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A B S T R A C T   

Machine learning and learning analytics are powerful tools that not only support researchers in the detailed 
measurement and enhancement of learning processes in various learning environments, but also enable the 
aggregation and synthesis of evidence regarding effective educational practices. This paper describes the 
development and application of machine learning algorithms aimed at semi-automatic selection of abstracts for a 
meta-analysis on the effects of simulation-based learning in higher education. The goal was to reduce the 
workload while also maintaining the transparency and objectivity of the selection process. The algorithms were 
trained, validated, and tested on a set of 3187 studies on simulation-based learning found in medical and 
educational databases collected before April 2018. Subsequently, they were utilized to classify abstracts for a 
follow-up meta-analysis consisting of 2373 studies (published between 2018 and 2020). The aim of training the 
algorithms was to predict studies’ abstract eligibility based on words and combinations of words used in these 
abstracts. The application of the algorithms reduced the number of studies that had to be manually screened from 
2373 to 711. A total of 458 studies from automatically selected abstracts were included in the full-text screening, 
indicating the high precision of the algorithms (also compared to the performance of human raters). We conclude 
that machine learning algorithms can be trained and used to classify abstracts for their eligibility, significantly 
reducing the workload for the researchers without diminishing objectivity and quality when updating systematic 
literature reviews with or without a meta-analysis.   
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1. Problem statement 

Systematic literature reviews with and without a meta-analysis that 
aggregate and systematize evidence from empirical research are essen-
tial for advancing research as well as for theory development and 
informing practical decisions. This is crucial in the field of education and 
educational psychology to keep up with rapid developments in educa-
tional technologies and to facilitate fair, inclusive, and high-quality 
education worldwide. 

One of the biggest challenges in performing systematic literature 

reviews, with or without a meta-analysis across different contexts, is the 
time and resources needed to ensure quality standards. A group of re-
searchers (Borah et al., 2017) estimated that the average amount of time 
needed to complete a meta-analysis is 67.3 weeks, and a large part of 
that time is spent on the manual selection of eligible studies, which in 
turn might be associated with errors, biases, and increased costs. 
Furthermore, the increased quantity of publications in recent years (e.g., 
Ware & Mabe, 2015) creates a range of complications for systematizing 
research, including research on education. Among these issues are 
appropriate location and selection of studies addressing the specific 
research question. 

There is a range of different tools available to support researchers 
with proper documentation, screening, and evaluation of studies for 
meta-analyses (e.g., ASReview LAB developers, 2023; Kebede et al., 
2023). Some researchers have successfully applied and reported on 
machine learning tools and algorithms (e.g., using R (R Core Team, 
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2020) or Python (Python Software Foundation, 2024)) to support sys-
tematic literature reviews with and without a meta-analysis in different 
fields (e.g., van de Schoot et al., 2021; Xiong et al., 2018 in medicine; or 
Banach-Brown et al., 2019 in animal studies). Yet, although many tools 
exist, including those enhanced with machine learning, generative 
artificial intelligence and natural language processing algorithms, there 
is lack of information on their performance and use. This in turn might 
lead to a perceived difficulty (e.g., Chai et al., 2021) and unsystematic 
use of such tools in the fields of education and educational psychology. 
Moreover, these tools are still evolving, and their performance may 
differ across domains and topics (e.g., Burgard & Bittermann, 2023; Chai 
et al., 2021; van de Schoot et al., 2021). 

2. Theoretical background 

2.1. Synthetizing research: systematic literature reviews with or without a 
meta-analysis 

The domain of education relies on a range of different theories, and 
different approaches and strategies are utilized to promote effective 
learning across contexts. Maintaining a broad perspective, synthesizing 
research findings across different contexts, and mapping the effective-
ness of teaching and learning technologies and strategies are all essential 
to informing practitioners and policymakers about possible imple-
mentation (e.g., Taylor & Hedges, 2023). 

At its core, a systematic literature review, with or without a meta- 
analysis, is a process of aggregating results from a collection of 
studies. The main difference between reviews and primary empirical 
studies is the different unit of analysis: from the individual subject to the 
studies themselves (Borenstein et al., 2009). In other words, instead of 
performing statistical analysis on a sample of subjects, the analysis is 
done on a sample of studies. Therefore, the implications of the findings 
of a systematic literature review with or without a meta-analysis are 
considered more reliable, as they summarize a collection of studies. This 
makes it possible to draw more objective and robust conclusions and 
contribute to the further development, criticism, and improvement of 
existing theories as well as computational and conceptual models. 

The main motivation for conducting meta-analytical studies in 
addition to a systematic literature review is a variance in the primary 
studies that needs to be quantified and explained. Meta-analysis is a 
powerful tool that helps to reduce potential possible methodological 
noise (e.g., Xiong et al., 2018). For example, research in educational 
contexts often uses convenience samples, which are relatively small, to 
statistically estimate the effect of the parameters in primary studies and 
thus might yield inconsistent results. In a meta-analysis, the effect size 
for each study is computed and combined with other effect sizes (Bor-
enstein & Higgins, 2013). This makes it possible to determine whether 
the effects are consistent across studies and ensures that each study 
might be seen as control for other studies to minimize the potential 
impact of confounding variables. 

2.2. Data collection for systematic reviews: title and abstract screening 

Just as adequate sampling is critical in primary studies, one of the 
most essential steps in systematic literature reviews with or without a 
meta-analysis is selecting the appropriate studies to synthetize evidence 
to answer the target research question. Considering the immense effort it 
would require to read all studies in their entirety, title and abstract 
screening is a critical component of the systematic literature review 
process (Chai et al., 2021). There are many different traditions and 
approaches in the educational field, and this is also reflected in titles and 
abstracts. This includes different reporting standards (e.g., mentioning 
the results of the study vs. only mentioning problem statement in the 
abstract) and different attitudes toward and conceptualizations of (as 
well as publisher recommendations) what information an abstract 
should represent and include (e.g., different content and structure of 

abstracts for teacher or medical education, business, psychology). This 
makes study selection a challenging task, which depends on a range of 
researcher decisions (e.g., selecting a broad vs. narrow research focus, 
justifying eligibility criteria). Thus, ensuring objectivity, transparency, 
and replicability of the selection process are important challenges to 
maintain the quality standards for a meta-analysis (Page et al., 2021). 

2.3. Machine learning algorithms for abstract screening 

The use of artificial intelligence, machine learning, and natural 
language processing methods for semi-automated systematic literature 
reviews with or without a meta-analysis constitutes an independent 
research field that spans across various domains (e.g., Cierco Jimenez 
et al., 2022; Marshall & Wallace, 2019). These methods might support 
researchers in text classification (e.g., title and abstract screening, cod-
ing moderators) and data extraction (e.g., identifying frequent topics, 
moderators or statistical data). Text classification enables sorting man-
uscripts or chunks of text (e.g., abstracts) into predefined categories of 
interest (e.g., empirical vs. not). Some examples of the tools that support 
researchers in text classifications include ASReview (ASReview LAB 
developers, 2023) and Abstrakr (Wallace et al., 2012), which use ma-
chine learning (ML) algorithms (see van de Schoot et al., 2021 for a more 
detailed review of these tools). Data-extraction models (e.g., RAKE 
package in Python; see Rose et al., 2010) can identify text elements 
(some words or their combinations; particular numbers) that correspond 
to a variable of interest, such as the number of people in experimental or 
control conditions or the use of a type of scaffolding or software. 

Yet, although quite a few tools, packages, and algorithms exist, there 
is lack of information regarding their performance across different fields 
of study and different types of data (e.g., empirical vs. conceptual 
research articles). Some tools are evolving, and their performance may 
differ across and within domains (e.g., Burgard & Bittermann, 2023; 
Chai et al., 2021; van de Schoot et al., 2021). This study does not aim at 
performing a comprehensive review of all of the existing possibilities. 
Rather, it seeks to contribute to the existing tools and approaches by 
describing procedures we developed for updating a meta-analysis in 
educational context. 

2.4. Screening abstracts as a ML classification task 

ML algorithms can accelerate abstract screening for a meta-analysis 
by using statistical and data-driven approaches to learn patterns and 
structures from text data to classify text based on its relevance. They can 
then prioritize the relevant abstracts, reducing the number of studies 
that require human review (van de Schoot et al., 2021), or even classify 
the studies if trained on a sufficient amount of pre-screened studies. To 
enable this performance on classification tasks, ML can be trained in 
supervised or semi-supervised manner if the data is fully labeled, or 
some labeling exists, respectively. Alternatively, one can also use un-
supervised learning in order to split the data in multiple clusters, which 
in this case will be eligible or non-eligible studies for a meta-analysis (e. 
g., Mankolli & Guliashki, 2020). 

Below, we describe a few important steps that should be considered 
when planning the use of ML tools for an abstract classification task. We 
further describe the decisions made for this study in the method section. 

Feature extraction. The first essential step in training ML algorithms to 
identify text patterns is transforming raw text data into meaningful and 
representative variables that can be used as input for ML algorithms 
(Sammons et al., 2016). Effective feature extraction is essential for 
classification to capture relevant information from text data and can be 
done with different methodologies, such as the bag-of-words technique 
(Kwartler, 2017). A bag-of-words model (BoW) is a way of extracting 
features from text. It describes the occurrence of words within a docu-
ment, whereas information about the order or structure of words in the 
document is discarded. The model is only concerned with whether and 
how often particular words occur in the document, and each word count 
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is considered a feature (Kwartler, 2017). 
Misclassification. Due to the nature of the literature search process, 

there might be many irrelevant studies in the search results, which were 
not possible to exclude using the search terms. For example, the bench 
meta-analysis (Chernikova et al., 2020) used to train the algorithms in 
this study indicated that only 7.3% of the initial hits were relevant for 
the analysis. This can lead to two highly imbalanced classes of eligible 
and non-eligible studies. The algorithms can misclassify the eligible 
studies, resulting in a failure to consider relevant studies for analysis and 
therefore having a biased picture of the empirical evidence. To address 
the problem of imbalanced classes, it is important to find ways to 
penalize the misclassification of the relevant class as opposed to 
penalizing the misclassification of the irrelevant class (Chawla, 2005). In 
other words, selecting some false positive studies is less problematic 
than failing to identify relevant studies (as irrelevant studies can be 
removed later in the analysis). 

Determining performance metrics. Another important step is to define 
what would constitute an indicator of good performance for the ML 
algorithm. Different performance metrics exist and can be selected for 
different tasks (Foody, 2023). There are many metrics that can be used 
to evaluate a classification model, and different metrics can lead to 
different conclusions regarding the model’s performance. However, 
despite the large number of performance measures that are available, 
there are four that are most commonly used (James et al., 2017): ac-
curacy, recall, precision, and the F score. All of them are scored between 
0 and 1 (Foody, 2023).  

1. Accuracy is calculated as the ratio of the sum of true positives and 
true negatives to the sum of all classified cases: true positives, true 
negatives, false positives, and false negatives. However, this measure 
has a major disadvantage when used with highly imbalanced data-
sets: The accuracy of the model will be high, even though it might not 
be a particularly useful algorithm (Foody, 2023). 

For example, our training dataset contained 7% of the data belonging 
to the eligible studies and 93% belonging to non-eligible studies. A 
model that classifies all of the data as non-eligible would achieve an 
accuracy of 93%, which is a very high accuracy by all standards. How-
ever, it would be a useless model, as we are interested in a model that 
identifies the eligible studies.  

2. Recall is the ratio between the true positives (TP) and the sum of the 
true positives (TP) and false negatives (FN): TP/TP + FN. Recall can 
be seen as a measure of how many of the cases from a set of eligible 
studies have been identified compared to how many have been 
missed. Thus, recall is a measure of identifying relevant information 
(Foody, 2023). Continuing the classification example, if the algo-
rithm classifies all of the studies as irrelevant, because it has not 
identified any of the studies that are of interest, its recall is zero. This 
is a good measure for imbalanced data because it allows gaining 
information about the relevant class as opposed to a measure that 
provides information about both classes, one of which might not be 
of interest at all.  

3. Precision is formally defined as the ratio between the true positives 
(TP) and the sum of the true positives (TP) and false positives (FP): 
TP/TP + FP (Foody, 2023). This measure can be interpreted as one 
that gives information about how many of the studies that have been 
identified as eligible are in fact eligible and how many of them are 
non-eligible studies that the algorithm has incorrectly classified. As 
such, this is also a useful measure for imbalanced data.  

4. F score is a function of the precision and recall measures that were 
previously discussed (Foody, 2023). It is calculated as the doubled 
product of precision and recall divided by their sum. This measure is 
useful as a global estimate measure of the algorithm’s performance, 
as it considers not just the amount of relevant studies successfully 
identified but also the identification process. 

If we reverse the scenario, and all studies are identified as eligible, 
even though that amounts to only 7%, it will lead to a recall of 100%. 
However, the precision will be close to zero, as all of the non-eligible 
studies have not been classified as such by the algorithm. Thus, it is a 
particularly inefficient algorithm, even though it successfully identifies 
all of the eligible studies. 

One of the disadvantages of all of these measures is that there is no 
objective comparative reference; rather, they are measures that compare 
models against each other. As such, it is necessary to set an arbitrary 
threshold that is considered to represent acceptable performance for the 
future application of the algorithm. The performance of human raters 
can be set as such a threshold to ensure the performance of ML algo-
rithms is not worse than that of human raters. 

Overfitting vs. Generalizability. Another issue to consider when 
training and using ML algorithms is overfitting. Overfitting refers to the 
tendency of algorithms to learn from and adapt to sample-specific error 
variance, which results in reduced generalizability (e.g., Yarkoni & 
Westfall, 2017). The reasons why overfitting happens are technical, but 
it can be interpreted as the model learning the particularities of the 
training dataset “by heart” instead of extracting the relevant features of 
the data and generalizing it to yet unseen data (James et al., 2017). 

2.5. Updating existing systematic literature reviews: keeping up with 
increasing publication rates 

Systematic literature reviews with or without a meta-analysis usually 
take a long time to perform (e.g., Borah, et al., 2017; Smith et al., 2011) 
– and even longer for the results to get published. Some new studies 
might appear as the meta-analysis is finished and offer new evidence, 
which had been missing. This is particularly true in rapidly developing 
fields in education (e.g., research on simulation-based learning, artificial 
intelligence), as new technologies and approaches emerge. The aggre-
gated evidence becomes outdated relatively quickly, and (continuous) 
updates are needed to inform practical decisions as well as to further 
develop theory. Although the screening process for a completely new 
meta-analysis or a follow-up have much in common, screening and 
classifying abstracts to update systematic literature reviews with or 
without a meta-analysis have some specific features, which offer an 
opportunity for more automatization and speeding up the screening 
process. 

First, most conceptual preliminary steps, such as formulating search 
strings or eligibility criteria, are already performed. The search can be 
limited to studies that appeared in a limited period of time (e.g., studies 
published after the date of last search). Second, a great deal of labeled or 
coded data already exists from previously conducting the meta-analysis 
(e.g., manually coded abstracts, documentation on decisions made about 
eligibility). Although documentation and protocols of the procedures 
remain available, some additional time might still be needed to train 
new research assistants to classify the abstracts, as the trained raters may 
no longer be available. Training human raters can be resource 
demanding and subject to availability constraints. Meanwhile, due to 
the large volume of available training data, ML algorithms can be 
trained and reused multiple times, allowing the same solutions to the 
same tasks and facilitating objective, reproducible, and transparent 
classification. Furthermore, for ML algorithms, there is little difference 
between classifying 100 or 1000 abstracts in terms of time resources, 
and the algorithms are not affected by fatigue and a related increase in 
error rates (e.g., Xiong et al., 2018). 

3. Goals of this study 

The aim of this study was to train and test a few commonly used 
supervised ML algorithms to support updating meta-analytic findings in 
an educational context by supporting abstract screening and classifying 
abstracts as eligible vs. not eligible, based on existing manual ratings. 
Specifically, the ML algorithms were used to methodologically enhance 
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a follow-up meta-analysis on the effects of simulation-based learning in 
higher education and decrease the time needed in the screening phase 
while ensuring objectivity and transparency. Through this study, we aim 
to provide evidence on the performance of ML tools, encouraging re-
searchers to invest time and resources in ML algorithms to support 
updating meta-analytic findings in an educational context and further 
enrich the evidence base. We also believe that using ML algorithms for 
systematic research in educational contexts contributes to theory 
development and might inform practical decisions (see Sailer et al, 
2024; this issue). We used four different ML algorithms, which represent 
different ways of dealing with the classification task and imply different 
levels of intrinsic bias, different levels of dependence on the data (e.g., 
including all features or examples vs. only some of them), as well as 
different model interpretability (e.g., James et al., 2017). We included 
regularized logistic regression, which is one of the most common models 
for classification tasks. It represents a parametric model, which formu-
lates the decision as probabilities belonging to one class or another 
(eligible vs. non-eligible) and is relatively easy to interpret. We also 
included the support vector machine classifier, which works similarly to 
logistic regression, but unlike the former has a better ability to gener-
alize unseen data. The random forest model does not require knowledge 
of the shape of data distribution, which is required by parametric 
models. It uses only some features and examples for each of the decision 
trees, which means that influential cases and features do not determine 
its performance. Further, the feedforward neural network model was 
chosen due to its ability to fit complex models (with different types of 
relationship between the features, including non-linear) and achieve 
high accuracy. 

We discuss the details of each of the algorithms, including their 
strengths, challenges, and disadvantages, in the following section. Our 
main goal was to find the most reliable algorithm for our follow-up 
meta-analysis, which can effectively generalize from the training data-
set to unseen data and thus reduce the workload for human raters. This 
in turn could contribute to enabling the continuous updating of sys-
tematic literature reviews with or without a meta-analysis. 

4. Method 

The training, validation, and initial testing of the algorithms was 
based on a total of 3187 studies that had been manually labeled as 
eligible or non-eligible for the purpose of conducting a meta-analysis on 
the effects of simulation-based learning in higher education (Chernikova 
et al., 2020). These studies were labeled by trained raters. The final 
agreement reached 100%, and the interrater agreement was estimated 
as kappa = 0.90. Out of the 3187 studies, only 235 (7.3%) were classified 
as eligible, indicating a highly imbalanced data set. The 3187 studies 
were randomly split into training (80%), validation (10%), and test 
(10%) datasets for the analysis. The test dataset consisted of 319 ab-
stracts, of which 25 were previously coded as eligible. The codes used for 
the analysis can be found online (https://osf.io/5z6n2/?view_only=713 
72cf2ac2f40fea75f89511fdb39cc). 

A follow-up meta-analysis (Chernikova et al., 2023) was conducted 
to include new published studies. The follow-up included 2373 studies 
(published between 2018 and 2020) identified for title and abstract 
screening. The search string, included databases, and eligibility criteria 
were identical to those used for the initial meta-analysis (see Chernikova 
et al., 2020). The growing numbers support the claim about the 
increased amount of publications and the need to use ML algorithms to 
manage the challenge of keeping the summary of research evidence up 
to date. 

4.1. Pre-processing and feature extraction 

Abstracts of empirical studies in educational research journals are 
very diverse, ranging from 75 to 350 words and utilizing different 
structures and standards of reporting. The goal of the feature-extraction 

process was to find a way to mine for the valuable, quantitative aspects 
of the abstracts of the texts to enable working with the data using sta-
tistical techniques or ML algorithms to make predictions about the 
eligibility of these studies. The extraction of quantitative aspects of the 
raw data was performed in several steps. First, the punctuation and 
numerals in the text were removed, and all words were standardized to a 
lowercase format. Second, words that contained the same word stem 
were reduced to their word stem and considered the same. Third, words 
that only contributed to the sentence structure (e.g., articles, connector 
words, prepositions) were removed. In this way, the fictional example 
sentence from the abstract, “This study used simulated scenarios to 
facilitate development of diagnostic skills in pre-service teachers,” was 
transformed into “study use simulate scenario facilitate development 
diagnose skill pre-service teacher.” 

The extraction of the features was achieved using a bag-of-words 
extraction approach. A matrix containing each of the primary studies 
as rows was created, with the columns representing the extracted vari-
ables (individual words in this study). For instance, if “simulation” 
appeared 10 times in the abstract of a particular study, the matrix cell of 
the intersection between the row that represents that study and the 
column that represents the word “simulation” would contain the value 
10. The training data resulted in the identification of 17,060 features. To 
reduce the amount of features of the training data to meaningful 
amount, a lower (10) and upper frequency boundary (1000) was set to 
focus on the words that distinguished abstracts from one another. In 
other words, if a word was frequently used across all abstracts in the 
training data (e.g., “result”) or only used in very few abstracts (e.g., 
name of particular simulation or a tool), the word (feature) was dis-
regarded in the further analysis. This restriction made it possible to 
reduce the initial feature count to 2519 features. The amount of features 
was further reduced using linear association measures with the class- 
belonging variable (i.e., eligible vs. non-eligible). We used the Pearson 
correlation as a measure of linear association, setting the lower and 
upper boundaries of the strength to be one standard deviation above or 
below the mean correlation coefficient, respectively. This led to another 
reduction in the number of features from 2519 to 528. This step was only 
performed for the training dataset to prevent possible data leakage. 
Stricter rules could be set to further reduce the amount of features, but 
we were satisfied with the level of reduction, and so stricter rules were 
not applied. 

4.2. Algorithms used in the study 

To achieve the goals of this study and address the features of the data 
(e.g., highly imbalanced dataset), we trained and applied four different 
classification algorithms to select eligible abstracts: 1) logistic regression 
with least absolute shrinkage and selection operator (LASSO) regulari-
zation, 2) support vector machine classifier, 3) random forest classifier, 
and 4) feedforward neural network. The choice of algorithms was based 
on the attempt to train classifiers with different levels of intrinsic bias, 
different levels of dependence on the data, as well as different level of 
model interpretability (see James et al., 2017). All these classification 
algorithms have their pros and cons. For example, the logistic regression 
classifier can be easier to interpret (e.g., James et al., 2017), but it might 
perform worse than the other algorithms, while the opposite is true for 
feedforward neural networks (Goodfellow et al., 2017). 

4.2.1. Logistic regression with LASSO regularization 
Logistic regression (James et al., 2017, Wright, 1995) is one of the 

oldest and best-understood statistical modeling approaches for classifi-
cation. The technique itself is an extension of the linear regression 
technique and belongs to the family of generalized linear models. Lo-
gistic regression has a linear component, which is the decision boundary 
between two classes, and produces outputs as probabilities belonging to 
one class or the other (James et al., 2017). One of the advantages of this 
method is getting the same solution when the same data are used. 
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Furthermore, logistic regression can predict probabilities instead of an 
exact class value (e.g., a logistic regression predicts values like 0.7 
belonging to class 1 instead of just giving class 1 as the output). Disad-
vantages of the model include an inclination to overfitting, which means 
finding the optimal solution for the training dataset, which is not 
generalizable to unseen data (e.g., James et al., 2017). To overcome 
overfitting, regularization techniques are recommended (Goodfellow 
et al., 2017; Tibshirani, 1996). Logistic regression with LASSO regula-
rization is considered beneficial in situations where a sparse solution is 
desired, as it automatically selects important features and ignores less 
relevant ones, thus potentially improving the model’s generalization to 
new data and preventing overfitting (e.g., James et al., 2017). 

4.2.2. Support vector machine classifier 
A support vector machine (SVM) classifier is a powerful supervised 

ML algorithm used for classification (Bishop, 2006). It aims to find a 
solution that best separates different classes of the given dataset. SVM 
can be seen as an extension of logistic regression that is used in cases of 
perfectly separable classes (James et al., 2017). Although such classes 
are rarely found in reality, the logic behind perfectly separable classes 
still holds with a small adjustment, which allows for some level of 
misclassification. In other words, by specifying the level of misclassifi-
cation, the SVM optimization is solved for the decision boundary, with 
the largest distance between the two classes taking the misclassification 
into account. Additionally, unlike logistic regression, SVM is not a 
probabilistic algorithm, and thus it is cannot assign levels of belonging 
to a particular class. However, it has the ability to generalize well on 
unseen data, which is an important feature for abstract classification 
(James et al., 2017). 

4.2.3. Random forest classifier 
The previously two models belong to the class of parametric models. 

They assume a particular shape of the distribution and a particular shape 
of the curve that is being fit to the data, namely, a linear decision 
boundary. However, often it is not possible to assume the shape of the 
curve that is being fit to the data. One possible approach in this case is a 
decision tree, which uses simple Boolean (i.e., binary logic) statements 
to determine the classification output. One particular case, random 
forest (RF), allows building a model that has a high number of trees. This 
leads to different final answers but, on average, improves the model’s 
performance compared to other models that produce just one answer for 
each input (Breiman, 2001). The RF model does not use all of the ex-
amples and features for each of the trees, which means that influential 
cases and features do not determine the performance of the ensemble, 
although they do determine the behavior of individual decision trees 
(Goodfellow et al., 2017; James et al., 2017). This means that an RF 
model is not strongly dependent on any specific examples or features. 
Thus, reproducibility and interpretability might be problematic (James 
et al., 2017). Nevertheless, the model can generalize well on unseen 
data. 

In this study, in order to deal with the problem of imbalanced classes, 
the trained RF model was prompted to use all of the examples from the 
eligible class—and twice that number from the non-eligible studies 
class. This resulted in a model that placed much more weight on the 
underrepresented class and thus imposed a greater penalty for 
misclassification. 

4.2.4. Feedforward neural network 
A feedforward neural network (FNN) might be seen as an extension 

of generalized linear models, using interconnected layers of neurons 
(extracted features) to process data through linear and non-linear 
transformations (James et al., 2017). As a statistical learning model, 
neural networks have several advantages, such as their ability to fit 
complex models and to achieve high accuracy. These two properties 
make neural network models a popular choice for tasks that are complex 
and require extremely high performance. However, neural network 

models also have certain disadvantages. The solution is not uniquely 
defined or guaranteed, different training processes can lead to different 
solutions of the parameters, the models are too complex to be inter-
pretable (e.g., James et al., 2017), and the network architecture can 
sometimes be arbitrary (i.e., there are no guidelines on what type of an 
architecture can be used for what type of a problem). 

In this study, the neural network consisted of an input layer with the 
same number of units as the number of features extracted using the bag- 
of-words technique, along with two hidden layers with a Leaky ReLU 
activation function (PyTorch, 2023a, 2023b), which is characterized by 
a small linear slope in the negative part of the number line and linear 
function in the positive part of the number line (Goodfellow et al., 
2017). The output layer consisted of a single node with a binary logistic 
activation function, also known as a logistic function, which is a rep-
resentation of the probability that a set of inputs belongs to one of the 
two classes (eligible vs. non-eligible abstracts). 

Given that the data consist of two highly imbalanced classes, for the 
training process we employed stochastic gradient descent optimization, 
which uses each of the examples from the eligible class and an equal 
number of examples from the non-eligible class for each of the training 
steps. Since neural networks have a large capacity, regularization 
techniques were employed to avoid overfitting. In particular, weight 
decay regularization was utilized as well as the so-called drop-out 
technique, which randomly turns off neurons in each training step. With 
the weight decay approach, the neural network is biased to decrease the 
values of the weights, resulting in a smaller loss value (hence the name 
weight decay). Meanwhile, the dropout regularization does not allow 
any neuron to become too specialized for a particular feature, which in 
turn leads to better generalization to unseen data. 

4.2.5. Human raters 
A 10% test set (N = 319) was also screened by a new cohort of 

trained raters to compare the ML models with the performance of human 
raters. The human classifiers demonstrated a recall of 100%, but their 
precision was only 15%. This means that even though humans are able 
to recall all of the studies, there are many false positives, which is un-
desirable when seeking to saves time and effort in abstract screening. 
The false-positive rate suggests that humans are using a strategy 
whereby they allow too many studies to be considered eligible in order 
to prevent missing some relevant studies. Most ML models can be trained 
to do this by adjusting (twitching) the threshold that is used for 
belonging to one class or another. However, this twitching will lead to a 
decrease in precision, as seen with the human raters. 

5. Analysis 

5.1. Evaluation and performance metrics 

In the present study, we selected recall, precision, and F score as 
performance metrics. As we were working with highly imbalanced 
classes, accuracy was not a useful measure because it does not indicate 
actual performance in terms of classifying eligible studies (which we are 
interested in). In order to evaluate the models, we first tested them on 
unseen data (10% of the dataset) and selected the best-performing al-
gorithms to complete abstract screening for a subsequent literature 
search. It was also important to set realistic expectations regarding how 
well the algorithm could balance between precision and recall. We set 
the expectation for recall to 0.8 and the minimum precision level to 
0.15. Our goal was to ensure that the ML algorithms did not perform 
worse than human raters in terms of precision. With this level of pre-
cision and recall, it is possible to extract most of eligible studies while 
simultaneously reducing the workload for human raters in full-text 
screening and subsequent coding. 
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5.2. Used tools and packages 

To develop and apply the classification algorithms, we used two 
programming platforms: R (R Core Team, 2020) and Python (Python 
Software Foundation, 2024). The extraction of the features was done 
using the R package “tm” (Feinerer et al., 2008) together with base R 
functionalities. The tm package was also used in the preprocessing. The 
model building was done using different packages. Logistic regression 
was performed using the “glmnet” package (Simon et al., 2011), and the 
SVM model was trained using the “e1071” package in R (Meyer et al., 
2023). Additionally, this package offers tools for cross-validation, 
non-linear transformations of the decision boundary, and manually 
setting the weighting of each of the classes (Meyer et al., 2023). The RF 
was set up and trained with the “randomForest” package in R (Breiman, 
2001)). It offers the ability to manually set up the number of features 
that are going to be randomly chosen and to set restrictions for the ex-
amples to be chosen from each class. This is important because this is 
one particular solution for the problem of imbalanced data (Liaw & 
Wiener, 2002). FNN was set up using the “PyTorch” library in Python 
(PyTorch, 2023a, 2023b). PyTorch offers tools for setting up highly 
customizable FNNs, along with tools for their training (Paszke et al., 
2019). The codes used for the analysis can be found online (https://osf. 
io/5z6n2/?view_only=71372cf2ac2f40fea75f89511fdb39cc). 

6. Results 

6.1. Algorithm training and testing results 

The regularized logistic regression model used LASSO regularization 
and was trained on 80% and validated on 10% of the available data. The 
choice of the regularization coefficient (0.94) was based on 10-fold 
cross-validation. The model used different weighting of the two clas-
ses, setting the importance of the eligible class to be 13 times higher than 
that of the non-eligible class (due to the distribution of the two classes). 
The model used only linear combinations of the coefficients. For the rest 
10% of data (test dataset) the model achieved a recall of 0.71, with a 
precision of 0.17 (F score = 0.27). 

SVM was also trained on 80%, validated on 10% of the data. Since 
there were more than 500 features (high-dimensional space), we opted 
for a model with a linear decision boundary, as any of the more complex 
models were more likely to overfit. The value of the cost was chosen 
using 10-fold cross validation. The eligible class was weighted 13 times 
more than the non-eligible class. Since the linear SVM classifier can be 
seen as a type of logistic regression with better generalizability, it was 
expected that the model would perform better than the logistic regres-
sion. This was indeed the case. For the rest 10% of data (test dataset) the 
SVM classifier correctly classified 21 of the 25 relevant examples, rep-
resenting a recall of 84%. At the same time, its precision was 20%. This 
result is an improvement compared to the logistic regression model, 
which had a slightly worse overall recall and precision. The F score was 
0.32. 

The RF model was trained on 80% of the available data, and 10% was 
used for the validation. The model consisted of 4500 classification trees. 
Each tree was built using all of the available examples from the eligible 
class and twice that many examples from the non-eligible class. Addi-
tionally, the relevant class was weighted 13 times more than the irrel-
evant class. For the rest 10% of data (test dataset) the recall of the model 
on the test dataset was 0.60 (15 out of 25 relevant studies), while the 
precision was 0.13. This model, even though it was more complex than 
the logistic regression and SVM models, exhibited poor performance (F 
score = 0.21). 

FNN is a generalization of the generalized linear model with a 
number of linear and non-linear transformations of the original data. For 
the purposes of this study, we once again used only 80% of the available 
data, with 10% dedicated to a validation set and 10% to the test set. This 
model demonstrated the best performance (F score = 0.76). The recall 

was 0.8, while the precision was 0.72. This precision was significantly 
better than that of any of the other models, while the recall was slightly 
worse than the recall of the SVM. A frequency interpretation of these 
results shows that the neural network model is able to extract most of the 
studies (i.e., 80% of them), and of those that are extracted, 72% are 
likely to be truly relevant. (see Table 1 to The summary of the results for 
all models is presented in Table 1. 

6.2. Performance on a follow-up meta-analysis 

A follow-up meta-analysis was conducted to include new published 
studies. The follow-up included 2373 studies (published between 2018 
and 2020) found in databases and identified for title and abstract 
screening (after removing duplicates). The search string, included da-
tabases, and eligibility criteria were identical to those used for the initial 
meta-analysis (see Chernikova et al., 2020).Based on the results from 
model training and testing, we selected SVM and RLR (which performed 
similarly to human raters) to classify the set of 2373 abstracts from 
studies published between 2018 and 2020. The algorithms agreed on 
2062 (87%) abstracts (400 were labeled as eligible and 1662 as 
non-eligible). The other 311 (13%) abstracts were labeled as eligible by 
one of the two algorithms. These abstracts were reviewed by an expe-
rienced human rater, and 58 abstracts were included in full-text review. 
We also conducted an adequacy check to see if any eligible studies might 
have been labeled as “not eligible”: 10% of randomly selected abstracts 
(N = 165) labeled as “not eligible” by both algorithms were rated by an 
experienced rater blind to the algorithm’s decisions. No abstracts from 
this set were included in the full-text review, which supported the al-
gorithm decisions. In total, 458 abstracts (19% from the initial abstracts) 
were subjected to full-text review. The use of algorithms saved 
approximately two-thirds of the time required for human raters to 
perform the abstract screening (based on records from the initial 
meta-analysis). 

7. Discussion 

7.1. Summary of the results 

Four different models were trained, and the performance of each was 
evaluated, using recall, precision, and F score as performance measures. 
Of all the models that were trained, the FNN showed the best results, 
with a recall of 80% and a precision of 72%. Notably, in real-life ap-
plications involving systematic literature reviews with or without a 
meta-analysis, recall is (and should be) getting higher value than pre-
cision, as missing a relevant study is considered more problematic than 
including a study that can later be excluded by the researcher during the 
full-text review. However, precision results in the most time-efficient 
work. For the follow-up meta-analysis, we implemented two different 
algorithms: SVM had the highest recall (outperforming FNN) and per-
forming similarly to the human raters in precision. RLR was selected as 
the one with the best interpretability and still relatively high recall and 
precision comparable with human raters. Furthermore, we simulated 
double coding for the abstract screening (i.e., letting different algo-
rithms code the same data and assess their agreement) to estimate the 
practical value of the trained algorithms. The algorithms were successful 

Table 1 
Summary of the findings on a 10% test data set (N = 319; eligible studies = 25).  

Algorithm/Metrics RLR SVM RF FNN HR 

Recall 0.71 0.84 0.6 0.8 1 
Precision 0.17 0.2 0.13 0.72 0.15 
F score 0.27 0.32 0.21 0.76 0.26 

Note. Abbreviations stand as follows: RLR = Regularized Logistic Regression, 
SVM = Support Vector Machine, RF = Random Forest, FNN = Feedforward 
Neural Network, HR = Human Raters. 
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in reducing the amount of time spent on abstract screening, and they 
were also were accurate in assessing the eligibility of the abstracts. We 
believe that using multiple different algorithms might offer further 
benefits for ensuring quality and efficiency of the text classification. 

7.2. Scope and limitations 

This study aimed at tackling the problem of hyper-publication in the 
scientific literature by developing ML algorithmic tools that assist, and 
ideally automate, the process of classifying the eligibility of studies for a 
meta-analysis in an educational context based on their abstracts. The 
development, validation, and testing of the algorithms was exemplary 
performed on studies that had been manually coded as eligible or non- 
eligible for a meta-analysis on the effects of simulation-based learning 
in higher education and a follow up meta-analysis, aiming to update 
state-of-the-art research evidence by aggregating empirical primary 
studies. 

We argue that approaches and procedures presented in this paper can 
be applied to different subjects within the educational context, as they 
share similar features, including the highly heterogeneous structure and 
reporting standards for abstracts, as well as the imbalanced distribution 
of eligible and non-eligible studies. These tools are particularly effective 
for updating the results of systematic literature reviews when a signifi-
cant amount of primary data already exists and can be used for training. 

For new systematic literature reviews with or without a meta- 
analysis synthesizing empirical or conceptual papers, other tools and 
software implementing different ML algorithms and natural language 
processing tools should also be considered (for a review, see Campos 
et al., 2023). 

One of important limitations of this study is that the algorithms were 
trained without using any prompts or prior information (e.g., eligibility 
criteria). The use of prior information is a standard practice for human 
raters and statistical modeling using the Bayesian approach. New 
training approaches, such as for Bayesian neural networks, allow the use 
of prior information in the model training and can improve the model 
performance, especially if full automatization is desired. 

7.3. Outlook 

An alternative approach to the supervised ML algorithms described 
here could be active ML, unsupervised ML methods, generative artificial 
intelligence (AI), etc., which might offer further advancements to the 
performance of text classification tasks. Multiple studies using and 
evaluating the use of AI and prioritized screening report encouraging 
results (e.g., Hamel et al., 2021; O’Mara-Eves et al., 2015). 

Unsupervised methods can be used for clustering and classifying data 
points based on similarities between them. Ideally, the method should 
be able to identify an optimal way to group studies on a specific topic 
that is aligned with the process of screening for a meta-analysis. 
Potentially, an unsupervised algorithm could be used on a large set of 
publications in a certain domain and generate multiple classes based on 
similarities in these studies, providing a basis for conducting multiple 
meta-analyses on these different classes and leading to a more efficient 
meta-analysis research output. However, unsupervised ML tools are not 
guaranteed to result in the same clusters that we aim to identify quali-
tatively, as extracted features can have some statistical commonalities 
(e.g., frequently reoccur together without being actually connected) but 
not linguistic ones, with the opposite scenario (having a conceptual or 
linguistic connection without being statistically related) also being 
possible (e.g., Alloghani et al., 2020). Furthermore, many studies also 
emphasize, that performance of unsupervised or fully automated text 
screening is rather poor, while semi-automated analysis is usually more 
reliable (e.g., Gartlehner et al., 2019; Gates et al., 2020). 

Generative AI and Large Language Models (LLM). Further option to 
support text classification and abstract screening is offered by evolving 
field of LLM and generative AI tools. The recent preprint in medical 

education (Tran et al., 2023) discusses use of LLM and generative AI in 
context of medical research. These algorithms are capable of reducing 
the screening workload by 65%. However there are many challenges to 
ensure transparency and interpretability of such models. The conclusion 
drawn in this study is that LLM can provide highly sensitive and 
moderately specific recommendations for text classification during title 
and abstract screening in systematic reviews (Tran et al., 2023). How-
ever, AI and LLM models are capable and should rather complement, but 
not fully replace human assessment. No similar systematic in-
vestigations were performed in educational context so far. However, we 
assume that the domain-specific characteristics (e.g., reporting stan-
dards, specific terminology used, context differences across countries) 
might also be very important in training and evaluating performance of 
LLM algorithms. 

Further aspects related to conducting systematic literature reviews 
with or without a meta-analysis could also be supported by supervised, 
semi-supervised, and unsupervised ML algorithms and LLM. For 
example, this might include the extraction of statistical data (see Ivi-
mey-Cook et al., 2023) or moderator coding to further enhance effi-
ciency and leverage the most up-to-date evidence to develop theory and 
inform practical decision-making. It is also worth noticing, that the 
performance of ML and AI tools can improve over time, not only within 
the systematic review due to training, but also as new methods and 
approaches might evolve. Therefore, further research can investigate the 
challenges with reproducibility and transparency of these models and 
tools and derive on recommendations on how to use them across 
different research fields. 

7.4. Conclusion 

In addressing the challenges of conducting systematic literature re-
views with or without a meta-analysis in the educational context, this 
study demonstrates the benefits of ML algorithms in streamlining the 
title and abstract screening process, reducing the workload and main-
taining transparency of the process. The method described in this study 
has the potential to speed up the process of updating systematic litera-
ture reviews with or without a meta-analysis in rapidly growing fields of 
research (e.g., technology-enhanced learning). By training and testing 
four different ML models, it was found that the FNN model out-
performed other models and human raters in precision and recall, of-
fering a promising approach to reduce the time and effort required for 
manual screening. The use of ML algorithms, particularly in updating 
existing systematic literature reviews with or without meta-analysis, not 
only saves considerable amount of time but also maintains consistency 
in the selection process. Despite these advancements, we acknowledge 
the necessity of human oversight in ensuring the accuracy and relevance 
of selected studies. Future research should explore the integration of 
active ML, generative AI and LLM to further enhance the efficiency and 
comprehensiveness of systematic literature reviews in educational 
context. 
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