standard software packages, we refer to Schneble and Kauermann (2022), who report some nu-
merical instabilities in the case of parameters at the boundary of the parameter space. We also refer
to Lewis et al. (2016) or Aissaoui et al. (2017) who pursue moment-based estimation. In this article,
we aim to use implemented routines to achieve stability. In fact, the data can be rewritten as a miss-
ing data constellation, which itself suggests the use of an EM algorithm. We here use the Stochastic
Expectation Maximization (SEM) algorithm and present it as a suitable and numerically stable al-
ternative to available estimation routines. Originally proposed by Celeux et al. (1996), the stochastic
version of the EM algorithm gained interest in recent years, in particular in mixture models, see for
example, Noghrehchi et al. (2021).We also refer toNielsen (2000) for asymptotic results on the algo-
rithm. The EM algorithm relates the estimation to a missing data problem, which is easily described.
We assume that instead of the complete data with incoming and outgoing patients, we only observe
the changes in occupancy of ICUs. In other words, the exact number of incoming and outgoing is
missing. Replacing these missing numbers iteratively with simulated numbers, based on the current
estimates of themodel, provides the stochastic version of the ‘E’-step. This, in turn, leads to full data,
which allows for standard maximum likelihood estimation of two Poisson processes—the M step.
The algorithm is easily implemented, and Rubin’s rule, Rubin (1976), provides inference statements.
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A particularly interesting attribute that this approach provides is the simplification of the initial
complexity of the problem. We are able to break our problem down from a fairly complex distri-
butional assumption, with respect to deriving an association between the infection rates and the
number of incoming and outgoing patients, to land at essentially two iteratively updated general-
ized additivemodels (GAMs) with simulated responses, each response simultaneously sampled from
a joint distribution, comprised of the product of twoPoisson distributions. This allows us to not only
circumvent rather cumbersome calculations and modifications of the first and second derivative of
the Skellam distribution, as, for example, shown by Schneble andKauermann (2022) but also almost
effortlessly interpret the association between the number of incoming and outgoing patients and the
infection rate.

The article is structured as follows; in Section 2, we give a detailed data description. In Section 3,
we elaborate on themodel approach to our problem, while in Section 4, we will provide the results of
our model approach. A simple simulation exercise to validate our findings can be found in Section
5, and in Section 6, we conclude our article which also includes a discussion of the shortcomings of
our approach.

2 Data description

The database for our analyses consists of two main components; data on COVID-19 infections and
data on the ICU occupancy of COVID-19 patients. The infections and the ICU occupancy are col-
lected by the German health care departments, recorded by the Robert Koch Institute (2021) (RKI),
the German federal government agency and scientific institute responsible for health reporting and
disease control, and published by the RKI and DIVI e.V. (2021), respectively. We here focus on
data during the fourth infection wave in Germany, that is, from the 2nd October 2021 until the 17th
November 2021, though the method is readily extendable to other time frames, so long that the
data included are subject to homogeneous testing or lock down strategies. We visualize the average
infection rates over all districts in Figure 1 (left-hand side).

The RKI collects and publishes data on infections on a daily basis. Due to privacy protection,
the RKI aggregates the number of COVID-19 patients, ICU occupancy and general hospital ad-
mission of patients infected with COVID-19 over NUTS3 districts, European Commission (2021),
but separates by demographic groups. These namely are the age categories; ‘0–4’ year-olds, ‘5–14’
year-olds, ‘15–34’ year-olds, ‘35–59’ year-olds, ‘60–79’ year-olds and ‘80+’ year-olds and the sex;
‘male’, ‘female’ and ‘not disclosed’. For the purpose of this analysis, the infections are aggregated
over the age groups. The data were directly downloaded through the ArcGIS website, Robert Koch
Institute (2021). The infection rates per 100.000 inhabitants are then calculated as a weekly average
for each age group. For each district, the infection rate is averaged over the seven days immediately
preceding the respective observed day change in ICU occupancy.

The data on ICU occupancy is also collected by the RKI and published by DIVI. These data
are also on a district level, however, the occupancy can only be differentiated by the number of
beds occupied by patients infected with COVID-19, by the number of beds occupied by patients
not infected with COVID-19 and the number of empty beds, the sum of which is the overall ICU
capacity in a given district on a given date. We solely take the COVID-19 ICU-patients into account
and visualize the ICU data for one day in Figure 1 (right-hand side).
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Figure 1 A: Summary over all districts of the infection rate per 100.000 inhabitants by age group, ‘45–59’
year-olds, ‘60–79’ year-olds and ‘80+’ year-olds displayed by date, from the 1 October 2021 until the 18
November 2021, B: The maximum capacity of ICU beds per given district over the time span from the 1
October 2021 until the 18 November 2021 by district.

Conveniently, both data sets can also be found in the daily updated GitHub repository main-
tained by the RKI, Robert Koch Institute (2023). We take a closer look at the infection rates by age
group in the Supplemental Material.

3 Model

3.1 Assumption
Let Y(t,d) be the number of COVID-19 ICU patients in a given district d at day t. This is the official
number issued byDIVI, described above and freely accessible from the given sources.We define with
I(t,d) the number of incoming patients in district d at day t, which is the number of newly admitted
COVID-19 patients in the ICUs located in district d. Accordingly, we denote with R(t,d) the number
of released patients, meaning that they are discharged, deceased or transferred to a non-ICU. We
assume both to come from an inhomogeneous Poisson process such that

I(t,d) ∼ Poisson
(
λI(t,d)

)
(3.1)

R(t,d) ∼ Poisson
(
λR(t,d)

)
. (3.2)
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The explicit modelling of the intensities λI(t,d) and λ
R
(t,d) is of primary interest and discussed in depth

later in this section. For now, note that Equation (3.2) is an approximation, and formally we have
a right censored Poisson distribution with R(t,d) ≤ Y(t−1,d) since no more patients can be released
than are currently in the ICU. We can omit this point, though, since, based on the disease, we know
that not all patients are discharged at a time, so the formal censoring does not play any practical
relevance due to a generally small discharge intensity λ(t,d).

With these definitions, we can now define the difference �(t,d) in occupancy of COVID-19 ICU
patients per district d and day t to the previous day t − 1.

�(t,d) = Y(t,d) − Y(t−1,d) = I(t,d) − R(t,d). (3.3)

Assuming independence for the number of incoming and outgoing ICU COVID-19 patients to-
gether with (3.1) and (3.2) leads to a Skellam distribution Skellam (1948).

�(t,d) ∼ Skellam(λI(t,d), λ
R
(t,d)). (3.4)

Before we derive how to estimate the two intensities in (3.4) we want to discuss the suitability of
the distributional assumptions. Note that the approach relies on independence of I(t,d) and R(t,d).
This would be violated if discharges of the ICU in t depend on the number of incoming patients in
t. A conceivable scenario where I(t,d) and R(t,d) are dependent results if the ICUs get to their limit
capacity and triage of patients is inevitable. This situation has not been observed in Germany—over
the entire course of the pandemic—so we can argue that assuming independence between incoming
and outgoing patients is reasonable.

There was, however, relocation of patients if local hospitals reached the edge of capacity. This
followed a national plan, called ‘Kleeblattkonzept’, literally translated as clover-leaf-concept, see
Pfenninger et al. (2022). This also implies that some ICU patients are not local.

We also want to add a comment given by the referee, in that a Skellam distribution also results
in a more general setup. Assume that we have noisy data in that incoming and released patients
have an additive shift. That is instead of I(t,d) we have Ĩ(t,d) = I(t,d) + Z(t,d) and analogously R(t,d)

becomes R̃(t,d) = R(t,d) + Z(t,d) where Z(t,d) is some discrete noise. Apparently, now Ĩ(t,d) and R̃(t,d)

are not any longer independent, but their difference like in (3.3) is again Skellam distributed. Hence,
we can slightly weaken the independence assumption if we assume additive noise on incoming and
released patient counts.

Finally, the intensities λI(t,d) and λ
R
(t,d) are modelled to depend on a set of covariates denoted by

x(t,d) as well as previous data. To be specific, we set

λI(t,d) = exp
(
ηI(t,d) + s I (t) + hI (longituded , latituded)

)
, (3.5)

λR(t,d) = exp
(
ηR(t,d) + sR(t) + hR(longituded , latituded ) + log(

t∑
j=t−56

ω j Î( j,d))︸ ︷︷ ︸
= offset

)
, (3.6)
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where ηI(t,d) and η
R
(t,d) are the linear combinations of the covariates included in the models. Namely,

the logged infection rates of the age groups ‘35–59’ year-olds, ‘60–79’ year-olds and ‘80+’ year-olds,
as well as the weekday, included as a categorical variable, with Friday as its reference category. s I (t)
and sR(t) are smooth functions in time, and hI (longituded , latituded) and h

R(longituded, latituded )
are two-dimensional thin-plate smooth functions over the coordinates of the centroids of the re-
spective districts, Wood (2003). Note that Î( j,d) is not observed, and we, therefore, replace it with its
simulated value from the ‘E’-step. Moreover, the weights ω j are fixed and not estimated but instead
obtained from duration time models for COVID-19 patients in ICU units. We make use of the epi-
demiological bulletin published by the RKI in 2020, Tolksdorf et al. (2020), see Figure A1 in the
Appendix. The maximum length of stay is set to 56 days, which explains the number in the formula
above.

Finally, we impose the standard identifiability constraints, that is, that both s I (t) and sR(t) as well
as the spatial effects hI (longituded, latituded ) and h

R(longituded , latituded) integrate out to zero. We
refer to Wood (2017) for more details.

3.2 SEM algorithm
Instead of maximizing the Skellam likelihood, as done for instance in Schneble and Kauermann
(2022), we pursue an EM algorithm, with the E-step replaced by a simulation step, leading to the
stochastic EM algorithm, as discussed in Celeux et al. (1996). The approach has the advantage, that
estimation can be carried out iteratively using implemented procedures and, even more importantly,
we directly obtain predicted values for the incoming and released patients, which are the quantities
of interest. Note that we observe�(t,d) from which we can ‘calculate’ I(t,d) and R(t,d) . Given the data
we have

I(t,d) = �(t,d) + R(t,d) (3.7)

with the additional constraints that both, I(t,d) ≥ 0 and R(t,d) ≥ 0. Hence, based on the data, we have
the joint probability model for incoming and released ICU patients:

P(I(t,d) = k, R(t,d) = j |�(t,d) = δ)

∝
{

P(I(t,d) = k) × P(R(t,d) = k− δ) for j = k− δ and k ≥ max(δ, 0)
0 otherwise

(3.8)

with P(I(t,d) = k) and P(R(t,d) = k− δ) resulting from the Poissonmodel (3.5) and (3.6), respectively.
While model (3.8) is a clumsy convolution model which does not simplify to an analytic form. Sim-
ulation from the model is simple by just replacing the infinite pairs k for I(t,d) and k− δ for R(t,d) by
a set of finite pairs, such that the resulting cumulative probabilities are approximately equal to one.
To be specific, we have

P(I(t,d) = k, R(t,d) = j |�(t,d) = δ, λI , λR)

= lim
K→∞

PλI (I(t,d) = k)PλR(R(t,d) = k− δ)∑K
i=1 PλI (I(t,d) = i )PλR(R(t,d) = i − δ)

. (3.9)
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We approximate this numerically by assuming that either PλI ((I(t,d)) = k), or PλR(R(t,d) = k− δ) is
sufficiently close to zero at k > 1000 making the product of the two distributions sufficiently close
to zero, such that the sum of probabilities for events k > 1000 may be negligible. This results in the
finite approximation

P(I(t,d) = k, R(t,d) = j |�(t,d) = δ, λI , λR)

≈ PλI (I(t,d) = k)PλR(R(t,d) = k− δ)∑1000
i=1 PλI (I(t,d) = i )PλR(R(t,d) = i − δ)

. (3.10)

Numerically this is easily carried out and allows to simulate data pairs (I∗
(t,d), R

∗
(t,d)) based on the

current estimates of the intensities using (3.10) as an approximate version of (3.8). This provides a
stochastic ‘E’-step and leads to a full data set with (simulated) incoming and (simulated) released
patients for all districts and all time points. With the resulting (simulated) full data set, we can now
directly estimate the intensities in models (3.5) and (3.6), which in turn is conducted in the ‘M’ step.
The ‘M’ step can be carried out by fitting two generalized additive Poisson models using standard
software, see Wood (2017).

Iterating between the two steps gives a stochastic version of the EM algorithm. Each simulation
step provides an estimate, and following the classical EM algorithm, we can easily see that on aver-
age, we increase the (marginal) likelihood in each step. The outline of which is sketched in Figure
A4, in the Appendix.

The results of the model which simulates from the joint probability distribution with K = 2.000,
instead of K = 1.000, are shown in the Supplemental Material.

3.3 Inference based on SEM
Unlike the EM algorithm, where calculating the variance of the estimates is not straightforward,
and one typically relies on Louis’ formula Louis (1982), the stochastic version allows to take the
uncertainty due to the missing data into account. The derivation shows similarities to Rubin’s for-
mula for imputation, see Rubin (1976). Let the parameter vector of linear and smooth functions,

β̂
(k) = (β̂

I(k)T
, β̂

R(k)T
)T, be the resulting estimate in the kth step of the SEM algorithm. We assume

k > k0, where k0 refers to the step when convergence seems to be achieved. The final estimate results
through

β̂ = 1
K − k0

K∑
k=k0+1

β̂
(k)
. (3.11)

The variance is estimated via

V̂ar(β̂) = 1
K − k0

K∑
k=k0+1

V̂ar(β̂
(k)
) + 1 + (K − k0)−1

(K − k0) − 1

K∑
j=k0+1

(β̂
(k) − β̂)(β̂

(k) − β̂)T (3.12)
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where V̂ar (β̂
(k)
) is the variance estimate in the k iteration step, based on the imputed data set. The

latter directly results through the applied fitting algorithm.

4 Results

Agreat advantage of our approach is thatwe can directly interpret the estimated association between
the included covariates and the incoming patients and outgoing patients separately. To do so, we
look at covariates containing information on the infection rates for each of the three age groups and
the weekday effects. The estimated coefficients and their standard deviation, calculated based on
Rubin’s formula, see Equation (3.12), are provided in Table 1. We use the last 300 runs to determine
the coefficient estimates through their median, as well as their variance through the Equation (3.12).
The estimates over the last 300 runs are shown through line plots in Figures A2 and A3 in the
Appendix for the incoming and outgoing patients, respectively. We include extensions to the runs
included in the analysis in the Supplemental Material. We find, however, that the inclusion of more
runs will not result in a change in the estimated coefficients.

First, we look at the association between our covariates and the number of incoming and out-
going patients, as seen in the middle and right column of the output table, Table 1. Recall that the
weekday effect is included in the model through a categorical variable, with Friday as its reference
category. For the model estimating the number of incoming patients, keeping respectively all other
variables constant, we can observe that there is an increased number of incoming patients on other
weekdays, compared to Friday, whereas on the weekend, there is a decreased number of patients,
compared to Friday. For outgoing patients, the behaviour is slightly different. On Monday, Thurs-
day, Saturday, and especially Sunday, fewer patients are released compared to Friday. Conversely,
Tuesday and Wednesday seem slightly increased.

The number of incoming and outgoing patients is positively associated with the infection rates of
all age groups. Notably, the strongest effect exists for the infection rate of ‘35–59’ year-olds. This is
interesting, bearing in mind that ‘60–79’ year-olds are the predominant age group DIV. We should,

Table 1 Estimated coefficients and standard deviations presented on the level of incoming and outgoing
patients. The estimates are the exponential of the median of the coefficient estimates from the 200th run to
the 500th run of the EM algorithm.

Incoming Outgoing

Estimates Std. Err. Estimates Std. Err.

Intercept −2.28 0.10 −6.41 0.12
Monday effect 0.12 0.05 −0.21 0.06
Tuesday effect 0.14 0.05 0.03 0.06
Wednesday effect 0.13 0.05 0.02 0.06
Thursday effect 0.14 0.05 −0.10 0.06
Saturday effect −0.02 0.05 −0.09 0.06
Sunday effect −0.14 0.05 −0.39 0.06
Infection 35–59 yo 0.24 0.05 0.28 0.06
Infection 60–79 yo 0.07 0.05 0.07 0.05
Infection 80+ yo 0.11 0.02 0.10 0.02
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Figure 2 Estimated smooth functions of all runs, over time, rendered by the GAMs estimating the number of
incoming patients (left hand side) and outgoing patients (right hand side) over the last 300 runs.

however, not omit that there is strong collinearity between the infection rates themselves which could
affect our interpretability of the coefficients. More on the change of coefficients, when we look at
different time frames over which the data is observed is discussed in the Supplemental Material.

Recall further, that we included smooth functions to estimate both the spatial-, and the temporal
effects. They are included to pick up on additional spatial and temporal structural dependencies.
Let us first look at the smooth effects over time, as seen in Figure 2. The averaged smooth function
over time for incoming patients (left-hand side) is generally increasing. Evidently, we can see some
fluctuation and there seems to be a fortnightly rhythm within the overall trend. Here we observe an
increase in the number of incoming patients for the first seven days, then a decrease in the following
seven days, followed by a subsequent increase, and so forth. In contrast, as shown on the right-hand
side of Figure 2, we see a general decrease in the number of outgoing patients without a biweekly
rhythm.

Finally, we look at the spatial effects for the incoming patients, see the left-hand side of Figure
3, and for the outgoing patients, shown with the right-hand side of Figure 3. There seems to be
an increased level of incoming patients in Saxony (east Germany) and North Rhine-Westphalia
(west Germany) and a slight increase around the larger cities of Germany (Frankfurt, Stuttgart, and
Munich, south and southwest of Germany). We observe a similar structure in the spatial smooth
function in themodel estimating the outgoing patients, except for the strong increase around Saxony.
Overall, we see clear spatial heterogeneity.

At last, we visualize in Figure 4 the estimated number of incoming and outgoing patients,
summed up over the entirety of Germany, for the observed time frame. The left-hand axis scales
the number of incoming and outgoing patients, whereas the right-hand axis scales the number of
overall ICU patients with COVID-19. We see that the model picks up the somewhat constant occu-
pancy, from the 1 October 2021, until the 17 October 2021, in Germany’s ICUs rather well, where
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Figure 3 Estimated median smooth functions of the 200th until the 500th run over space rendered by the
generalized additive models, estimating the number of incoming patients (left-hand side) and outgoing
patients (right-hand side).

the number of incoming and outgoing patients are estimated to be similar, if not equal. Thereafter,
the number of ICU patients in the ICU increases, around this time, we also observe a higher esti-
mated number of incoming patients than outgoing patients. It is not unusual for patients, especially
the critically ill, to stay in the ICU for more than four weeks, making the divergence in estimation
for the number of incoming patients and outgoing patients entirely plausible.

With respect to model validation, we provide some additional analyses in the Supplemental
Material of the article. In particular, we look at serial correlation and show that due to the au-
toregressive component in the model, the Pearson residuals show no autocorrelated structure.

5 Simulation

This section is aimed to investigate the goodness of fit of the modelling approach we chose a simple
version to emulate the data used above. We use one covariate, randomly drawn from a normal dis-
tribution, whose mean and variance are taken from the observed mean and variance of the logged
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Figure 4 Estimated number of incoming and outgoing patients by date from the 1 October 2021 until the 18
November 2021, as well as the total number of COVID-19 patients in the ICUs of Germany.

infection rates of ‘60–79’ year-olds. We choose this age group, as ‘60–79’ year-olds are the predom-
inant group in the German ICUs during the fourth wave, see Robert Koch-Institut (2023). The
coefficients for the simulation are chosen in a way such that the difference in the simulated incoming
and outgoing patients is somewhat similar to the range of the difference in the observed incoming
and outgoing patients, namely (−24, 20) in the observed data. The incoming and outgoing number
of patients are then simulated, outlined in Equation 5.1.

Ii ∼ Poi (exp(β in0 + ββ in1 Xi )), (5.1)

Ri ∼ Poi (exp(βout0 + ββout1 Xi + log(Ii−1))), (5.2)

Xi ∼ N(1.978, 1.397), (5.3)

∀i ∈ (1, . . . , 1000). (5.4)

Here, β in0 is taken to be −2.340, β in1 is 0.800, βout0 is 0.001 and βout1 is taken to be 0.100. Here,
N(μ, σ ) refers to the Gaussian distribution with mean μ and standard deviation σ , and Poi (λ),
refers to the Poisson distribution with intensity parameter λ. . The simulation algorithm is sketched
out in Figure A5 and the resulting estimated coefficients of twenty independent runs are shown in
Figure 5, where we see that the confidence intervals of each of the coefficient estimates of each of
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Figure 5 The estimated coefficients for twenty simulated data sets.

the twenty runs include the real coefficient, except for the ‘Incoming Intercept’ coefficient in the 12th

simulated data set.
Overall, the simulation confirms that we are able to uncover incoming and outgoing patients

from pure hospitalizations.

6 Conclusion

Overall, in this application of the SEM, we are not only able to simulate unobserved data but also
estimate the association between the weekday effect and the infection rates and the number of
incoming and outgoing patients in a simple and intuitive manner. We achieve some insight into
the estimated association between the infection rates and the number of incoming and outgoing
patients. Namely, the driving force of the estimated number of incoming and outgoing patients
seems to be the infection rates of ‘35–59’ year-olds. Although we are not able to validate the
predictions against the actual number of incoming and outgoing ICU patients, our findings seem
to be mostly reasonable. Additionally, the SEM estimates the association of the simulated number
of incoming and outgoing ICU patients and the simulated covariate well. In this situation, the
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SEM seems to be an appropriate application and allows us to gain a more complete picture of the
COVID-19 pandemic, even when dealing with incomplete information.
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Appendix

1 Maximum length of stay in the ICU

Figure A1 illustrates the information provided by theRKI on how long COVID-19-infected patients
stayed in the ICU in Germany in 2020, see Tolksdorf et al. (2020). The maximum number of days
is here 56.
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Figure A1 Percentage of outgoing ICU patients after the day of admission.
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2 Convergence of the algorithm

Figure A2 and Figure A3 show the estimated coefficients in the ‘M’-Step of the SEM, at each of the
500 total iterations. We see that convergence seems to have been achieved at around fifty runs and
then oscillates around respective constants, just as we expect the SEM to perform.
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Figure A2 Coefficients estimated by the generalized additive models of the last three hundred runs of the EM
algorithm of the incoming patients.
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Figure A3 Coefficients estimated by the generalized additive models of the last three hundred runs of the EM
algorithm of the outgoing patients.
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3 Pseudoalgorithms

Figure A4 The algorithm describes the SEM which simulates the number of incoming and outgoing patients
and their association with the infection rates of COVID-19 and other covariates. * 1000 is a semi-arbitrary
value, but during the time span analysed the maximum number of beds per district in the data set is 1300, so
reasonable.
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Figure A5 The algorithm describes the data simulation process of the number of incoming and outgoing
patients. Here we use 1000 observations, one covariate for both incoming and outgoing patients, while for the
outgoing patients, we additionally take the logged lag of incoming patients of the previous ‘day’.
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COVID-19-bedingten Freihal tung von
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