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Abstract 
Information about heading direction is critical for navigation as it provides the means to orient 
ourselves in space. However, given that veridical head direction signals require physical rotation 
of the head and most human neuroimaging experiments depend upon fixing the head in position, 
little is known about how the human brain is tuned to such heading signals. To address this, we 
asked fifty-two healthy participants undergoing simultaneous EEG and motion tracking recordings 
(split into two experiments) and ten patients undergoing simultaneous intracranial EEG and motion 
tracking recordings to complete a series of orientation tasks in which they made physical head 
rotations to target positions. We then used a series of forward encoding models and linear mixed-
effects models to isolate electrophysiological activity that was specifically tuned to heading 
direction. We identified a robust posterior central signature that predicts changes in veridical head 
orientation after regressing out confounds including sensory input and muscular activity. Both 
source localisation and intracranial analysis implicated the medial temporal lobe as the origin of 
this effect. Subsequent analyses disentangled head direction signatures from signals relating to 
head rotation and those reflecting location-specific effects. Lastly, when directly comparing head 
direction and eye gaze-related tuning, we found that the brain maintains both codes while actively 
navigating, with stronger tuning to head direction in the medial temporal lobe. Together, these 
results reveal a taxonomy of population-level head direction signals within the human brain that is 
reminiscent of those reported in the single units of rodents. 
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Main Text 

Navigation is a complex cognitive phenomenon of which two basic forms can be 
distinguished: map-based and self-referential navigation (for review, see 1). While many have 
delved into how the human brain represents cognitive maps 2–4, comparatively few have explored 
how the human brain comprehends a sense of direction, a core ingredient to both forms of 
navigation. To redress this balance, we set out to explore how human electrophysiological activity 
is tuned to veridical (that is, true, physical) head direction. 

Our understanding of the neural code for veridical head direction is based largely on rodent 
studies (though see 5,6), which demonstrate that single units across the brain are tuned to current 
heading direction 7–12. These “head direction” cells selectively fire when the rodent faces a 
particular angle in the environment, regardless of the physical location of the rodent in the 
environment 13,14, are persistent over time 12,15, continue in the absence of visual cues 16, and often 
precede physical head rotation 17,18. Furthermore, perturbation of the head direction cells 
destabilise representations of space, suggesting that representations of head direction are 
essential for navigation 19–22. Critically, given the abundance of head direction cells across the 
brain and the widespread, co-ordinated population activity they produce 18,23,24, representations of 
head direction should be detectable in macroscopic neuroimaging measures such as the local 
field potential (LFP; 25–27).  

However, studying veridical head direction in humans is not a trivial task. Imaging methods 
such as magnetoencephalography (MEG) and magnetic resonance imaging (MRI) require the 
head to be fixed in position to minimise artefacts. Unfortunately, this prevents the generation of 
most self-referential cues, which is thought to limit the conclusions which can be drawn about 
active navigation 28–30. Electroencephalography (EEG), however, has no such limitation. For 
example, it has been used to successfully measure human brain activity during motor 31,32 and 
cognitive tasks 33–35 while the body is in motion. Here, we build on the success of these existing 
motion-based EEG studies to address how the human brain represents veridical head direction.  

In the experiments presented here, we asked whether a signature of veridical head direction 
can be identified in the human scalp and intracranial EEG (iEEG). Participants completed a series 
of orientation tasks in which they made physical head rotations between multiple computer 
monitors, with each task containing a unique manipulation that helped disentangle head direction 
from other confounds (see figure 1a-b). We used forward encoding models to EEG activity as a 
function of simultaneously recorded heading angle, and then used linear mixed-effect models to 
localise the electrophysiological signals that were tuned to a given heading angle. We find 
converging evidence for a precisely tuned representation of head direction emanating from 
posterior regions including the parietal cortex and parahippocampus that is distinguishable from 
gaze-related neural codes and shares numerous similar properties to the head direction cells of 
rodents (as described above). In a second report, we investigate how these head direction-related 
signals are represented in memory and during sleep 36. 

Results 
Scalp EEG activity is tuned to heading angle 

In the first experiment, 32 participants (see table 1) completed four orientation tasks (see 
figure 1a-b), each with distinct manipulations used to delineate head direction-related activity from 
activity attributable to sensory cuing and visual input/eye movements (see supplementary figure 
1 for head rotation time-series). We used cross-validated forward encoding models (FEM) to 
predict EEG activity based on head orientation. Head motion was continuously recorded and 
decomposed into basis sets of circular–Gaussian von-Mises distributions (from here on termed 
“kernels”) acting as model features in the FEM. Six of these FEMs were built, each using different  
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kernel sizes (ranging from 6° to 60°) which allowed us to approximate the precision of the tuning 
of the EEG signal (see figure 1c) to current heading angle (see figure 1d). FEM performance was 
quantified by correlating the FEM-predicted EEG signal with the observed EEG signal (see 
supplementary figures 2-4 for topographies of these correlations). FEM performance was pooled 
across participants and linear mixed-effect models were used to assess how much variance 
current heading angle explained of the observed FEM performance after controlling for the co-
occuring confounds of auditory input (i.e., animal sounds that pointed participants towards the 
target screens), visual input, eye movements, and muscular activity which the model would also 
be sensitive to (see methods for details).  

For all tuning widths, EEG signal was tuned to changes in heading angle to a degree 
significantly greater than chance (peak z = 6.711, pFDR < 0.001; see figure 2a-b). Descriptively 
speaking, FEM performance was maximal over posterior central sensors and when using a kernel 
width of 20° (see supplementary table 1 for statistics relating to all kernel widths and regressors; 
see supplementary figure 5 for statistical comparisons between kernel widths). When applying the 
FEM to source-space data, late visual and medial temporal regions responded most strongly to 
changes in heading angle (see figure 2c). While EEG activity was also tuned to muscular activity 
(peak z = 4.097, pFDR < 0.001), the size of the effect was substantially smaller than that of head 
direction (see figure 2a-b). Importantly, the nature of the linear mixed-effect models means that 
this effect was statistically independent of that for head direction. Altogether, this suggests that 
activity present over the posterior central EEG is tuned to changes in heading angle – an effect 
that cannot be attributed to cuing, muscular activity or visual input/eye movements. 

While these results demonstrate that EEG is tuned to heading angle, supplementary analyses 
found no evidence to suggest that individual EEG electrodes possessed a preferred direction 
tuning across participants, aligning with earlier work in rodents and human fMRI (e.g., 6,27,37; see 
supplementary figure 6) 

While the previous analyses demonstrate that the patterns of neural activity that tune to 
changes in heading angle are statistically independent to those that tune to changes in visual 

Figure 1. Experiment outline. (A) Participants completed a series of orientation tasks presented across five computer monitors. 
Participants began by fixating on a cross on the centre screen. This cross then moved to one of the other screens. In most tasks, 
participants were tasked with physically rotating their head towards the target screen. In most tasks, an auditory cue accompanied 
the movement of the fixation cross to help participants to track the cross. After a delay sufficient to allow participants to move into 
position and fixate, the cross returned to the centre screen. In experiment 2, an additional two screens were placed to the right of 
the five-monitor setup, with an angular orientation of 90° and 120° relative to the initial centre screen. (B) Three groups of 
participants completed four variations of these tasks. The first group of healthy participants and the group of patients completed 
Experiment 1. The second group of healthy participants completed Experiment 2. For full details of what each task entailed, see 
methods. (C) Visualisation of the evoked response at Pz following the onset of the head rotation in the “cued head rotation” task of 
Experiment 1. (D) Histogram of heading angles (relative to the centre screen) across all samples and participants of Experiment 1. 
Notable variability in heading direction can be seen here, meaning that the forward encoding models were able to make use of a 
wide range of heading angles rather than just 5 target conditions (i.e., -60°, -30°, 0°, +30° and +60°). Note that participants did not 
fully rotate their heads to the target screen; supplementary analysis instead suggests they made combined movements of the head 
and eyes to reach the target position (see supplementary figure 1). 
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input/eye movements, we wanted to complement these results by directly contrasting FEM 
performance between when the FEM was trained on heading angle data and when it was trained 
on gaze position data. In line with the results above, we found that neural activity tuned to both 
changes in heading angle and gaze position 38,39. Critically however, we found that posterior 
central neural activity was better predicted by changes in heading angle than by changes in gaze 
position (for full details, see supplementary figure 7). 

Next, we examined the temporal dynamics of this tuned EEG activity, asking whether the 
EEG activity precedes or follows physical changes in heading angle. We first built a “lagged” 

Figure 2. Electrophysiological activity tracks change in head angle. (A) Plot of the regressor coefficients (averaged over all 
electrodes) derived from linear mixed effects models used to predict forward encoding model performance. Dots indicate the 
estimated regressor coefficients. Error bars indicate the 95% confidence intervals of the coefficients, as computed by the Matlab 
function fitlme(). Colour indicates the tuning width of the kernel used in the forward encoding model, with darker colours representing 
the narrower tuning widths. For the head direction regressor, all tuning widths were significant (p

FDR
 < 0.05). (B) Topographic plots of 

the regressor coefficients derived from linear mixed effects models used to predict forward encoding model performance when using 
a 20° tuning width (i.e., the best performing forward encoding model). Deeper red colours indicate larger coefficient values. Black 
dots indicate electrodes that reliably map onto forward encoding model predictions (p

FDR
 < 0.05). Each of the four regressors are 

plotted separately. (C) Source plots of the regressor coefficients derived from linear mixed effects models used to predict forward 
encoding model performance when using a 20° tuning width. Deeper red colours indicate larger coefficient values. Each of the three 
regressors are plotted separately. Note that the EMG regressor was not included here as beamforming projects EMG components to 
outside the brain. (D) Time-series of regressor coefficients derived from linear mixed effects models used to predict lag-based forward 
encoding model performance. The deep red centre line indicates the estimated regressor coefficients. Error bars indicate the 95% 
confidence intervals of the coefficients around the estimated regressor coefficients. The dot indicates the lag at which predictive power 
of the regressor was greatest. “EEG Leads” refers to when changes in EEG activity precede changes in head direction; “HD Leads” 
refers to when changes in head direction precede changes in EEG activity..(E) Time-series of regressor coefficients derived from 
linear mixed effects models used to predict inverted encoding model performance. The deep red centre line indicates the estimated 
regressor coefficients. Error bars indicate the 95% confidence intervals of the coefficients around the estimated regressor coefficients. 
The shaded grey areas indicate significance (p

FDR
 < 0.05). 
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encoding model, where the EEG time series was temporally shifted relative to the motion tracking 
time series prior to building the FEM. By repeating this for multiple temporal lags, we were able to 
build a time series which identified when the FEM best predicted EEG activity. Here, the lagged 
encoding model was best able to predict EEG activity when considering EEG activity that preceded 
heading angle information by approximately 120ms (peak z = 8.371, pFDR < 0.001; see figure 2d). 
A direct contrast of FEM performance for timepoints when EEG led or lagged heading angle 
supported this observation, with the encoding model performing significantly better for samples 
when EEG activity preceded the change in heading angle relative to when it followed the change 
(z = 9.83, pFDR < 0.001). This aligns with animal and computational work suggesting that signatures 
of head direction are anticipatory rather than responsive 17,18.  

We complemented our lagged FEM with an inverted encoding model, which takes the weights 
from the training set and inverts them to produce an estimate of heading angle for every sample. 
Representational similarity analysis 40 was then used to see when the predicted head angle 
differed most greatly between the four outside monitor positions. In line with the lagged FEM, the 
inverted encoding model showed that the predictive power of EEG activity for heading angle 
ramped up just before the head began to rotate (peak z = 9.480, pFDR < 0.001; see figure 2e). EEG 
activity continued to predict heading angle throughout the head rotation and beyond as 
participants maintained the new heading angle (albeit to a slightly lesser degree). This aligns with 
animal work showing persistent but weaker head direction tuning after head rotation 12. 
Importantly, persistent coding in the absence of the physical movement rules out the possibility 
that the effects reported at the beginning of this section are a result of angular head velocity rather 
than heading angle (for further details, see supplementary figure 8). Together, these results 
suggest that tuned EEG activity precedes the change in veridical heading angle and is sustained 
after the head rotation is completed.   

Notably, the anticipatory EEG effects are not simply a manifestation of associative links 
between the auditory cue and particular head rotations. In an isolated analysis of the “uncued 
head rotation” task, which occurred prior to any association being formed between the cues and 
the head rotations, the lagged encoding model continued to best predict EEG activity when EEG 
activity preceded changes in heading angle (max. z = 5.934, pFDR < 0.001; lead vs. lag contrast: 
max. z = 5.183, pFDR < 0.001; see supplementary figure 9). This suggests that the anticipatory 
nature of the EEG tuning-related activity observed here is not solely attributable to associative 
memory. 

Intracranial EEG activity is tuned to heading angle 

Several key regions expressing head direction cells are found deep within the brain, which 
can be difficult to reliably measure in scalp EEG recordings. Therefore, we set out to repeat the 
first experiment in a group of ten patients with intracranial depth electrodes. The methodological 
and analytical approaches matched that of the scalp EEG experiment, with the single exception 
of the linear mixed-effect models. As patients have bespoke implantation schemes, models cannot 
be built for individual electrodes as done above. Therefore, we built models for several regions-
of-interest (ROI) instead; one ROI for each cortical lobe of the brain, and one for each recorded 
subregion of the medial temporal lobe (a decision driven by the fact that subregions of the medial 
temporal lobe have unique functions in navigation2 [see methods for details]). As before, individual 
patients were modelled as random effects.  

When probing individual lobes, all regions of interest demonstrated a tuned response to 
current heading angle except the occipital lobe (frontal lobe: peak tuning width = 60°, z = 5.508, 
pFDR < 0.001; parietal lobe: peak tuning width = 6°, z = 2.844, pFDR < 0.001; occipital lobe: peak 
tuning width = 60°, z = 1.721, pFDR = 0.110; lateral temporal lobe: peak tuning width = 10°, z = 
5.306, pFDR < 0.001; see figure 3a; see supplementary figure 10 for correlations between iEEG 
activity and FEM predictions; see supplementary figure 11 for tuning width comparisons). In the 
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case of the occipital lobe, this region instead appeared to show substantial tuning to saccadic 
activity/visual input (peak tuning width: 15°, z = 2.704, pFDR = 0.015). Descriptively speaking, the 
lag-based models of the intracranial recordings peaked such that changes in iEEG signal 
preceded changes in head angle for the parietal and temporal lobes (parietal lobe: peak lag = 
190ms, z = 4.832, pFDR < 0.001; lateral temporal lobe: peak lag = 120ms, z = 5.554, pFDR < 0.001; 
see figure 3c). In the frontal lobe, changes in head angle preceded the iEEG signal (peak lag = -
100ms, z = 6.145, pFDR < 0.001). Furthermore, the parietal and temporal models performed 
significantly better when iEEG activity preceded the change in heading angle relative to when it 
followed the change (parietal lobe: z = 2.052, p = 0.015; lateral temporal lobe: z = 2.230, p = 
0.025). No similar directional effect was observed in the frontal lobe (frontal lobe: z = 0.490, p > 
0.5). 

When probing the subregions of the medial temporal lobe, both the hippocampus and 
parahippocampus demonstrated substantial tuning to current head angle (parahippocampus: 
peak tuning width = 30°, z = 2.517, pFDR = 0.035; hippocampus: peak tuning width = 45°, z = 2.752, 
pFDR = 0.015; amygdala: peak tuning width = 10°, z = 1.105, pFDR = 0.298; see figure 3b). As with 
the lobe-level analysis, the lag-based models of the iEEG signal suggested that changes in both 
the hippocampal and parahippocampal signal preceded changes in head angle (hippocampus: 
peak lag = 160ms, z = 2.657, pFDR < 0.001; parahippocampus: peak lag = 40ms, z = 3.637, pFDR 
< 0.001; see figure 3c). However, in both cases, the peaks were less clear than in the lobe-based 
or scalp-level analyses, and this is reflected in a direct contrast of model performance, which found 
no significant difference in model performance between when iEEG led or lagged heading angle 
(parahippocampus: z = 0.852, p = 0.185; hippocampus: z = 0.086, p > 0.5). 

Figure 3. Intracranial electrophysiological activity tracks change in heading angle. (A) Plot of the head direction regressor 
coefficient derived from linear mixed effects models used to predict forward encoding model performance. Dots indicate the 
estimated regressor coefficients. Error bars indicate the 95% confidence intervals of the coefficients around the estimated 
regressor coefficients, as computed by the Matlab function fitlme(). Colour indicates the tuning width of the kernel used in the 
forward encoding model, with darker colours representing the narrower tuning widths. For the frontal, parietal and temporal lobes, 
all tuning widths were significant (pFDR < 0.05). (B) Details of plot match that of panel A, but here plotted for subregions of the 
medial temporal lobe. Parahippocampus and hippocampus demonstrated significant predictive power for tracking changes in head 
orientation (parahippocampus: pFDR = 0.035; hippocampus: pFDR = 0.015;). (C) Time-series of regressor coefficients derived from 
linear mixed effects models used to predict lag-based forward encoding model performance. Plots are restricted to those regions 
which demonstrated significant predictive power in the previous analysis. The deep coloured centre line indicates the estimated 
regressor coefficients. Error bars indicate the 95% confidence intervals of the coefficients, as computed by the Matlab function 
fitlme(). The dot indicates the lag at which predictive power of the regressor was greatest.  
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Taken together, these results suggest that several distinct regions are tuned to changes in 
head angle, including the parietal lobe and parahippocampus. While the lag-based effects were 
less clear-cut than their scalp EEG equivalents, the parietal and temporal lobes continued to show 
a significant effect where iEEG activity preceded changes in heading angle and the remaining 
regions continued to showed a descriptive trend in which model performance peaked when iEEG 
activity preceded the change in heading angle. Notably, within the medial temporal lobe, 

Figure 4. Electrophysiological activity tracks change in head angle independent of location. (A) Plot of the regressor 
coefficients derived from linear mixed effects models used to predict forward encoding model performance. Dots indicate the 
estimated regressor coefficients. Error bars indicate the 95% confidence intervals of the coefficients around the estimated 
regressor coefficients, as computed by the Matlab function fitlme(). Colour indicates the width of the kernel used in the forward 
encoding model, with darker colours representing the narrower tuning widths. For the head direction regressor, all tuning widths 
were significant (p

FDR
 < 0.05). No other regressor produced significant effects. (B) Topographic plots of the regressor coefficients 

derived from linear mixed effects models used to predict forward encoding model performance when using a 20° tuning width (i.e., 
the best performing forward encoding model). Deeper green colours indicate larger coefficient values. Black dots indicate 
electrodes that reliably map onto forward encoding model predictions (p

FDR
 < 0.05). Each of the four regressors are plotted 

separately. (C) Source plots of the regressor coefficients derived from linear mixed effects models used to predict forward encoding 
model performance when using a 20° tuning width. Deeper green colours indicate larger coefficient values. Each of the three 
regressors are plotted separately. Note that the EMG regressor was not included here as the process of beamforming will inherently 
project EMG components to outside the brain. (D) Time-series of regressor coefficients derived from linear mixed effects models 
used to predict lag-based forward encoding model performance. The deep green centre line indicates the estimated regressor 
coefficients. Error bars indicate the 95% confidence intervals of the coefficients around the estimated regressor coefficients, as 
computed by the Matlab function fitlme(). The dot indicates the lag at which predictive power of the regressor was greatest. (E) 
Time-series of regressor coefficients derived from linear mixed effects models used to predict inverted encoding model 
performance. The deep green centre line indicates the estimated regressor coefficients. Error bars indicate the 95% confidence 
intervals of the coefficients around the estimated regressor coefficients, as computed by the Matlab function fitlme().. The shaded 
grey areas indicate significance (p

FDR
 < 0.05). 
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parahippocampus but not hippocampus showed substantial directional tuning, which aligns with 
animal work demonstrating HD cells outside hippocampus 41.  

Conceptual replication of heading angle-tuned EEG activity 

In the second experiment, 20 participants completed four orientation tasks that varied the 
position of the participants relative to the monitors. Two of these tasks involved sitting while the 
others involved standing (introducing a position change in the z-axis). One of the standing tasks 
also involved standing one metre away from the standard location (introducing a location change 
in the x-axis), while one of the sitting tasks involved sitting in the same location but rotated by 60° 
(a condition that will be discussed in more detail in the last results subsection). In the first instance, 
we used the same approach to forward encoding modelling as in Experiment 1 to both replicate 
and extend those findings. Once again, linear mixed-effect models were used to delineate the 
influence of head angle from potential confounds, in this case: position in the z-axis, location in 
the x-axis, and muscular activity.  

Mapping onto the findings from Experiment 1, we found that, after regressing out the influence 
of location and muscular activity, scalp EEG recordings demonstrated a tuning to current head 
angle significantly beyond what would be expected by chance (peak z = 7.063, pFDR < 0.001; see 
figure 4a-b; see supplementary table 2 for statistics relating to all kernel widths and regressors; 
see supplementary figure 12 for tuning width comparisons). These effects were most prominent 
over posterior central electrodes and were localised to occipital and medial temporal regions 
(albeit not reaching as far anteriorly as in Experiment 1; see figure 4c). Both the lag-based forward 
encoding model and the inverted encoding model also produced results matching Experiment 1, 
suggesting that changes in EEG activity precede changes in head angle (lag model: peak z = 
5.37, pFDR < 0.001; lead/lag contrast: z = 6.58; pFDR < 0.001; inverted model: peak z = 6.13, pFDR 
< 0.001; see figure 4d-e).  

The findings of Experiment 1 and their replication reported above suggest that human EEG 
activity is tuned to changes in current heading angle. However, it would be premature to suggest 
that, based on these results alone, this reflects a human analogue of the prototypical head 
direction signal observed in rodents. Specifically, we must probe whether the head direction 
effects uncovered here are (1) consistent over changes in location, and (2) separable from effects 
attributable to head rotation. The next two subsections address these issues in turn. 

Tuned EEG activity persists across locations  

To delineate the effects of location-independent and location-specific head direction signals, 
we adapted the forward encoding modelling approach to consider how the models generalised 
across tasks. This generalisation was achieved by training the FEM on one task and applying it to 
data from another task (for a similar example of this approach, see 42). For EEG electrodes where 
the FEMs do generalise to tasks completed in differing locations (that is, the FEM performs better 

Figure 5. Electrophysiological representations of location-independent and location-dependent head direction signals. 
(A) Topographic plots of the two regressor coefficients derived from linear mixed effects models used to predict forward encoding 
model performance when using a 20° tuning width (i.e., the best performing forward encoding model). Deeper green colours 
indicate larger coefficient values. Black dots indicate electrodes that reliably map onto forward encoding model predictions (p

FDR
 < 

0.05). (B) Source plots of the two regressor coefficients derived from linear mixed effects models used to predict forward encoding 
model performance when using a 20° tuning width. Deeper green colours indicate larger coefficient values. 
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than what would be expected by chance), one could conclude that the EEG signal predicted by 
the FEM is not dependent on location. For electrodes where the models perform well within a 
given task but do not generalise, one could conclude that the head angle effect is specific to a 
given location. Linear mixed-effects models were used to explore the influence of location on head 
direction signal, as well as regress out the influence of muscular activity (as done in the previous 
analyses).  

This approach revealed that the generalised FEMs could reliably predict posterior central 
EEG activity (peak z = 4.540, pFDR < 0.001; see figure 5a), suggesting they make use of location-
independent heading angle information. Analysis of source-space data suggested these effects 
originated from right visual ventral, right parahippocampal and left inferior frontal areas (see figure 
5b). Notably, the linear mixed-effects models also found evidence to suggest some location-
specific head direction-related signals exist within the EEG (peak z = 7.062, pFDR < 0.001). These 
effects were positioned slightly further back on the EEG cap, with source analysis implicating the 
posterior parietal cortex and occipital lobe (see figure 5a-b). These results suggest that distinct 
parts of the EEG signal are tuned to location-independent and location-specific signatures of 
current heading angle.  

Tuned EEG activity is distinct from rotation-related activity 

A similar approach was used to delineate EEG activity tuned to head direction (i.e., that 
anchored to the environment) from EEG activity tuned to head rotation (i.e., that anchored to the 
body). In this instance, FEMs from one sitting condition were generalised to the other sitting 
condition (where participants were rotated 60° to the right in the environment), and vice versa. If 
the FEMs generalise, it would indicate that the effect is driven by head rotation (as the model 
would be insensitive to the 60° rotation of the entire body within the environment). In contrast, any 
part of the FEM that does not generalise would reflect head direction. Here, the linear mixed-
effects models suggested that the head direction effects in previous analyses were a combination 
of “true” head direction signals and those tied to the rotation of the head. The “true” head direction 
signals were the most prominent over outer occipital and temporal electrodes (peak z = 4.679, 
pFDR < 0.001; see figure 6a), with source-space analyses implicating the visual ventral stream and 
temporal pole (see figure 6b). The head rotation signals were most prominent over posterior 
central electrodes (peak z = 4.92, pFDR < 0.001), and were localised to the posterior parietal cortex 
and frontal lobe (see figure 6a-b). These results suggest that both “true” head direction signals 
and signals relating to head rotation are present in EEG activity. 

Discussion 
To date, it has remained unclear how the human brain is tuned to changes in veridical head 

direction, and where such tuning would be localised. To remedy this, we asked participants to 
complete a series of head rotation tasks while undergoing scalp or intracranial EEG recordings 

Figure 6. Electrophysiological representations of environment-based head direction and body-based head rotation 
signals. (A) Topographic plots of the two regressor coefficients derived from linear mixed effects models used to predict forward 
encoding model performance when using a 20° tuning width (i.e., the best performing forward encoding model). Deeper blue 
colours indicate larger coefficient values. Black dots indicate electrodes that reliably map onto forward encoding model predictions 
(p

FDR
 < 0.05). (B) Source plots of the two regressor coefficients derived from linear mixed effects models used to predict forward 

encoding model performance when using a 20° tuning width. Deeper blue colours indicate larger coefficient values.  
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with the aim of isolating the neural signatures of human veridical head direction. Using a series of 
analytical models (see figure 7), we identified a signature tuned to current heading angle that is 
distinguishable from sensory input and muscular activity. Anatomically speaking, both source-
localised scalp EEG and intracranial EEG implicated a wide network of regions in this tuning, 
including the medial temporal lobe and parietal cortex. These findings were replicated in a second, 
independent sample of healthy participants, who completed a series of additional tasks that 
regressed out the influence of head rotation and location-specific effects to further isolate a neural 
signature specifically related to veridical head direction. Altogether, these results provide a 
detailed taxonomy of head direction-related signals that can be observed in free-moving human 
participants. 

On the (dis)similarities to rodent head direction cells 

For almost four decades, animal research has steadily advanced our knowledge of the 
electrophysiological signatures of veridical head direction signals e.g., 6,11,43. Here, we aimed to 
expand this work to electrophysiological population activity in humans and found numerous 
similarities (and the occasional idiosyncrasy) to what has been reported in animal models. Below, 
we compare our results from human population-level activity against what could be considered 
some of the main features of rodent head direction cells:  

1. Anatomical overlap: We observed directional tuning to current head angle in many regions 
across the cortex. The strongest of these effects arose in the medial temporal lobe, where 
head direction cells are observed in abundance6,11,43. Importantly, source-localization of 
scalp EEG converged with intracranial EEG recorded directly in the medial temporal lobe, 
providing coherent evidence from two different recording techniques in two independent 
cohorts. Zooming in on the subregions of the medial temporal lobe that were recorded 
intracranially, we observed directional tuning outside but not in the hippocampus, which is 
in line with many animal studies41. Since the implantation of iEEG electrodes is restricted 
by clinical necessity, we were not able to record from other brain regions that, in the rodent, 
host head direction cells in abundance (e.g., the anterior thalamus12; note that scalp EEG 
is unlikely to spatially resolve signals from such a small and deep structure). We did, 
however, observe tuning effects in the frontal lobe, a region not featured in many maps of 
the head direction network11. During navigation, activity in the frontal lobe has been 
attributed to several functions, such as goal tracking and route planning 44. Given that our 
experiment involved tracking the target direction and intentionally orienting towards the 
target, the heightened tuning of frontal activity to current heading angle (relative to tuning 
during free exploration in animal studies) is perhaps not surprising. In sum, while we did 
observe some regional selectivity, our results more generally align point towards head 
direction activity being observable across the brain, aligning with numerous reports 
indicating that head direction-related activity can be observed in many regions across the 
brain6,11,43.   

2. Independence from visual input: Directional tuning of head direction cells is maintained 
when visual input is removed 16. In our experiment, using virtual reality goggles containing 
nothing but a fixation cross (eliminating changes in visual input that could be used as visual 
cues as well as minimizing eye movements) and linear mixed-effect modelling, we could 
separate the influence of visual input and eye movements from that of head direction-
related activity. While visual input-related activity was centred on superior occipital and 
inferior parietal regions, activity tuned to current head direction was centred in the medial 
temporal lobes. The fact that population-level directional tuning was sustained in the 
absence of visual input brings the current results further in line with the traditional definition 
of head direction-related activity 16.  
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3. Independence from location: Cells tuned to head direction can be classified as “traditional” 
head direction cells that fire independently of the animal’s location within an environment 
or “sensory” cells that are dependent on sensory input 43. We observed similar dissociable 
patterns of activity that relate to these two signatures of head direction: “traditional” 
location-independent head direction-related activity stemmed from the visual ventral 
regions, the parahippocampus, and left inferior frontal gyrus, while location-specific head 
direction-related activity was more closely related to activity in the posterior parietal cortex. 
Notably, this spatial delineation overlaps with work in rodents, which identified location-
sensitive head direction-related activity within the retrosplenial cortex and the  
anteroventral thalamus 45,46 . Evidence that population-level directional tuning was 
sustained across locations further supports the idea that a portion of the tuned activity we 
observed matches that of “traditional” head direction activity. 

4. Anchoring to the environment: Head direction cells are anchored to the position of the head 
within the environment, not to the position of the head with respect to the body 13. We 
separated “body-based” tuning to head rotation from more traditional head direction effect 
through experimental and statistical means and identified distinct hubs of activity for the 
two processes. Once again, head direction-related activity was most prevalent in the visual 
ventral and temporal regions. In contrast, “body-based” rotation-related activity was 
observed in the posterior parietal cortex (see figure 6b), aligning with reports that posterior 
parietal lesions do not impact tuning to head direction 47 and supporting the idea that the 
posterior parietal cortex is instead involved in translational updating 48. 

5. Anticipatory signatures: In line with animal research, we observed the tendency for tuned 
signatures of head direction to precede the physical head rotation 49,50. Specifically, in both 
scalp EEG datasets, model performance was significantly better when EEG led rather than 
lagged changes in head direction (though this effect was less clear in the intracranial 
recordings, perhaps due to reduced statistical power available in the smaller sample sizes). 
Intriguingly, the delay between neural signature and physical head rotation observed here 
most closely matched the delay exhibited by the lateral mammillary nucleus (~40-100ms; 
positioned at the early stages of the head direction network) and not the delay exhibited 
by the postsubiculum (located later in the head direction network hierarchy, showing almost 
instantaneous responses to changes in head direction 17), despite the regions identified in 
our task being situated closer to the postsubiculum than the lateral mammillary nucleus. It 
is unclear why this is the case, but perhaps (as with the frontal lobe effects discussed 
above) the fact that participants were cued to rotate to a particular target meant that 
anticipatory responses are earlier than those observed during free exploration.  

6. Tuning widths: In rodents, individual head direction cells show a directional tuning of 
around 60 to 120° 13,14. However, the population-level tuning observed here was, 
descriptively speaking, more precise (~10-20°; aligning with similar reports from VR studies 
of human directional tuning; 27. This discrepancy may relate to the fact that tuning width 
tends to become more precise as one progresses further down the head direction network 
hierarchy 50,51. Given that scalp EEG will principally pick up on cortical activity at the bottom 
end of this hierarchy, it is perhaps no surprise that the tuning we observed is more precise. 
This idea is supported by descriptive interpretation of the intracranial data, which suggests 
that the medial temporal lobe is more coarsely tuned (~15°) than neocortical sources (e.g., 
~10° tuning in parietal lobes), as well as 7T fMRI work suggesting a gradient of tuning 
widths along the visual ventral stream which becomes coarser as one approaches the 
medial temporal lobe 27.  

7. Persistence in the absence of movement: In rodents, head direction cells fire persistently 
for at least ~600ms after head rotation has ceased 15. Our inverted encoding models came 
to similar conclusions, suggesting that tuned population activity is sustained for ~500ms 
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after the offset of the head rotation (see figure 2e). Notably, however, tuned activity 
dissipates shortly after this. While not completely contradictory to the observed decline in 
head direction cell firing rates that accompany immobility 52, the result is hard to reconcile 
with influential computational models which suggest that head direction-related activity 
should be persistent in the absence of movement (for review, see 12). We speculate this 
decline in tuning relates to participants anticipating the return to the centre screen, which 
would produce a signature of the imagined upcoming rotation 53, impairing the inverted 
encoding model’s ability to predict current head angle. 

8. Population-level activity: The most egregious dissimilarity between our results and those 
reported in rodents is the difference between population-level tuning and single-cell tuning. 
To what extent is tuned population-level activity reported here comparable to single-cell 
tuning? We speculate that there is a close relationship, with population-level activity arising 
as an emergent property of a network of head direction cells synchronising their action 
potentials. Such population-level activity may be essential for propagating head direction-
related information across the head direction network hierarchy as synchronous firing 
would ensure neurons effectively impact downstream regions in the hierarchy 6. Whether 
the level of synchronicity between head direction cells is relevant for behaviour, however, 
remains an intriguing open question.   

Taken together, population-level activity tuned to current heading angle in free-moving 
humans shares several similar properties with individual head direction cells in animal models. 
However, open questions remain. Some pertain to the discrepancies between what was observed 
here and what has been reported in previous studies (see above). Others relate to facets of head 
direction cells not explored here. For example, head direction cells continue to fire when rodents 
are passively moved through an environment 54, but it remains unknown if the same is true for 
population-level activity in humans. Moreover, the goal-directed nature of our task differs from free 
exploration used in rodent studies (and may explain differences related to anticipatory timing and 
persistence). It would be of interest to compare human population-level tuning to rodent single-
unit tuning in tasks involving free exploration. Nonetheless, we feel that the similarities outweigh 
the differences, leading us to suggest that we can measure an analogue of head direction in 
population-level activity of free-moving humans. 

On related human/non-human primate head direction studies 

Compared to the vast literature on head direction cells in rodents, few studies in non-human 
primates 39,55,56 and, to the best of our knowledge, no study in humans has reported tuning of 
neural activity to veridical head direction. Instead, a growing number of studies hint that human 
and non-human primates are more visually-orientated when navigating, and may utilise a grid-like 
code to navigate visual space 38,57–64. Indeed, there are reports that, within the macaque entorhinal 
cortex, a subset of cells are tuned to the direction of saccades 65.  Our results do not refute these 
claims, but do suggest that rodent-like head direction signals co-exist with these visual/saccadic 
representations of space, in line with work in non-human primates showing a mix of head- and 
eye-gaze coding 38,39 with potentially overlapping circuitry involved in coordinating head and eye 
movements 66–70. Using linear mixed effects models, we simultaneously modelled (and, 
consequently, delineated) the influence of head direction and saccade direction on neural tuning, 
revealing that the medial temporal lobe is intimately tuned to head direction (see figure 2C). While 
it remains an open question as to (i) whether head- or saccade-direction tuning takes precedence 
during free navigation, and/or (ii) the brain can flexibly switch between the two codes, our results 
suggest that the human brain maintains head direction-codes while actively navigating.    

Our observation of head-direction tuned neural activity in the free-moving human brain aligns 
with several previous studies that have utilised virtual reality in conjunction with methodologies 
such as fMRI and single unit recordings. 71–75. Of particular relevance here, a recent fMRI study 
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used forward encoding models to model “virtual head direction” information (that is, heading 
information within a virtual environment) and found evidence for the representation of current 
heading direction within ventral occipital, medial parietal and medial temporal areas 27. However, 
as participants were immobilised by necessity, the critical contributions of vestibular input to head 
direction information 52,76,77 were excluded, questioning whether a full neural signature of head 
direction could be observed 28–30. Despite this conceptual concern, the fMRI findings align with our 
results, implicating regions such as the parahippocampus in the representation of head direction.  

However, some inconsistencies between our work and past research do exist, and may be 
attributable to task differences. For example, in many virtual-reality-based studies, participants are 
required to self-navigate through a virtual environment principally relying on vision (a necessity 
due to the immobilisation required to record the neural data). In contrast, our free-moving task 
allowed participants to utilise non-visual sensory cues and, in some instances, explicitly prevented 
the use of visual sensory information. The comparatively heavy emphasis on vision that is incurred 
in virtual-reality studies may explain why Nau and colleagues (2020) observed their strongest 
tuning in early occipital regions. In a similar vein, the dispersed head-direction related signals we 
observed in free-moving participants may be attributable to the comparatively wide range of 
sensory cues available leading to many more regions becoming involved in the task at hand.  

Of course, these past studies hold an advantage over our study in that they sample a full 
range of head directions (i.e., -180° to +180°) whereas we have only sampled a subset of these 
angles (-60° to +60° in Experiment 1; -60° to +120° in Experiment 2). However, as there is no 
evidence to suggest that the brain uses distinct mechanisms to code for distinct head directions, 
and it is hard to argue why the brain would indeed evolve to do so, we do not consider it a major 
issue that we only sample a subset of head directions here and would speculate that our results 
generalise to a full range of head directions.  

A growing number of studies are incorporating full body movements with EEG recordings 
(also known as “mobile brain/body imaging” 78 or “mobile cognition” 28) to assess how brains track 
naturalistic movement. Importantly, several studies have explored how brain activity related to 
head rotation differs from other forms of body movement or when the head is stationary 31,32. While 
these studies implicated the retrosplenial cortex in tracking changes in heading direction, the 
nature of these experiments prohibited detailed conclusions about whether retrosplenial activity 
was tuned to particular heading directions in the environment, was tuned to patterns of gaze 
activity, or was agnostic to both and instead coded for changes in heading rotation. By combining 
the analytical approaches previously used in fMRI 27,79 with the methodological approaches used 
in mobile brain recordings 31,32,80, we addressed these unanswered questions. We found that the 
retrosplenial cortex was indeed tuned to changes in heading angle and, to a lesser extent, gaze 
activity (see figures 2C and 4C). Moreover, when distinguishing head direction from head rotation, 
inferior portions of the retrosplenial cortex appeared to be specifically tuned to head direction 
within an environment (see figure 6B). These results further expand our understanding of 
retrosplenial function in active navigation.  

Combining intracranial recordings in patients with real-world navigational tasks is an even 
greater challenge than in healthy participants wearing scalp EEG, and very few studies have thus 
far successfully used the combination to investigate spatial tuning of human brain activity 80. At 
the same time, this rare combination opens up exciting opportunities to investigate human 
electrophysiology that would otherwise remain concealed 28 In the present study, the iEEG data 
allowed us to zoom in on the subregions of the medial temporal lobe, which is hardly possible with 
scalp EEG. Thereby, we were able to test and confirm predictions derived from animal models 41 
and show that directional tuning is strong outside but not in the human hippocampus. On a more 
general level, we think of this approach as an important step towards more naturalistic settings in 
neuroscience, in particular for the fields of navigation and memory 28.  
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On the influence of electromyographic (EMG) artifacts 

Given the sensitivity of EEG recordings to EMG artifacts, one is right to question whether the 
results we report here are driven by EMG activity. We would suggest that this is not the case for 
five reasons:  

1. Using a combination of ICA, PCA and LMEs on the scalp EEG data, we modelled EMG 
activity as a statistically independent effect from our main regressors of interest, minimising 
EMG influence on the central effect.  

2. EMG effects could not explain why the scalp EEG activity best predicted head orientation 
when considering EEG activity ~80ms before head rotation; if the central effect were 
attributable to EMG, the link between EEG and head orientation should be instantaneous. 
In the same vein, EMG effects would not be able to explain why scalp EEG sensitivity to 
head orientation persisted up to 500ms after the head rotation was completed. 

3. EMG effects could not explain why the strongest scalp-level effects were observed at Pz, 
an electrode in the EEG cap that is one of the furthest away from any source of EMG 
activity (which arises most commonly around the mastoids and other electrodes at the 
edge of the cap). 

4. In the source-based analysis of the scalp EEG data, we used LCMV beamformers which 
will project any EMG activity to outside the brain, meaning any sources located within the 
brain are unlikely to reflect an EMG effect.  

5. In the intracranial analysis, we used bipolar re-referencing which will subtract out any 
common signals between two neighbouring electrodes (including EMG), again meaning 
that any observed effect is unlikely to reflect an EMG effect.  

In any EEG study, even in those with fixed head position, it is difficult, if not impossible, to 
claim with absolute certainty that there are, emphatically, no EMG effects in the final results and 
we don’t set out to make such a claim here. We do however suggest that, because of the reasons 
outlined above, any muscular effect would be minimal and, as such, the effects observed here are 
more easily ascribed to a neural process rather than muscular one.   

Summary 

In conclusion, we find electrophysiological signatures of veridical head direction in population-
level activity of humans that shows a strong correspondence with head direction cell activity 
reported in rodents. By combining physical head rotations with a series of forward encoding 
models, we are able to provide a unique insight into the role of vestibular movements in human 
spatial navigation, overcoming a key limitation that has plagued such study to date 28–30, and 
revealing a detailed taxonomy of human head direction-related signals. 

Methods 
All research complies with all relevant ethical regulations. The study was approved by the local ethics 
committee at Ludwig-Maximilians-Universität München. 

Participants 

In Experiment 1, 39 healthy participants were recruited (mean age = 24.8 years, 61.5% female). They 
received course credit or financial reimbursement in return for their participation. All participants gave written 
informed consent after being informed about the details of the study. The study was approved by the local 
ethics committee. Due to recording difficulties stemming from the EEG and motion tracking systems, data 
from some tasks of some participants was lost. Table 1 contains a breakdown of which participants were 
excluded from which tasks. For the intracranial recordings, 10 patients undergoing treatment for medication-
resistant epilepsy were recruited. The patients, who volunteered to participate in the study, had depth 
electrodes implanted for diagnostic reasons. The study was approved by the ethics committee of the Medical 
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Faculty of the Ludwig–Maximilian Universität. All patients gave written informed consent after being informed 
about the details of the study. Difficulties with EEG/motion tracking also resulted in the exclusion of 
participants (see Table 1). In experiment 2, 24 healthy participants were recruited (mean age = 24.7, 54.2% 
female). They too received course credit or financial reimbursement in return for their participation and gave 
written informed consent after being informed about the details of the study.  

Experimental design: Experiment 1 

Participants arrived at the lab at approximately 7pm in the evening, where they were first fitted with an EEG 
cap, and then tasked with a series of experiments. At around 11pm, they slept in the lab, and woke at 
approximately 7am for a second series of experiments. These experiments can be broadly split into two 
categories: navigation and memory, both of which happened in the evening session and in the morning 
session. As this paper only relates to the navigation experiments, only the details of these tasks will be 
described. 

Each navigation experiment followed the same typical pattern, delivered using Psychtoolbox 
(http://psychtoolbox.org/). Participants began by fixating on the centre screen. In all experiments, vertical 
screen positions match participants’ line of sight. A stimulus was presented that they had to respond to by 
turning to one of four other screens (positioned at -60°, -30°, +30° and 60° relative to the centre screen, see 
figure 1a). Each experiment consisted of 160 trials, split across 4 blocks (i.e., 40 trials per block). Below, 
each variation of this experiment is outlined in the order they occurred: 

1) Uncued Head Rotation: At stimulus onset, the fixation cross disappeared and appeared on one of 
the four flanking screens. Participants were instructed to turn their head to face the screen which 
the fixation cross appeared on and fixate upon the cross. No auditory cue was played. 

2) Cued Head Rotation: At stimulus onset and as the fixation moved to one of the four flanking screens, 
one of four animal sounds were played. Each animal sound was associated with a single flanking 
screen. Participants were instructed to turn their head to face the screen which the fixation cross 
appeared on and fixate upon the cross.  

3) Cued Eye Movement: Programmatically speaking, this experiment matched the Cued Head 
Rotation exactly. However, participants received different instructions. Specifically, they were 
instructed to saccade to whichever flanking screen the fixation cross appeared on and fixate upon 
the cross while keeping their head facing towards the centre screen. 

4) Rotation without Visual Input: As with the Cued Eye Movements experiment, programmatically 
speaking, this experiment matched the Cued Head Rotation exactly. In this case however, 
participants wore cardboard virtual reality goggles where a fixation cross was presented directly in 
front of them. When the auditory cue was played, they were instructed to turn their head to face the 
screen which they believed was associated with the auditory cue, all the while fixating on the cross 
presented via the virtual reality goggles. Note that while the previous three tasks were conducted in 

Table 1. A list of the number of participants for a given task and the reasons for those who were excluded 

Experiment Substage N. Included Reasons for exclusion 

1 
(Scalp EEG) 

Uncued Head Rotation 33 Motion tracking error (n = 6) 
Cued Head Rotation 33 Motion tracking error (n = 6) 
Cued Eye Movements 32 Motion tracking error (n = 6) 

EEG trigger error (n = 1) 

Rotation without Visual Input 29 Motion tracking error (n = 7) 
Dropped out during sleep stage (n = 3) 

1 
(Intracranial EEG) 

Uncued Head Rotation 10 Motion tracking error (n = 1) 
Cued Head Rotation 10 Motion tracking error (n = 1) 
Cued Eye Movements 6 Motion tracking error (n = 1) 

Eyetracker sync. issue (n = 3) 
Rotation without Visual Input 9 Motion tracking error (n = 1) 

Dropped out during sleep stage (n = 1) 
2 Sitting Head Rotation 20 Motion tracking error (n = 4) 

Standing Head Rotation 20 Motion tracking error (n = 4) 
Sitting Offset Rotation 20 Motion tracking error (n = 4) 
Standing Relocated Rotation 20 Motion tracking error (n = 4) 
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the evening, prior to sleep, this task was conducted in the morning. This was done to avoid tiring 
the participant out before they took part in the evening memory task.  

Experimental design: Experiment 2 

This experiment focused solely on navigation with all tasks being completed in a single afternoon session. 
As in Experiment 1, each navigation task followed the same pattern. Participants fixated on the centre 
screen, before an auditory stimulus was presented that they had to respond to the associated screen 
(indicated by an animal image attached to the screen). In addition to the five screens present in Experiment 
1 (see figure 1), a further two screens were added at 90° and 120° relative to the centre screen of Experiment 
1. These two screens were associated with two additional animal sounds. These additional screens were 
only used in the third task. Each experiment consisted of 160 trials, split across 4 blocks (i.e., 40 trials per 
block). In all experiments, vertical screen positions match participants’ line of sight. Below, each variation of 
this experiment is outlined: 

1) Cued Head Rotation: This was a direct replication of the Cued Head Rotation task used in 
Experiment 1. 

2) Standing Head Rotation: This task matched the Cued Head Rotation task with the single exception 
that participants stood instead of sat. Participants were instructed to rotate their head while keeping 
their body facing forwards. 

3) Cued Head Rotation at 60° offset: This task matched the Cued Head Rotation task with the single 
exception that participants sat facing the screen positioned at 60° from the centre screen and were 
then tasked with rotating their head relative to this position (that is, they rotated to face the screens 
at 0°, 30°, 90° and 120°).  

4) Standing Head Rotation after relocation: This task matched the Standing Head Rotation task. Here 
however, participants stood ~1 metre closer to the centre screen. 

Note that, in this experiment, the order of the tasks was randomised such that tasks 2 and 4 could occur in 
either order. Task 1, however, always came first to help participants acclimatise to the task and match the 
position of this task in Experiment 1. Task 3 was always the third task as it gave the participants a chance 
to recover from standing.  

Scalp EEG acquisition and pre-processing 

The EEG was recorded using an EEGo EEG system (ANT Neuro Enschede, Netherlands) with 65 Ag/AgCl 
electrodes arranged in a 10/10 system layout (including left and right mastoids; using CPz as the reference 
and AFz as the ground). All electrode impedances were less than 20 kΩ prior to commencing the 
experiment. The sampling rate was set at 1,000Hz.  

All EEG analyses were conducted using the Fieldtrip toolbox 81 https://www.fieldtriptoolbox.org/) in 
conjunction with custom code. In preparation for the central analyses, the continuous EEG data was first 
high-pass (0.5Hz; Butterworth infinite impulse response [IIR]), low-pass (165Hz; Butterworth IIR) and band-
stop filtered (49-51Hz; 99-101Hz; 149-151Hz; Butterworth IIR). Second, independent components analysis 
was conducted. In Experiment 1, we focused on only removing independent components that resembled 
eye blinks or saccades to preserve as much of the raw signal as possible. In Experiment 2, we took a more 
stringent approach and, in addition to removing eye blinks and saccades, removed probable 
electromuscular components. The strategy used did not impact the analysis outcome, as evidenced by the 
replication of the main effect across experiments (N.B., the more stringent approach used in Experiment 2 
however may explain why the electromuscular regressor explained less variance in the linear mixed-effects 
model than it did in the first experiment). Third, the data was epoched around the onset of the auditory cue; 
these epochs began 1,500ms before the onset of the cue, and ended 4,500ms after the onset of the cue. In 
the case of the Uncued Head Rotation condition (in which no auditory cue was presented), the data was 
epoched around when the auditory cue would have, theoretically, occurred. Fourth, the data was visually 
inspected for artefactual trials and channels. Trials were removed when artifacts were temporally-limited 
and spread across many channels, whereas channels were removed when artifacts were present within a 
single channel for many trials (for examples of artifactual trials, see supplementary figure 13). Fifth, the 
artefactual channels that had been removed from the data in the previous step were interpolated using 
neighbouring channels. Sixth, the data was re-referenced using the average of all channels. 
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iEEG acquisition and pre-processing 

Recordings were performed at the Epilepsy Center, Department of Neurology, University of Munich, 
Germany. Intracranial EEG was recorded from Spencer depth electrodes (Ad-Tech Medical Instrument, 
Racine, Wisconsin, United States). Electrodes carried up to 15 contacts with , distances of 5 or 10mm 
between contacts. Data were recorded using XLTEK Neuroworks software (Natus Medical, San Carlos, 
California, US) and an XLTEK EMU128FS amplifier, with voltages referenced to a parietal electrode site. 
The sampling rate was set at 1,000Hz.  

For signal preprocessing, the continuous iEEG data was first high-pass (0.5Hz; Butterworth IIR), low-pass 
(165Hz; Butterworth IIR) and band-stop filtered (49-51Hz; 99-101Hz; 149-151Hz; Butterworth IIR), identical 
to the scalp EEG preprocessing. Second, the data was epoched in the same manner as the scalp EEG 
data. Third, the data was then visually inspected for artefactual trials, in particular for interictal epileptic 
activity, and channels which exhibited such activity were marked and then removed from the data. Fourth, 
the data was re-referenced using a bipolar referencing scheme. 

We estimated the locations of the intracranial contacts using the Lead-DBS software 82. First, we co-
registered the post-operative CT scan to pre-operative T1-weighted image using a two-stage linear 
registration (rigid followed by affine) as implemented in Advanced Normalisation Tools 83. Second, we 
manually recorded the native space co-ordinates of all electrodes for the given patient with a specific focus 
on identifying and labelling those electrodes which sat in subregions of medial temporal lobe. Third, we 
spatially normalised these scans to MNI space based on the pre-operative T1-weighted image using the 
Unified Segmentation Approach as implemented in SPM12 84. Fourth, we manually recorded the MNI space 
co-ordinates of all electrodes for the given patient. Fifth, we re-labelled the contacts based on the lobe they 
sat in (as determined by the contact MNI co-ordinate and the lobe atlas available in WFU_PickAtlas; 
https://www.nitrc.org/projects/wfu_pickatlas/). Any contacts deemed to be within the medial temporal lobe 
were given the label of the visually identified subregion. See Supplementary Table 3 for a summary of 
electrodes per region-of-interest and per patient.  

Eye-tracking acquisition and pre-processing 

Eye-tracking data was acquired using a Tobii Pro Spectrum system. This system was calibrated immediately 
prior to the beginning of the experiment. The sampling rate was set as 600Hz.  

Offline, the co-ordinate space data was smoothed using a sliding window average of 50ms. The data was 
then converted to visual angles, epoched to auditory cue onset (using the same parameters as the EEG 
data) and visually inspected for artifacts. Any trial which contained physiologically-implausible changes in 
eye position were excluded (for an example trial, see supplementary figure 14). Moreover, any trial which 
was missing more than 25% of sample points were excluded. Any missing data points that remained were 
linearly interpolated based on data from the preceding and proceeding sample points. Note that only data 
from the three screens (center screen +/- 30°) were used as the eye-tracker could not reliably track eye 
positions on the outside screens. Lastly, the data was upsampled to match the EEG recording sample rate. 
Note that this upsampling procedure does not impact any lag-based analyses as the interpolated samples 
are drawn between two recorded samples spaced ~2ms apart while the lag model slides the data in 
increments of 10ms, meaning the interpolated window is too short to spread across the sliding windows. 

Head motion-tracking acquisition and pre-processing 

Head rotations were recorded using a Polhemus Liberty system. A sensor was attached the EEG cap and 
sat between the electrodes AFz and FPz. The reference sensor was placed ~75cm behind and to the right 
of the participant. Similar positioning was used for the patients in Experiment 1, though some variability was 
encountered due to the position of the patient’s bandages. Polhemus’s proprietary software was used to 
record the change in position of the first sensor relative to the second. The sampling rate was set as 240Hz.  

Offline, the co-ordinate space data was epoched around the onset of the auditory cue (as done for the EEG 
and eyetracking data). No smoothing or filtering was applied to the head motion data. The heading angle of 
every sample was operationalised as the yaw measurement (i.e., the rotation around the z-axis). The 
resulting head direction signal was then visually inspected for artefacts. Any trial which contained 
physiologically-implausible changes in head angle was excluded. Lastly, the data was upsampled to match 
the EEG recording sample rate. Note that this upsampling procedure does not impact any lag-based 
analyses as the interpolated samples are drawn between two recorded samples spaced ~4ms apart while 
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the lag model slides the data in increments of 10ms, meaning the interpolated window is too short to spread 
across the sliding windows.  

Forward encoding model: Overview 

Here, we provide a brief overview of the forward encoding model (FEM) approach and, below, we report the 
specifics of each step. For a visualisation of the approach, see figure 7. The FEM we used took inspiration 
from that used by 27. First, we decomposed the real-time head angle measurement into basis sets of 
circular–Gaussian von-Mises distributions (from here on termed “HD kernels”). Second, taking these HD 
kernels and the recorded EEG voltage, we estimated an electrode’s directional tuning (that is, the relative 
weighting of each HD kernel for a given EEG electrode) using ridge regression. Finally, we applied these 
weights to held-out datasets from the same participant to test the generalisability of the model.  

Forward encoding model: Generating the model 

We built a FEM for every participant, task, kernel width, and EEG electrode individually. Head angle was 
modelled using a basis set of circular–Gaussian von-Mises distributions (as implemented in the Circular 

Figure 7. Visual depiction of analysis pipeline for Experiment 1. The analysis began with the preparation of motion tracking 
and EEG signals. The continuous, univariate motion tracking signal was convolved with a series of kernels to provide a 2-
dimensional design matrix where each column reflected a single kernel and each row reflected a single point in time (see top left). 
EEG was broken down into principal components and then reconstructed using one of five proportions of components that were 
least likely to reflect electromuscular (EMG) activity (see top right). The forward encoding model (FEM) was then trained, tested 
and validated (see middle row). The motion and EEG data were split into four folds. The model was trained on three of these folds 
(see middle left). The resulting model weights were then applied to the held-out fold and used to estimate EEG activity for this fold 
(see centre of middle row). The model was then validated by correlating the predicted EEG activity if the real EEG activity of the 
held-out fold (see middle right). The resulting correlation co-efficient was normalised against a chance distribution of correlation 
values derived from randomly time-shifting the predicted EEG time series relative to the real EEG activity. Lastly, linear mixed-
effects (LME) models were used to investigate how distinct latent factors influenced FEM performance (see bottom row). The LME 
models were fit to the observed (or “true”) data and to 200 instances of data were the sign of the FEM performance was flipped at 
random (see bottom left). The size of the resulting effect was then computed by comparing the LME weights derived from the “true” 
data to the chance data (see bottom right). 
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Statistics Toolbox for Matlab; https://github.com/circstat/circstatmatlab), with total kernel space covering 
180° (i.e., ±90° from the centre screen) with an angular resolution of 1°. To test the tuning width of each 
electrode, we iterated our analysis across six models, which each used a bespoke kernel width (6°, 10°, 
15°, 20°, 30°, 45°, and 60°; matching 27). The distance between each kernel was tied to the kernel width to 
control for directional sensitivity across models (i.e., models with a large kernel width used fewer kernels). 
Note that as the kernels overlap, heading angles that sit between the peaks of two kernels can be modelled 
as the sum of the two kernels. We then estimated the magnitude of kernel activities for every time point 
based on the real-time head angle. By doing this for all kernels and time points, we obtained a 2D matrix 
(termed ‘X’) that described head angle as a function of time and directional tuning.  

Forward encoding model: Training the model 

The motion signal and EEG voltage were split into four partitions; each partition contained the same number 
of trials for each head rotation. The training dataset was then formed from three of these partitions, and the 
testing dataset was the remaining partition. This was done in a cross-validated manner such that, through 
iteration, each partition acted as the testing dataset for the other partitions. Note that simulations indicate 
that the pre-selection of target head angles and the skewed distribution this produces in sampling does not 
bias the model (see supplementary figure 15). 

To train the FEM, we used the matrix derived in the section above (X) in conjunction with the EEG training 
data at a given electrode (y) to predict the HD kernel weightings (β) through ridge (i.e., L2-regularised) 
regression. Ridge regression helps penalise excessively high coefficients that may come about through the 
fact that the HD kernels for a given timepoint are not independent. However, the regularisation parameter 
(λ) for this approach first needs to be estimated. To do this, we used cross-validation; we took two of the 
three training partitions, estimated the HD kernel weightings (β) for ten different values of λ (log-spaced 
between 1 and 10,000,000), and then assessed how well these values generalised to the remaining training 
partition. To assess generalisability, we calculated the Pearson correlation coefficient between the time 
course of the EEG voltage and the time course predicted by the β-weighted HD kernels for each value of λ. 
The value of λ that led to the highest Pearson correlation coefficient (averaged across the cross-validations) 
was then used to estimate the final model weights. The final model weights were derived using ridge 
regression (this time across all three partitions).  

The stability of the weights and λ are visualised separately for each experiment (see supplementary figures 
16-22).  

Forward encoding model: Testing the model  

To test the validity of the FEM, we applied the model weights to head angle data held in the independent 
testing dataset (one out of four partitions). This returned a prediction of the EEG time-series, which was 
then correlated with the observed EEG voltage time-series using Pearson’s correlation co-efficient.  

To aid comparison between the models using different kernel widths, we used a bootstrapping procedure 
where we circularly-shifted the predicted EEG voltage time-series by a random integer and then recomputed 
the correlation coefficient. By repeating this procedure 100 times, we generated a distribution of correlation 
coefficients between the observed and predicted time-series that we would expect by chance. We can then 
normalise the “true” correlation coefficient by subtracting the mean of the chance distribution and then 
dividing by the standard deviation of this distribution.  

Forward encoding model: Modelling muscular activity 

Muscular activity was modelled as a covariate in the linear mixed-effects (LME) model used for inferential 
analysis, and hence regressed out of the variables of interest. The full model is described below (see “EEG 
encoding model: Group-level analysis for Experiment 1”). Here, we just describe the component of the LME 
model used to regress out muscular activity. 

To this end, we used principal components analysis (PCA) to break the EEG data into its principal 
components, and then ordered these components based on the relative likelihood that a given component 
contained muscular activity, informed by the components’ topography. This likelihood measure was 
computed by taking the mean of the size of the weights for electrodes on the outer rim of the cap and dividing 
this value by the mean of the size of the weights for all the remaining electrodes. The larger the resulting 
value, the more ‘muscular’ a component was judged to be, following the rationale that electrodes that sit at 
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the edge of the cap are closest to the neck muscles involved in the head rotation. Based on this ordering 
procedure, we created five groups of components: the 20% least muscular components, the 40% least 
muscular components, and so on. For each of these groups, the EEG data was reconstructed in electrode-
space using the selected components. The FEM was generated, trained, and tested for each of these 
datasets separately.  

The performance of these FEMs can be thought of as being a linear sum of EEG signals that reflect muscular 
activity and EEG signals that do not reflect muscular activity (there can be no third option – the signal is 
either muscular or not). Based on the PCA approach used above, we can also conclude that the EEG signals 
that reflect muscular activity get progressively smaller as we remove more of the muscular components, 
while the EEG signals that do not reflect muscular activity remain constant. This can be expressed as: 

𝑦 = 𝑎 +  𝑏𝑋 + 𝑒𝑟𝑟𝑜𝑟 

Where y represents FEM performance, a represents the constant (i.e., EEG signal that doesn’t change as 
a function of the number of muscular components removed), b represents an unknown weighting, and X 
reflects the percentage of muscular components removed. This equation will form part of the central LME 
model and allow for muscular contributions to FEM performance to be regressed out of the central analyses. 

Forward encoding model: Modelling eye-position activity 

In addition to creating a FEM which used head angle as a predictor of EEG activity, we also created a FEM 
which used eye position as a predictor of EEG activity. The eye position FEM was computed in the same 
manner as the head angle FEM with two exceptions: (1) visual angle was used as the predictor in place of 
head angle, and (2) only data from the screens as +/- 30° were used as the eye-tracker could not track eye 
positions on the outside screens. The eye position FEM was built on the data from the Cued Eye Movements 
task. As no head rotation occurred in this task, whenever we refer to FEM performance for this task, we 
refer to the eye position model.  

Forward encoding model: Group-level analysis of Experiment 1 

Through completion of the analysis steps described above, we obtained a z-score describing FEM 
performance relative to chance for every participant, task, electrode, kernel width and principal component 
subcategory. To assess whether these z-scores differed from chance across participants (i.e., z > 0), we 
used linear mixed-effect (LME) models. We computed an LME for every kernel-electrode pair. Each LME 
took data from all participants, all tasks and all principal components subcategories. The outcome variable 
of each LME was FEM performance. For predictors, random intercepts were created for each participant, 
as well as four fixed effects that represented latent factors. The fixed effects were as follows: 

1. Head angle: A binary variable which denoted whether head rotation had occurred in the given task.  
2. Auditory input: A binary variable which denoted whether an auditory cue had been played in the 

given task.  
3. Visual input / eye movements: A binary variable which denoted whether visual input which, in these 

experiments, occurred whenever participants were free to move their eyes. 
4. Muscular activity: A variable ranging from 0.2 to 1, which denoted the percentage of principal 

components included in the sample prior to the fitting of the encoding model. 

We felt it was essential to simultaneously model and, consequently, factor out the confounds of auditory 
input, visual input/eye movements and muscular activity as these confounds co-occurred with the head 
rotations and it would be entirely plausible to suggest that the ability of the FEM to predict head orientation 
was driven not by head direction per se, but by neural responses to auditory cues telling participants where 
to turn to, changes in visual input that accompany the change in head direction, or muscle activity required 
to rotate the head. See Supplementary Table 4 for a mapping of experiment conditions onto these latent 
factors. 

The LME returned beta weights for each regressor. To assess statistical significance, the resulting weights 
were compared to a surrogate distribution (200 permutations) of weights generated by randomly permuting 
the sign of the outcome variable for each sample and then refitting the model. The p-value was computed 
by calculating the proportion of surrogate weights which were larger in value than the ‘true’ model weights 
(this is equivalent to a one-tailed test). This process was repeated for every kernel-electrode pair. False 
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discovery rate (FDR) correction was used to address the multiple comparison issue incurred by conducting 
analysis on each resulting beta weight, kernel and electrode separately.  

The LME used for the patients was near-identical to that used for the healthy participants. The key difference 
was that, rather than using separate models for each electrode, separate models were used for defined 
regions-of-interest. This approach was necessitated by the fact that implantation montages are bespoke for 
each patient, leading to a variable number of contacts in each region across patients. Regions-of-interest 
were defined as the frontal lobe, occipital lobe, parietal lobe, and temporal lobe (as defined by the lobe 
options in WFU_PickAtlas; https://www.nitrc.org/projects/wfu_pickatlas/), and the parahippocampus, 
hippocampus and amygdala (as defined by visual inspection of the patient scans. As before, participants 
were included as random effects in the LME, avoiding issues in generalisability that occur when using fixed-
effect models.   

Forward encoding model: Group-level analysis of Experiment 2 

The concept behind the group-level analysis for Experiment 2 matched that of Experiment 1, but given the 
different tasks, the latent factors inevitably changed. Here, the fixed effects were as follows: 

1. Head angle: A binary variable which denoted whether head rotation had occurred in the given task.  
2. Position on the z-axis: A binary variable which denoted whether participants were sitting or standing 

during the given task.  
3. Relocation on the x-axis: A binary variable which denoted whether participants were sitting/standing 

in the standard position during the given task, or whether they stepped one metre closer to the 
screens.  

4. Muscular activity: A variable ranging from 0.2 to 1, which denoted the percentage of principal 
components included in the data prior to the fitting of the encoding model. 

See Supplementary Table 5 for a mapping of experiment conditions onto latent factors. 

Lag-based encoding model 

To assess the temporal dynamics of the EEG signal tuned to head angle relative to the timing of physical 
head rotation, we built a lag-based FEM. This FEM operates in the same manner as described above, 
except that (1) the time series of the EEG is shifted by a given number of samples prior to fitting, and (2) to 
reduce computational load, only kernels of 20° were used. We restricted the analysis to the 20° kernel FEM 
as this FEM best fit the EEG data. Note that as we are interested in which lag the FEM operates at best, 
rather than simply whether the FEM operates above chance, circularity is a non-issue as all lags benefit 
from the same kernel selection process. The temporal shift of the EEG is referred to as the lag. We fitted 
the lag-based model for 40 lags, ranging from when the EEG time series preceded the motion tracking time 
series by 200ms to when the EEG time series followed the motion tracking time series by 200ms. All other 
aspects of the analysis remained the same. False discovery rate (FDR) correction was used to address the 
multiple comparison issue incurred by conducting analysis on each electrode and lag separately. 

To identify whether the lag-based encoding model performed better when EEG activity led or lagged heading 
angle, the difference was computed between the mean of LME beta coefficients for “leading” samples and 
the mean of LME beta coefficients for “lagging” samples. This was done for the coefficients derived from the 
true, observed data, and for coefficients derived from the permuted “chance” data. The resulting difference 
measure for the true data was compared to the permuted distribution, and a both a z-value and a p-value 
was computed. The z-value used the mean and standard deviation of the permutation distribution, while the 
p-value counted the percentage of chance data points that had a larger difference score than the observed 
data. 

Inverted encoding model 

As a second means of assessing the temporal dynamics of the head angle-related EEG signal, we build an 
inverted encoding model. This approach matched the main approach up until the section “EEG encoding 
model: Testing the model”. At this stage, the weights derived from 20° FEM were inverted (i.e., 𝑖𝑛𝑣(𝛽 ∗ 𝛽’) 
∗ 𝛽). The weights were then applied to the EEG scalp data iteratively for each sample point. This returned 
predicted head direction kernel values for every sample of every trial. Representational similarity analysis 
(RSA) was then used to identify whether the kernel magnitudes at a given sample could distinguish between 
the four monitor positions. To this end, a representational dissimilarity matrix (RDM) was computed by 
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computing Pearson correlations between the predicted kernel magnitudes of every pair of trials. The RDM 
was then correlated with a model RDM which stated that the correlation between pairs with the same target 
head direction would equal one and all other pairs would equal zero. A surrogate distribution of chance 
correlation values was then computed by shuffling the labels of the trials, rebuilding the model RDM and 
then correlating the shuffled model RDM with the observed RDM. The correlation of the ‘true’ data was then 
normalised using the mean and standard deviation of the surrogate data. By repeating these steps for every 
time point, we obtain a time series that describes the extent to which the inverted model predicts head 
direction above and beyond what would be expected by chance. False discovery rate (FDR) correction was 
used to address the multiple comparison issue incurred by conducting analysis on each time point 
separately. The remainder of the analysis matches that of the main approach.  

Generalised encoding models 

To disentangle the influences of head rotation and head direction signal, and location-specific and location-
independent head direction signal, we used generalised encoding models. We will use the head 
rotation/head direction dissociation as the example here, but the same procedure was applied to the 
location-specific/location-independent dissociation. 

For the generalised encoding models, we trained the encoding model on one condition (e.g., Cued Head 
Rotation) and applied the model weights to another condition (i.e., Cued Head Rotation at 60° offset). In the 
case of head direction versus head rotation, if the weights lead to the test data outperforming what would 
be expected by chance, it can be said that the model tracks activity related to head rotation as the FEM 
generalises to when participants are sitting at an offset. If the weights, however, lead to poorer performance 
than what is observed when conducting cross-validated training and testing within a condition, it can be said 
that the model tracks activity head direction. Notably, the two outcomes are not mutually exclusive: 
generalised model performance can be significantly greater than chance, while also being significantly 
poorer than within-condition performance. To test both ideas simultaneously, linear mixed models were used 
with fixed effects denoting head rotation, head direction and muscular activity (see Supplementary Table 6 
for mapping of generalised encoding models onto factors). Random intercepts were included for each 
participant. Statistical analysis matched what was reported above. 

The same principles were applied to the dissociation of location-independent and location-specific head 
direction signals. Supplementary Table 7 describes how the generalised encoding models were mapped 
onto the fixed effects of the linear mixed effect models. 

Code availability: Openly available at https://github.com/benjaminGriffiths/human-hd.  

Data availability: Data acquired from the healthy participants is available at https://data.ub.uni-
muenchen.de/439/. Due to privacy laws, data acquired from the patient is not openly available, though 
(subject to privacy laws) can be provided by contacting the corresponding author.  
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