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ABSTRACT By avoiding ensemble averaging, single-molecule methods provide novel means of extracting mechanistic in-
sights into function of material and molecules at the nanoscale. However, one of the big limitations is the vast amount of
data required for analyzing and extracting the desired information, which is time-consuming and user dependent. Here, we intro-
duce Deep-LASI, a software suite for the manual and automatic analysis of single-molecule traces, interactions, and the under-
lying kinetics. The software can handle data from one-, two- and three-color fluorescence data, and was particularly designed for
the analysis of two- and three-color single-molecule fluorescence resonance energy transfer experiments. The functionalities of
the software include: the registration of multiple-channels, trace sorting and categorization, determination of the photobleaching
steps, calculation of fluorescence resonance energy transfer correction factors, and kinetic analyses based on hidden Markov
modeling or deep neural networks. After a kinetic analysis, the ensuing transition density plots are generated, which can be used
for further quantification of the kinetic parameters of the system. Each step in the workflow can be performedmanually or with the
support of machine learning algorithms. Upon reading in the initial data set, it is also possible to perform the remaining analysis
steps automatically without additional supervision. Hence, the time dedicated to the analysis of single-molecule experiments can
be reduced from days/weeks to minutes. After a thorough description of the functionalities of the software, we also demonstrate
the capabilities of the software via the analysis of a previously published dynamic three-color DNA origami structure fluctuating
between three states. With the drastic time reduction in data analysis, new types of experiments become realistically possible
that complement our currently available palette of methodologies for investigating the nanoworld.
SIGNIFICANCE Single-molecule experiments are very powerful but, at the same time, the analysis can be very time
intensive. Here, we present a software that eases the analysis of single-molecule time traces. We have incorporated
machine learning methods to support the data analysis. The software performs all steps required for such an analysis
either manually or automatically starting from data extraction through to the final graphical outputs. Hence, the time
investment needed for the analysis of single-molecule data can be reduced from days or even weeks to minutes.
INTRODUCTION

The ability to detect individual molecules has revolutionized
the way we investigate the physical world. When measure-
ments are no longer limited by ensemble averaging, sample
heterogeneities, subpopulations and dynamic processes are
directly observable. With such high sensitivity, a minimal
amount of sample is necessary and, as the analysis is done
one molecule at a time, high purification of the sample
can be performed in the analysis (1). When performing mea-
surements on immobilized molecules with methods such as
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atomic force microscopy, optical and magnetic tweezers (2),
or total internal reflection fluorescence (TIRF) microscopy,
the dynamic processes of a single molecule can be observed
as a function of time (3,4). As a result of such measure-
ments, a huge number of trajectories are typically produced
that need to be analyzed to extract the desired information
from the system of interest.

Among the various valuable single-molecule techniques,
Förster resonance energy transfer (FRET) experiments stand
out as a noncontact method that can detect distances on the
2–10 nm scale and measure dynamics processes from
nanoseconds to kiloseconds. Recent studies have shown
that single-molecule FRET (smFRET) experiments are
reproducible with an accuracy of 0.6 nm (5,6). With
smFRET, it becomes possible to gain insights about the
structural features and dynamics of materials, such as the
structural fluctuations in biomolecules resulting from com-
plex biological interactions (7). Notably, smFRET promises
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to be an important method for the upcoming age of dynamic
structural biology (8). For many experiments, it is possible
to detect subpopulations and measure dynamics directly
from the collected data. For a detailed quantitative analysis,
there are additional steps that need to be performed. Here,
it is useful to monitor the fluorescence of the acceptor
directly, which can be done using alternating laser excitation
(ALEX) (9). In ALEX, the donor and acceptor molecules
are excited alternately. Hence, the photophysical state of
the acceptor can be probed during the smFRET experiment,
and correction factors for the determination of accurate
FRET efficiencies can be extracted (10–12). When
analyzing ALEX data, the excitation scheme needs to be
determined and incorporated into the analysis. As experi-
ments grow in complexity, the intricacy of the analysis in-
creases as well, and the availability of more advanced
analysis tools becomes increasingly important.

Numerous software packages have been developed to aid
in the analysis of single-molecule measurements. The
choice of the optimal analysis tool depends upon the spe-
cifics of the experimental system and analysis required for
the study. For smFRET experiments, Lerner et al. recently
summarized and published an extensive list of analysis tools
that were released until the year 2021 including tools to
analyze time trajectories from surface experiments (8). In
a later study, Götz et al. compared the performance of 11
widely used smFRET analysis tools regarding the determi-
nation of kinetic models and extraction of the rate constants
(13). With respect to smFRET experiments, the vast major-
ity of software has been developed for two-color FRET ex-
periments (14–19). Our group has also developed a
MATLAB-based software for data analysis on two-color
FRET systems for surface-immobilized molecules called
Tracy (13,20).

Upon expanding our single-moleculeTIRF setup to accom-
modate three-color FRET experiments, we needed to expand
our analysis software. With this paper, we introduce our new
software, Deep-LASI (deep learning-assisted single-mole-
cule imaging analysis), an open-source software package us-
ing MATLAB (but also available as a runtime version) that
incorporates Python andCþþ routines. TheDeep-LASI soft-
ware offers bothmanual and automatic analysis environments
for awide range of one-, two- and three-color single-molecule
experiments (21). The features of the software include map-
ping of multiple detection channels, extraction and back-
ground correction of one-, two- and three-color FRET data,
trace classification and selection of relevant time points for
the analyses, determination of the correction factors for the
calculation of accurate FRET efficiencies, histogram genera-
tion of various parameters, and kinetic analyses using hidden
Markov models (HMMs) and deep neural networks. Deep
learning techniques are emerging in virtually all data-driven
fields and are having a big impact in the life sciences, in partic-
ular in microscopy (22–27). Inspired by these developments,
we incorporated deep learning to help in trace classification,
determination of the relevant regions of relevant traces, auto-
mated FRET correction and kinetic analyses.

Deep-LASI supports various data file formats with
extendable support to read in new formats into the software.
Although originally written for smFRET data, the software
is adept at handling any data as long as it results in time
traces. Furthermore, the software offers environments for
simulating and training single-molecule time traces. We
also provide example data sets and tutorials to help users
quickly gain proficiency in using the software (28).
RESULTS AND DISCUSSION

Deep-LASI is a user-friendly software package with a high
degree of automation and compatibility for the analysis of
time-resolved single-molecule intensity traces. It is de-
signed to help with the data analysis of one-, two- and
three-color FRET experiments with interactive graphical
user interfaces (GUIs) to provide enough freedom so that
the user can extract the desired information based on their
analysis needs. The source code is available such that the
software can be adapted and further developed by expert
users and software developers (29). A description of the im-
plemented features is given in the following sections.

The information to be extracted from the intensity traces
of single molecules and the necessary steps will vary de-
pending on the measurement assay and question of interest.
An overview of the most common procedures in single-
molecule data analysis is summarized in Fig. 1. The main
analysis steps include reading in the raw data, mapping
the detection channels, (co-)localizing the particles and ex-
tracting the intensity information over the measurement
time. In the next step, the software allows for classifying
traces, determining usable regions within each time trace,
plotting the distributions of the extracted parameters (such
as FRET values, labeling stoichiometry or dwell times),
calculating the necessary correction factors and performing
a kinetic analysis in the case of a dynamic system. In the
case of the kinetics analyses, transition density plots
(TDPs) are automatically generated and provide access to
the cumulative dwell-time distribution functions (CDFs).

Deep-LASI also offers the opportunity for expert users to
simulate multicolor smFRET traces and to train neural net-
works for new single-molecule assays. To ensure flexibility
and accessibility overall, the extracted and analyzed data
can be saved and reloaded at any time, and can be addition-
ally imported and exported, from and into standard data
files. In the following section, we discuss the individual
working steps and underlying mechanisms that define the
software’s functionality.
Main functionalities of Deep-LASI

Typically, the initial step in analyzing single-molecule
experiments involves reading in the raw data. The most
Biophysical Journal 123, 2682–2695, September 3, 2024 2683



FIGURE 1 Overview of the functionalities of the

Deep-LASI software package. The main applications

of the software package are to extract, sort and

analyze intensity traces from single-molecule data.

This process involves a series of key steps: (a) for

multicolor experiments, the different channels need

to be registered to each other (i.e. mapped). After-

ward, the raw data is read in for each channel from

a stack of frames based on the excitation scheme.

(b) Single molecules are localized and, when desired,

colocalized across different channels based on the

created map. (c) The intensity traces are extracted

from each detected (and colocalized) particle and

corrected for background. (d) The analysis of ex-

tracted intensity traces starts with trace classification

and selection of the useful region of each channel

where the corresponding fluorophores are active. (e)

The results can then be visualized by the means of

various histograms with frame-, state- and mole-

cule-wise approaches. (f) Optionally, the method-

specific correction factors are determined. (g) For

dynamic traces, a kinetic analysis can be performed

by hiddenMarkov modeling (HMM) or deep learning

approaches. The panels show a typical state transition

path inferred by HMM (i.e. Viterbi path) and transi-

tion density plots with state transition information

and the cumulative dwell-time distribution function

(CDF) determined by fitting, respectively. To see

this figure in color, go online.
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elaborate features of the software are designed to work
with images or movies from cameras like EMCCD
(electron-multiplying charge-coupled device) or sCMOS
(scientific complementary metal oxide semiconductor)
cameras. However, it also accommodates the direct read
in of custom, nonimage data file formats encoding a
time series (Fig. 2, blue boxes). For detailed information
and the latest list of supported file formats, please refer
to the online tutorial available for Deep-LASI on Read
the Docs (28).

Given the diversity of fluorescence-based assays and
methods resulting in time traces suitable for analysis
through Deep-LASI, we focus on the main functionalities
of the software. This includes importing data files, detect-
ing and mapping molecules, extracting traces, calculating
background, and manually or automatically sorting the
collected data (Fig. 2, green boxes). Following these steps,
the software provides a set of different tools to spectrally
2684 Biophysical Journal 123, 2682–2695, September 3, 2024
correct, kinetically analyze and summarize the single-
molecule data (Fig. 2; pink boxes). These tools can be
used for 1) determining correction factors, 2) plotting
representative properties of the results via their distribu-
tions (e.g. of apparent or accurate FRET values of single
molecules, of states or frames), 3) allowing unsupervised,
kinetic analysis of selected regions of the appropriate
traces using HMM or deep learning algorithms and finally,
4) visualizing the data using TDPs and CDF plots. For an
in-depth understanding of each feature, including the al-
gorithms involved, the philosophy behind the GUIs, and
tutorials featuring specific analysis examples, please refer
to the comprehensive software documentation and
manual (28).

Channel mapping

For multicolor experiments using separate detection chan-
nels, a registration of the different detection channels is
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needed. When measuring at different wavelengths, perfect
alignment between channels in terms of shift, magnifica-
tion, and rotation can be challenging and time-consuming.
Hence, a mapping process between cameras or regions
of interest is required to ensure that the fluorescence signa-
tures visible in the different channels originate from
the same immobilized molecule. When performing fluo-
rescence-based single-molecule experiments using imag-
ing, the optimal pixel size is usually in the range of
40–100 nm. Thus, the fluorescence emitted by a single
molecule spans multiple pixels, and alignment within a
single pixel is sufficient. The mapping is performed using
a set of emitters well distributed across the detectors’ field
of view. We commonly employ a zero-mode waveguide
pattern or a surface covered with emitting or scattering
particles, such as fluorescent beads. Alternatively, map-
ping can be accomplished using the actual single-molecule
data. One channel is selected as a reference channel. Our
software then utilizes a phase-correlation algorithm to es-
timate the geometric transformation necessary to align the
other channels to the reference image (Fig. 3 a)(30). This
geometric transformation involves scaling, rotation, and
translation of the read-in images. Individual emitters are
detected based on a user-selected threshold and their local-
izations are utilized to further refine the mapping using a
2D polynomial of order up to 3. The prerequisite for this
refinement operation is the colocalization of individual
particles within 2 pixels after application of the geometric
transformation. Their positions are determined using a sta-
tionary wavelet algorithm with adjustable sensitivity (31).
A transformation matrix is generated, which is then used to
map the respective coordinates between channels. The
mapping step corrects small misalignments between the
cameras originating from tilts and shifts of cameras and
different magnifications, as well as aberrations in the
detection paths. Notably, the mapping function is only
used to find the corresponding pixels in the various detec-
tion channels corresponding to the location in the refer-
ence channel. The actual single-molecule analysis is
performed separately on the raw data. No mapping of
the images via the transformation matrix is performed
except for inspection of the quality of the transformation
matrix.

Loading imaging data collected using various excitation
schemes

Once the detection channels have been mapped onto each
other, the actual single-molecule data one wishes to analyze
is loaded. Upon loading the data, the frames are segregated
based on the excitation scheme used (when necessary). For
accurate smFRET experiments using camera-based data
acquisition, it is advantageous to use millisecond ALEX
schemes (5,32). For two-color experiments, alternating
frames are collected using donor and accepter excitation
respectively. Acceptor excitation is used to probe the
presence and photoactive state of the acceptor molecule
enabling the calculation of labeling stoichiometry. However,
frames with acceptor excitation have to be excluded when
calculating the FRET efficiency. When expanding to three-
color experiments, ALEX is essential for analyzing the
data and three excitation lasers are alternated, respectively.
There are also experiments where one wishes to detect the
presence of one color at the beginning of the experiment,
but then perform a smFRET experiment with different
colors. One example would be measuring the conformation
of DNA using smFRET in the absence or binding of a DNA-
binding protein, which is labeled with a third color. In this
case, the first few frames are used to detect the presence
of the third color at the beginning of the measurement and
used for selecting the traces that are to be analyzed. The
remainder of the frames from the selected traces are then
used to extract the smFRET information.

Typically, a series of consecutive measurements is per-
formed using the same measurement parameters (excitation
scheme, detection channels, exposure time, etc.) to gather
sufficient statistics. This results in a collection of data files
originating from each camera. To initiate the analysis of the
entire experiment, the Deep-LASI read-in process begins
by collectively selecting all files from a single camera at
once, usually starting with the most blue-shifted detection
channel. Next, the first movie of the chosen file set is loaded.
Here, the user is prompted to define the frame range,
Biophysical Journal 123, 2682–2695, September 3, 2024 2685
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excitation sequence, and detection channel. Next, a cumula-
tive intensity is displayed over the user-selected range
(Fig. 3 b) to improve the signal-to-noise ratio and facilitate
a user-friendly, interactive parameterization for the trace
extraction. The loading procedure is then repeated for the cor-
responding movies of the remaining channels. The particle
detection method and threshold for each detection channel
are then determined. In the last step, the extraction parame-
ters are provided by the user: particle and background mask
(Fig. 3 c), molecule selection criteria and the frame range
used for extraction. Once the detection and extraction thresh-
olds are established for all channels, the corresponding sets of
files are sequentially loaded and single-molecule traces are
extracted according to the given selection mode: Deep-
LASI extracts the trajectories 1) for all detected molecules,
2) for colocalized molecules only, or 3) for molecules
detected in a given detection channel.

Particle detection

To extract single-molecule trajectories, Deep-LASI provides
three different techniques for single-molecule localization.
For each technique, a sensitivity threshold is applied based
on the normalized reconstruction from weighted wavelet co-
efficients or intensity values. Based on the selected threshold,
a binary image is generated that encodes the detected parti-
cles. The position of each particle is determined by the cen-
ter-of-mass of the pixels associated with the particle.
Wavelet. Wavelets are filters that can be applied to images
(or time series) to enhance features with particular spatial
(or temporal) frequencies. As the fluorescence signal com-
ing from single molecules are diffraction limited, the de-
2686 Biophysical Journal 123, 2682–2695, September 3, 2024
tected fluorescence should be symmetric with the size
given by the point-spread function. By applying different
wavelet filters, the original image is decomposed into a
finite number of wavelets where particular spatial features
are enhanced and others suppressed. More specifically, by
mathematically applying low-pass and high-pass filters
on the signal and repeating the procedure, a set of wavelet
planes are generated at different resolutions (33–35). Based
on the median absolute deviation of the wavelet coeffi-
cients for each plane, insignificant features are removed
automatically.
Intensity thresholding. Another approach is to use inten-
sity thresholding to detect molecules emitting intensities
higher than a user-defined level. When enough adjacent
pixels are above the threshold, the area would be considered
a particle and the central point taken for trace extraction.
This rather easy method works well as long as the signal
and background are homogenous over the field-of -view
and the signal from the molecules is sufficiently stronger
than the background.
Regional maxima. An alternative method based on inten-
sity thresholding is the regional maxima approach. With
this method, a Gaussian filter of 9 pixels is first convoluted
with the image and then the MATLAB function imregional-
max is used to find the local maxima. This is done by locating
pixels where all eight neighboring pixels are lower in inten-
sity. The routine then returns all the regional pixels which
are a local maximum and are considered as the center of sin-
gle emitting particles. Pixel intensities below the user-
defined threshold are set to zero. These selection criteria
have an advantage over normal intensity thresholding when
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analyzing data with heterogeneous particle intensities and
noise within a frame.

Trace extraction

From the binary image generated from the detected particles,
the particle positions are extracted using the MATLAB in-
built function regionprops. This calculates the centers-of-
mass for connected pixels. Using the central position of the
individual particles, the particle mask (Fig. 3 c) is then
used to determine the total number of detected photons for
the particle aswell as the background contribution. Typically,
we use a circular particle mask with a diameter of 7 pixels.
The size is chosen to optimize collection of photons within
the point-spread function of the molecule while minimizing
the inclusion of additional pixels and hence potential over-
laps between neighboring particles. The user can also adjust
the particle mask settings based on their specific needs.

The particle positions are then linked in consecutive
frames to generate time trajectories. To extract the intensity
traces from each detected single emitter, frame-wise inten-
sities for each channel are determined, and plotted over
the whole measurement or selected frame range.

Background determination

The size and shape of the particle mask surrounding each
particle’s point-spread function (Fig. 3 c) and the method
of background determination have a considerable impact
on the signal-to-noise ratio, the quality of traces and finally
on the resulting histograms. There are multiple approaches
to background correction. Fortunately, the number of
pixels that can be used to calculate the background inten-
sity far outnumber the number of pixels within the point-
spread function and hence can be subtracted with high
accuracy. Deep-LASI extracts frame-wise intensities for
each molecule detected in the various channel(s). To avoid
any potential heterogeneity from the illumination profile,
a nonconstant background level within a frame or differ-
ences between cameras, the background signal is calcu-
lated and subtracted from the accumulated intensity
within each particle mask. At any time during the analysis,
the user can view the raw intensity traces without back-
ground subtraction.

As the signal is averaged in the background mask, no
molecules should be present in the region used for deter-
mining the background. For densely populated surfaces,
the default mask can be adjusted, e.g., by reducing the
radius of the mask. To decrease the uncertainty in the back-
ground estimation, the background is measured in approxi-
mately twice as many pixels as the signal. In addition, as the
background does not typically change strongly with time, an
11-frame sliding window (55 frames) is used to average the
background value. The average background signal (scaled to
the number of pixels in the particle mask) is then subtracted
from the total measured intensity. The total measured inten-
sity and the local background are determined for each frame
and the background-corrected intensity traces stored. By
visually checking the intensity level of a trace after photo-
bleaching of all fluorophores, the quality of the background
subtraction routine can be controlled. At this point, all the
extracted traces from the experiment are saved into a single
datafile with a filename adapted from the name of the first
movie file with the extension of .tdat.

Trace read-in options

At this point in the analysis, one has extracted and saved the
single-molecule time traces from one or more channels for a
given excitation scheme. Here, it is also possible to reload
the traces as well as to directly import intensity traces ex-
tracted using other software for any type of single-molecule
time-series data. Several data importing options are incorpo-
rated including ptu, hdf5, npz, and txt files. For example, we
have also used Deep-LASI to analyze single-molecule in-
tensity traces collected one at a time on a confocal micro-
scope (21). The txt file format is provided (13,28) such
that users can convert their data into a format that can be
read into Deep-LASI.

Analysis options

Deep-LASI offers diverse tools for analyzing and presenting
information derived from single-molecule time traces, irre-
spective of the methods employed for data acquisition,
ranging from one- to three-color measurements: the soft-
ware facilitates both manual and automatic processes for
1) trace categorization into, for example, usable static and
dynamic traces and 2) selection of specific regions within
individual traces for further analysis. In addition, 3) Deep-
LASI provides an overview of parameters characterizing
selected regions in the intensity traces including brightness,
background intensity, signal-to-noise ratio. and photo-
bleaching time. Beyond these basic functionalities, Deep-
LASI supports manual and automatic analyses of one-,
two- and three-color FRET assays. Moreover, the software
enables 4) extraction of kinetic information from dynamic
traces. Two distinct approaches are available for kinetics an-
alyses: the first involves conventional HMM with selectable
algorithms for up to three channels, as detailed below
(36,37). The second approach employs neural networks
for automated data analysis wherein Deep-LASI outputs a
confidence level of the time trajectory being in a specific
state for each frame. In addition to kinetic analyses, Deep-
LASI allows for 5) the calculation of accurate FRET effi-
ciencies by extracting the necessary FRET correction
factors from the data. Finally, the software provides 6)
state-of-the-art tools for summarizing the FRET states and
kinetics extracted during the analysis. These include histo-
grams illustrating distributions of, e.g., FRET efficiencies
(apparent and accurate FRET) of static and dynamic traces,
stoichiometry, or FRET correction factors. Furthermore,
Deep-LASI provides TDPs and CDFs for summarizing the
kinetics information found in the single-molecule data.
Biophysical Journal 123, 2682–2695, September 3, 2024 2687
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The subsequent sections provide a brief introduction to
manually using Deep-LASI for categorizing single-mole-
cule traces, selecting regions, and analyzing static experi-
mental parameters. Subsequently, we discuss how to
obtain accurate FRET measurements and extract kinetic in-
formation from single-molecule data.

Trace categorization and static analysis

After extracting or loading single-molecule traces, the next
step involves the categorization and sorting of the mole-
cules. In a typical single-molecule experiment, the data set
can easily comprise several thousands of traces. Many of
the traces may be noninformative due to rapid photobleach-
ing, the presence of aggregates, incomplete labeling, or
inadequate signal to noise ratios. Hence, the primary objec-
tive in trace categorization is to select the suitable regions of
appropriate traces for further analysis. This starts by sepa-
rating out traces that are unsuitable. For this, Deep-LASI
provides dedicated panels and GUIs for systematically
reviewing and categorizing traces (see Fig. 4 a). Typical cat-
egories include ‘‘static’’, ‘‘dynamic’’ and ‘‘trash’’ although
users have the flexibility to add custom categories as needed
for their experiment. Furthermore, Deep-LASI facilitates
the sorting of traces based on the number of photoactive flu-
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orophores by considering which fluorophores are active in
each frame. For two-color FRET assays, for instance, traces
can be sorted into categories like ‘‘donor bleach’’ and
‘‘acceptor bleach’’ which proves instrumental in deter-
mining FRET correction factors at a later stage. Notably,
users have the flexibility to assign multiple categories to in-
dividual traces, allowing classifications such as ‘‘static’’ and
‘‘acceptor bleach’’ simultaneously. This functionality be-
comes particularly advantageous in three-color FRETexper-
iments where additional statistics for FRET correction
factors can be obtained from analyzing constructs that
contain only two of the three fluorescent dyes.

In the second step of the characterization procedure, it is
necessary to mark the regions of the useful traces to be
included in further analyses (Fig. 4 b). Selection of the
desired regions is possible with an activated cursor on the in-
tensity trace panels. The selection can be general to define
the regions in all channels to be included in the final histo-
grams or kinetic analyses, or can be specific to each detec-
tion channel (shaded in the corresponding color) for
determining individual photobleaching steps and regions
to be used for the calculation of FRET correction parameters
later on. Once correction factors have been estimated, users
can choose to visualize the data at the level of apparent or
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accurate FRET. Correction factors are used to account for
donor leakage into the acceptor channel, direct excitation
of the acceptor, and differences in detection sensitivity of
the donor and acceptor molecules. In addition, the individ-
ual intensity traces can be displayed with or without back-
ground correction.

Statistical overview of selected traces

The Deep-LASI software offers the possibility to evaluate
and visualize the characteristics of selected frames, traces
and, ultimately, the analytical results. From the first inter-
face, the fluorescence properties of the different fluoro-
phores can be assessed (Fig. 4 c). For EMCCD cameras,
the characteristics of the amplification can be included to
convert the camera counts into approximate photon numbers
(otherwise, the signal in camera counts will be plotted).
These distributions showcase the total signal until photo-
bleaching (number of photons), the total signal and mean
background per molecule (in kHz), the background-cor-
rected brightness for the corresponding channels (in Hz),
the individual signal to noise ratios, and the time until
photobleaching of the respective fluorophores (in s). The
histograms for each channel are automatically fitted to
mono-exponential or Gaussian functions. The fit results
are given in the respective panels.

smFRET analysis

In our research group, we specialize in smFRETexperiments
and evaluation. Hence, parts of the software are optimized for
smFRET analysis from experiments carried out on immobi-
lized molecules. With FRET, it is possible to investigate
structural properties or dynamics due to FRET’s strong
dependency on the distance between fluorophores (8).
From the selected regions of the corresponding molecules,
it is possible to calculate the apparent FRET efficiency
histograms, that is the FRET efficiency determined from
background-corrected intensities without any further correc-
tions. These can be plotted for each frame and molecule
(frame-wise) or averaged value determined individually
for each molecule (molecule-wise) (Fig. 4 d). Frame-wise
FRET histograms contain all FRET values obtained across
different molecules and frames, giving a comprehensive pro-
jection of accessible FRET states in the sample from all
selected molecules (Fig. 4 d, orange line). Alternatively,
the molecule-wise (or trace-wise) histogram reports an
average FRET value for each single molecule over the
selected frame range (Fig. 4 d, blue line). Notably, for static
samples, molecule-wise and frame-wise histograms will
coincide whereas, for dynamic molecules, they will not. To
overcome this, it is possible to plot histograms state-wise
when analyzing dynamic traces (see dynamic analysis below;
Fig. 4 d, lower panel, green line).

To capitalize on the ability of FRET to measure distances
accurately on the subnanometer regime, it is necessary to
correct the apparent FRET efficiency for direct excitation
of the acceptor, spectral crosstalk of the donor fluorophore
into the acceptor channel and variations in detection sensi-
tivity to the various fluorophores. Depending on which
molecule photobleaches first, it is possible to determine a
subset of the correction factors directly from the individual
traces. In the case where the donor undergoes photobleach-
ing before the acceptor, the software calculates the direct
excitation correction factor using the residual emission of
the acceptor directly excited by the donor laser excitation
(Fig. 4 e, top panel). Conversely, if the acceptor photo-
bleaches before the donor molecule, the spectral crosstalk
correction factor is determined as the residual donor emis-
sion detected in the acceptor channel (Fig. 4 e, middle
panel). After correcting the trace for direct excitation and
spectral crosstalk, the same trace can be used for determina-
tion of the detection efficiency correction factor from the ra-
tio of the changes in acceptor and donor intensity after the
acceptor’s photobleaching step (Fig. 4 e, bottom panel).
Once all individual traces are assessed for possible contribu-
tions to the correction factors, the distribution is plotted and
the software computes the average, median, and mode of the
distribution for each correction factor and dye pair. For an
accurate estimate of the various correction factors, a mini-
mum number of continuous frames after the photobleaching
step should be included (we use a minimum of 20 frames).
To kick out spurious values from the distributions, a
maximum tolerable value for all correction factors can be
entered. Values above the maximum will not be included
in the calculation of the average, median and mean. The
correction factors that cannot be determined directly from
the traces are taken from the distribution (referred to as
global correction factors). We typically use the median of
the distribution as it was found to be most robust given
typical statistics, but the average or mode can also be
selected (Fig. 4 e). The user also has the option to use the
global correction factors for all traces or to enter the values
individually for each trace. Once the correction factors are
determined, accurate FRET values as well as distances
can also be displayed. These together with additional pa-
rameters such as stoichiometry and FRET efficiencies
(both accurate and apparent FRET) can be viewed in a sec-
ond interface. All histograms can be normalized and/or fit to
a wide variety of functions.
Machine learning analysis of dynamic trajectories

To analyze dynamic samples, additional functionalities are
available in the Deep-LASI software. One can choose
from two HMM analyses (Murphy (37) or Schreiber (36))
or automatically via deep neural networks (DNNs) (21)
(Fig. 5 a). The results provide an estimation of the underly-
ing states and kinetics within the individual trajectories.
Hence, in the end, one generates a "digitalized" version of
the state pathway, which allows determination of the transi-
tion rates via the CDFs.
Biophysical Journal 123, 2682–2695, September 3, 2024 2689
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HMM can be performed on one-, two- and three-color
data. For each data type, the FRET efficiencies or the inten-
sities can be used as input. The number of states, mean
values, standard deviations and the transition matrix can
be initialized either using prior knowledge of the user,
random uniform distributions or estimations based on
k-means clustering. Other adjustable model parameters
include the convergence threshold, the maximum number
of iterations, and the choice between local or global
HMM. Local HMM creates a new model for each trace,
whereas a global HMM utilizes one model (rates and states)
for all traces of a selected category. Like other analysis tabs,
this analysis can also be exploited on any desired cate-
gory(s). The states and kinetics of one- and two-color data
are straightforward to model as they inherently represent
distances in only one dimension. In three-color FRETexper-
iments, distances can be extracted in three dimensions by
combining the FRET efficiencies of all fluorophore pairs.
However, three-color FRET is complicated by the strong
interdependence of the FRET efficiencies and the numerous
correction terms that are necessary to convert the apparent
FRET efficiencies to actual distances. These corrections
introduce significant uncertainties, making it difficult to
properly model the system using HMM and identifying state
transition. Therefore, the software focuses on using apparent
FRET efficiencies and uncorrected intensities to accurately
2690 Biophysical Journal 123, 2682–2695, September 3, 2024
analyze three-color FRET kinetics, treating the states of a
given molecule as unique combinations of FRET effi-
ciencies or intensities (38). This is achieved by employing
multivariate HMM, where each trace is 2D and each obser-
vation is a multivariate vector. In the case of three-color
FRET, the multivariate vectors can contain either the three
FRETefficiencies or the five intensity channels that are rele-
vant for determining the kinetic information. Direct excita-
tion of the last acceptor is excluded as it provides no kinetic
information. Regardless of the number of colors, the soft-
ware provides the option to use HMM on traces that were
manually selected or classified by a DNN.

After running the HMM, multiple corresponding panels
with the number of states, state values and transition prob-
ability matrices are updated. These will depend upon the
executed mode, i.e., local or global. Fig. 5 a shows an
example of a dynamic, two-state system with independent
transitions between these states. On the trace panel of the
HMM tab, the individual traces and their corresponding
Viterbi path are shown (Fig. 5 b, top panel). One can click
through all traces present in the selected category to check
the accuracy of the predicted states and transitions
sequences.

DNNs can also be used for the kinetic analysis after the
state classification step has been performed (e.g., Fig. 5 b,
bottom panel). Here, there is the option to run a "number
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of states" classifier to determine the predicted number of
states observed in each trace (Fig. 5 c, left panel). The
user can then run a particular state-classifier model (i.e.,
for two states, three states, or four states) on the selected
data or use the output of the number of states classifier
to automatically use the corresponding state-classifier
model for state assignment on a trace-by-trace basis. The
software plots the average confidence level for the state
assignment over the individual traces (Fig. 5 c, right panel).
For the example shown here, the software is very confident
regarding the existence of two states and their correspond-
ing state assignments.

After running the machine learning approach of choice
(i.e., HMM or DNN), a digitalized state pathway is gener-
ated for each trace. This allows one to calculate a state-
wise distribution from the state trajectories (Fig. 4 d, bottom
panel, green line). The state-wise trajectories can be plotted
normalized to the number of transitions or weighted by the
number of frames contributing to each state. To analyze the
underlying dynamics, the Deep-LASI software utilizes
TDPs to visualize the detected transitions between initial
and final states within the data (Fig. 5 d, left panel). From
the TDP, the number of states, their corresponding values
(e.g. FRET efficiencies), their connectivity and the number
of transitions between different pairs of states can be re-
vealed. Transition rates can be obtained directly from the
output of a global HMM analysis. Alternatively, they can
be calculated by selecting individual populations in the
TDP and then fitting the corresponding dwell-time distribu-
tion (Fig. 5 d, right panel).
Automatic analysis

The analysis of single-molecule data, especially for mole-
cules immobilized on a surface, usually takes days or weeks,
even for a single day of measurement, and is prone to bias
from the person analyzing the data. In addition, due to the
time necessary for obtaining a reasonable amount of statis-
tics, the parameter space that can be analyzed via such ex-
periments is limited. To overcome such issues, automatic
analysis tools using trained DNNs are available in the
Deep-LASI software. Hence, each step of the analysis work-
flow described for manual evaluation above can be per-
formed automatically. DNNs are available for trace
classification (with region selection), number of state deter-
mination, and state trajectory analyses, and can be applied
individually. In addition, the entire workflow from sorting
and categorizing time traces, determining the photobleach-
ing steps, calculating method-specific correction factors
and state pathway determination can also be done automat-
ically with the click of a single button (21). After running
the automated analysis, the workflow continues with evalu-
ation of the TDPs by selecting clusters and fitting their
dwell-time distributions. On typical smFRETmeasurements
with 4000 frames, the automated analysis is performed
within 20–100 ms per intensity trace and has been imple-
mented for one-, two- and three-color data.

Currently, we have tested the Deep-LASI software on
DNA origami structures as well as protein systems (21).
However, the number of possible sorting categories and
traces characteristics that the DNN has been trained on is
not exhaustive. Therefore, for advanced users, the Deep-
LASI software has the option to simulate one-color single-
molecule data as well as two- and three-color smFRET
traces. In addition, the simulated data can also be used to
train new neural networks, if desired.
Additional attributes of Deep-LASI

Themotivation for designing and publishingDeep-LASIwas
manifold. We wanted to develop a software package for the
community that 1) is easy to use for everyone independent
of their scientific maturity or disciplinary background, 2)
contains a high degree of automatization with respect to
data extraction and analysis to save time and remove user
bias, 3) is compatible with other single-molecule methods
and setups with temporal resolution and 4) provides state-
of-the-art tools for analyzing single-molecule trajectories.
In addition, the software should provide 5) advanced tools
for analyzing experimental data from multicolor FRET
experiment up to three colors (and potentially up to four in
the future). These include the ability to simulate single-mole-
cule data and train new machine learning approaches (HMM
and neural networks) that are extendable for future single-
molecule assays. Here, we summarize these general aspects
of the developed software suite Deep-LASI.

Ease-of use/user friendliness

To make the software easily accessible to a broad range of
users and establish a universal analysis environment, Deep-
LASI was designed to be easy to learn with a clear workflow.
Each step in the workflow is accompanied with its own GUI
guiding from reading-in the raw data over data extraction and
analysis to visualization of the results. After each step of data
processing and analysis, it is possible to save the current sta-
tus of the project, giving the user complete freedom to stop
the analysis and resume at a later point in time. The resulting
parameters and plots can be exported to external tools for pre-
sentation or publication purposes.

Automation

Gathering sufficient statistics in single-molecule experi-
ments requires collecting data from thousands of single
molecules. Hence, the Deep-LASI software can read-in hun-
dreds of consecutive movies and extract the single-molecule
traces automatically after the conditions have been deter-
mined for the first movie. As data extraction and evaluation
can be performed without supervision, new analyses and ex-
periments are now realizable. For example, it is now
possible to utilize more of the collected information such
Biophysical Journal 123, 2682–2695, September 3, 2024 2691
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as also analyzing partially labeled molecules or performing
a series of measurements as a function of experimental con-
ditions that would be otherwise unthinkable when perform-
ing a manual analysis.

Compatibility

Although written for the analysis of smFRET data, Deep-
LASI is applicable to all single-molecule experiments that
end up measuring time traces independent of the setup
and raw data file format. The software is compatible with
ALEX excitation schemes as well as a non-ALEX excitation
for two-color experiments and can read in diverse file for-
mats such as tif, ptu, hdf5, and npz. It is also possible to
import other file formats by converting them into a pregiven
txt format (13,29). Notably, for measurements with signifi-
cantly different noise characteristics than those encountered
in fluorescence-based methods, the currently incorporated
DNNs may need to be retrained.

Adaptability

The development of single-molecule methodologies is a
quickly advancing field, and the analysis needs are exceed-
ingly dynamic and often specific for each single project.
Accordingly, it should be possible to easily modify and
adapt the analysis approaches. Therefore, the source code
for Deep-LASI is freely available on the GitLab platform
where active feedback and comments can be given (e.g., re-
porting bugs and suggesting improvements) and users can
contribute new functionalities. This is not only possible,
but also appreciated.

Unique methods

Deep-LASI combines an easy-to-use manual trace analysis
software with state-of-the-art DNNs for automated data
processing of one-, two- and three-color data. Many re-
searchers are exploiting the advantages of smFRET but often
avoid three-color assays due to the intrinsic complexity of
the experiments and time-consuming analysis. Thereby,
they also miss out on additional information that can be ex-
tracted by adding another fluorophore to the system. In addi-
tion, the only other software we are aware of for manually
analyzing multicolor smFRET traces is SMACKS (18,39).
Unique features of Deep-LASI are the automated analysis
of state pathways in kinetic data and its ability to automati-
Photostatistics of the three individual detection channels. The histograms are au

reported. Histograms represent the total number of detected photons before pho

pixels in the particle mask), the background-corrected molecular brightness, th
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corrected FRET histograms are outlined in black. (h) TDPs are shown illustrati

FRET efficiencies. (a) Is reproduced under the terms of the Creative Common CC

Nature. To see this figure in color, go online.
cally analyze three-color smFRET data and extract absolute
distances.
Application of Deep-LASI software on
experimental data

Having introduced the Deep-LASI software, we now show-
case its application to real three-color experimental data.
For this, we show the results from experiments on a previ-
ously published L-shaped DNA origami structure (21).
The L-shaped origami structure contains a flexible tether
that can bind to three distinct states (Fig. 6 a). The tether
is labeled with Cy3B at the 30 end and can bind to protruding
strands placed at positions referred to as 6, 9 and 12 o’clock.
The binding sites consist of complementary ssDNA strands
of 7 nt length at 6 and 12 o’clock and 7.5-nt length (i.e. a
strand with 8 nt containing a 1 bp mismatch) at 9 o’clock.
Binding of the tether occurs by spontaneous base-pairing
with the single-stranded protruding strands. To monitor
the movement, we introduced two additional fluorophores,
Atto488 and Atto647N, on the structure close to the comple-
mentary strands at 6 and 12 o’clock positions, respectively.

Data were collected using a three-color ALEX scheme of
blue, green and red excitation, and collected on three sepa-
rate EMCCD cameras. Approximately 8000 traces contain-
ing all three fluorophores were extracted from 100 movies.
Using the automated neural network analysis, a trace classi-
fication was performed. The distribution of classes is shown
in Fig. 6 b. Of the 7990 traces extracted from the data, a dy-
namic classification was most probable for 740 (or 9%) of
the traces, which were then utilized for further analyses.
Fig. 6 c shows a representative single-molecule dynamic
trace alongside the apparent FRET efficiencies and kinetic
analysis. From the selected traces, the software provides an
overview of various parameters. Here, we show the total
number of photons, the signal and background intensities,
the brightness, the signal-to-noise ratio for the BB, GG and
RR channels, as well as the time until the photobleaching
of the corresponding fluorophore (Fig. 6 d). When the mea-
surement is of sufficient quality, one can proceed with the
analysis. Next, we analyzed here the regions of the traces
selected for determination of the FRET correction factors
for spectral crosstalk and direct excitation as well as differ-
ences in detection sensitivity (5,6,8) (exemplified in Fig. 4
e for the GR dye pair). These are necessary for determining
tomatically fit to a Gaussian or exponential functions and the fit parameter

tobleaching, the total signal and background (normalized to the number of

e signal-to-noise ratio and the time until photobleaching of the respective

e data for direct excitation, spectral crosstalk and differences in detection

s for each histogram are indicated in red, blue and green, respectively. (f)

ignment classifier (right). (g) Apparent frame-wise FRET efficiency histo-

ulations for the BG, BR, and GR pairs. The frame-wise weighted, state-wise

ng the transitions detected for all three dye pairs using apparent state-wise
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accurate FRET efficiencies. As neural networks also classify
the active fluorophores in each frame, it is possible to extract
the maximum number of frames in the data that can be uti-
lized for the individual factors. In addition, for three-color
samples, it is also possible to utilize information from the
dual-color-labeled complexes. Hence, the automated anal-
ysis is often more accurate than the corresponding manually
analyzed traces. Traces that exhibit dynamics can then
be further analyzed using either HMM or DNNs. Fig. 6
c(iv–v) depicts the Viterbi path of FRET efficiencies and
state-probabilities returned from the DNN for the representa-
tive smFRET trace. As discussed above, the neural network
also generates confidence level histograms (Fig. 6 e). The
left histogram indicates a large number of traces containing
dynamics between two of the states and a significant fraction
of traces displaying all three expected states. The right histo-
gram depicts the average confidence of the neural network in
assigning the corresponding frames to the two and three
states within each trace.

After completing the analysis, the results can be summa-
rized using various tools. For the smFRET data shown here,
we compare the frame-wise apparent FRET efficiency histo-
grams (colored) and state-wise corrected FRETefficiency his-
tograms (black lines) for each dye pair (Fig. 6 f). For the BG
dye pair, three FRET states arewell resolvedwith apparent ef-
ficiency values of 0.18, 0.73, and 0.48, corresponding to states
1, 2, and 3, respectively.As expected from the design and asso-
ciated Förster radius values of 53 and 65 Å (40–42), the 9 and
12 o’clock positions are more difficult to discern for the BR
and GR FRET pairs. Nevertheless, the GR shows three popu-
lations with 0.83, 0.22, and 0.30 in apparent FRET efficiency
for the same states 1–3. Although applying FRET correction
factors in 3cFRET experiments usually results in broadened
FRET histograms, the neural network correctly extracts the
designed state-wise averaged accurate FRET histograms.
Having the additional dimensions available in 3cFRET, it is
possible to distinguish the three states. Interestingly, as ex-
pected, the three FRET populations in BR converge into a sin-
gle FRET state at a FRET efficiency of 0.44 upon correction.

Finally, the Deep-LASI software enables the creation of
TDPs in separate windows for each dye pair (Fig. 6 g). The
user can then manually select populations in the plot and fit
the resultingdwell-timedistributions to determine theunderly-
ing transition rates between the corresponding states.Byfitting
the dwell-time curves (Fig. 6 h), we identified state residency
times of 0.65, 0.69 and 1.40 s for states 1, 2 and 3, respectively.
As the same state trajectories exist for each dye-pair, the state
transitions can be selected from the TDPs that provide the best
contrast between the two corresponding states.
CONCLUSIONS

In conclusion, Deep-LASI is a software suite that allows for
a straightforward and rapid analysis of single-molecule time
trajectories. The software supports multiple data formats
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from a variety of methods such as wide-field and confocal
measurements. It allows for the convenient analysis of sin-
gle-molecule data starting with multiple-channel registra-
tion, trace sorting and categorization, determination of the
photobleaching steps, calculation of FRET correction fac-
tors, and kinetic analyses based on HMM or DNNs. Each
step can be performed manually or automatically. It offers
advanced functionalities for handling and interpreting sin-
gle-molecule data in one, two and three colors such as the
quantitative analysis of three-color smFRET data. By intro-
ducing Deep-LASI, we encourage researchers to exploit the
capacities of single-molecule techniques without being con-
cerned about the software environment or complicated,
time-consuming analysis steps. As the field develops, the
analysis requirements will change. Hence, the software is
open source, inviting programming experts to extend the ca-
pabilities of Deep-LASI to address the expanding analysis
needs of a rapidly growing research field.
DATA AND CODE AVAILABILITY

The software is publicly available as source code, requiring
MATLAB or as a precompiled, standalone distribution for
Windows orMacOS, and accessible from aGitLab repository
at: https://gitlab.com/simon71/deeplasi. A detailed manual
can be found at: https://deep-lasi-tutorial.readthedocs.io/en/
latest/documentation.html. The experimental data are pro-
vided in the Zenodo database (Zenodo: https://zenodo.org/
record/7561162).
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