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Immune effector cell-associated haematotoxicity after
CART-cell therapy: from mechanism to management

Kai Rejeski, Michael D Jain, Nirali N Shah, Miguel-Angel Perales, Marion Subklewe

Genetically engineered chimeric antigen receptor (CAR) T cells have become an effective treatment option for several
advanced B-cell malignancies. Haematological side-effects, classified in 2023 as immune effector cell-associated
haematotoxicity (ICAHT), are very common and can predispose for clinically relevant infections. As haematopoietic
reconstitution after CAR T-cell therapy differs from chemotherapy-associated myelosuppression, a novel classification
system for earlyand late ICAHT has been introduced. Furthermore, a risk stratification score named CAR-HEMATOTOX
has been developed to identify candidates at high risk of ICAHT, thereby enabling risk-based interventional strategies.
Therapeutically, growth factor support with granulocyte colony-stimulating factor (G-CSF) is the mainstay of treatment,
with haematopoietic stem cell (HSC) boosts available for patients who are refractory to G-CSF (if available). Although
the underlying pathophysiology remains poorly understood, translational studies from the past 3 years suggest that
CAR T-cell-induced inflammation and baseline haematopoietic function are key contributors to prolonged cytopenia.
In this Review, we provide an overview of the spectrum of haematological toxicities after CAR T-cell therapy and offer
perspectives on future translational and clinical developments.

Introduction
Cellular immunotherapies with genetically engineered
chimeric antigen receptor (CAR) T cells that target B-cell
antigens, such as CD19 or BCMA, have rapidly altered the
treatment landscape of several lymphoid malignancies.
These therapies have led to the approval of six CAR T-cell
products by the US Food and Drug Administration (FDA)
across a spectrum of haematological disease indications,
with many more in the developmental pipeline. Further-
more, CAR T-cell platforms are being actively explored for
the treatment of several solid tumours and autoimmune
diseases.”” The profound systemic immune response
elicited by CAR T cells upon target antigen recognition
and subsequent expansion can result in a unique toxicity
profile. Although much attention has been paid to cyto-
kine release syndrome (CRS) and immune effector cell-
associated neurotoxicity syndrome (ICANS) as prototypical
side-effects with distinct management protocols,’ immune
effector cell-associated haematotoxicity (ICAHT) is the
most common CAR T-cell-related adverse event across
clinical trials and the real-world setting.”* Haemato-
toxicity is also observed irrespective of the applied
CAR T-cell product, target antigen, and disease entity.”
Although it is tempting to attribute haematotoxicity as
only a consequence of the myelotoxic lymphodepleting
chemotherapy applied before CAR T-cell infusion
(mainly fludarabine and cyclophosphamide), cytopenias
are often long lasting and delayed in nature—occurring
long after the application of CAR T cells. Cytopenias are
typically characterised by an archetypal biphasic
temporal course with intermittent recovery followed
by a second decline in absolute neutrophil counts
(ANC).** In a smaller proportion of patients, severe
cases of bone marrow aplasia have been described (the
aplastic phenotype).”" In addition, prolonged cytopenias
have been described to last from months to several years
after CAR T-cell infusion.” Together, these clinical
observations strongly suggest a CAR T-cell-induced
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mechanism of myelosuppression, although the underlying
pathophysiology remains incompletely understood.

The dlinical relevance of haematotoxicity lies in the
haemorrhagic diathesis and increased risk of infectious
complications. Both neutropenia and lymphopenia
predispose for bacterial, fungal, and viral infections.* Risk
of infection is further compounded by B-cell aplasia and
hypogammaglobulinemia as expected on target off-tumor
toxicities of B cell-targeting CAR T-cell therapies. As a
result, life-threatening infectious complications drive
non-relapse mortality after CAR T-cell therapy across
diverse treatment settings.” Moreover, transfusion
dependency substantially contributes to therapy-related
morbidity, prolonging hospital stays and increasing the
use of health-care resources.® Overall, there remains
marked heterogeneity in the reporting of cytopenias
and concerning standard diagnostic examination and
management.” Therefore, efforts in 2023 by the European
Hematology Association (EHA) and the European Society
of Bone Marrow Transplantation (EBMT) resulted in the
classification of ICAHT as a distinct toxicity category of
cell therapy with its own consensus grading framework
and severity-based treatment recommendations.””

In this Review, we share perspectives on the range of
encountered haematological side-effects of CAR T-cell
therapy. Specifically, we provide an overview on the
expected incidence rates of early and late ICAHT across
a range of lymphoid malignancies and plasma cell
dyscrasias. We shed light on the classification systems
used to date and outline their potential advantages and
pitfalls. Next, we describe what is known about clinical
risk factors and potential pathomechanisms, focusing on
mechanistic differences on the basis of the different
patterns of neutrophil recovery after CAR T-cell infusion.
Finally, we discuss the evidence base for therapeutic
options, such as granulocyte colony-stimulating factor
(G-CSF), thrombopoietin receptor agonists, and
haematopoietic stem cell (HSC) boosts. Our overarching
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goal is to inform CAR T-cell practitioners on ICAHT as a
clinically relevant side-effect of cell therapy, to put forth a
framework for future translational efforts, and to provide
suggestions to improve management of cytopenias in
patients with haematological malignancies.

Haematological complications of CAR T-cell
therapy

When approaching haematological side-effects of
CAR T-cell therapies, one can broadly separate three
distinct phases: before CAR T-cell infusion, early ICAHT
(days 0-30), and late ICAHT (after day 30; figure 1).
The pretherapeutic phase is characterised by the
unique patient history, the number of previous cytotoxic
treatment lines given, and the commonly applied
holding or bridging therapies immediately preceding
CAR T-cell infusion.® For example, chemotherapy-
based bridging can result in baseline cytopenias, which
can reflect an impaired haematopoietic reserve.” Other
relevant baseline risk factors of haematotoxicity are the
degree of systemic inflammation (eg, elevations of serum
C-reactive protein or ferritin) and the presence of under-
lying bone marrow infiltration. To risk-stratify patients

for developing cytopenias and associated infections
before lymphodepletion, the CAR-HEMATOTOX score
was established in a multicentre cohort of patients with
large B-cell lymphoma and was then validated for
patients with mantle cell lymphoma and multiple
myeloma.”*? The score also appears to be useful for
identifying patients at high risk of disease progression
and prolonged hospitalisation.

The applied lymphodepleting chemotherapy (typically
fludarabine [range 25-30 mg/m?] and cyclophosphamide
[range 250-500 mg/m?2]) facilitates an expected early nadir
phase that can extend until 10 days after CAR T-cell
infusion. During this early phase, a delay in count recovery
can be aggravated by high-grade CRS and associated
cytokine patterns, especially elevated concentrations of
IL-6 and IFN-y.?* Three typical trajectories of early
neutrophil recovery have emerged. First, quick recovery
refers to transient and self-resolving cytopenia due to the
applied lymphodepleting chemotherapy. Second, inter-
mittent recovery describes the commonly observed
biphasic pattern with count recovery, followed by a second
or multiple dips. Third, the clinically challenging aplastic
phenotype is characterised by marked bone marrow
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Figure 1: Timeline of haematological toxicities of CAR T-cell therapy

Overview of the most important risk factors, clinical considerations, and complications of haematotoxicity across the three phases in relation to CAR T-cell infusion.
(A) Individualised risk assessment with the CAR-HEMATOTOX score, which is assessed before lymphodepletion (day -5) and separates patients into low (score 0-1)
versus high (score >2) risk for severe haematotoxicity. (B) Summary of management strategies to treat cytopenias after CAR T-cell therapy. ANC=absolute neutrophil
count. CAR=chimeric antigen receptor. CRP=C-reactive protein. CRS=cytokine release syndrome. Hb=haemoglobin. HCT=haematopoietic cell transplantation.

ICAHT=immune effector cell-associated haematotoxicity. G-CSF=granulocyte colony-stimulating factor. *Pati

ents receiving the CD28E endodomain

CAR T-cell therapy had higher haematotoxicity than those receiving the 4-1BBE endodomain therapy. tMeasured by Hb concentration, ANC, and platelet count.
tMeasured by concentrations of lactate dehydrogenase, C-reactive protein, and ferritin, and the total metabolic tumour volume. §Myelodysplastic syndromes

and acute myeloid leukaemia.
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EHA EBMT consensus grading (table 2), the incidence
of severe or life-threatening early ICAHT was highest
in patients with mantle cell lymphoma, followed by
large B-cell lymphoma, and multiple myeloma
(28% vs 23% vs 15%, respectively). However, the multi-
variable model suggested that the observed disease-
specific differences more fundamentally reflect
variability in underlying patient features (eg, disease
burden and inflammation).”

Defining ICAHT

Initial clinical trials exploring CAR T-cell therapies
primarily attributed cytopenias according to the common
terminology criteria for adverse events (table 2). However,
such a purely quantitative grading system fails to capture
the unique quality of post-CAR T-cell haematotoxicity and
does not reflect the risk of infections due to neutropenia.
This risk is based not only on the depth of, but also the
duration of severe neutropenia (eg, protracted neutro-
penia lasting longer than 7 days).” To account for these
limitations, an expert panel from the EHA and EBMT
developed a new grading system for ICAHT that separates
early (days 0-30) and late (after day 30) ICAHT’ Early
ICAHT assesses the duration of continuous severe
(ANC <500/pL) or profound (ANC <100/uL) neutropenia
and thereby closely mirrors the American Society of
Clinical Oncology and Infectious Diseases Society of
America guidelines for cancer-related infection risk.* The
grading of early ICAHT follows the severity categories of
mild, moderate, severe, and life-threatening—similar to
the broadly implemented American Society for
Transplantation and Cellular Therapy grading systems for
CRS and ICANS. A 2024 study showed that the early
ICAHT grading closely reciprocated the clinically relevant
phenotypes of neutrophil recovery (panel 1).* Concomi-
tantly, patients with severe or life-threatening ICAHT
frequently displayed the aplastic neutrophil recovery
phenotype, consistent with profound bone marrow
aplasia in this small subset of patients. Although ICAHT
severity was linked to clinically meaningful endpoints,
such as infection, non-relapse mortality, transfusion use,
duration of hospitalisation, and adverse treatment
outcomes, the utility of the grading system still needs to
be prospectively evaluated. Nonetheless, a standardised
grading system has specific advantages, such as enabling
comparability across disease entities, CAR T-cell products,
and treatment settings.

Pathophysiology of haematotoxicity after
CART-cell therapy

A range of clinical risk factors contribute to the develop-
ment of cytopenias after CAR T-cell therapy, which can
be broadly separated into host-related, disease-related,
and treatment-related factors (appendix p 1). These
factors provide crucial context for understanding the
underlying pathophysiology of haematotoxicity. The
heterogeneity of clinical variables associated with
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Grade 1 Grade 2 Grade 3 Grade 4
Common terminology criteria for adverse events
Neutropenia (ANC/uL)  <LLN-1500 <1500-1000 <1000-500 <500
Anaemia (Hb g/dL) <LLN-10-0 <10-0-8-0 <8.0; transfusion  Life-threatening

intervention

Thrombocytopenia <LLN-75 <75-50 <50-25 <25
(platelet count G/L)
ICAHT grading
Early; 0-30 days after <500* for 1-6 days <500 for 7-13 days <500 for =14 days; Never above 500;
CAR T-cell infusion <1007 for =7 dayst <100 for =14 days
(ANC/pL)
Late; 30 or more days <1500 <1000 <500 <100

after CAR T-cell infusion
(ANC/uL)

Based on American Society of Clinical Oncology and Infectious Diseases Society of America consensus grading of
cancer-related infection risk for severe neutropenia (ANC <500/pL), profound neutropenia (ANC <100/pL), and
protracted neutropenia (=7 days).*” ANC=absolute neutrophil count. Hb=haemoglobin. LLN=lower limit of normal.
*Severe neutropenia. Profound neutropenia. $Protracted neutropenia.

Table 2: Overview of haematotoxicity grading systems

Panel 1: Phenotypes of neutrophil recovery

Quick recovery
Sustained neutrophil recovery without a second decline
beneath an absolute neutrophil count (ANC) <1000/pL

Intermittent recovery
Neutrophil recovery (ANC >1500/pL) followed by a second
decline beneath an ANC <1000/pL

Aplastic recovery
Continuous severe neutropenia (ANC <500/pL) for greater
than or equal to 14 days

prolonged cytopenias shows that haematotoxicity is
unlikely to be mediated by any one factor alone. Instead,
a variety of features relating to the HSC reserve, the
bone marrow microenvironment, systemic inflammatory
mediators, and CAR T-cell expansion characteristics
probably act together, either in concert or independently
(eg, multifactorial origin; figure 2).

1) Role of the HSC reserve

Haematopoietic stem and progenitor cells (HSPCs)
reside in a specialised niche in the bone marrow that is
surrounded by endothelial and mesenchymal stromal
cells, where they serve as precursors to a wide array of
cells of the innate and adaptive immune systems.” The
regenerative capacity of HSCs and their ability to respond
to external stimuli in patients receiving CAR T-cell therapy
is dependent on many factors, including the cumulative
cytotoxic stress conferred by previous genotoxic chemo-
therapies (especially lenalidomide or alkylating agents,
such as melphalan),”** the process of natural ageing,”
and direct or indirect interactions between the underlying
disease and HSPCs.* The acquisition of somatic
mutations due to these factors can facilitate the

See Online for appendix
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development of age-related clonal haematopoiesis and
clonal haematopoiesis of indeterminate potential (CHIP),
which is defined by the manifestation of cancer-related
somatic driver mutations with a variant allele frequency
of greater than 2% in peripheral blood. The prevalence of
CHIP is inherently age-dependent, with an expected rate
of 10-20% in individuals 70 years or older.” However,
prevalence is higher in patients with lymphoma compared
with other older individuals (approximately 30% before
autologous haematopoietic cell transplantation [HCT])
and the presence of CHIP has been associated with
adverse treatment outcomes.® In patients receiving
CAR T-cell therapy, the prevalence of CHIP has been
described between 34% and 56%.** HSCs not only react
to infections and inflammatory stimuli, but also serve as
the foundation of the host immune response by
replenishing specific immune cell populations.”
Accordingly, the presence of clonal haematopoiesis might
potentiate the host inflammatory response to CAR T cells.
Furthermore, evidence from a preprint paper published
in 2023 suggests that CHIP clones might be gradually
selected for because they are more resistant to the
deleterious effects of inflammation and ageing.® In line
with this observation, clonal expansion of CHIP clones
has been observed following CAR T-cell therapy, with a

trend towards more pronounced late cytopenias in these
patients.®* This observation would indicate context-
dependent selection of pre-existing CHIP clones
following CAR T-cell therapy, which might be accelerated
by specific genotypes (eg, TP53).”

2) Role of the bone marrow microenvironment

The bone marrow microenvironment is orchestrated by
the complex interplay of cells and factors that regulate
haematopoiesis, including mesenchymal stem cells, a
vascular niche formed by endothelial cells and
perivascular stromal cells, and adipocytes and bone
lineage cells that contribute to the microenvironment’s
metabolic and structural dynamics.” Soluble factors, such
as cytokines and growth factors, mediate crucial
communication and regulatory pathways within this
niche.* Kitamura and colleagues® reported that the bone
marrow niche is severely disrupted in patients receiving
CAR T-cell therapy with prolonged cytopenias, identifying
an impairment of CD271° stromal cells by use of
three dimensional imaging analyses from bone marrow
biopsy specimens. Furthermore, the authors found that
CXC chemokine ligand 12 (CXCL12; coding for SDF-1)
and stem cell factor (SCF; coding for Kit ligand), both
niche factors essential for haematopoietic recovery, were
decreased in the bone marrow of patients with prolonged
cytopenia, indicating reduced niche cell function. The
presence of underlying bone marrow infiltration
(eg, extranodal involvement of the lymphoma) probably
disrupts the intricate balance within the niche. Bone
marrow involvement is one of the strongest independent
predictors of severe post-CAR T-cell haematotoxicity
across several disease entities.®"* One potential
explanation for this observation is the transmigration of
CAR T cells to target cells within the bone marrow,
resulting in local hyperinflammation and the release of
cytokines and growth factors in close vicinity to
haematopoietic progenitor cells. Even in the absence of
lymphoma cells in the bone marrow, interactions between
CAR T cells and endogenous CD19* or BCMA*
B-cell precursor populations (eg, on-target off-tumour
toxicity) might contribute to local inflammatory processes
and microenvironmental alterations that subsequently
result in prolonged cytopenias.

3) Role of systemic inflammatory mediators

Although inflammation-induced activation of HSCs and
cytokines (such as IFN-y) can cause HSCs to lose
quiescence and proliferate in the short term, chronic
exposure can lead to their functional impairment and
depletion.” Specifically, IFN-y has been shown to reduce
stem cell cycling and plays a key regulatory role in the
proliferation and differentiation of human HSPCs."*
Chronic inflammation is particularly deleterious, causing
long-term changes to the bone marrow microenvironment,
promoting ageing-related changes, and potentially leading
to bone marrow failure.”
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In the context of CAR T-cell therapy, severe CRS and
several inflammatory markers have been implicated
in the development of severe haematotoxicity.
Juluri and colleagues® found that higher peak IL-6 serum
concentrations were associated with slower haematopoietic
recovery and similar elevations of IL-6 concentrations
have been observed locally within the bone marrow
niche® The authors also mnoted high serum
TGF-B concentrations in patients with improved
haematopoietic recovery; TGF- is a pleiotropic cytokine
that can mediate the proliferation of myeloid-producing
HSCs.” Focusing on patients with aplastic neutrophil
recovery after CAR T-cell therapy, serum proteomic studies
revealed a signature displaying hallmarks of immune
dysregulation and macrophage activation (eg, elevation of
IL-15, IL-18, and MCP-1 concentrations), endothelial
dysfunction (eg, increasing angiopoietin 2 to 1 ratio), and
T-cell suppression (eg, upregulation of soluble T-cell check-
point ligands).” Together with increased IFN-y and serum
ferritin concentrations in patients with aplastic neutrophil
recovery, this study indicated some mechanistic overlap
with immune effector cell-associated haemophagocytic
lymphohistiocytosis-like syndrome (IEC-HS), which also
frequently presents with pancytopenia and is a well-
characterised side-effect of CAR T-cell therapy.* Many of
the perturbations of these systemic inflammatory
mediators were already present before the application of
CAR T cells, underlining the importance of pre-existing
inflammation for the subsequent development of severe
haematotoxicity. Patients with impaired haematopoietic
function at baseline might be at particular risk of
inflammation-mediated myelosuppression induced by the
infusion of CAR T cells.”

The role of CAR T-cell expansion in driving cytopenias
is not fully resolved and might be dependent on the
pattern of cytopenia. Patients with biphasic neutrophil
recovery (eg, recurrent neutrophil dips) displayed
markedly higher CAR T-cell expansion and persistence
compared with patients with aplastic recovery. Inter-
mittent cytopenia might thus reflect extravasation of
immune cells, including CAR T cells, into the periphery,
bone marrow, and lymphomatous tissue. Conversely,
immune dysregulation that is both inflammatory
(eg, high IFN-y and IL-18 concentrations) and T-cell
suppressive (eg, upregulation of soluble T-cell checkpoint
ligands) could explain the paradoxical finding of lower
CAR T-cell expansion in patients with aplastic neutrophil
recovery. These results suggest that CAR T-cell expansion
is not the sole driver of cytopenias, but rather that
CAR T-cell expansion exacerbates pre-existing inflam-
mation, thereby inducing an injury to the bone marrow.

4) Role of clonal T cell expansion and T cell-B cell
imbalances

An early correlative study of haematological toxicity
following anti-CD19 CAR T-cell therapy showed
perturbations of SDF-1 concentrations in patients with
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prolonged neutropenia.®* SDF-1 is an essential chemokine
for B-cell development and the trafficking of neutrophils
and HSCs, and has been previously implicated in cases of
late-onset neutropenia after B-cell depleting treatment
with rituximab.* The authors postulate that early recovery
of B cells after anti-CD19 CAR T-cell therapy might lead to
alterations of SDF-1 concentrations in the bone marrow
microenvironment, with subsequently reduced neutro-
phil egress from the bone marrow. Furthermore, the
association between B-cell depleting therapies and
neutropenia has been linked to the clonal expansion of
T cells—most likely due to T-cell imbalances facilitated by
diminished T cell-B cell interactions.” In line with this
finding, detailed single-cell RNA and T-cell receptor (TCR)
sequencing from a patient with acquired bone marrow
failure following CAR T-cell therapy showed marked
oligoclonal ~T-cell expansion, particularly of a
CD8* CD57* T-cell population. This expansion was
accompanied with a shift from multiclonal to oligoclonal
TCR usage, with the degree of oligoclonality rivalling
those of a reference population of patients with T-cell
large granular lymphocytic leukaemia.®® Similar clonal
expansion events were noted by Strati and colleagues,”
who observed an increase in the frequency of
clonally expanded cytotoxic effector T cells with
high gene expression of CXCR1 (CXCR1") in patients
with prolonged cytopenia following CAR T-cell therapy.
These expanded effector T-cell subsets expressed high
concentrations of IFN-y and showed enrichment of
cytokine signalling gene sets, while corresponding
HSC populations in the same patients expressed
IFN-y response signatures.”

Management

Identifying patients with a high-risk profile for severe
ICAHT

The CAR-HEMATOTOX score was developed to enable
early risk-stratification into a high risk versus low risk of
developing severe haematotoxicity following CAR T-cell
therapy.” The score is calculated before initiation of
lymphodepletion and incorporates the complete blood
count (eg, ANC, haemoglobin, and platelet count) and
two serum inflammatory markers (eg, C-reactive protein
and ferritin). Patients deemed at high risk (score =2)
displayed an increased rate of severe and prolonged
neutropenia, severe thrombocytopenia, and anaemia
compared with patients at low risk (score 0-1). Aside
from severe ICAHT, high CAR-HEMATOTOX scores
have also been linked to severe infections, increased non-
relapse mortality, and poor treatment outcomes,
indicating broad applicability of the score.” Furthermore,
the score was validated for use in patients with multiple
myeloma treated with anti-BCMA CAR T cells and
patients with mantle cell lymphoma treated with
brexucabtagene autoleucel (anti-CD19 CAR T cells).”"
Although the individual score components also appear to
be relevant for adult and paediatric patients with
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B cell acute lymphocytic leukaemia, many patients are
classified as high risk based on a score threshold of 2 and
it is probable that further refinements of the score are
required for this disease entity. The limitations of the
score include its low positive predictive value (ie, it is
better at ruling out than in) and it remains to be seen if
the score is also predictive at earlier time points (ie, before
leukapheresis), which would enable prophylactic
collection of autologous CD34" stem cells as a potential
rescue strategy in patients with a very high risk of
haematotoxicity.

Diagnostic algorithm

For patients with severe cytopenia before lympho-
depletion, underlying bone marrow involvement should
be strongly considered and confirmed with histopatho-
logical studies. Knowledge of the extent of bone marrow
infiltration as a highly relevant risk factor can help with
the interpretation of subsequent cytopenia trajectories
and guide therapeutic strategies. Assessing the presence
of pre-existing CHIP with next-generation sequencing is
not, to date, a standard of care. However, it can be
prudent to cryopreserve the bone marrow aspirate or
peripheral blood mononuclear cells to enable testing for
CHIP in case a patient develops secondary bone marrow
failure after CAR T-cell therapy and, more generally, to
contribute to our growing understanding of the
proinflammatory role of CHIP in patients receiving
CAR T-cell therapy.

Since cytopenias are to be expected in the first week
after CAR T-cell infusion, we recommend initiating
more comprehensive diagnostic studies in patients with
persisting severe neutropenia beyond day 10/ A first
step should include ruling out other pertinent causes of
neutropenia, such as drug-induced myelosuppression
(eg, co-trimoxazole and other antibiotics), vitamin
deficiencies, and coincident infections (eg, viral
infections or sepsis).” In patients with rapid elevation of
serum ferritin concentrations, IEC-HS should be
considered as an important differential diagnosis.”* A
more advanced investigation should be initiated in
patients with severe or life-threatening early ICAHT and
in those who are refractory to G-CSF (eg, absent
neutrophil count recovery despite at least 5 days of
G-CSF treatment). This examination should incorporate
extended viral studies and bone marrow studies to
rule out persistent infiltration (eg, progressive disease)
and evaluate for signs of haemophagocytosis or
myelodysplasia, which can emerge rapidly after
CAR T-cell infusion.” However, the typical finding is a
hypocellular marrow without dysplastic changes.®
Because treatment-emerging myeloid neoplasms are a
diagnostic concern after CAR T-cell therapy, in-depth
cytogenetic studies and next-generation sequencing with
a myeloid panel should be considered in case of any new-
onset or unexplained cytopenia, or non-resolving ICAHT
beyond day 30.

Therapeutic strategies

When CAR T-cell therapies first entered the clinical
routine, there was a reluctance to apply growth factors for
the management of cytopenias because preclinical studies
had suggested that the use of granulocyte-macrophage
colony-stimulating factor (GM-CSF) might promote
inflammatory toxicity and induce neuroinflammation.”
Because of these preclinical findings, G-CSF was
commonly deferred until acute CAR T-cell immuno-
toxicities had abated (typically by the third week). However,
several real-world studies have since shown that G-CSF
can be given as early as the first week, or even
prophylactically, with no statistically significant increase
in the rate of grade 3 or higher CRS or ICANS.*¥
For example, Lievin et al® showed that early
G-CSF administration (starting at day 2) in patients with
neutropenia was associated with a reduction in the rate
of febrile neutropenia, with no negative effects on
CAR T-cell expansion or clinical outcomes. A further
retrospective study of 197 patients examined the effects of
prophylactic G-CSF, with most patients receiving
pegylated G-CSF before CAR T-cell therapy.® Although
there was a slight increase in the rate of grade 2 (but
not grade 3) CRS, prophylactic G-CSF was associated
with faster neutrophil recovery and shorter intravenous
antibiotic exposure.” Furthermore, the authors showed
that the initiation of G-CSF in patients with grade 1 CRS
did not exacerbate CRS severity. Nonetheless, these studies
were not prospective and more research will be needed to
further confirm the safety of early G-CSF and identify the
optimal treatment protocol for each disease entity (eg, early
vs prophylactic vs ANC-triggered and non-pegylated vs
pegylated). Scores—such as the CAR-HEMATOTOX—
could be useful to guide early G-CSF and anti-infective
strategies and thereby could help to restrict these
interventions to the patients who are most likely to benefit
(eg, those at high risk with a score =2).”

Most patients receiving CAR T-cell therapy will
ultimately either spontaneously recover their neutrophil
counts or display prompt count improvement with
G-CSF.** However, a minority of patients do not respond
to G-CSF (<20%) and treatment of these patients can be
clinically challenging, due to their high risk for life-
threatening infections. If cryopreserved CD34" stem cells
are available from a previous autologous or allo-
geneic HCT, an HSC boost should be the preferred
rescue strategy, due to the encouraging rates of
engraftment.®” However, a 2023 EHA and EBMT survey
showed that HSC boosts were often not available, even
when they were considered as a therapeutic avenue.”
Patients with multiple myeloma could be an exception,
because some younger patients might have collected
additional cells for a potential second consolidative
transplantation, as was shown by Mohan et al in
a 2024 study” Prophylactic stem cell collection in
candidates for CAR T-cell therapy who are at high risk of
developing severe haematotoxicity has been successfully
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carried out in individuals,” but can be associated with
additional costs and an increased logistic burden and
should not delay the application of CAR T cells.”” Other
options for patients who are refractory to G-CSF include
thrombopoietin receptor agonists, such as eltrombopag
or romiplostim, although evidence is limited and it
remains unclear if their use is superior to a watch-
and-wait approach.””* Both thrombopoietin receptor
agonists and interferon-neutralising antibodies, such as
emapalumab, would target the aberrant interferon
signalling outlined above.” For patients with grade 3
or 4 ICAHT with a clear inflammatory stressor—such
as [EC-HS*—and persistently increased inflammatory
markers, a trial of anti-inflammatory agents, such as
pulse-dose corticosteroids, or anti-cytokine therapies
(eg, siltuximab or anakinra) can be attempted. If
grade 4 ICAHT persists (<5% of patients”), allo-
geneic HCT can be offered as a last option. However, this
treatment will invariably result in the eradication of
CAR T cells and this decision should carefully weigh
several factors: donor suitability and availability, the
patient’s goals of care, the possibility of spontaneous
neutrophil count recovery, the risk of fatal infections, and
the likelihood of disease recurrence.” When pursuing
observation, optimising supportive strategies (eg, prophy-
lactic anti-infectives, intravenous immunoglobulin
therapy, and avoiding sick contacts) and obtaining an
infectious disease consultation is recommended.

Conclusions and future perspectives
The past 5 years have seen increasing recognition of
ICAHT as a distinct and clinically relevant side-effect
of CAR T-cell therapy. By defining haematotoxicity,
the EHA and EBMT consensus grading system
provides a framework for severity-based best practice
recommendations, similar to what already exists for
CRS and ICANS.’ Moreover, the grading provides clear
criteria for the reporting of ICAHT, thus enabling
standardised comparisons across disease entities and
CAR T-cell products. Yet several unresolved clinical and
translational research questions still remain (panel 2).
This Review has focused on CAR T cells, however,
haematological toxicities are also among the most
common side-effects of bispecific antibody therapies.”
Future studies could evaluate the qualitative features of
cytopenia with bispecific antibodies and study if the same
risk factors apply. We anticipate that large multicentre
studies will be needed to elucidate the effects of specific
previous therapies, such as bendamustine, examine the
influence of different lymphodepletion regimens, and
establish whether transitioning CAR T-cell therapy into
earlier treatment lines mitigates the risk of severe ICAHT.
The diagnostic accuracy of the CAR-HEMATOTOX score
could be further improved by integrating dynamic risk
factors, such as inflammatory markers (eg, IL-6 and IFN-y)
or by making disease-specific adjustments. Potential
applications of the score include restricting antibiotic
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prophylaxis or early G-CSF to patients at high risk, which
would ideally be confirmed prospectively. Studying
different ICAHT mitigation strategies in clinical trials
will help to establish the optimal timing and sequence
of G-CSF, thrombopoietin receptor agonists, and
HSC boosts. Crucial clinical endpoints to consider
include time to neutrophil recovery, the rate of febrile
neutropenia and infections, but also other measures,
such as antibiotic exposure and duration of hospitalisation.

Although translational efforts have provided some
insights into the underlying mechanisms of ICAHT, it is

Panel 2: Future clinical and translational research questions regarding haematological
complications of chimeric antigen receptor (CAR) T-cell therapy

Clinical research questions

How does previous treatment before immune effector cell therapy shape the risk of
developing immune effector cell-associated haematotoxicity (ICAHT) and is there a
reduction of incidence rates when moving CAR T-cell therapy into earlier treatment
lines?

What is the contribution of lymphodepletion for the development of severe
haematotoxicity and does bendamustine-based lymphodepletion reduce the
incidence of cytopenias?

Does the presence of clonal haematopoiesis before CAR T-cell therapy affect the
subsequent development of cytopenias?

Can the predictive capacity of the CAR-HEMATOTOX score be validated in a prospective
manner and is the score helpful in guiding granulocyte colony-stimulating factor
(G-CSF) and anti-infective therapies?

What strategies can be used to better identify patients who will develop treatment-
refractory bone marrow aplasia and what is the role of pro-inflammatory serum
biomarkers, such as IL-6 or IFN-y?

Are there criteria that could guide the decision to prophylactically collect stem cells in
specific candidates at high risk as a rescue strategy in case of severe haematoxicity?
What is the optimal timepoint to initiate growth factor support and is there an
advantage to applying pegylated versus non-pegylated G-CSF?

Does early or prophylactic G-CSF reduce antibiotic exposure or the rate of severe
infections?

What is the incidence of ICAHT with other immune effector cell therapies, such as
tumour-infiltrating lymphocytes or bispecific antibodies, and are the underlying risk
factors similar?

What is the relationship between ICAHT and the development of second primary
malignancies, particularly treatment-emergent myeloid neoplasms?

Translational research questions

Can a syngeneic mouse model be generated that reciprocates the unique qualities of
CAR T-cell-related cytopenia?

What is the role of CART cells in driving the expansion of clonal haematopoiesis
clones into overt myeloid malignancy and are these clones more susceptible to

CAR T-cell-mediated inflammation?

How do cytokine release syndrome and inflammatory patterns specifically influence
haematopoietic function?

How do endogenous B-cell populations and their early recovery contribute to
long-term cytopenias and do CART cells localise to the haematopoietic niche in

the bone marrow?

What precise mechanisms underlie the superior treatment outcomes in patients with
intermittent neutrophil recovery?
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Search strategy and selection criteria

We searched PubMed and MEDLINE for articles published
between Jan 1, 2017, and Sept 30, 2023, by use of the search
terms “chimeric antigen receptor”, “CAR”, "CAR-T",

"CAR T-cell therapy”, “bone marrow”, “hematopoiesis”,
“cytopenias”, “prolonged cytopenia”, “delayed cytopenia”,
“hematotoxicity”, “ICAHT”, and “immune effector cell-
associated hematotoxicity”. We screened all studies arising
from this search query and reviewed the relevant references
cited in those articles. Studies had to be published in English.
Abstracts were screened by the authors to establish the most
relevant publications, which were included with all seminal
studies in this Review.

unlikely that there is one unifying pathophysiology.
Future preclinical studies will therefore have to take a
panoply of host-related and disease-related features into
account. Mechanistic studies will require structured
sample collection that is harmonised across centres and
should leverage emerging technologies, such as multi-
omic and spatial transcriptomic approaches. Further-
more, the paucity of preclinical and animal models
studying the effects of CAR T-cell therapy on
haematopoiesis will need to be overcome, which would
enable the systematic evaluation of novel therapeutics
that ameliorate severe ICAHT. Ultimately, addressing
these emerging research questions will require dedicated
efforts that integrate multilateral collaborations, registry
studies, and well-designed clinical trials. The latter
should carefully evaluate specific management strategies,
which would provide a blueprint for other immune
effector cell therapies, like bispecific antibodies.
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