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A B S T R A C T

Multi-class object detection in infrared images is important in military and civilian use. Deep learning methods
can obtain high accuracy but require a large-scale dataset. We propose a generative data augmentation
framework DOCI-GAN, for infrared multi-class object detection with limited data. Contributions of this paper
are four-folds. Firstly, DOCI-GAN is designed as a conditional image inpainting framework, yielding paired
infrared multi-class object image and annotation. Secondly, a text-to-image converter is formulated to transform
text-format object annotations to bounding box mask images, leading the augmentation to be mask-image-
to-raw-image translation. Thirdly, a multiscale morphological erosion-based loss is created to alleviate the
intensity inconsistency between inpainted local backgrounds and global background. Finally, for generating
diverse images, artificial multi-class object annotations are integrated with real ones during augmentation.
Experimental results demonstrated that DOCI-GAN augments dataset with high-quality infrared multi-class
object images, consequently improving the accuracy of object detection baselines.
1. Introduction

Infrared (IR) cameras are resistant to illumination variations, and
thus have robust all-day performance. IR cameras steadily gain popu-
larity in many domains, especially in military surveillance and remote
sensing applications. When IR cameras are integrated into the intelli-
gent systems designed for these applications, automatic object detection
in IR images becomes a fundamental task.

In recent years, flourishing deep learning technology has brought
vigor and vitality to object detection in natural image domain, e.g.
RCNN family models [1,2], YOLO-like models [3,4]. Profiting from the
excellent representation learning capability, deep learning-based object
detection methods break the bottleneck of traditional methods and
increase the accuracy by a large margin. The success of deep learning
methods in natural image domain, spurs their application in IR image
domain for detecting vehicles, pedestrian, and small targets [5].

However, the impressive performance of deep learning heavily re-
lies on large-scale annotated datasets, which proves challenging to
obtain in the case of massive IR images. More crucially, manually
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annotating bounding boxes for objects is time-consuming. As a con-
sequence, deep learning for IR object detection is confronted with
the data scarcity problem in real-world scenarios. Data augmentation
(DA) is a promising technique to alleviate this problem by artificially
enlarging datasets through the generation of new samples from existing
samples, thus providing deep learning methods with sufficient training
data.

In this work, our focus lies on IR multi-class object detection task.
We study DA technique to tackle this task in scenarios where training
data is scarce. We formulate a DA pipeline rooted in an image inpaint-
ing framework [6], to generate IR object images based on provided
bounding box annotations. A novel inpainting framework is proposed
to reconstruct an object with given position and category as conditions.
The contributions of this paper are four-folds. Firstly, object detection
oriented conditional inpainting GAN (DOCI-GAN), is designed to au-
tomatically produce both IR multi-class images and object annotations
without requiring additional manual labeling. Secondly, a text-to-image
converter is constructed to transform text-format object annotations
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into image-format bounding box masks. Accordingly, DA is reformu-
lated as image-to-image translation, thereby boosting augmentation
efficiency. Thirdly, a noticeable distinction exists between the local
background intensity distributions of inpainted objects and those of the
surrounding global background. To address this issue, we create a novel
multiscale morphological erosion-based Mean Squared Error (MSE)
loss, aimed at mitigating intensity inconsistencies around the borders
of inpainted regions. Finally, to enrich the diversity of augmented IR
images, various artificial object annotations are introduced alongside
real ones.

We conducted experiments to assess the efficacy of DOCI-GAN.
Results indicate that DOCI-GAN generates IR multi-class object im-
ages with high plausibility and diversity. Thereby, DOCI-GAN provides
deep learning detection models with sufficient training data backup,
resulting in significant improvement in object detection accuracy.

2. Related works

Our study builds upon previous literature in image inpainting, data
augmentation, IR object detection domains. This section provides an
overview of relevant works.

2.1. Image impainting

Image inpainting aims to fill in missing regions of images with
reasonable and fine-grained texture. Nowadays, deep learning neural
networks show their advance in capturing local context and texture
information, thereby enabling accurate inference of missing regions.
Among these networks, generative adversarial networks (GANs) have
become dominant in the past decade. For example, Chen et al. [7]
integrated both a global discriminator and a local discriminator within
the GAN framework to ensure the global coherence and authenticity of
local details in the generated images. Besides utilizing two discrimina-
tors, Zhang et al. [8] further embedded domain knowledge through a
hierarchical variational auto-encoder into the latent variable space to
guide inpainting process.

Lately, diffusion models have emerged as a cutting-edge category
of deep generative models. Founded on the non-equilibrium thermo-
dynamics theory, J. Ho et al. [9] proposed the denoising diffusion
probabilistic model (DDPM), showcasing remarkable ability in gener-
ating diverse image with high-level details. R. Rombach et al. [10]
introduced cross-attention layers into diffusion models, to generate
image from conditional inputs, such as text. For image inpainting task,
Zhang et al. [11] incorporated a Bayesian framework into diffusion
model, to jointly modify both revealed and unrevealed regions, leading
to improved coherence in the inpainted images. Corneanu et al. [12]
simplified the process of conditioning diffusion models by a new condi-
tioning mechanism that works in latent spaces, reducing computational
costs for inpainting diffusion models.

2.2. Data augmentation

Data augmentation (AD) presents as an explicit solution to data
scarcity by exploiting deep generative models for generating samples
with complex and rich variations. Recent works have explored the po-
tential of multiple GANs for DA. For example, CycleGAN can be utilized
in domain transfer, translating images from one domain with sufficient
annotated data to enlarge the training dataset for a target domain [13].
Bosquet et al. [14] designed a Downsampling GAN tailored for small
object augmentation, which generates smaller objects from larger ones
then places them into an existing background. Bailo et al. [15] utilized
conditional GAN to generate photorealistic blood cell images, utilizing
segmentation masks as conditional information. In this work, we focus
on adopting the conditional GAN framework for multi-class object DA.
The main difference between Bailo’s work and ours is that we aim to
generate IR images for object detection task, where multi-class objects
2

are inpainted with given conditional bounding box information.
2.3. Object detection in IR images

In the IR image domain, object detection tasks are usually centered
around pedestrian, vehicles and small targets. Small target detection is
currently a trending topic [16] where the low contrast between small
targets and noisy background poses a challenge [17]. A typical strategy
to improve the performance of small target detection models is to ef-
fectively fuse high-level and low-level features, ensuring simultaneous
extraction of semantics and preservation of details [18,19]. Another
frequently used approach is utilizing attention modules to enhance
features of small targets [20,21].

Different from small targets, IR objects we study in this work
are big enough to discern their object categories, thus we can carry
out multi-class object detection, including vehicles and pedestrian. In
the realm of IR multi-class object detection, Li. et al. [22] adapted
YOLO model by devising a feature extraction module to fully exploit
both shallow and detailed features, along with a multi-layer detection
head for identifying weak and small objects within IR dataset. Dai.
et al. [23] integrated a SSD with a residual branch, capable of being
removed during inference, to construct a lightweight network with high
detection efficiency for vehicle and pedestrian datasets. Similarly, Jiang
et al. [24] leveraged YOLO models for object detection in UAV thermal
IR images.

3. Methods

The flowchart of the proposed DOCI-GAN is illustrated in Fig. 1.
In this section, we introduce the core idea and main architecture of
DOCI-GAN. Then we present additional details of DOCI-GAN, including
bounding box mask generation and training loss.

3.1. Detection oriented conditional inpainting GAN

Augmenting training data for supervised learning in IR object de-
tection necessitates generating paired IR image and bounding box
annotation. Bounding box annotations can be readily fabricated arti-
ficially. Therefore, we propose to address the DA problem of IR object
images through conditional image generation. Here, multi-class IR
objects are generated under the condition of bounding box annotation.

Center on the aforementioned idea, we build a model for IR im-
age generation using conditional GAN. Conditional GAN shows its
particular competence in image-to-image translation. The most fa-
mous work is Pix2Pix [25], which enables image reconstruction from
label maps or edge maps. Accordingly, in our work, rather than em-
ploying word embedding techniques to convert text-format bounding
box annotations into vectors for conditional input, we attain bound-
ing box mask images from annotations and frame the DA process as
mask-image-to-raw-image translation with our proposed DOCI-GAN.

As depicted in Fig. 1, in DOCI-GAN, starting from bounding box
masks 𝑥𝑚 ∈ 𝐑𝐻×𝑊 ×1, where 𝐻 , 𝑊 represent height, width of the mask
image respectively, the generator is to translate these mask images to
IR object images 𝑦𝑓 ∈ 𝐑𝐻×𝑊 ×1. The bounding box masks delineate
rectangle areas and the categories of objects. Bounding box masks is
obtained by a text-to-image converter, which will be elaborated in next
subsection. To streamline the generation process, we also incorporate
background images 𝑥𝑏 ∈ 𝐑𝐻×𝑊 ×1 into the input, obviating the need for
the model to fabricate intricate backgrounds. Generated images with
inferior or incorrect background are thus avoided.

With background images as conditional input, the mask-image-to-
raw-image translation actually becomes an image inpainting process.
The objective of the generator is to accurately inpaint multi-class
objects within specified rectangular areas and categories onto the given
backgrounds. Hence, we name our DA model for IR images as detection
oriented conditional inpainting GAN, or DOCI-GAN.

Detailed pipeline of DOCI-GAN is displayed in Fig. 1. The generator
𝐻×𝑊 ×1
takes random noise 𝑥𝑛 ∈ 𝐑 as input, together with bounding
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Fig. 1. Illustration of proposed DOCI-GAN pipeline. The generator is to generate IR images with specified objects based on provided bounding box (BB) masks and background
images. The discriminator is to distinguish between the generated IR object images and real images.
box mask 𝑥𝑚 and background image 𝑥𝑏 as condition, to generate IR
image 𝑦𝑓 . Inspired by the work [26], we adopt a symmetric structure
for the input of generator. This symmetric setup involves replicating the
bounding box mask on both sides of the background image, creating a
sandwich-like conditional input denoted as 𝑥𝑐−𝑠𝑎𝑛𝑑𝑤 = [𝑥𝑚, 𝑥𝑏, 𝑥𝑚] ∈
𝐑𝐻×𝑊 ×3. By this symmetric structure, influence from intensity discrep-
ancies between the bounding box mask and the background image can
be mitigated. 𝑥𝑐−𝑠𝑎𝑛𝑑𝑤 is then combined with three-channel random
noise 𝑥𝑛−𝑠𝑎𝑛𝑑𝑤 = [𝑥𝑛, 𝑥𝑛, 𝑥𝑛] ∈ 𝐑𝐻×𝑊 ×3 and fed into the generator.

Upon the completion of object generation by the generator within IR
background images, the discriminator steps in to distinguish between
the synthetic fake image 𝑦𝑓 and original real image 𝑦𝑟 ∈ 𝐑𝐻×𝑊 ×1.
Adhering to the conventional setting in conditional GAN, conditional
information, that is the bounding box mask 𝑥𝑚, is inputted into dis-
criminator meanwhile. 𝑥𝑚 enables the discriminator to disregard the
background and concentrate solely on assessing the quality of the
generated objects in comparison to the real ones. Moreover, in order
to enhance the convergence stability of DOCI-GAN, we employ the
symmetric setup for the discriminator input. Concretely, as illustrated
in Fig. 1, the discriminator receives synthetic IR image along with
bilateral bounding box masks as the fake input 𝑧𝑓−𝑠𝑎𝑛𝑑𝑤 = [𝑥𝑚, 𝑦𝑓 , 𝑥𝑚],
and the real image with bilateral masks as the real input 𝑧𝑟−𝑠𝑎𝑛𝑑𝑤 =
[𝑥𝑚, 𝑦𝑟, 𝑥𝑚].

In traditional conditional GANs, the discriminator typically pro-
duces a single scalar value as an assessment of authenticity. Yet, relying
solely on such a scalar for the adversarial loss of both generator and
discriminator causes unreliability. This single scalar output indicates
the authenticity of an image globally but lacks attention on every
subregion. In contrast, the discriminator in DOCI-GAN addresses this
limitation by producing a score map as the output to discern between
fake and real inputs. With the score map as output, the discriminator
empowers the generator to generate high-resolution, fine-grained IR
multi-class object images. This approach ensures that attention is paid
to the local authenticity of every object within the synthesized images.

3.2. Network architecture of generator and discriminator

In DOCI-GAN, the generator adopts a U-shaped architecture, a
design proven to be effective in image inpainting [27]. Leveraging
the U-shaped framework, the generator encodes contextual information
from bounding box masks and IR background images into multi-level
features. These features are then integrated through skip connections
and decoded to produce IR images with reasonable global context and
sufficient local details. Additionally, we introduce residual connections
3

within the generator. These connections link consecutive convolutional
layers in every stage of the U-shaped architecture, forming residual
blocks. With residual blocks, the generator ensures robust training
while preserving crucial structural and contextual information, thereby
contributing to the generation of excellent inpainting results.

Detailed architecture of the generator is displayed in Fig. 2. Hyper-
parameter setting of the generator can be found in Table 1. Moreover,
we integrate non-local attention module [28] in the generator. This
module enables the capturing of long-range correlations among differ-
ent regions, boosting the generator to learn global contextual features
for inpainting reasonable objects and their surroundings.

Architecture of the discriminator is also illustrated in Fig. 2. It com-
prises five successive convolutional layers to produce a score map dif-
ferentiating real input 𝑧𝑟−𝑠𝑎𝑛𝑑𝑤 from fake input 𝑧𝑓−𝑠𝑎𝑛𝑑𝑤. With a shallow
model structure, the discriminator efficiently captures detail difference
between forged objects and real ones, encouraging the generator to
synthesize plausible IR object images.

3.3. Bounding box mask generation

Each original IR object image has the bounding box annotations
stored as text, following the COCO format [29]. In this format, a JSON
structure collects information on labels and metadata, including the
coordinates of bounding boxes and the category of each object. Given a
COCO file, we utilize a text-to-image converter, named T2I converter,
to generate bounding box masks as conditional information for DOCI-
GAN. Concretely, T2I extracts the coordinates of bounding boxs along
with the category labels of objects, and then convert this information
into a bounding box mask image.

In the bounding box mask images as shown in Fig. 3, each bounding
box delineates an area containing an object. These bounding boxes
are then assigned different gray values, corresponding to different
categories. The rest areas in every bounding box mask image represent
the background and are assigned a value of zero.

When augmenting IR object image data, we artificially introduce
new bounding boxes and add them to the bounding box masks of
original IR images. To ensure the relationality of augmented objects,
we constrain the object to generate is spatially close to a real object
of the same category. Specifically, these additional bounding boxes
are randomly positioned near the original IR objects belonging to the
same category. Thereby, generated objects of each class remain nearby
authentic samples of the corresponding class, preventing the occur-
rence of illogical object positions. With these artificial bounding box
masks, DOCI-GAN generates IR multi-class object image with increased
diversity, realizing effective DA for object detection.
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Fig. 2. Architectures of DOCI-GAN’s generator and discriminator. Conv is the convolutional layer. IN is the in-stance normalization layer. ConvTran is the transposed convolutional
layer. LeakyReLU is the activation layer. S represents stride length and P represents padding value.
Fig. 3. Illustration of T2I converter. It transforms COCO-format bounding box annota-
tions (displayed in the left rectangle) to bounding box mask images (displayed in the
right rectangle).

Table 1
Parameters of DOCI-GAN’s generator. Conv 𝑚 × 𝑚, 𝑛 means convolutional layer with
kernel size 𝑚 × 𝑚 and channel number 𝑛. S means stride length and P means padding
size.

Block Convolutional layers setting

ResBlock_EN 1 [Conv 5 × 5, 64, S1, P2] × 2
𝑆𝑖𝑑𝑒𝑤𝑎𝑦: Conv 1 × 1, 64, S1

ResBlock_EN 2 [Conv 5 × 5, 128, S1, P2] × 2
𝑆𝑖𝑑𝑒𝑤𝑎𝑦: Conv 1 × 1, 128, S1

ResBlock_EN 3 [Conv 5 × 5, 256, S1, P2] × 2
𝑆𝑖𝑑𝑒𝑤𝑎𝑦: Conv 1 × 1, 256, S1

ResBlock_EN 4 [Conv 5 × 5, 512, S1, P2] × 2
𝑆𝑖𝑑𝑒𝑤𝑎𝑦: Conv 1 × 1, 512, S1

ResBlock_DN 1

Conv 1 × 1, 256, S1
ConvTran 4 × 4, 256, S2, P1
Conv 3 × 3, 256, S1, P1
𝑆𝑖𝑑𝑒𝑤𝑎𝑦: Conv 1 × 1, 256, S1

ResBlock_DN 2

Conv 1 × 1, 128, S1
ConvTran 4 × 4, 128, S2, P1
Conv 3 × 3, 128, S1, P1
𝑆𝑖𝑑𝑒𝑤𝑎𝑦: Conv 1 × 1, 128, S1

ResBlock_DN 3

Conv 1 × 1, 128, S1
ConvTran 4 × 4, 128, S2, P1
Conv 3 × 3, 128, S1, P1
𝑆𝑖𝑑𝑒𝑤𝑎𝑦: Conv 1 × 1, 128, S1

ResBlock_DN 4

Conv 1 × 1, 64, S1
ConvTran 4 × 4, 64, S2, P1
Conv 3 × 3, 64, S1, P1
𝑆𝑖𝑑𝑒𝑤𝑎𝑦: Conv 1 × 1, 64, S1

ConvBlock 1 [Conv 5 × 5, 128, S1, P2] × 2
ConvBlock 2 [Conv 5 × 5, 256, S1, P1] × 2
ConvBlock 3 [Conv 5 × 5, 128, S1, P1] × 2
ConvBlock 4 [Conv 5 × 5, 128, S1, P2] × 2
ConvBlock 5 [Conv 5 × 5, 64, S1, P2] × 2
4

3.4. Loss function

Let 𝐺 and 𝐷 represent the generator and discriminator of DOCI-
GAN. To mitigate unstable training and mode collapse of deep gen-
erative model, we leverage the adversarial training loss presented
in Wasserstein GANs [30] in DOCI-GAN. As an innovation to tradi-
tional GANs, Wasserstein GANs employ a smooth metric, the Wasser-
stein distance, to measure the dissimilarity between distributions of
fake and real data. The adversarial training objective of DOCI-GAN is
consequently formulated as Eq. (1).

𝐿𝐷𝑂𝐶𝐼−𝐺𝐴𝑁 (𝐺,𝐷) = − E𝑥𝑚 ,𝑦𝑟𝐷(𝑥𝑚, 𝑦𝑟) + E𝑥𝑚 ,𝑦𝑓𝐷(𝑥𝑚, 𝑦𝑓 )

+ 𝜆E𝑥𝑚 ,𝑦̂(∣∣ ∇𝑦̂𝐷(𝑥𝑚, 𝑦̂) ∣∣2 − 1)2
(1)

In Eq. (1), 𝑥𝑚 represents the bounding box mask. 𝑦𝑓 represents the
forged image while 𝑦𝑟 represents the real image. 𝑦̂ is uniformly sampled
along straight lines connecting pairs of forged and real IR images. ‖‖2
represents 2-norm. 𝜆 > 0 is a trade-off parameter. In our experiments,
𝜆 is set to 0.05. Utilizing the above adversarial loss, 𝐺 is trained to
translate bounding box masks along with background images into IR
images that closely resemble real ones.

During the training of 𝐺, we incorporate a perceptual loss 𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙
to assist 𝐺 in generating IR object images semantically consistent with
real ones. Here, we employ a perceptual loss defined in feature space
as follows:

𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙(𝐺) =E𝑦𝑓 ,𝑦𝑟
1

𝐻𝑊
‖𝜑(𝑦𝑓 ) − 𝜑(𝑦𝑟)‖2 (2)

In Eq. (2), 𝜑 is a feature extractor. 𝐻 and 𝑊 represent height and width
of paired forged image 𝑦𝑓 and real image 𝑦𝑟. In our implementation, we
choose VGG-19 pretrained on the ImageNet dataset as 𝜑. Since VGG-
19 network takes RGB images as input while IR images are grayscale,
we introduce the symmetric structure input comprising the bounding
box mask along with IR image for the pretrained VGG-19. Features
extracted by the 16th convolutional layer in VGG-19 are used for
computing 𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙.

Additionally, we propose a bounding box loss 𝐿𝑏𝑏𝑜𝑥 that leads 𝐺
to focus on producing plausible IR objects within specified bounding
boxes. The proposed bounding box loss is formulated as follows:

𝐿𝑏𝑏𝑜𝑥(𝐺) = E𝑥𝑚 ,𝑦𝑓 ,𝑦𝑟

𝑁
∑

𝑛=1

1
𝐻𝑛

𝑚𝑊 𝑛
𝑚
‖𝑥𝑛𝑚𝑦𝑓 − 𝑥𝑛𝑚𝑦𝑟‖1 (3)

In Eq. (3), 𝑁 represents number of bounding boxes in a bounding box
mask image 𝑥𝑚. 𝐻𝑛

𝑚 and 𝑊 𝑛
𝑚 are respectively the height and width of the

𝑛𝑡ℎ bounding box. 𝑥𝑛𝑚 represents the binary mask of 𝑛𝑡ℎ bounding box.
‖‖1 represents 1-norm. The bounding box loss emphasizes the penalty
on generated object regions, so it prompts DOCI-GAN to generate
realistic objects.
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Fig. 4. Bounding box artifacts exist in generated IR images.
Multiscale Erosion-based MSE Loss: Since DOCI-GAN realizes DA
as mask-image-to-raw-image translation, those bounding box masks as
conditional input can cause artifacts in generated IR images. As shown
in Fig. 4, the grayscale contrast between the bounding boxes and the
surrounding areas in the mask image aids in distinguishing objects from
the background during inference. As a result, there is a notable intensity
disparity between the local background within the bounding boxes
of the generated image and its overall background. Even though the
generated objects within the bounding boxes may be of high quality,
this discrepancy can make the entire IR image appear artificial, looking
like objects simply pasted onto the background. To address this issue,
we define a novel mean square error (MSE) loss based on multi-
scale morphological erosion operation. Concretely, multi-scale erosion
is applied to both the original and generated images, expanding the
local backgrounds of objects to multiple spatial ranges. By minimizing
the distance between the multi-scale eroded results of the original
and generated images, the local and global backgrounds tend to be
consistent. The proposed multi-scale morphological erosion-based MSE
loss is formulated as follows:

𝐿𝑚𝑢𝑙𝑡𝑖−𝑒𝑟𝑜𝑠𝑖𝑜𝑛(𝐺) = E𝑦𝑓 ,𝑦𝑟

𝐸
∑

𝑒∈𝐸
‖𝑦𝑓 ⊖ 𝑒 − 𝑦𝑟 ⊖ 𝑒‖2 (4)

In Eq. (4), ⊖ represents erosion operation and 𝐸 represents the set
of multi-scale structural elements used for erosion. In experiments, 𝐸
includes structural elements of size (11, 21, 31, 41, 51, 61, 71, 81, 91).

4. Experiments

Below, we present a series of experimental results. Initially, we
detail the dataset and experimental settings in our work. Then, we
quantitatively and visually compare the performance of our proposed
DOCI-GAN with other advanced deep generation methods. Finally, we
train and test object detection models using the augmented datasets to
validate the effectiveness of DOCI-GAN.

4.1. Dataset and experiment settings

The motivation of this work is to find a DA solution for multi-class
object detection when confronted with limited training data. To this
end, we constructed a dataset containing 64 images for training and
320 images for testing, with a uniform size 360 × 360. Objects within
these IR images occupy an area ratio ranging from 0.001 to 0.01 of the
entire image. These objects fall into 9 categories, including cruise mis-
sile, ship, surveillance plane, cargo plane, helicopter, fighter, bomber,
big unmanned aerial vehicle (big UAV) and revolve unmanned aerial
vehicle (revolve UAV). Every IR image has corresponding background
image, with object annotation stored in a COCO-format JSON file. We
name the dataset as multi-class thermal infrared few-shot detection
(MCTIFD) dataset and make it publicly available in https://github.
com/RonaldoPeng/MCTIFD.git.

In our experiments, DOCI-GAN was trained from scratch using
Adam optimizer. We utilized a mini-batch size of 128, and the hyper-
parameters for Adam were set as follows: 𝛼 = 1𝑒 − 4, 𝛽1 = 0.5, 𝛽2 = 0.9.
Throughout the training process, input noise maps for the generator
were sampled from a uniform distribution within the interval [0, 0.05).
5

We implemented DOCI-GAN with Pytorch library. All experiments were
conducted on a platform equipped with 2 Intel Core e5-2640 CPU, and
128 GB RAM. For training purposes, 4 NVIDIA GeForce GTX 3090 GPUs
were used.

4.2. Visual comparison of different methods

In this subsection, we compare forged IR object images generated by
DOCI-GAN and other deep generative models, including conventional
GAN [31], VAE-GAN [32], DDPM [9], BicycleGAN [33], Pix2Pix [25]
visually. All methods were trained using the same training set. Fig. 5
showcases examples of generated images from different methods utiliz-
ing the MCTIFD dataset. For good visual effect, all generated IR images
are adjusted with automatic contrast enhancement. Original IR images
are in the first column for reference.

Among the compared methods, GAN, VAE-GAN, and DDPM were
fed solely with random noise as input, while BicycleGAN, Pix2Pix, and
DOCI-GAN received additional inputs of bounding box mask images
and background images. GAN, VAE-GAN and DDPM generate images
from scratch. In the images generated by GAN, while the texture
looks plausible, the background is quite noisy, and the quality of
generated objects are low. Instances of repeated objects of the same
class often appear within a single generated image, which is illogical.
VAE-GAN produces improved backgrounds, however, the generated
objects exhibit poor quality, making them hard to classify. DDPM, as a
diffusion model, generates better background but still struggles with
object generation. These noise-input generation models are severely
affected by the limited training dataset.

BicycleGAN, Pix2Pix and DOCI-GAN were inputted with bounding
box mask images and background images, resulting in synthetic images
with backgrounds resembling real ones, as shown in Fig. 5. However,
the backgrounds produced by BicycleGAN exhibit considerable noise.
The objects generated by BicycleGAN lack clarity, with some objects de-
viating from their original positions. In comparison, Pix2Pix produces
images with significantly less noise. The forged IR objects generated
by Pix2Pix exhibit improved quality and are precisely located at the
positions of the original objects. Upon further comparison between
Pix2Pix and our proposed DOCI-GAN, it is evident that the quality
of both forged IR objects and backgrounds by DOCI-GAN surpasses
that of Pix2Pix. The details of the background generated by DOCI-
GAN closely resemble those of the original image. Moreover, the forged
multi-class IR objects generated by DOCI-GAN are clear, featuring sharp
boundaries and recognizable shapes.

Fig. 6 presents a series of examples showcasing multi-class IR ob-
jects generated by different methods. The first row in Fig. 6 shows
real objects as a reference. Obviously, forged objects by GAN, VAE-
GAN, DDPM and BicycleGAN are of low quality. Many of them fail to
accurately reconstruct certain key characteristics, making classification
difficult. In contrast, the forged objects generated by Pix2Pix and DOCI-
GAN are more realistic, especially those generated by DOCI-GAN have
best visual quality.

In summary, DOCI-GAN yields IR multi-class object images that ex-
hibit superior visual quality compared to other methods. On one hand,
it generates multi-class objects with sharp boundaries and intricate de-
tails. On the other hand, DOCI-GAN leverages the inputted background

https://github.com/RonaldoPeng/MCTIFD.git
https://github.com/RonaldoPeng/MCTIFD.git
https://github.com/RonaldoPeng/MCTIFD.git
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Fig. 5. Examples of generated IR object images by compared deep generative methods and DOCI-GAN, utilizing the MCTIFD dataset. The red rectangles highlight objects expected
to appear in identical positions in both the original and forged images.
Fig. 6. Examples of multi-class IR objects generated by different generative models alongside original real objects from MCTIFD dataset.
images, resulting in forged images with more natural backgrounds and
less noise. Regarding these two aspects, the visual comparison between
the results of DOCI-GAN and other methods confirms the superiority of
DOCI-GAN.

4.3. Evaluation metrics for augmented images

In the task of augmenting IR object images, when background im-
ages and bounding box masks are provided, the main aim of DOCI-GAN
is to generate realistic objects. However, the objects we studied in this
work usually occupy a small area in IR images. Hence, when assessing
the performance of different methods for IR object image generation,
we propose to primarily compare the quality of the generated objects.
To be concrete, objects were extracted from generated IR images, and
image quality assessment metrics were employed to evaluate these
generated objects across different methods.

Quality of generated images is evaluated by objective metrics. Com-
mon full-reference metrics for image generation applications are based
on assessing the difference between generated image and its corre-
sponding real image, i.e. ground truth, such as MSE and peak signal
to noise ratio (PSNR). Spatial alignment between generated image and
ground truth is crucial for these metrics. However, during testing, as ar-
tificial bounding boxes were added to original bounding box masks, the
6

generated IR object images have no exact ground truths that are spa-
tially aligned. Therefore, in our experiments, we adopted reference-free
image quality assessment (IQA) metrics to evaluate the quality of gen-
erated IR images. Specifically, seven metrics were utilized, including
gray mean gradient (𝐺𝑀𝐺), Tenenbaum gradient (𝐺𝑇 ), energy gradient
(𝐺𝐸), Brenner gradient (𝐺𝐵), sum of adjacent difference (𝑆𝐴𝐷), spatial
entropy (𝐸𝑆 ), Inception Score (𝐼𝑆) [34] and Fréchet Inception Distance
(𝐹𝐼𝐷) [35].

𝐺𝑀𝐺 is defined as follows:

𝐺𝑀𝐺 = 1
(𝐻 − 1)(𝑊 − 1)
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(5)

𝐻 and 𝑊 represent the height and width of the forged IR object image
𝑦𝑓 . 𝑖 and 𝑗 denote the spatial indexes of pixels within the image.

𝐺𝑇 uses Sobel operators to compute gradient information in both
the horizontal and vertical directions of an image. The calculation is as
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follows:

𝐺𝑇 = 1
(𝐻 − 2)(𝑊 − 2)

⋅
𝐻−1
∑

𝑖=2

𝑊 −1
∑

𝑗=2

√
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(6)

n Eq. (6), ∗ represents convolution operation.
𝐺𝐸 is the sum of square of grayscale difference between adjacent

ixels, calculated as follows:

𝐸 = 1
(𝐻 − 1)(𝑊 − 1)

⋅
𝐻−1
∑

𝑖=1

𝑊 −1
∑

𝑗=1

(

|

|

|

𝑦(𝑖,𝑗)𝑓 − 𝑦(𝑖+1,𝑗)𝑓
|

|

|

2
+ |

|

|

𝑦(𝑖,𝑗)𝑓 − 𝑦(𝑖,𝑗+1)𝑓
|

|

|

2
)

(7)

𝐺𝐵 computes the grayscale difference between a pixel and its neigh-
ors with a horizontal or vertical distance of 2 as follows:

𝐵 = 1
(𝐻 − 2)(𝑊 − 2)

⋅
𝐻−2
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𝑆𝐴𝐷 computes the absolute sum value of grayscale differences
etween adjacent pixels, as defined in Eq. (9).

𝐴𝐷 = 1
(𝐻 − 1)(𝑊 − 1)
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𝑖=1
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∑
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(9)

𝐺𝑀𝐺, 𝐺𝑇 , 𝐺𝐸 , 𝐺𝐵 , 𝑆𝐴𝐷 all measures image sharpness and contrast,
here a higher value suggests better image quality. 𝐸𝑆 quantifies the
mount of information present in an image, with a higher 𝐸𝑆 indicating
icher content. 𝐸𝑆 can be defined as follows:

𝑆 = −
255
∑

𝑘=0
𝑝(𝑘) log2 𝑝(𝑘), 𝑝(𝑘) =

ℎ(𝑘)
𝐻𝑊

(10)

In Eq. (10), ℎ(𝑘) is the histogram of a forged image where 𝑘 is the
intensity index.

𝐼𝑆 and 𝐹𝐼𝐷 are commonly used to assess the quality and diversity
of images generated by generative models. 𝐼𝑆 correlates with human
perceptual realism scores of images. It computes a statistic of network
output by feeding generated images into a pretrained Inception model,
and it is defined as follows:

𝐼𝑆 = 𝑒
[

E𝑦𝑓
[

𝐷𝐾𝐿
(

𝑝
(

𝑧|𝑦𝑓
)

∥𝑝(𝑧)
)]

]

(11)

In Eq. (11), 𝐷𝐾𝐿(𝑝 ∥ 𝑞) represents the KL-divergence between two
probability distributions 𝑝 and 𝑞. Here, 𝑧 denotes the class label for

generated image 𝑦𝑓 . 𝑝(𝑧|𝑦𝑓 ) represents the posterior probability of a
label 𝑧 conditioned on 𝑦𝑓 , computed by the Inception model. A high
𝐼𝑆 suggests the generated images are of high quality and diversity.

In 𝐹𝐼𝐷, both forged images and real images are inputted into a
pretrained Inception model to extract visually relevant features. As-
suming that the feature distribution follows a multivariate Gaussian
distribution, the distance between the feature distributions of forged
images and real images is defined as follows:

𝐹𝐼𝐷 = ‖

‖

‖

𝜇𝑟 − 𝜇𝑓
‖

‖

‖

2

2
+ 𝑇 𝑟

(

𝛴𝑟 + 𝛴𝑓 − 2
√

𝛴𝑟𝛴𝑓

)

(12)

In Eq. (12), (𝜇𝑟, 𝛴𝑟) and (𝜇𝑓 , 𝛴𝑓 ) denote the mean and covariance of
features extracted from real images and forged images, respectively.
𝑇 𝑟 denotes the trace of a matrix. A low 𝐹𝐼𝐷 suggests that the forged
images closely resemble real images.

4.4. Quantitative comparison of different generative models

Table 2 presents a performance comparison between our DOCI-GAN
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and other deep generative models for image generation on the testing
Table 2
IQA results of objects generated by different deep generative models and the original
objects from the MCTIFD dataset. The highest IQA results are highlighted in bold.

Method∖measures 𝐺𝑀𝐺 𝐺𝑇 𝐺𝐸 𝐺𝐵 𝑆𝐴𝐷 𝐸𝑆 𝐼𝑆 𝐹𝐼𝐷

Original 4.98 174.70 72.09 973.40 89.56 0.29 1.61 –

GAN 2.89 81.56 32.85 496.14 55.66 0.24 1.74 123.60
VAE-GAN 3.13 89.52 39.03 390.06 62.91 0.23 1.42 87.08
DDPM 2.06 20.69 13.71 40.21 62.87 0.90 1.22 158.98
BicycleGAN 6.61 114.04 102.24 703.73 94.85 0.48 1.52 99.69
Pix2Pix 5.64 161.41 81.89 750.70 104.79 0.36 1.69 35.45

DOCI-GAN 4.91 167.04 70.48 834.55 91.66 0.29 1.53 18.93

set of the MCTIFD dataset. This table shows that our proposed DOCI-
GAN outperformed other models in terms of metrics 𝐺𝑇 and 𝐺𝐵 . This
uantitative result indicates that DOCI-GAN generated IR object images
ith high image contrast and clarity. Moreover, from the perspective of
ID metric, DOCI-GAN achieved a significantly lower value compared
o the other models, indicating that the generated IR object images by
OCI-GAN closely resemble real ones.

Table 2 also highlights that BicycleGAN achieved favorable results
n terms of 𝐺𝑀𝐺, 𝐺𝐸 and 𝐸𝑆 . High 𝐺𝑀𝐺, and 𝐺𝐸 values obtained
y BicycleGAN indicates that BicycleGAN also generated IR object
mages with high image contrast and sharpness. Additionally, a high
𝑆 value obtained by BicycleGAN suggests that generated IR objects

by BicycleGAN contain rich content. However, it is worth noting that
noisy images could also yield high 𝐸𝑆 values. In general, superior IQA
results cannot confirm that the generated IR objects are more plausible.
However, it is essential for the generated objects to approximate real
ones. Therefore, we propose to compute the difference between IQA
values of forged objects, denoted as 𝑀𝑓 , and IQA values of original
real objects, denoted as 𝑀𝑟. Specifically, the difference is expressed as
a ratio, computed as ∣𝑀𝑓−𝑀𝑟 ∣

𝑀𝑟
. A smaller difference value indicates that

the forged IR objects are more realistic.
Table 3 presents the difference between IQA values obtained by

various deep generative models and the IQA values of real objects.
From Table 3, we can observe that the forged IR objects generated by
our proposed DOCI-GAN exhibit the minimum difference in IQA values
compared to the IQA values of real IR objects. The difference results in
Table 3 underscore the superiority of DOCI-GAN in generating realistic
IR objects.

4.5. Ablation study of multiscale erosion-based MSE loss

We designed the multiscale erosion-based MSE loss, 𝐿𝑚𝑢𝑙𝑡𝑖−𝑒𝑟𝑜𝑠𝑖𝑜𝑛,
or our DOCI-GAN, which generates object images through inpainting
issing regions within bounding boxes. Here, 𝐿𝑚𝑢𝑙𝑡𝑖−𝑒𝑟𝑜𝑠𝑖𝑜𝑛 plays an

mportant role in ensuring consistency between the local backgrounds
f inpainted object regions and the global background of the entire
mage. To validate our design, we conducted an ablation experiment
n which DOCI-GAN was trained without 𝐿𝑚𝑢𝑙𝑡𝑖−𝑒𝑟𝑜𝑠𝑖𝑜𝑛.

We measured the difference between images generated by DOCI-
AN with and without 𝐿𝑚𝑢𝑙𝑡𝑖−𝑒𝑟𝑜𝑠𝑖𝑜𝑛 using IQA metrics as described

n Section 4.3. Moreover, we examined the transitional region from
he local background around the object to the global background
rom a regional perspective. Specifically, we cropped out 3-pixel-width
egions inwards and outward from the bounding box. These two regions
ombined to form a ring, showing the transition from local background
nside the bounding box to the surrounding background. Then, we
omputed the IQA metrics of this transitional region in the generated
mages.

Table 4 presents the IQA results for both whole images and tran-
itional regions. We compared these IQA values of generated images
o those of original real images, as in Table 3. Since 𝐼𝑆 and 𝐹𝐼𝐷
eflect image diversity, which is not the focus of 𝐿𝑚𝑢𝑙𝑡𝑖−𝑒𝑟𝑜𝑠𝑖𝑜𝑛, they
re excluded here. From Table 4, we can find that with 𝐿 ,
𝑚𝑢𝑙𝑡𝑖−𝑒𝑟𝑜𝑠𝑖𝑜𝑛
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Table 3
Difference between IQA results of forged objects by different generative methods and IQA results of original objects in MCTIFD dataset. The
minimal difference is highlighted in bold.

Method∖measures 𝐺𝑀𝐺 𝐺𝑇 𝐺𝐸 𝐺𝐵 𝑆𝐴𝐷 𝐸𝑆 𝐼𝑆 𝐹𝐼𝐷

GAN vs. Original 41.96% 53.31% 54.43% 49.03% 37.85% 16.45% 8.64% 123.60
VAE-GAN vs. Original 37.18% 48.76% 45.86% 59.93% 29.76% 21.30% 11.82% 87.08
DDPM vs. Original 58.63% 88.16% 80.98% 95.87% 29.80% 210.34% 31.06% 158.98
BicycleGAN vs. Original 32.76% 34.72% 41.82% 27.70% 5.91% 65.13% 5.37% 99.69
Pix2Pix vs. Original 13.23% 7.60% 13.60% 22.88% 17.00% 23.58% 5.16% 35.45

DOCI-GAN vs. Original 1.52% 4.38% 2.24% 14.26% 2.35% 0.63% 4.39% 18.93
Table 4
IQA results of generated images and original images from both the whole image and transitional region views revealing the effectiveness of
𝐿𝑚𝑢𝑙𝑡𝑖−𝑒𝑟𝑜𝑠𝑖𝑜𝑛.

Method (whole image)∖measures 𝐺𝑀𝐺 𝐺𝑇 𝐺𝐸 𝐺𝐵 𝑆𝐴𝐷 𝐸𝑆

Original 3.10 106.32 40.20 554.44 55.59 0.15
DOCI-GAN 3.17 99.42 40.16 428.97 61.23 0.16
DOCI-GAN wo 𝐿𝑚𝑢𝑙𝑡𝑖−𝑒𝑟𝑜𝑠𝑖𝑜𝑛 3.21 101.01 40.63 425.46 62.07 0.17

DOCI-GAN vs. Original 2.17% 6.49% 0.10% 22.63% 10.15% 9.77%
DOCI-GAN wo 𝐿𝑚𝑢𝑙𝑡𝑖−𝑒𝑟𝑜𝑠𝑖𝑜𝑛 vs. Original 3.42% 4.99% 1.08% 23.26% 11.66% 12.31%

Method (transitional region)∖measures 𝐺𝑀𝐺 𝐺𝑇 𝐺𝐸 𝐺𝐵 𝑆𝐴𝐷 𝐸𝑆

Original 2.21 132.78 28.04 1418.07 33.47 0.15
DOCI-GAN 2.28 131.13 28.47 1351.82 38.20 0.16
DOCI-GAN wo 𝐿𝑚𝑢𝑙𝑡𝑖−𝑒𝑟𝑜𝑠𝑖𝑜𝑛 2.29 130.99 28.24 1340.83 38.94 0.17

DOCI-GAN vs. Original 3.49% 1.24% 1.55% 4.67% 14.15% 10.44%
DOCI-GAN wo 𝐿𝑚𝑢𝑙𝑡𝑖−𝑒𝑟𝑜𝑠𝑖𝑜𝑛 vs. Original 3.65% 1.35% 0.70% 5.45% 16.35% 12.98%
Fig. 7. Examples of images generated by DOCI-GAN without 𝐿𝑚𝑢𝑙𝑡𝑖−𝑒𝑟𝑜𝑠𝑖𝑜𝑛 (first row) or with it (second row).
DOCI-GAN achieves lower 𝐺𝑀𝐺, 𝐺𝐸 , 𝑆𝐴𝐷 and 𝐸𝑆 values from both
the whole image and transitional region views. This indicates that
𝐿𝑚𝑢𝑙𝑡𝑖−𝑒𝑟𝑜𝑠𝑖𝑜𝑛 successfully smoothens the intensity contrast between the
local backgrounds of objects and the global background. Meanwhile,
with 𝐿𝑚𝑢𝑙𝑡𝑖−𝑒𝑟𝑜𝑠𝑖𝑜𝑛, DOCI-GAN generates images with less difference from
original images in terms of most metrics.

Fig. 7 compares generated images by DOCI-GAN with and with-
out 𝐿𝑚𝑢𝑙𝑡𝑖−𝑒𝑟𝑜𝑠𝑖𝑜𝑛. It is evident that with the proposed 𝐿𝑚𝑢𝑙𝑡𝑖−𝑒𝑟𝑜𝑠𝑖𝑜𝑛,
DOCI-GAN effectively inpaints objects and their local backgrounds in
harmony with the surroundings, resulting in more plausible generated
images overall.

4.6. IR multi-class object detection based on augmented dataset

To assess the practicality of DOCI-GAN for augmenting IR object im-
age datasets, we employed DOCI-GAN to enlarge the original MCTIFD
dataset. Fig. 8 displays examples of IR images with augmented objects
generated by DOCI-GAN. Instances in the first column are original IR
images. For the purpose of augmentation, we added bounding boxes
with specified classes, for generating objects with greater diversity. As
shown in Fig. 8, DOCI-GAN produces plausible and fine-grained IR
8

object images. After 10 times augmentation, the augmented training
dataset was utilized to train classical object detection models, including
Faster RCNN [1], SSD [3], RetinaNet [36], to perform multi-class IR
object detection. We compared the object detection accuracy of models
trained respectively with original dataset and the augmented dataset by
DOCI-GAN. The Mean Average Precision (mAP) metric was employed
to evaluate object detection accuracy. To mitigate potential biases
arising from unequal sample sizes between the original dataset and the
augmented dataset, we duplicated the original IR images 10 times when
the training object detection models with the original dataset.

Table 5 presents the mAP scores of Faster RCNN, SSD and RetinaNet
on our MCTIFD dataset. Comparing models trained with the original
dataset to those trained with augmented dataset, we observe a notable
improvement in the accuracy of multi-class object detection. Specifi-
cally, when Faster RCNN, SDD and RetinaNet were trained with the
augmented dataset, they demonstrated an increase in mAP scores for
IR objects across most categories, resulting in an overall improvement
across all categories.

To assess the significance of DOCI-GAN in enhancing object de-
tection accuracy, we conducted a class-level hypothesis test. Given
the variation in object numbers in our dataset, ranging from 40 to
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Fig. 8. Examples of object augmentation using our proposed DOCI-GAN for the MCTIFD dataset. Multi-class objects are generated with specified categories and positions.
Table 5
The mAP scores of different detection models for IR multi-class object detection. Models were trained using either the original MCTIFD dataset or the augmented dataset generated
by DOCI-GAN.

AP∖method Faster RCNN (ori) Faster RCNN (aug) SSD (ori) SSD (aug) RetinaNet (ori) RetinaNet (aug)

Helicopter 0.2820 0.5050 0.2560 0.6000 0.1030 0.2110
CruiseMissle 0.4110 0.3160 0.1810 0.2990 0.4070 0.2820
Ship 0.6140 0.6060 0.3450 0.3420 0.2690 0.4550
Surveillance 0.6290 0.7330 0.1990 0.2860 0.2040 0.4020
Cargo 0.7200 0.7000 0.2630 0.3010 0.3250 0.0610
Bomber 0.4510 0.4450 0.1770 0.2880 0.3020 0.3460
Big UAV 0.5180 0.5690 0.2160 0.2500 0.1740 0.0360
Revolve UAV 0.6120 0.7950 0.5940 0.6100 0.3060 0.6320
Fighter 0.3610 0.5690 0.2700 0.3470 0.1940 0.2730

mAP 0.5109 0.5820 0.2779 0.3692 0.2538 0.2998
Table 6
The paired-sample 𝑡-test for duplication accuracies.

H = 0: X = Y X = ori, Y = aug (H/𝑝-value)

Faster RCNN 1/1.2144e−10
SSD 1/1.97e−12
RetinaNet 1/2.22e−28

950, we aimed to mitigate the impact of class imbalance. We modi-
fied the vanilla 𝑡-test by duplicating category quantities. The accuracy
duplication for the 𝑡-test is proposed as follows:

𝐴𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑖) =

⎡

⎢

⎢

⎢

⎣

𝐴(1),… , 𝐴(𝑖)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝑛(𝑖)

⎤

⎥

⎥

⎥

⎦

, 𝑖 ∈ 𝐶0,… , 𝐶9 (13)

In Eq. (13), 𝐶0,… , 𝐶9 represent the nine classes for detection, 𝐴(𝑖)
is the accuracy of the 𝑖th class, and 𝑛(𝑖) is the number of objects in the
𝑖th class. The 𝑡-test is performed on duplicated accuracies. The results
of the paired-sample 𝑡-test are presented in Table 6. In Table 6, all
null hypotheses (𝐻 = 0) are rejected with low 𝑝 values. This indicates
that the quantitative performance of detection models based on the
augmented training set was significantly improved.
9

4.7. Further experiments on public IR single-class object datasets

We conducted experiments on public IR single-class object datasets,
including OSU Thermal Pedestrian Database [37], small target datasets
IRSTD-1k [38] and SIRST [18], to evaluate the data augmentation
effectiveness of DOCI-GAN in various scenarios. The OSU dataset com-
prises 10 IR sequences of pedestrians. As neighboring frames within a
sequence are similar, we selected frames with significant appearance
differences. Subsequently, we collected 9 images for training and 111
images for testing for the OSU dataset experiment. Both the IRSTD-1k
and SIRST datasets contain over 1000 annotated images. Since DOCI-
GAN is designed for object detection with limited data, only 24 images
were randomly chosen for training and augmentation inference when
experimenting with the IRSTD-1k and SIRST datasets. After training of
detection models with the augmented dataset, 201 original images from
IRSTD-1k and 96 original images from the SIRST dataset were used for
testing.

Fig. 9 showcases examples of augmented images generated by DOCI-
GAN for the OSU, IRSTD-1k, and SIRST datasets. These images demon-
strate that DOCI-GAN can produce plausible and clear IR pedestrian or
small target images. Respectively based on the augmented OSU, IRSTD-
1k and SIRST datasets, we trained general object detection models
including Faster RCNN, SSD, RetinaNet, and small target detection
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Fig. 9. Examples of object augmentation using our proposed DOCI-GAN for OSU dataset (left), IRSTD-1k dataset (middle) and SIRST dataset (right). The first row shows original
images, while the second and third rows display the corresponding generated images, with green rectangles highlighting the generated objects. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
Table 7
IR single-class object detection accuracy using general object detection models trained
on either original or augmented datasets.

Dataset Faster RCNN SSD RetinaNet

mAP 𝑃𝑑 𝐹𝑎 mAP 𝑃𝑑 𝐹𝑎 mAP 𝑃𝑑 𝐹𝑎

OSU(ori) 0.471 0.514 0.239 0.403 0.400 0.228 0.313 0.488 0.232
OSU(aug) 0.536 0.584 0.171 0.426 0.462 0.199 0.396 0.499 0.222

IRSTD-1k(ori) 0.061 0.133 0.744 0.290 0.367 0.351 0.107 0.333 0.660
IRSTD-1k(aug) 0.340 0.449 0.211 0.338 0.459 0.285 0.203 0.428 0.484

SIRST(ori) 0.076 0.132 0.756 0.306 0.416 0.193 0.253 0.419 0.211
SIRST(aug) 0.327 0.408 0.187 0.361 0.449 0.193 0.294 0.442 0.272

Table 8
IR single-class object detection accuracy using small target detection models trained on
either original or augmented datasets.

Dataset ISNet ACM

mAP 𝑃𝑑 𝐹𝑎 mAP 𝑃𝑑 𝐹𝑎

OSU(ori) 0.642 0.581 1.301e−1 0.557 0.432 1.885e−1
OSU(aug) 0.854 0.689 7.696e−2 0.671 0.684 9.105e−2

IRSTD-1k(ori) 0.445 0.744 1.072e−4 0.451 0.798 1.895e−4
IRSTD-1k(aug) 0.649 0.932 5.810e−5 0.586 0.795 7.640e−5

SIRST(ori) 0.352 0.830 2.898e−4 0.267 0.820 1.836e−4
SIRST(aug) 0.521 0.950 8.210e−5 0.549 0.980 5.910e−5

odels including ISNet [38], ACM [18]. Tables 7 and 8 respectively
resent the detection accuracies of these models trained with original
atasets or augmented datasets. In addition to mAP, we also employed
robability of Detection 𝑃𝑑 and False-Alarm Rate 𝐹𝑎 metrics for evalu-
ting single-class object detection accuracy. The results from Tables 7
nd 8 indicate that data augmentation by DOCI-GAN led to an increase
n object detection accuracy of IR pedestrians and small targets for
oth general object detection models and specific small target detection
odels. This suggests the feasibility and effectiveness of DOCI-GAN in

R single-class object image applications.
Furthermore, we investigated the impact of augmented datasets

enerated by DOCI-GAN on the generalization ability of trained detec-
ion models. Specifically, for small target detection, detection models
ere trained on the augmented IRSTD-1k/SIRST datasets and then

ested on images from the SIRST/IRSTD-1k dataset. Tables 9 and 10
emonstrate that models trained with augmented data achieved higher
AP and 𝑃𝑑 scores on testing data drawn from a different distribution

ompared to models trained with original data. Regarding the 𝐹𝑎
etric, the scores of some models decreased using augmented training
ataset generated by DOCI-GAN when confronting the domain shift,
ut the models trained with augmented datasets still maintained com-
etitive performance. These results indicate the enhancement in the
10
generalization of detection models trained with augmented datasets
compared to original datasets, further underscoring the advantages of
utilizing DOCI-GAN for DA.

5. Conclusion

In this work, we propose DOCI-GAN, a generative adversarial net-
works model tailored for augmenting IR object images to enhance IR
multi-class object detection with limited data. Inputted with bounding
box masks and background images, DOCI-GAN, structured as an image
inpainting framework, learns to infer IR objects across the given back-
ground. A text-to-image converter was developed to convert COCO-
format object annotations into bounding box mask images, delineating
the position and category of each object. In DOCI-GAN, the genera-
tor adopts a U-shaped architecture and incorporates the self-attention
mechanism to ensure the generation of clear and reasonable objects.
Additionally, the discriminator evaluates image authenticity at a local
level, focusing on objects within each IR image, thereby guiding the
generator to enhance the visual quality of the generated objects. Since
DOCI-GAN realizes DA through image inpainting based on bounding
box masks, noticeable intensity differences may arise between the local
background within bounding boxes and the global background. To
address this, we employ multi-scale morphological erosion to extend
the local backgrounds of objects, subsequently optimizing the generator
to minimize the distance between the multi-scale eroded results of the
original and generated images, thereby ensuring consistency between
local and global backgrounds.

We constructed the MCTIFD dataset, comprising annotated infrared
multi-class object images, to test our DOCI-GAN. Experimental re-
sults indicated that among various deep generative models, DOCI-GAN
yielded the highest-quality IR object images. The synthetic images
generated by DOCI-GAN exhibited distinct advantages, having not only
IR multi-class objects with sharp boundaries and intricate details but
also realistic backgrounds with minimal noise.

We applied the proposed DOCI-GAN to augment the MCTIFD and
extended its validation to single-class object datasets, including the
OSU pedestrian dataset, IRSTD-1k and SIRST small target datasets.
Our experiments confirmed that DOCI-GAN effectively performed data
augmentation for diverse IR object detection datasets. The augmented
datasets led to a substantial increase in the accuracy of various deep
learning detection models, benefiting both IR multi-class object detec-
tion and single-class object detection tasks. These results underscore the
significance of DOCI-GAN in addressing multiple IR object detection
tasks with limited training data.

One notable limitation of our work is its inability to augment certain
IR object datasets, such as IR street scene datasets. These datasets often
feature large areas occupied by vehicles or pedestrians in an image,
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Table 9
IR small target detection accuracy using general detection models when trained on one dataset (either the original or the augmented) and
tested on another dataset.

Traing data - Testing data Faster RCNN SSD RetinaNet

mAP 𝑃𝑑 𝐹𝑎 mAP 𝑃𝑑 𝐹𝑎 mAP 𝑃𝑑 𝐹𝑎

IRSTD-1k(ori) - SIRST 0.109 0.224 0.576 0.287 0.371 0.233 0.162 0.341 0.447
IRSTD-1k(aug) - SIRST 0.500 0.571 0.067 0.383 0.488 0.166 0.334 0.463 0.214

SIRST(ori) - IRSTD-1k 0.031 0.069 0.865 0.206 0.346 0.429 0.094 0.271 0.681
SIRST(aug) - IRSTD-1k 0.208 0.296 0.448 0.234 0.385 0.427 0.109 0.347 0.682
Table 10
IR small target detection accuracy using small target detection models when trained
on one dataset (either the original or the augmented) and tested on another dataset.

Traing data - Testing data ISNet ACM

mAP 𝑃𝑑 𝐹𝑎 mAP 𝑃𝑑 𝐹𝑎

IRSTD-1k(ori) - SIRST 0.480 0.890 5.110e−5 0.265 0.830 2.305e−4
IRSTD-1k(aug) - SIRST 0.510 0.910 3.080e−5 0.289 0.890 4.708e−4

SIRST(ori) - IRSTD-1k 0.418 0.721 1.871e−4 0.335 0.724 1.276e−4
SIRST(aug) - IRSTD-1k 0.574 0.886 9.710e−5 0.449 0.912 1.771e−4

with objects overlapping in an image or captured only partially. Since
DOCI-GAN is tailored to inpaint whole objects, it is not suitable for
such IR object datasets. Additionally, while DOCI-GAN can enhance
detection models with limited training data, its impact may be limited
in cases where training data is already sufficient. In future research,
we plan to explore alternative deep generative methods capable of
augmenting both small and large IR objects to address these limitations.
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