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A B S T R A C T

In the Fourth Industrial Revolution, wherein artificial intelligence and the automation of machines occupy
a central role, the deployment of robots is indispensable. However, the manufacturing process using robots,
especially in collaboration with humans, is highly intricate. In particular, modeling the friction torque in
robotic joints is a longstanding problem due to the lack of a good mathematical description. This motivates
the usage of data-driven methods in recent works. However, model-based and data-driven models often exhibit
limitations in their ability to generalize beyond the specific dynamics they were trained on, as we demonstrate
in this paper. To address this challenge, we introduce a novel approach based on residual learning, which
aims to adapt an existing friction model to new dynamics using as little data as possible. We validate our
approach by training a base neural network on a symmetric friction data set to learn an accurate relation
between the velocity and the friction torque. Subsequently, to adapt to more complex asymmetric settings,
we train a second network on a small dataset, focusing on predicting the residual of the initial network’s
output. By combining the output of both networks in a suitable manner, our proposed estimator outperforms
the conventional model-based approach, an extended LuGre model, and the base neural network significantly.
Furthermore, we evaluate our method on trajectories involving external loads and still observe a substantial
improvement, approximately 60%–70%, over the conventional approach. Our method does not rely on data
with external load during training, eliminating the need for external torque sensors. This demonstrates the
generalization capability of our approach, even with a small amount of data – less than a minute – enabling

adaptation to diverse scenarios based on prior knowledge about friction in different settings.
1. Introduction

In the context of advancing human–robot collaboration in manufac-
turing [1–4], where physical interaction between humans and robots is
becoming increasingly important, the accurate estimation of interaction
forces is critical for ensuring safety [5–7]. Achieving this often involves
the precise estimation of external forces, which can be accomplished
by mounting force–torque sensors on the robot’s end-effector. Unfortu-
nately, many industrial robots do not have these sensors due to their
high cost [8]. This situation emphasizes the need for a reliable, cost-
effective, and sensorless method for estimating external torque, which,
in turn, necessitates the development of an accurate friction model.

A precise model of friction [9] has the potential to enhance the
functionality of robotic systems in multiple aspects. It plays a crucial
role in achieving energy-efficient computations, enhancing the preci-
sion of dynamic simulations, improving control performance at the
joint level [10–13], or detecting slip [14]. To mitigate the undesirable
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effects of friction, a model-based friction compensation approach is
commonly integrated into the control system. This approach finds
widespread applications across multiple domains, including joint-level
control [15,16], safe human–robot interaction [17–20], and the en-
hancement of external torque estimation precision during interactions
with the environment. Furthermore, friction is an important factor in
the degradation curves of the components of a robot, thus, a precise
friction estimation also improves the predictive maintenance [21,22].
However, modeling the friction is highly complicated since it depends
on a multitude of factors limiting the applicability of model-based
approaches [23–28].

1.1. Related work

The success of neural networks (NN) in the last decade [29–32]
inspired engineers to explore their application in modeling complex
vailable online 1 May 2024
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Table 1
Overview of data-driven approaches to model the friction and their application.

Approach Application goal Method

Selmic and
Lewis [33]

Friction
estimation

Fully connected NN with
discontinuous activation functions

Ciliz and
Tomizuka
[34,35]

Motion control Hybrid of a parametric model
and NN

Huang and Tan
[36]

Motion control Combination of two NNs

Guo et al. [37] Motion control Fully connected NN with
discontinuous activation functions

Hirose and
Tajima [38]

Friction
estimation

Long Short-Term Memory (LSTM)
network

Tu et al. [39] Friction
estimation

NN initialized using Genetic
Programming (GP)

Liu et al. [40] External torque
estimation

NN with sigmoid activation

dynamics, including friction. An overview of data-driven approaches
for friction modeling is given in Table 1. Selmic and Lewis [33], for
example, developed neural network models for friction that utilized
specialized architectures with discontinuous activation functions. This
design aimed to enhance the fitting of the observed friction data,
ultimately reducing the number of required neurons, training time, and
data. Another common approach is to use a hybrid method consisting
of a simple parametric model and a complicated neural network. Ciliz
and Tomizuka [34,35] showed that this approach improves over both, a
single parametric model and a single neural network, since it combines
the flexibility of a neural network with the known dynamics captured
by the simple parametric model, thus, introducing an inductive bias in
the architecture.

Recent research has aimed to leverage the structure of dynamics and
learn multiple models to complement each other. Huang and Tan [36],
for instance, trained two neural networks specifically for modeling
friction. Guo et al. [37] took this a step further by learning additional,
individual neural networks for the inertia matrix, the Coriolis torque,
and the gravitational torque, which were subsequently combined into
a single neural network. They also adapted discontinuous activation
functions for friction torque. Most of the work, however, does not
capture the hysteresis effect of friction, as they lack a dependence
on the history. To model this, Hirose and Tajima [38] applied a
Long Short-Term Memory (LSTM) network, a type of recurrent neural
network (RNN) that can naturally process sequences by maintaining
a hidden state. Another approach was taken by Tu et al. [39], who
used genetic algorithms (GA) to compute suitable initializations for the
neural network weights. For human–robot interaction, it is crucial to be
able to estimate the external torque of robot joints, which was the goal
of Liu et al. [40] by approximating the friction using neural networks.

1.2. Our contributions

The application of data-driven approaches to model friction in
robotic joints is not a novel concept. However, previous approaches
have exhibited limitations in their generality due to the absence of
important components within the data. Specifically, these approaches
lack the incorporation of different velocities, the reversal of directions,
simultaneous movement of joints, and continuously varying loads.
These conditions significantly influence the performance of data-driven
approaches, as evidenced in Section 4.1. The results demonstrate that a
network, that may outperform traditional model-based approaches on
a dataset lacking some of these effects, ultimately fails when subjected
to more complex data. Furthermore, dynamics also change due to wear,
varying temperature and humidity, and other external factors.

To address these challenges, we propose a novel strategy to adopt
2

existing methods to unknown dynamics while requiring as little data as 𝜏
possible—only one movement in our case. To achieve this we train a
neural network on the residual of a base estimator on new dynamics
for which the base estimator fails, to be able to use the knowledge
learned by the base estimator while improving its performance for the
new dynamics. The key contributions of this paper are as follows:

1. Adaption of a base model to new friction dynamics: To tackle
the challenge of adapting existing friction models to new dynam-
ics with as little data as possible, we propose to learn the residuals
using a neural network.

2. Comprehensive evaluation: We evaluate our approach using
a data-driven base model of friction and compare it against a
conventional model-based approach, an extended LuGre model.
We show that our approach then only requires data from a
single point-to-point movement that includes a velocity reversal
to be able to adapt the prediction of the friction torque and
outperform the conventional approach and the base network
for different velocities, while reversing the directions, moving
the joints simultaneously, and continuously varying the external
loads.

3. Integration into torque estimation framework: To demon-
strate the practical applicability of our adapted friction model,
we integrate it into a torque estimation framework. By estimating
the external torque applied to an object more precisely than
the base network and the traditional approach, our approach
enhances the overall precision and efficiency of robotic systems.
We validate the accuracy of our torque estimation using external
torque sensors, thereby ensuring the reliability of our proposed
methodology.

The successful adaption of existing friction models and their integra-
tion into the torque estimation framework holds promise for numerous
applications in the field of robotics. This approach can potentially
advance dynamic simulations, friction compensation techniques, and
external torque estimation methodologies, enabling the development
of more capable and adaptable robotic systems across various domains.
By being able to adapt existing models to new dynamics, this approach
leverages the wealth of existing knowledge and models, making it
a powerful tool for addressing complex and dynamic scenarios in
robotics.

2. Methods

The goal of this paper is to introduce a novel approach to adapt
existing methods to new dynamics using as little data as possible.
This is desirable for several reasons, including time and cost sav-
ings, prioritizing data quality over quantity, resource limitations, and
reduced complexity. In Section 2.1, we start with the introduction
of the conventional model-based approach we use as a baseline for
comparison throughout our experiments. Afterward, in Section 2.2, we
describe the neural network-based approach we will use as our base
model. In Section 2.3, we introduce our novel technique to adapt the
neural network-based approach to unknown friction dynamics.

In the following, we describe the robot dynamics and our assump-
tions during the training of the different approaches to isolate the
friction effect. Consider the robot dynamics of the form

𝑀(𝑞)𝑞 + 𝐶(𝑞, �̇�)�̇� + 𝜏𝑔(𝑞) = 𝜏𝑚 + 𝜏𝑓 + 𝜏𝑒𝑥𝑡, (1)

here 𝑞 is the joint position vector, �̇� and 𝑞 are the joint velocity
nd acceleration vectors, respectively, and 𝑀(𝑞) is the positive defi-
ite inertia matrix. The Coriolis and centrifugal matrix is denoted by
(𝑞, �̇�), the gravitational torque by 𝜏𝑔(𝑞), and the friction torque by 𝜏𝑓 .
urthermore, the terms 𝜏𝑚 and 𝜏𝑒𝑥𝑡 describe the motor joint torque and
xternal joint torque, respectively.

To predict the external torque using the estimation of the friction
orque, we rewrite the dynamics equation as
𝑒𝑥𝑡 = 𝑀(𝑞)𝑞 + 𝐶(𝑞, �̇�)�̇� + 𝜏𝑔(𝑞) − 𝜏𝑓 − 𝜏𝑚. (2)
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We assume full knowledge of the robot dynamic terms (𝑀(𝑞),
(𝑞, �̇�), 𝜏𝑔(𝑞)), whereas 𝜏𝑓 is unknown. The motor torque in this case

s directly measured as 𝜏𝑚. If no load is applied (𝜏𝑒𝑥𝑡 = 0), the motor
orque follows from the robot dynamics (assumed to be known) and the
riction torque as

𝑚 = 𝑀(𝑞)𝑞 + 𝐶(𝑞, �̇�)�̇� + 𝜏𝑔(𝑞) − 𝜏𝑓 . (3)

In the special case where we assume constant, single-joint velocities
r constant, low velocities (𝑞 = 0, 𝐶(𝑞, �̇�)�̇� ≈ 0), the quadratic terms of

individual joints can be ignored, while it is assured that the coupling
terms are zero. As a result, the equation simplifies to

𝜏𝑚 = 𝜏𝑔(𝑞) − 𝜏𝑓 . (4)

All the assumptions above will only be made during training to
relate the motor torque to the friction effect as shown in Eq. (4).

2.1. Model-based approach

The friction torque 𝜏𝑓 can be mathematically described by in-
corporating several fundamental characteristics that define friction in
the sliding regime, including static friction, Coulomb friction, viscous
friction, and the Stribeck effect [41]. In the pure sliding regime, the
static friction behavior 𝜏f,s can be represented by arbitrary functions,
but a common model takes the form:
𝜏f,s(�̇�) = 𝑔(�̇�) + 𝑠(�̇�)

𝑔(�̇�) = 𝑠𝑖𝑔𝑛(�̇�)
(

𝐹c + (𝐹s − 𝐹c)𝑒−|�̇�∕𝑣s|
𝛿s
)

.
(5)

The term 𝑠(�̇�) expresses the velocity-strengthening function that is
well known as viscous friction. Typically, it is linearly proportional
to the joint velocity �̇� as 𝑠(�̇�) = 𝐹𝑣�̇�, with the constant coefficient
𝐹𝑣. The velocity-strengthening friction effect could in the general case
include a nonlinear form as shown in [42]. The function 𝑔(�̇�) de-
scribes the velocity-weakening behavior of the static friction. Also,
𝑔(�̇�) is alternatively called the Stribeck curve, because it captures the
Stribeck effect, where 𝐹c is Coulomb friction, 𝐹s is static or stiction
friction, 𝑣𝑠 is Stribeck velocity, and 𝛿s is the exponent parameter of
the Stribeck-nonlinearity. The friction of the Harmonic-Drive (HD)
gear-based robotic joint is known to be highly dependent on the tem-
perature, which can be incorporated in the static and dynamic friction
models [42,43]. Generally, the joint torque varies during the robot
operation as it is configuration-dependent. This variation is reflected
as a load effect in the joint friction torque, which can be included
in Eq. (5) and results in

𝜏f ,s(�̇�, 𝜏l) = 𝑔(�̇�, 𝜏l) + 𝑠(�̇�, 𝜏l) , (6)

where 𝜏f ,s(�̇�, 𝜏l) denotes the static friction torque as a function of
velocity �̇� and load 𝜏l, which is mainly gravitational torque in our case,
for more details refer to [42]. As the friction phenomenon by nature is
nonlinear and continuous at zero velocity crossing, it is unpractical to
use the static friction model which is discontinuous at velocity reversal.
Therefore, the dynamic friction effect can be expressed as

𝜏f ,d(�̇�, 𝜏l) = 𝑓 (𝑧, �̇�, 𝜏l) , (7)

where 𝜏f ,d is the dynamic friction torque and 𝑧 is the internal friction
state with its dynamics
𝑑𝑧
𝑑𝑡

= �̇� − 𝜎0
|�̇�|

𝑔(�̇�, 𝜏l)
𝑧. (8)

Eq. (8) can be rewritten as

𝜏f ,d = 𝜎0𝑧 + 𝜎1�̇� + 𝑠(�̇�, 𝜏l) . (9)

The pre-sliding parameters are the bristle stiffness 𝜎0 and the micro-
damping coefficient 𝜎1, for more details see [44,45].

Eq. (9) represents a smooth and continuous expression that can
describe the friction dynamically and extends the LuGre model [44] to
3

𝑁

Fig. 1. The architecture of the base neural network: Fully connected neural network
with 2 hidden layers, each consisting of 30 neurons (for space reasons, we only show
five neurons here).

incorporate load dependency, which is considered in this work as the
conventional model-based approach. While the bristles-based dynamic
friction models show high accuracy in capturing the physical friction
effects of the robotic joints, the difficulty of estimating and adapting
their parameters remains. This limits the usage of such models in many
scenarios and proves a strong motivation for data-driven approaches.

2.2. Neural network based approach

As our base model, we propose a data-driven model utilizing a
neural network to learn the friction torque as a function of the gravity
torque and its velocity. In our methodology, the focus lies on learning
an unknown target function 𝑓 ∶ 𝑋 → 𝑌 through the observation
of input–output pairs {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1 ⊂ 𝑋 × 𝑌 with 𝑓 (𝑥𝑖) ≈ 𝑦𝑖, where
𝑋 denotes the input space and 𝑌 represents the output space. It is
assumed, with some simplification, that the data points 𝑥𝑖 are sampled
rom a sequence of independently and identically distributed (iid)
andom variables, governed by a common probability density function
, which is supported on 𝑋, i.e. 𝑥𝑖 ∼ 𝜇 for all 𝑖 = 1,… , 𝑛 and
(𝑋) = 1. Furthermore, it is acknowledged that the observed output
𝑖 may potentially be corrupted by noise, thus introducing a degree of
ncertainty.

Our task now is to find a parameterized mapping 𝑓𝜃 ∶ 𝑋 × 𝛩 → 𝑌
in our case, a neural network) that approximates the desired function
, where 𝛩 represents a finite-dimensional parameter space. This is
chieved by identifying a suitable cost function 𝐶 ∶ 𝑋 ×𝑋 → R, which
uantifies the discrepancy between the predicted outputs of 𝑓𝜃 and the
rue outputs, and minimizing the generalization error or risk, i.e.,

𝑋∼𝜇[𝐶(𝑓, 𝑓𝜃)]

ver all 𝜃 ∈ 𝛩. The generalization error E reflects the expected value
f this cost function over the entire input space 𝑋, capturing the
etwork’s ability to generalize well to unseen data. By minimizing the
eneralization error, we strive to find the optimal set of parameters
∈ 𝛩 that minimizes the discrepancy between 𝑓𝜃 and the true function
, with the hope that 𝑓 ≈ 𝑓𝜃 .

However, since, in general, we do not have access to the underlying
robability measure 𝜇 and solely have a finite number of observations
f input–output pairs {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1 ⊂ 𝑋 × 𝑌 , we instead minimize the
mpirical risk or training error given by

(𝜃) =
𝑛
∑

𝑖=1
𝐶(𝑦𝑖, 𝑓𝜃(𝑥𝑖))

ver all 𝜃 ∈ 𝛩. An introduction to statistical learning theory can be
ound in [46].

In the framework of learning the torque friction, we choose a neural
etwork as our parametric map denoted by 𝑁𝑁(⋅, 𝜃), and the cost
unction is the squared difference of its inputs, i.e., the loss 𝐿 is the
ean squared error. A neural network is a function

𝑁 = 𝑓 ◦𝑓 ◦… ◦𝑓
1 2 𝑙
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given by a composition of functions 𝑓𝑖 (the layers)

𝑓𝑖(𝑥; 𝜃𝑖) = 𝜎(𝑊𝑖𝑥 + 𝑏𝑖) (10)

where 𝜃𝑖 = (𝑊𝑖, 𝑏𝑖) are the parameters, 𝜎 ∶ R → R is the so-called
activation function, and 𝑙 ∈ N is the number of layers of the neural
network. Fig. 1 shows the architecture of a two-hidden layer neural
network which will be used for learning the torque friction.

The idea in this paper is to train a neural network to model the
friction torque by following (4). For this, we set 𝑓𝜃 = 𝑁𝑁𝑏𝑎𝑠𝑒(⋅; 𝜃) ∶
𝑋 → 𝑌 with 𝑋 = R2 and 𝑌 = R, thereby allowing the neural network
to depend on the gravitational torque 𝜏𝑔(𝑞(𝑡𝑖)) and the velocity �̇�(𝑡𝑖) at
a given time step 𝑡𝑖.

As mentioned before, we then train the neural network by min-
imizing the mean squared error, i.e., the loss function is given by

𝐿𝑏𝑎𝑠𝑒(𝜃) =
𝑛
∑

𝑖=0

(

𝑁𝑁𝑏𝑎𝑠𝑒(𝜏𝑔(𝑞(𝑡𝑖)), �̇�(𝑡𝑖); 𝜃) − (𝜏𝑚(𝑡𝑖) − 𝜏𝑔(𝑞(𝑡𝑖)))
)2 . (11)

𝑁𝑁𝑏𝑎𝑠𝑒 is a neural network with 2 hidden layers, each consisting of
30 neurons, as shown in Fig. 1, which we will refer to as the base
model in the following. As the activation function, we use the following
exponential linear unit (ELU) function, given by,

𝑓 (𝑥) =

{

𝑥, 𝑥 > 0
𝑒𝑥 − 1, 𝑥 ≤ 0

(12)

which is a smoothed version of the rectified linear unit (ReLU) function.

2.3. Adaption to new dynamics

Since most models of friction are best for the dynamics they are built
and trained for, it is helpful if existing models can be easily extended to
new situations without the need for big data sets to retrain the models
completely. For that reason, we propose to build upon the existing
models to not waste the previously acquired knowledge and train an
additional neural network 𝑁𝑁𝑎𝑑𝑑 on the residuals of the old model on
the new data. Therefore, we minimize the following loss:

𝐿𝑎𝑑𝑑 (𝜙) =
𝑛
∑

𝑖=0

(

𝑁𝑁𝑎𝑑𝑑 (𝜏𝑎𝑑𝑑𝑔 (𝑞(𝑡𝑖)), 𝑠𝑖𝑔𝑛(�̇�𝑎𝑑𝑑 (𝑡𝑖));𝜙)

+ 𝜏𝑓𝑏𝑎𝑠𝑒 (𝜏
𝑎𝑑𝑑
𝑔 (𝑞(𝑡𝑖)), �̇�𝑎𝑑𝑑 (𝑡𝑖))

− (𝜏𝑎𝑑𝑑𝑚 (𝑡𝑖) − 𝜏𝑎𝑑𝑑𝑔 (𝑞(𝑡𝑖)))
)2

.

(13)

We allow the network 𝑁𝑁𝑎𝑑𝑑 to depend on the gravity torque and
the sign of the velocity; 𝜙 denotes the parameters of 𝑁𝑁𝑎𝑑𝑑 we want to
optimize and 𝜏𝑓𝑏𝑎𝑠𝑒 is the base model. In general, any base model works
for 𝜏𝑓𝑏𝑎𝑠𝑒 , however, in this study, we utilize 𝑁𝑁𝑏𝑎𝑠𝑒 as our base model,
i.e., we set 𝜏𝑓𝑏𝑎𝑠𝑒 = 𝑁𝑁𝑏𝑎𝑠𝑒.

It is important to note that we only use the sign of the velocity as
input for 𝑁𝑁𝑎𝑑𝑑 , rather than the full velocity. This choice is motivated
by our objective to minimize the amount of data required for training.
In our case, we will only use data from one movement with one velocity
in both directions, which is insufficient to fully capture the complete
velocity dependence. Nevertheless, this is not a problem because the
base model, 𝑁𝑁𝑏𝑎𝑠𝑒, already accounts for the velocity dependence.
Note further that using the sign of the velocity fits to the discontinuity
of the friction at zero velocity.

The new predictor for the small friction data set with varying load
and directions is then

𝜏𝑓𝑝𝑟𝑒𝑑 (𝑞, �̇�) = 𝜏𝑓𝑏𝑎𝑠𝑒 (𝑞, �̇�; 𝜃
∗) +𝑁𝑁𝑎𝑑𝑑 (𝑞, 𝑠𝑖𝑔𝑛(�̇�);𝜙∗), (14)

where 𝜙∗ denotes the parameters of the additional model, found when
minimizing 𝐿 (𝜙).
4

𝑎𝑑𝑑
Fig. 2. The experimental setup: the robot is equipped with physical torque sensors in
each joint output for the reference signals, while the measured motor current is used
in the proposed method.

3. Data sets

Since the goal of this work is to adapt an existing approach to a
set with different dynamics, we utilize two different data sets. Both
data sets are collected to best capture the physical behavior of the
friction torque. The experimental measurements are acquired from each
robot joint separately at different constant velocities. In this study,
the torque-controlled DLR-KUKA LWR-IV+ robot is used as a reference
platform. The full experimental setup is illustrated in Fig. 2.

This work aims to model the friction effects mainly resulting from
the gear (HD), however, the used robot is also equipped with link-side
torque sensors, which are used for validation only. The data is collected
in two main subsets to best describe the friction effect and eliminate
other unmodeled dynamics.

For each data set we collect the position and velocity of the joints
and the gravitational torque and applied motor current. The motor
current 𝐼𝑚 is used to compute the motor torque 𝜏𝑚 = 𝐾𝑡𝐼𝑚, where
𝐾𝑡 is the motor torque constant taken from the manufacturer’s data
sheet. The gravitational torques in the robot joints are obtained through
a model-based approach using recursive Newton–Euler formulation
which relies on the robot’s mechanical design information, e.g., the
mass and center of mass of each link, for which we rely on an accurate
CAD model.

Notably, the load variation effect also appears in the no-load data
as a result of gravitational torque in the robot joints. This can be
seen from the measured data in Figs. 6(b) and 6(c) in Section 3.2 as
the friction torque varies even when the velocities are constant. The
temperature effect is minimized by applying warm-up phases before
each data collection routine. In this way, the temperature is assumed
to be constant during operation.

3.1. Base data set

The base data set aims to capture the static friction behavior;
therefore, the robot joints were excited to follow single-joint constant
velocities. Thus, (4) holds and can be used to compute the friction. We
will refer to this data set as the collected friction data set. Intensive
experimental measurements have been carried out to cover the entire
operational velocity and position ranges of the individual joints; the
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Fig. 3. Velocity and motor torque of the collected friction dataset for Joint 2.
Fig. 4. The measured friction torque-velocity behavior for Joint 2 and Joint 4 of the DLR-KUKA LWR-IV+ robot for the base data set.
Fig. 5. Velocity and motor torque of the small dataset with varying directions and without external load for Joint 2.
velocity and motor torque of Joint 2 can be seen in Fig. 3. In this way,
the static friction is characterized in a fine resolution and separated
from other effects as shown in Fig. 4.

3.2. Extended data set

The extended data set is collected dynamically by applying different
velocities sequentially while different external loads are attached to the
robot end-effector and the joints are moved simultaneously. We refer
to this data set as the small data set with varying loads and directions.
The velocity and motor torque for this dataset without external torque
are displayed in Fig. 5. By keeping the velocity low and constant we
ensure that (4) can be used to compute the friction torque.

The behavior of friction torque in robotic joints varies across the
four quadrants, as defined in Fig. 6(a), due to changes in the interaction
between velocity and gravitational torque [47]: In the first and third
5

quadrants, they have the same sign, while they have different signs in
the second and fourth. The difference between the two datasets investi-
gated in this paper can be visualized by examining the quadrants during
one movement from each dataset, as shown in Fig. 6. It is evident that
the base dataset features entirely symmetric quadrants, whereas the
additional dataset demonstrates a highly asymmetric trajectory across
the quadrants.

4. Experimental results

In this section, we present the results of the numerical experi-
ments. In Section 4.1, we show the results of 𝑁𝑁𝑏𝑎𝑠𝑒 on both the
symmetric and asymmetric datasets and compare the performance to
the conventional approach. These experiments reveal that the neural
network-based approach performs similarly to the conventional ap-
proach and both struggle with the asymmetric data set. Consequently,
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Fig. 6. Four quadrants of friction force: The different grey tones show the different quadrants the friction is going through. The friction stays in each quadrant for the exact same
time in the collected friction data set, but the times vary strongly for the simultaneous motion data set.
Fig. 7. The training and validation loss 𝐿𝑏𝑎𝑠𝑒 for Joint 2 and Joint 4 for 𝑁𝑁𝑏𝑎𝑠𝑒.
in Section 4.2, we demonstrate the improvements achieved by adapting
𝑁𝑁𝑏𝑎𝑠𝑒 using 𝑁𝑁𝑎𝑑𝑑 .

4.1. Prediction of the base model

The base network 𝑁𝑁𝑏𝑎𝑠𝑒 is trained on a subset of the collected
friction data set using the Adam optimizer [48] with a learning rate of
0.01 for 50,000 training steps. Since for each velocity, the joint moves
exactly once in both directions, the data contains more measurements
in the low-velocity regime than in the high-velocity regime. As a con-
sequence, the loss function tends to prioritize the low-velocity region,
resulting in high precision for low velocities and low precision for high
velocities. To address this, we downsample the data, ensuring an equal
number of data points for each velocity, as depicted in Fig. 3. Besides
balancing the precision across velocity ranges, this downsampling also
significantly improves runtime, particularly in the low-velocity regime
where many data points are very similar.

Fig. 7 displays the behavior of the loss function 𝐿𝑏𝑎𝑠𝑒 on both the
training and validation data during the training of 𝑁𝑁 for Joint
6

𝑏𝑎𝑠𝑒
2 and 4, illustrating that the model effectively converges robustly to
a local minimum and can be expected to generalize well, since the
validation loss is close to the training loss. To assess the performance
of the base neural network 𝑁𝑁𝑏𝑎𝑠𝑒 trained on the collected friction
data set, Fig. 8 presents the comparison between its prediction and the
measurements. The network demonstrates its capability to accurately
approximate the friction torque, showcasing its effectiveness. In the
next step, we explore whether the data-driven model 𝑁𝑁𝑏𝑎𝑠𝑒 learned
a meaningful relationship between velocity and friction. To investigate
this, we evaluate the model on a grid spanning from −0.7 to 0.7 rad/s
for the velocity and from −43 to 43 N m for the gravitational torque
for Joint 2 (−13 to 13 N m for Joint 4). Fig. 9 visualizes this evaluation
as both a heatmap and a 3D plot, while Fig. 10 presents the averaged
results over the gravitational torque. These plots clearly demonstrate
that the base neural network has learned a physically meaningful
friction model, suggesting strong potential for generalization, as further
supported by the results in Fig. 8.

As the neural network effectively captured the dynamics of friction
for the base data set, the next step is to assess its performance on the
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Fig. 8. Figures (a) and (b) show the true friction torque of the collected friction data for Joints 2 and 4, respectively, which was withheld during the training and validation phase,
and the estimate of the neural network. The mean absolute error was 0.79 N m and 0.60 N m, respectively. Figures (c) and (d) show the velocity for Joints 2 and 4, respectively.
Fig. 9. Dependence of the friction on the velocity and the position as captured by the base model 𝑁𝑁𝑏𝑎𝑠𝑒 for Joint 2 and 4.
extended data set. Figs. 11 and 12 reveal that the base network 𝑁𝑁𝑏𝑎𝑠𝑒

outperforms the conventional method, but it performs significantly
worse than it did for the collected friction data set. In Fig. 11(e) and
(f), as well as Fig. 12(e) and (f), the friction estimates are utilized to
predict the external torque, illustrating the prediction error introduced
through the error in friction modeling.
7

4.2. Prediction of the adapted model

To improve the prediction of 𝑁𝑁𝑏𝑎𝑠𝑒 on the extended data set,
we train the additive network 𝑁𝑁𝑎𝑑𝑑 as described in Section 2.3 by
minimizing 𝐿𝑎𝑑𝑑 in Eq. (13). Specifically, we provide only one velocity
from the small data set without external load as training data. This does
not lead to overfitting, since 𝑁𝑁 depends solely on the gravitational
𝑎𝑑𝑑
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Fig. 10. Dependence of the friction on the velocity as modeled by the base model 𝑁𝑁𝑏𝑎𝑠𝑒.
Fig. 11. Performance of the neural network versus the model-based approach on the small data set with asymmetric load. In (a) and (b) the friction is estimated for Joint 2 and
4. On Joint 2, the neural network achieved an average error of 2.40 N m, while the conventional approach had an average error of 2.68 N m. On Joint 4, the neural network
achieved an average error of 1.91 N m, while the conventional approach had an average error of 2.45 N m. (c) and (d) show the velocities of the respective joints. In (e) and (f)
the friction estimates are used to estimate the external torque, which is shown after denoising.
torque and the sign of the velocity. The benefit of using only data
without external load during training is that this does not require any
external torque sensor. The architecture of the additional model 𝑁𝑁𝑎𝑑𝑑
mirrors that of the base model, however, it only uses one hidden layer.
The training process is also the same, but 𝑁𝑁𝑎𝑑𝑑 is trained for only 200
epochs. Fig. 13 displays the training and validation loss during training,
showcasing robust minimization across epochs, but a slight difference
in training and validation loss.

Fig. 14 demonstrates the accuracy of the friction modeling achieved
by the adapted approach, as described in Section 2.3, in comparison to
𝑁𝑁𝑏𝑎𝑠𝑒 and the conventional approach, even though only one velocity
was observed during the additional training period (43s). Furthermore,
Figs. 15 and 16 reveal that this extension of the original neural net-
work has a minimal impact on the velocity dependence, particularly
preserving the underlying relationship that would be lost through the
retraining of any network components.

The combined approach not only exhibits a significant improvement
for the small data set with varying directions when no external load
is applied but also when asymmetric and symmetric external loads
8

are present, as demonstrated in Figs. 17(a) and (b) and 18(a) and
(b), respectively. By leveraging the accurate prediction of the adapted
method for the friction torque we can estimate the external torque via
the robot dynamics. Contrary to the prediction using only 𝑁𝑁𝑏𝑎𝑠𝑒 in
Figs. 11(e) and (f) and 12(e) and (f), this estimate strongly outperforms
the conventional approach, see Figs. 17(e) and (f) and 18(e) and (f) for
the asymmetric and symmetric load cases, respectively.

4.3. Comparisons with other data-driven methods

To the best of our knowledge, this is the first work focusing on
the adaptation of existing friction estimation models. Therefore, we
primarily compared the base method with the adapted method, which
is method-agnostic and can be applied to other methods presented in
the literature. To ensure clarity, we concentrated in Sections 4.1 and
4.2 on classical methods (vanilla neural network and LuGre model),
highlighting the benefits of residual learning.
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Fig. 12. Performance of the base model 𝑁𝑁𝑏𝑎𝑠𝑒 versus the model-based approach on the small data set with symmetric load. In (a) and (b) the friction is estimated for Joint 2
and 4. On Joint 2, the base model achieved an average error of 2.51 N m, while the conventional approach had an average error of 2.89 N m. On Joint 4 the base model achieved
an average error of 2.48 N m, while the conventional approach had an average error of 3.1 N m. (c) and (d) show the velocities of the respective joints. In (e) and (f) the friction
estimates are used to estimate the external torque, which is shown after denoising.

Fig. 13. The training and validation loss 𝐿𝑎𝑑𝑑 for Joints 2 and 4 for 𝑁𝑁𝑎𝑑𝑑 .
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Fig. 14. Performance of the combined network 𝑁𝑁𝑏𝑎𝑠𝑒 + 𝑁𝑁𝑎𝑑𝑑 versus the model-based approach on the small data set without external load. In (a) and (b) the friction is
estimated for Joint 2 and 4. On Joint 2, the combined neural network achieved an average error (on the test data) of 0.48 N m, while the conventional approach had an average
error of 2.62 N m. On Joint 4, the neural network achieved an average error of 0.66 N m, while the conventional approach had an average error of 2.33 N m. (c) and (d) show
the velocities of the respective joints.

Fig. 15. Dependence of the friction on the velocity as modeled by the combined neural network 𝑁𝑁𝑏𝑎𝑠𝑒 +𝑁𝑁𝑎𝑑𝑑 versus as modeled by the base neural network.
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Fig. 16. Dependence of the friction on the velocity and the position as captured by the combined neural network 𝑁𝑁𝑏𝑎𝑠𝑒 +𝑁𝑁𝑎𝑑𝑑 for Joint 2 and 4.
However, a comparative analysis with other data-driven
approaches, as outlined in the literature review in Section 1.1, is of sig-
nificant interest. To accomplish this, we re-implemented the methods
proposed by Selmic and Lewis [33] and by Ciliz and Tomizuka [34,35].

Selmic and Lewis [33] introduced a fully connected neural network
with discontinuous activation functions to model the discontinuity of
friction at zero velocity. For this purpose they applied the standard
Sigmoid functions 𝜎(𝑥) = 1

1+𝑒−𝑥 and additionally the Sigmoid jump
approximation functions

𝜙𝑘(𝑥) =

{

0, for 𝑥 < 0,
(1 − 𝑒−𝑥)𝑘, for 𝑥 ≥ 0.

(15)

An extensive hyperparameter search, similar to the one performed for
𝑁𝑁𝑏𝑎𝑠𝑒, showed that the network works best with 1 hidden layer
comprising 30 neurons. Among these neurons, 20 used the standard
Sigmoid as the activation function, while the remaining neurons ap-
plied the Sigmoid jump approximation function, with 𝑘 varying from
1 to 10 for each neuron, as proposed by Selmic and Lewis [33]. The
network was optimized using ADAM with a learning rate of 0.01 over
50,000 steps.

Ciliz and Tomizuka [34,35] combine a neural network with a para-
metric approach to incorporate the flexibility of data-driven approaches
with common knowledge about friction by modeling the friction torque
𝜏𝑓 as

𝜏𝑓 (�̇�, 𝜏𝑞) = 𝑁𝑁(�̇�, 𝜏𝑞) + 𝛽10.5(1 + 𝑠𝑖𝑔𝑛(�̇�)) + 𝛽20.5(1 − 𝑠𝑖𝑔𝑛(�̇�)) (16)

named neural network with adaptive coulomb friction (NNACM). Here, 𝛽1
and 𝛽 denote learnable parameters. We extended the original NNACM
11

2

Table 2
Comparisons between the base methods from Sections 2.1 and 2.2 and the adapted
approach from Section 2.3 with the approaches from Selmic and Lewis [33] and Ciliz
and Tomizuka [34,35] on joint 2.

Method Error with the Error with the
asymmetric load symmetric load

Conventional model (ext. LuGre) 2.68 N m 2.89 N m
𝑁𝑁𝑏𝑎𝑠𝑒 2.40 N m 2.51 N m
Selmic and Lewis [33] 2.17 N m 2.37 N m
Ciliz and Tomizuka [34,35] 2.33 N m 2.42 N m
𝐍𝐍𝐛𝐚𝐬𝐞 + 𝐍𝐍𝐚𝐝𝐝 0.87 N m 0.80 N m

model to allow the neural network to depend on the gravitational
torque, as shown in (16), to ensure a fair comparison with the other
approaches presented in this work. Through an extensive hyperparam-
eter search, we determined that using one hidden layer with 50 neurons
yielded optimal results. The network was optimized using ADAM with
a learning rate of 0.01 over 50,000 steps.

The results of both methods on the extended data set with asym-
metric and symmetric loads can be observed in Table 2. It is evident
from the table that both approaches perform slightly better than the
extended LuGre model and the base neural network. However, the
combined neural network proposed to learn the new dynamics still
outperformed them by a margin, suggesting that these approaches also
struggled with the new dynamics.
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Fig. 17. Performance of the combined neural network 𝑁𝑁𝑏𝑎𝑠𝑒 +𝑁𝑁𝑎𝑑𝑑 versus the model-based approach on the asymmetric load data. In (a) and (b) the friction is estimated for
Joint 2 and 4. On Joint 2, the combined neural network achieved an average error of 0.87 N m, while the conventional approach had an average error of 2.66 N m. On Joint 4,
the neural network achieved an average error of 0.70 N m, while the conventional approach had an average error of 2.45 N m. (c) and (d) show the velocities of the respective
joints. In (e) and (f) the friction estimates are used to estimate the external torque, which is shown after denoising.

Fig. 18. Performance of the combined neural network 𝑁𝑁𝑏𝑎𝑠𝑒 +𝑁𝑁𝑎𝑑𝑑 versus the model-based approach on the symmetric load data. In (a) and (b) the friction is estimated for
Joint 2 and 4. On Joint 2, the combined neural network achieved an average error of 0.80 N m, while the conventional approach had an average error of 2.88 N m. On Joint 4,
the neural network achieved an average error of 0.86 N m, while the conventional approach had an average error of 3.09 N m. (c) and (d) show the velocities of the respective
joints. In (e) and (f) the friction estimates are used to estimate the external torque, which is shown after denoising.
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5. Summary and conclusion

Due to the lack of a precise mathematical description of friction
torque in robotic joints, model-based approaches struggle to capture
its behavior accurately. This, in turn, hinders robot control in various
situations, especially when dealing with new movements or environ-
ments. To address this challenge, we proposed an approach that adapts
existing friction models to new dynamics using a minimal amount of
data, which enhances efficiency, prioritizes data quality over quantity,
and addresses resource limitations.

Our method leverages neural networks to learn the residuals of a
base model on new dynamics, significantly improving model accuracy
with only a short trajectory following the new dynamics. Importantly,
our approach does not require specific domain knowledge and elimi-
nates the need for external torque sensors, reducing the overall cost of
robotic systems. Although this paper primarily demonstrates the use of
a neural network as the base model, Eq. (13) permits the adaptation
of any base model, thus enabling the incorporation of specialized data-
driven or model-based techniques. Our method has been thoroughly
tested with highly detailed data encompassing diverse velocities, loads,
and movement directions, and its predictions have been validated using
torque sensors.

However, neural networks’ black-box nature and occasional diffi-
culties in generalizing to out-of-distribution data remain challenges.
Addressing these issues while retaining the advantages of data-driven
friction torque learning will be important areas for future research.
Besides this, we consider the incorporation of the adaption approach
proposed in this work into an online learning procedure as a valuable
future direction.
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