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A B S T R A C T

Bayesian optimization (BO) with Gaussian processes (GPs) surrogate models is widely used to optimize
analytically unknown and expensive-to-evaluate functions. In this paper, we propose a robust version of BO
grounded in the theory of imprecise probabilities: Prior-mean-RObust Bayesian Optimization (PROBO). Our
method is motivated by an empirical and theoretical analysis of the GP prior specifications’ effect on BO’s
convergence. A thorough simulation study finds the prior’s mean parameters to have the highest influence on
BO’s convergence among all prior components. We thus turn to this part of the prior GP in more detail. In
particular, we prove regret bounds for BO under misspecification of GP prior’s mean parameters. We show
that sublinear regret bounds become linear under GP misspecification but stay sublinear if the misspecification-
induced error is bounded by the variance of the GP. In response to these empirical and theoretical findings,
we introduce PROBO as a univariate generalization of BO that avoids prior mean parameter misspecification.
This is achieved by explicitly accounting for prior GP mean imprecision via a prior near-ignorance model.
We deploy our approach on graphene production, a real-world optimization problem in materials science, and
observe PROBO to converge faster than classical BO.1,2
1. Introduction: Law of decreasing flexibility?

In a thought-provoking essay for the New Yorker, Jonathan Zittrain
argues that aiming for ‘‘answers first, explanations later’’ has become
ubiquitous in machine learning [2]. He describes the modus operandi in
machine learning research as discovering what works without knowing
why it works, and then putting ‘‘that insight to use immediately, assum-
ing that the underlying mechanism will be figured out later’’ [2]. The
so-acquired burden of unexplained phenomena is dubbed ‘‘intellectual
debt’’. Unlike in medical and other scientific areas, Zittrain argues,
such theory-free advances are an intrinsic part of ‘‘statistical-correlation
engines’’ in machine learning. He paints a bleak picture of machine
learning’s future: With a growing number of unknown mechanisms in
complex systems, ‘‘the number of tests required to uncover untoward
interactions must scale exponentially’’ [2].

When Zittrain wrote his essay in 2019, this was indeed considered
a painful subject for machine learning research. Interpretable machine
learning and causality had long been considered research niches, but
not anymore. Both fields are rapidly growing. However, we argue the
lack of interpretation and causal understanding is not the mere cause
for increasing the intellectual credit line in machine learning, but also

∗ Corresponding author.
E-mail address: j.rodemann@lmu.de (J. Rodemann).

1 Open Science: Implementations of PROBO and reproducible scripts for the experimental analysis as well as all reported data are available at: https:
//github.com/rodemann/imprecise-bayesian-optimization.

2 Some parts of an earlier version of this work have been presented at the Ninth International Symposium on Integrated Uncertainty in Knowledge Modelling and
Decision Making (IUKM) and published in the corresponding proceedings [1], see Appendix D for details.

the hidden assumptions upon which a myriad of models rely. While
influential with regard to the model’s predictions, many assumptions
are hardly questioned, let alone empirically tested.

In this work, we demonstrate the influence of unquestioned assump-
tions using Bayesian optimization (BO), a popular stochastic derivative-
free optimization method, especially for hyperparameter tuning of
machine learning models. We will outline how to make BO more
robust against changing these assumptions. This requires representing
partial or no knowledge about the model specification. The framework
of imprecise probabilities (IP) offers a way to do this for Gaussian
processes (GPs), a functional regression approach essential to Bayesian
optimization. The main idea behind BO is to approximate the unknown
objective function with a GP, referred to as a surrogate model, and
optimize a transformation of it (e.g., a linear combination of mean and
variance prediction) as a cost-effective proxy for the typically expensive
target function.

Using imprecise Gaussian processes, we will account for a set of GPs
as surrogate models, making the optimizer more robust against mis-
specification. Although models are often specified arbitrarily in prac-
tice, as seen in popular libraries like spearmint, BOTorch (Python),
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and mlr3MBO (R), we will show that model choice greatly influences
optimization performance. One (if not the) founding father of Bayesian
optimization, Jonas Močkus, has proclaimed that ‘‘the development of
some system of a priori distributions suitable for different classes of the
function 𝑓 is probably the most important problem in the application
of [the] Bayesian approach to (...) global optimization’’ [3], cited
after [4].

On the background of Zittrain’s essay it shall be noted that BO is by
far not the only stochastic derivative-free optimizer that heavily relies
on probabilistic elements; be they advanced surrogate models or sim-
ple probability measures. Examples comprise, for instance, simulated
annealing [5] or covariance matrix adaptive evolutionary search [6],
see also Section 7.

We argue that the flexibility of the optimization path to capture
global optima can be increased by relaxing the assumptions about the
probabilistic elements by means of IP. Leaning on the famous quotation
by Manski, ‘‘The credibility of inference decreases with the strength of
the assumptions maintained’’ [7, page 1], it will be demonstrated for
the example of BO that a relaxation of the assumptions can increase
optimizers’ modeling capacity and hence their performance, suggesting
a ‘‘Law of Decreasing Flexibility’’:

The exploratory flexibility of Bayesian optimization decreases with the
strength of the probabilistic prior assumptions maintained.

As it will turn out in Section 5, the generality of IP models allow
for more flexibility of BO through an additional exploratory dimen-
sion in the well-understood exploration–exploitation trade-off [8] in
Bayesian optimization. This is in line with recent deliberations by [9],
who suggest a decomposition of reducible (epistemic) uncertainty into
‘‘modeling uncertainty’’ and ‘‘approximation uncertainty’’, the latter
relating to classical statistical estimation uncertainty. By exploring the
domain of the to-be-optimized function, classical Bayesian optimization
aims at the reduction of this latter approximation uncertainty. By
explicitly accounting for modeling uncertainty by means of a prior-
near ignorance model from IP, our extension of BO will also explore
the function’s domain to reduce this second type of reducible uncer-
tainty. Somewhat counter-intuitive from a statistical perspective at first
glance, weakening the modeling assumptions might help obtain better
solutions.

This paper demonstrates both theoretically and empirically that
weakening even a small part of the GP specification can improve BO’s
performance. We conduct a thorough simulation study of BO’s behavior
under different specifications for all GP prior components (mean func-
tional form, mean function parameters, kernel functional form, kernel
function parameters). We find the mean function parameters to be
the most influential. This is why we focus on this prior component in
more detail and leave the kernel untouched—contrary to recent work
by [4,10–12].

We prove cumulative regret bounds for Bayesian optimization under
misspecification of the GP’s prior mean function parameters. Surpris-
ingly, the regret bounds grow linearly in BO’s iterations, as opposed
to sublinearly when GP prior mean function parameters are correctly
specified. However, if we bound the misspecification-induced error by
the GP’s variance, we can restore regret bounds that grow sublinearly
in the iterations.

We further propose Prior-mean-RObust Bayesian Optimization
(PROBO), which builds on imprecise Gaussian processes [13,14], see
also [1]. PROBO accounts for a set of GP prior mean parameter
specifications, making it more robust to model imprecision. This is
incorporated by a novel acquisition function, the Generalized Lower
Confidence Bound (GLCB). We apply our method to the problem of
optimizing graphene production and observe it outperforms competing
acquisition functions.

The remainder of the paper is structured as follows. In Section 2,

we formally introduce Bayesian optimization, Gaussian processes and i

2 
acquisition functions. The section also discusses convergence and op-
timality of BO and summarizes related work. Section 3 conducts a
Bayesian sensitivity analysis of classical Bayesian optimization with
Gaussian processes. As this section finds the prior’s mean parameters
to be the most influential prior component, we theoretically analyze
the latter’s effect on BO’s regret bounds in Section 4 and – as a
consequence – introduce PROBO in Section 5. Section 6 describes
detailed experimental results from benchmarking PROBO to classical
BO on graphene production, an open problem in materials science. We
conclude by a brief discussion of our method and an outlook to future
work in Section 7.

2. Background

2.1. Bayesian optimization

Bayesian optimization (BO) is arguably one of the most popular
methods for optimizing functions that are expensive to evaluate and do
not have any analytical description (‘‘black-box-functions’’). Its appli-
cations range from engineering [15] to drug discovery [16], COVID-19
detection [17] and cybersecurity [18]. BO’s main popularity, however,
stems from machine learning, where it has become one of the predom-
inant hyperparameter optimizers [19] after the seminal work of [20].
BO approximates the unknown target function through a surrogate
model. In the case of all covariates being real-valued, Gaussian Process
(GP) regression is the most popular surrogate model, while random
forests are usually preferred for categorical and mixed covariate spaces.
BO scalarizes the surrogate model’s mean and standard error estimates
through a so-called acquisition function,3 that incorporates the trade-
off between exploration (uncertainty reduction) and exploitation (mean
optimization). The arguments of the acquisition function’s minima are
eventually proposed to be evaluated. Algorithm 1 describes the basic
procedure of Bayesian optimization applied on a problem of the sort:

min
𝒙∈

𝑓 (𝒙), (1)

where we observe

𝛹 ∶  → R,𝒙 ↦ 𝑓 (𝒙) + 𝝐, (2)

with  a 𝑝-dimensional covariate4 space and 𝝐 an i.i.d. zero-mean
eal-valued random variable. That is, we observe a noisy version 𝛹 (𝒙)
f continuous 𝑓 (𝒙). Here and henceforth, minimization is considered
ithout loss of generality. Our theoretical analysis of BO under GP
isspecification in Section 4 will require the assumption that 𝑓 is

ampled from an unknown Gaussian process.

Algorithm 1 Bayesian Optimization

1: create an initial design 𝐷 = {(𝒙(𝑖), 𝛹 (𝑖))}𝑖=1,...,𝑛𝑖𝑛𝑖𝑡 of size 𝑛𝑖𝑛𝑖𝑡
2: while termination criterion is not fulfilled do
3: train a surrogate model (SM) on data 𝐷
4: propose 𝒙𝑛𝑒𝑤 that optimizes the acquisition function
𝐴𝐹 (𝑆𝑀(𝒙))

5: evaluate 𝛹 on 𝒙𝑛𝑒𝑤 and update 𝐷 ← 𝐷 ∪ (𝒙𝑛𝑒𝑤, 𝛹 (𝒙𝑛𝑒𝑤))
6: end while
7: return argmin𝒙∈𝐷𝛹 (𝒙) and respective 𝛹 (argmin𝒙∈𝐷𝛹 (𝒙))

Notably, line 4 imposes a new optimization problem, sometimes
referred to as ‘‘auxiliary optimization’’. Compared to 𝛹 (𝒙), however,

3 Also referred to as infill criterion.
4 The nomenclature in the literature is not consistent with regard to  . This

comes at no surprise, since  indeed is a servant of two masters. On the one
and, it is the ‘‘input’’ or ‘‘feature’’ of an optimization problem. On the other
and, it is a ‘‘covariate’’ of a surrogate model. As the latter is of particular

nterest in this work, we stick with the latter.
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𝐴𝐹 (𝑆𝑀(𝒙)) is analytically traceable. It is a deterministic transforma-
tion of the surrogate model’s mean and standard error predictions,
which are given by line 3. Thus, evaluations are cheap and optima
can be retrieved through naive algorithms, such as grid search, random
search or the slightly more advanced focus search5, all of which simply
valuate a huge number of points that lie dense in  . Various termina-
ion criteria are conceivable with a pre-specified number of iterations
eing one of the most popular choices.6

.2. Gaussian processes

As stated above, Gaussian Process (GP) regressions are the most
ommon surrogate models in Bayesian optimization for continuous
ovariates. The main idea of functional regression based on GPs is
o specify a Gaussian process a priori (a GP prior distribution), then
bserve data and eventually receive a posterior distribution over func-
ions, from which inference is drawn, usually by mean and variance
rediction. In more general terms, a GP is a stochastic process, i.e. a set
f random variables, any finite collection of which has a joint normal
istribution.

efinition 1 (Gaussian Process Regression). A function 𝑓 (𝒙) is said
o be generated by a Gaussian process 

(

𝑚(𝒙), 𝑘(𝒙,𝒙′)
)

if for any
inite vector of data (𝒙1,… ,𝒙𝑛), the associated vector of function val-
es 𝒇 = (𝑓 (𝒙1),… , 𝑓 (𝒙𝑛)) has a multivariate Gaussian distribution:
∼  (𝝁,𝜮), where 𝝁 = 𝑚(𝒙1,… ,𝒙𝑛) is a mean vector and 𝜮 =

((𝒙1,… ,𝒙𝑛), (𝒙1,… ,𝒙𝑛)′) a covariance matrix.

Hence, Gaussian processes are fully specified by a mean function
(𝒙) = E[𝑓 (𝒙)] and a kernel7 𝑘(𝒙,𝒙′) = E

[(

𝑓 (𝒙) − E[𝑓 (𝒙)]
) (

𝑓 (𝒙′)−
E[𝑓 (𝒙′)]

)]

such that 𝑓 (𝒙) ∼ 
(

𝑚(𝒙), 𝑘(𝒙,𝒙′)
)

, see e.g. [22, page 13].
he mean function gives the trend of the functions drawn from the GP
nd can be regarded as the best (constant, linear, quadratic, cubic etc.)
pproximation of the GP functions. The kernel gives the covariance be-
ween any two function values and thus, broadly speaking, determines
he function’s smoothness and periodicity. Any polynomial function
an serve as mean function. Any finitely positive semi-definite function
Definition 2) is a kernel function of a GP evaluated on a (finite) input
ector.

efinition 2 (Finitely Positive Semi-Definite Functions). A function 𝑓 ∶
 ×  → R is finitely positive semi-definite if it is symmetric (∀𝒙, 𝒛 ∈
 ∶ 𝑓 (𝒙, 𝒛) = 𝑓 (𝒛,𝒙)) and the matrix 𝑲 formed by applying 𝑓 to any
finite subset of  is positive semi-definite, i.e. for its quadratic form it
holds 𝒙′𝑲𝒙 ≥ 0 ∀𝒙 ∈  .

A kernel is said to be isotropic if it is a function of the distance
‖𝒙−𝒙′‖, conditioned on a norm, mostly the L2-Norm. Popular isotropic
kernel families are listed in Appendix C.

Conclusively, both mean and kernel function consist of a functional
form and parameters, both of which has to be specified beforehand.
The effect of these four components on the BO will be assessed in
Section 3. For the theoretical analysis in Section 4, we also need a
popular representation of kernel functions: Reproducing kernel Hilbert
spaces, which are defined as follows, where positive definite kernels
serve as reproducing kernels, see [23,24] for instance.

5 Focus search shrinks the search space and applies random search, see [21,
age 7].

6 BO’s computational complexity depends on the SM. In case of GPs, it is
(𝑛3) due to the required inversion of the covariance matrix, where 𝑛 is total
umber of target function evaluations.

7
 Also called covariance function or kernel function. m

3 
efinition 3 (Reproducing Kernel Hilbert Space). Let  be a nonempty
set and 𝑘 be a positive definite kernel on  . A Hilbert space 𝑘
of functions on  equipped with an inner-product ⟨⋅, ⋅⟩𝑘

is called a
eproducing kernel Hilbert space (RKHS) with reproducing kernel 𝑘, if
𝒙 ∈  : 𝑘(⋅,𝒙) ∈ 𝑘 and ∀𝒙 ∈  ∀𝑓 ∈ 𝑘:

(𝒙) = ⟨𝑓, 𝑘(⋅,𝒙)⟩𝑘
.

GP’s popularity is mainly due to the fact that its posterior distribu-
ion has a closed-form expression: For a noisy sample 𝒚𝑇 =

[

𝑦1 … 𝑦𝑇
]′ at

𝒙1,… ,𝒙𝑇
}

, 𝑦𝑡 = 𝑓
(

𝒙𝑡
)

+𝝐𝑡 with 𝝐𝑡
𝑖.𝑖.𝑑.∼ 𝑁

(

0, 𝜎2
)

Gaussian noise, and a
ero mean prior 

(

0, 𝑘(𝒙,𝒙′)
)

, the posterior over 𝒇 is a GP distribution
again, with mean 𝜇𝑇 (𝒙), covariance 𝑘𝑇

(

𝒙,𝒙′
)

and variance 𝜎2𝑇 (𝒙):

𝜇𝑇 (𝒙) = 𝒌𝑇 (𝒙)′
(

𝑲𝑇 + 𝜎2𝑰
)−1 𝒚𝑇 ,

𝑘𝑇
(

𝒙,𝒙′
)

= 𝑘𝜃
(

𝒙,𝒙′
)

− 𝒌𝑇 (𝒙)′
(

𝑲𝑇 + 𝜎2𝑰
)−1 𝒌𝑇

(

𝒙′
)

,

𝜎2𝑇 (𝒙) = 𝑘𝑇 (𝒙,𝒙),

(3)

where 𝒌𝑇 (𝒙) =
[

𝑘𝜃
(

𝒙1,𝒙
)

… 𝑘𝜃
(

𝒙𝑇 ,𝒙
)]′ and 𝑲𝑇 is the positive definite

kernel matrix applied on {𝒙1,… ,𝒙𝑇 }, see [22], for instance.

2.3. Acquisition functions

There exist several acquisition functions, among which expected
improvement and lower confidence bound are the most popular. Their
Definitions 4 and 5 are based on [25–27]. We start with the most fun-
damental criterion of selecting points, the probability of improvement.
Therefore, let 𝜓(𝒙) be the surrogate model and 𝛹𝑚𝑖𝑛 the incumbent
minimal function value. The probability of improvement (PI) of 𝒙 is

𝑃𝐼(𝒙) = P(𝜓(𝒙) < 𝛹𝑚𝑖𝑛), (4)

where the probability measure P is with respect to 𝜓(𝒙). When using a
Gaussian process as surrogate model, as assumed in what follows, the
PI can be simplified. For each finite vector of function values 𝛹 (𝒙) we
assume 𝛹 (𝒙) ∼  (𝜇(𝒙),Var(𝒙)), where 𝜇(𝒙) is the mean function of 𝛹 at
𝒙 and Var(𝒙) is the variance function at 𝒙. For our surrogate model 𝜓(𝒙)
it is 𝜓(𝒙) ∼ 

(

𝜇(𝒙), V̂ar(𝒙)
)

, where 𝜇(𝒙), V̂ar(𝒙) are estimates from the
posterior GP, see Definition 1. Since the variance function is typically
estimated by the variance of the mean prediction function 𝜇(𝒙), we
write V̂ar(𝒙) = Var(𝜇(𝒙)).8 This allows standardization of 𝜓(𝒙) and 𝛹𝑚𝑖𝑛
in 𝑃𝐼(𝒙) as follows:

P(𝜓(𝒙) < 𝛹𝑚𝑖𝑛) = P

(

𝜓(𝒙) − 𝜇(𝒙)
√

Var(𝜇(𝒙))
<
𝛹𝑚𝑖𝑛 − 𝜇(𝒙)
√

Var(𝜇(𝒙))

)

= 𝛷

(

𝛹𝑚𝑖𝑛 − 𝜇(𝒙)
√

Var(𝜇(𝒙))

)

.

(5)

As convention dictates, 𝛷 denotes the standard normal distribution
function. Since 𝛷, 𝛹𝑚𝑖𝑛, 𝜇(𝒙) and

√

Var(𝜇(𝒙)) are given in line 4 of
algorithm 1, it can be seen that 𝑃𝐼(𝒙) is indeed computationally cheap
to evaluate. It requires nothing but a simple function call with given
arguments. Also note that the probability of improvement is 0 for
already visited points, as for such points

√

Var(𝜇(𝒙)) → 0 and 𝛹𝑚𝑖𝑛 −
̂(𝒙) ≤ 0, thus

𝛷

(

𝛹𝑚𝑖𝑛 − 𝜇(𝒙)
√

Var(𝜇(𝒙))

)

→ 𝛷(−∞) = 0. (6)

With the same line of reasoning it follows that the probability of
mprovement 𝑃𝐼(𝒙) for {𝒙 ∶ 𝛹𝑚𝑖𝑛 − 𝜇(𝒙) ≤ 0} (counter-intuitively)

8 GPs have the convenient property of intrinsically estimating the posterior
ariance of the prediction function 𝜇(𝒙). In case of deploying random forests as
urrogate models, additional bootstrap or jackknife-after-bootstrap is needed
or variance estimation. For instance, jackknife-after-bootstrap is used in
lrMBO [21].
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decreases with
√

Var(𝜇(𝒙)). This makes the PI a very exploitative ac-
quisition function. For a detailed theoretical analysis of the acquisition
functions’ impact on the trade-off between exploration and exploita-
tion, see [8]. The most widely used acquisition function is the Expected
Improvement (EI), which is closely related to PI.

Definition 4 (Expected Improvement). Let 𝜓(𝒙) be the surrogate model
and 𝛹𝑚𝑖𝑛 the incumbent minimal function value. The expected improve-
ment of 𝒙 is

𝐸𝐼(𝒙) = E(max{𝛹𝑚𝑖𝑛 − 𝜓(𝒙), 0}).

This time, the improvement is bounded from below. Uncertainty
estimates only enter if mean estimates imply real improvement. This
prohibits the negative effect of increasing uncertainty for {𝒙 ∶ 𝛹𝑚𝑖𝑛 −
𝜇(𝒙) ≤ 0} and, thus, enforces exploration. EI was proposed by [3,
Pages 1-2], disguised as a utility function in a decision problem that
captures the expected deviation from the extremum. It follows from this
formulation that a point proposed according to expected improvement
is Bayes-optimal in a given iteration. This early definition of BO with
EI is very close to the modern formulation in Definition 4 and algo-
rithm 1. However, it lacked the idea of surrogate modeling and thus
the simplifications that come with Gaussian processes (GPs). Namely,
we can express 𝐸𝐼(𝒙) in this case in closed form in a similar manner
to Eq. (5):

𝐸𝐼(𝒙) = (𝛹𝑚𝑖𝑛−𝜇(𝒙)) 𝛷

(

𝛹𝑚𝑖𝑛 − 𝜇(𝒙)
√

Var(𝜇(𝒙))

)

+
√

Var(𝜇(𝒙)) 𝜙

(

𝛹𝑚𝑖𝑛 − 𝜇(𝒙)
√

Var(𝜇(𝒙))

)

,

(7)

which can be derived by partial integration from Definition 4, and
where 𝜙(⋅) denotes the standard normal density function. Note that EI
equals 0 for points that have already been visited, just like in case of PI.
What is more, it can be seen that EI is a weighted sum of (standardized)
mean and standard error estimates, thus explicitly balancing exploita-
tion and exploration. While this follows naturally from the expected
deviation from the extremum and the GP assumptions in case of 𝐸𝐼(𝒙),
the same trade-off can also be gracelessly encoded by a direct weighted
sum of 𝜇(𝒙) and

√

Var(𝒙) with weight 𝜏𝑡. The acquisition function Lower
Confidence Bound (LCB) does the latter.

Definition 5 (Lower Confidence Bound). Let 𝜇(𝒙) and
√

Var(𝜇(𝒙)) be the
mean and standard error prediction functions of the surrogate model.
The upper/lower9 confidence10 bound of 𝒙 is

𝐿𝐶𝐵(𝒙) = −𝜇(𝒙) + 𝜏𝑡 ⋅
√

Var(𝜇(𝒙)).

The LCB was initially proposed by [27]. Unlike in the case of EI and
I, the user can manually guide the exploration–exploitation trade-off
y setting 𝜏𝑡. Notably, 𝜏𝑡 can also be scheduled, e.g. decreased over
ime [29]. The idea is to explore  first, then exploit selected regions

in detail later.

2.4. Related work

While there exists a vast amount of literature dealing with Bayesian
optimization, merely a small fraction of it is explicitly concerned with
robustness, not to mention model imprecision and robustness towards
misspecification of the surrogate model.11

9 The literature is not consistent with regard to this terminology.
10 We are aware that in the context of Bayesian surrogate models such
s GPs, credible confidence bound would be the more appropriate wording,
ee e.g. [28]. However, as the surrogate model can be any statistical model
n general, we abstain from sticking to the specific terminology of Bayesian
nference.
11 The well-established field of robust optimization [30] deals with imprecise
inear programming, where an analytical description of the target function –

4 
2.4.1. Robust Bayesian optimization
In a recent work [34], Makarova et al. address the issue of overfit-

ting in tuning hyperparameters of machine learning models by BO. As
parameters are typically optimized with regard to the training error,
the (unknown) test error can increase with BO iterations while the
training error (of the best incumbent configuration) still monotonically
decreases. The authors show that cross-validation can mitigate this,
but comes at high computational cost. As an alternative, they propose
a regret-based stopping criterion loosely inspired by early stopping, a
popular regularization technique in deep learning.

In statistics, quantile regression is a well-known alternative to mean
regression. It is more robust against outliers in the response mea-
surements than the standard linear model. [35] deploy quantile GP
regression in BO. [36] show that Student-t processes are more flex-
ible than Gaussian processes as prior over functions in a functional
regression setting. They verify by simulation studies that Student-t
processes are superior to Gaussian ones as surrogate models in Bayesian
optimization on a wide range of problems. [37] propose a modification
of Bayesian optimization that is robust towards distributional shifts of
covariates, i.e., situations where the training data is sampled from a
different distribution than the test data. [38] take a similar approach
for the special case of Bayesian quadrature optimization, where the
expectation of an expensive black-box integrand taken over a known
probability distribution is maximized. [39] use stochastic policies (pro-
posals) for data acquisition to handle input noise. They thus claim to
render BO with regard to noisy covariates in a parallel optimization set-
ting. With similar motivation for multi-criteria problems, [40] propose
robust multi-objective Bayesian optimization under input noise. [41]
introduce adversarially robust BO (ARBO) method suited to auto-tuning
problems with time-invariant uncertainties that cannot be accounted
for by small-scale noise term. Notably, using deep neural networks
instead of Gaussian processes as surrogate models, which has gained
popularity in recent years, has also been motivated by robustness
arguments initially, see [42] for one of the earliest works on neural
networks as surrogates in Bayesian optimization.

Optimizing more than one objective simultaneously can also be
considered a form of robust extension of classical, single-objective
Bayesian optimization. If the objectives are understood as different
metrics for one and the same latent construct, the optimization will be
more robust towards the choice of the latter’s operationalization. Multi-
objective Bayesian optimization (MOBO) has become a cornerstone
technique for such scenarios. BO’s founding father Jonas Močkus had
already thought about multi-objective extensions of BO, see [43]. Later
and more practical works were mainly inspired by multi-objective evo-
lutionary algorithms, see [44,45], for instance. In this spirit, efficient
multi-objective extensions of BO is proposed by [46,47]. These pio-
neering works have been extended by [48,49], who contributed to the
theoretical understanding and practical implementation of acquisition
functions in MOBO. As already mentioned above, [50] introduce an ad-
vanced framework that integrates deep learning with MOBO, enhancing
its capability to handle high-dimensional data and complex objective
landscapes. Furthermore, the work by [51] on predictive entropy search
for multi-objective optimization addresses scenarios with expensive
function evaluations, while scenarios with specifiable preferences over
the objectives are dealt with by [52]. Finally, [53] should be mentioned
who integrate MOBO with continuous evolutionary algorithms.

unlike in case of BO – exists. Further note that robustifying Gaussian processes
is a vivid line of research itself, see [31–33] for instance, detached from its
role in Bayesian optimization.
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2.4.2. Surrogate model imprecision in Bayesian optimization
The specification of the surrogate model has been subject to re-

search mainly from the perspective of how to incorporate expert
knowledge in Bayesian optimization [54,55]. A recent simulation study
has shed light on the importance of surrogate model specification in
Bayesian optimization; the analysis by [56] mainly targets the effect of
surrogate model calibration on BO performance. They find that well-
calibrated models tend to perform better, i.e., achieve lower regrets.
However, this correlation between BO performance and calibration is
shown to diminish when controlling for the type of surrogate model,
thus demonstrating that model choice is more relevant to BO per-
formance than calibration within a certain model class. Apart from
Bayesian optimization, there exist detailed empirical studies that an-
alyze the impact of prior mean function and kernel on the posterior GP
for a variety of real-world data sets, see [57] for a pioneering example.
They typically show a strong dependence of posterior inference on the
prior in case of small 𝑛. This is a finding that aligns with classical
theoretical results from Bayesian inference.

Nevertheless, the robust approaches to BO mentioned in
Section 2.4.1 do not tackle this issue of selecting and specifying the
surrogate model. They certainly render BO more robust towards false
confidence in its prediction due to unreliable data (underestimation of
data uncertainty) or other factors. Yet, robustness towards misspeci-
fication of the surrogate model is not taken into consideration. The
python library with the promising name RoBO (robust Bayesian opti-
mization) has implementations that are robust against model misspec-
ification only to the extent that the package provides implementations
of different surrogate models and acquisition functions [58, page 2].

As far as we know, there are only a few clear exceptions. Firstly, [4]
come up with a simple, yet particularly thrilling idea: ‘‘Automating
Bayesian optimization with Bayesian optimization’’. They suggest to
optimize over a space of models in an inner loop nested inside BO.
Just like in the outer loop, BO is used as an optimizer as proposed
in [59]. The model space is defined by multiplication and addition of
base kernels, see [60,61]. In other words, from the four components
of the GP prior (see Definition 1) only the functional form of the
kernel is varied, which will be found to be the second-most influential
component in the Bayesian sensitivity analysis conducted in Section 3.
Secondly, [11] address the kernel parameters, the least influential
prior GP component in our sensitivity analysis. Their idea is appealing
nevertheless: Kernel parameters are corrected in an empirical-Bayes
manner by performing distance-based active learning simultaneously to
Bayesian optimization. Further examples of adaptive kernel selection in
BO comprise kernel selection motivated by few-shot learning [62] and
a comparative study [63]. Notably, adaptive surrogate model selection
has also been discussed beyond Gaussian processes, see e.g. [64] for
an application to materials science. Very recently, [12] proposed to
use an ensemble of Gaussian processes, varying both kernel parameters
and functional form, from which surrogates are sampled via Thompson
sampling. By exploiting parallel computing schemes, [12] manage to
speed up convergence as opposed to using a single GP. As opposed
to [4,11,12] and other mentioned work, we do not touch the kernel
at all and only vary the mean function’s parameter(s) since they were
found most influential in the Bayesian sensitivity analysis conducted in
Section 3 and proven to dramatically increase the growth rate of regret
bounds in Section 4. To the best of our belief, such an approach has
not appeared in the literature so far.

In addition to these works that explicitly address model imprecision
in BO, there is growing interest in utilizing conformal prediction to
hedge against potentially misspecified models. The charming idea here
is to obtain guarantees on the inference without loosing any sleep
over the correct model. This is due to conformal prediction’s coverage
guarantees that hold for misspecified models. For recent examples
of conformalizing BO’s surrogate model(s), we refer to [65–67].12

12 See also [68] for conformalized robust optimization.
5 
On the theoretical side, regret bounds for GP prior misspecification
w.r.t. a norm in the RKHS are provided by [69], while [70] address
misspecified likelihoods. Note that our results presented in Section 4
are concerned with prior-mean parameter misspecification specifically,
neither touching the likelihood nor addressing misspecification in the
function space.

The rapidly growing field of meta (or transfer) learning based BO
deploys similar techniques to address a related, yet different problem.
Here, it is typically assumed that—while no explicit prior knowledge
exists on the problem at hand (i.e., on the target function 𝑓 (𝒙), see
Eq. (2)), there is knowledge on other problems from the same problem
class. By empirical Bayesian estimation of the GP prior through data
from these related functions, meta learning BO then aims to outperform
classical BO that uses non-informative GP priors or estimates them
similarly by empirical Bayes, but from the initial sample from 𝑓 (𝒙)
only. Under the relatively strong assumption of data being sampled
from the exact same prior as 𝑓 (𝒙), [71] show that for meta learning BO
he sublinear regret bounds for LCB [72] shrink near zero and collapse
o a constant proportional to the noise. While [71] and also [71]
stimate both mean function and kernel from the offline data from
ther problems, [73] only consider the kernel. For further applications
f meta/transfer learning based BO, we refer to [74–77] as well as
o [78] for a recent survey on this emerging field.

.4.3. Bayesian optimization in materials science
In Section 6, we will demonstrate the efficiency of our method for

he real world use case of graphene production, a longstanding chal-
enge in materials science. Bayesian optimization has extensively been
sed in engineering since the seminal work of [79] and to optimize
aterial production, in particular. We refer to [80–82] for popular and

ecent examples as well as to [83] for an extensive survey on Bayesian
ptimization across multiple experimental materials science domains
ncluding a benchmarking analysis.

. Bayesian sensitivity analysis

One might naturally wonder about the sensitivity of Bayesian opti-
ization to the choice of priors in the Gaussian process [4,12,84]. It is
idely recognized that traditional inference using Gaussian processes

GPs) can be particularly sensitive to the specification of priors when
he sample size (𝑛) is small [57]. With fewer data points, inference

increasingly depends on prior information. This concern is especially
pertinent in the context of Bayesian optimization, which is often ap-
plied to functions that are costly to evaluate, implying situations where
data is strongly limited.

3.1. Experimental setup

In this section, we closely follow [84]. We systematically investigate
to what extent this sensitivity translates to BO’s returned optima and
convergence rates. To the best of our knowledge, it is the first sys-
tematic empirical assessment of GP prior’s influence on BO. Analyzing
the effect on optima and convergence rates is closely related, yet
different. Both viewpoints have weaknesses. Focusing on the returned
optima means conditioning the analysis on the termination criterion;
considering convergence rates requires the optimizer to converge in
computationally feasible time. To avoid these downsides, we analyze
the mean optimizations paths.

Definition 6 (Mean Optimization Path). Given 𝑅 repetitions of Bayesian
optimization applied on a test function 𝛹 (𝒙) with 𝑇 iterations each, let
𝛹 (𝒙∗)𝑟,𝑡 be the best incumbent target value at iteration 𝑡 ∈ {1,… , 𝑇 }
from experimental repetition 𝑟 ∈ {1,… , 𝑅}. That is, for fixed ex-
periment 𝑟, we define 𝛹 (𝒙∗)𝑟,𝑡 ∶= min𝒙∈𝐷𝑡 𝛹 (𝒙) with 𝐷𝑡 ∶= {(𝒙(𝑖),
𝛹 (𝑖))}𝑖=1,…,𝑛𝑖𝑛𝑖𝑡+𝑡 analogous to 𝐷 in algorithm 1. The elements

𝑀𝑂𝑃𝑡 =
1

𝑅
∑

𝛹 (𝒙∗)𝑟,𝑡
𝑅 𝑟=1
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shall then constitute the 𝑇 -dimensional vector 𝑀𝑂𝑃 , which we call
mean optimization path (MOP) henceforth.

As follows from Definition 1, specifying a GP prior comes down
to choosing a mean function and a kernel. Both are in turn deter-
mined by a functional form (e.g. linear trend and Gaussian kernel)
and its parameters (e.g. intercept and slope for the linear trend and a
smoothness parameter for the Gaussian kernel). Hence, we vary the GP
prior with regard to the mean functional form 𝑚(⋅), the mean function
parameters, the kernel functional form 𝑘(⋅, ⋅) and the kernel parameters
(see Definition 1). We run the analysis on 50 well-established synthetic
test functions from the R package smoof [85]. These are analytically
defined functions with known optima that are used to benchmark
optimizers, see [86] for instance. The functions are selected at random,
stratified across the covariate space dimensions 1, 2, 3, 4 and 7. For each
of them, a sensitivity analysis is conducted with regard to each of the
four prior components. The initial design (line 1 in algorithm 1) of
size 𝑛𝑖𝑛𝑖𝑡 = 10 is randomly sampled anew for each of the 𝑅 = 40 BO
repetitions with 𝑇 = 20 iterations each. This way, we make sure the
results do not depend on a specific initial sample. For each test function
we obtain an accumulated difference (AD) of mean optimization paths.

Definition 7 (Accumulated Difference of Mean Optimization Paths). Con-
sider an experiment comparing 𝑆 different prior specifications on a test
function with 𝑅 repetitions per specification and 𝑇 iterations per repe-
tition. Let the results be stored in a 𝑇 ×𝑆-matrix of mean optimization
paths for iterations 𝑡 ∈ {1,… , 𝑇 } and prior specification 𝑠 ∈ {1,… , 𝑆}
(e.g. constant, linear, quadratic etc. trend as mean functional form)
with entries𝑀𝑂𝑃𝑡,𝑠 =

1
𝑅
∑𝑅
𝑟=1 𝛹 (𝒙

∗)𝑟,𝑡,𝑠. The accumulated difference (AD)
for this experiment shall then be:

𝐴𝐷 =
𝑇
∑

𝑡=1

(

max
𝑠
𝑀𝑂𝑃𝑡,𝑠 − min

𝑠
𝑀𝑂𝑃𝑡,𝑠

)

.

3.2. Results of sensitivity analysis

The 𝐴𝐷 values vary strongly across functions. This can be explained
by varying levels of difficulty of the optimization problem, mainly
influenced by modality and smoothness. Table 1 shows accumulated
differences of mean optimization paths for selected test functions. Ta-
bles E.4 and E.5 in the appendix have the complete results. Figs. 1 and
2 visualize the mean optimization paths for BO on Ackley function and
the function itself, respectively. Since we are interested in an overall,
systematic assessment of the prior’s influence on Bayesian optimization,
we sum the 𝐴𝐷 values over the stratified sample of 50 functions. This
absolute sum, however, is likely driven by hard-to-optimize functions
with generally higher 𝐴𝐷 values or by the scale of the functions’ target
values.13 Thus, we divide each 𝐴𝐷 value by the mean 𝐴𝐷 of the
respective function. Table 2 shows the sums of these relative 𝐴𝐷 values.
It becomes evident that the optimization is affected the most by the
functional form of the kernel and the mean parameters, while kernel
parameters and the mean functional form play a minor role.

3.3. Discussion of sensitivity analysis

Bayesian optimization typically deals with expensive-to-evaluate
functions. As such functions imply the availability of few data, it comes
at no surprise that the GP’s predictions in BO heavily depend on the
prior. Our results suggest this translates to BO’s convergence. It is more
sensitive towards the functional form of the kernel than towards those
of the mean function and more sensitive towards the mean function’s
parameters than towards those of the kernel, which appear to play a

13 Note that neither accumulated differences (Definition 7) nor mean
optimization paths (Definition 6) are scale-invariant.
6 
Fig. 1. Effect of Mean Function Parameters on Bayesian Optimization of Bivariate
Ackley Function, see Fig. 2.

Fig. 2. Bivariate Ackley Function, see [85].

negligible role in BO’s convergence, see Table 2. Overall, the mean
parameters appear to have the strongest impact on BO’s convergence.

The kernel functional form determines the flexibility of the GP and
thus has a strong effect on its capacity to model the functional relation-
ship. What is more interesting, the mean parameters’ effect may not
only stem from the modeling capacity but also from the optimizational
nature of the algorithm. While unintended in statistical modeling, a
systematic under- or overestimation may be beneficial when facing an
optimization problem. Further research on interpreting the effect of the
GP prior’s components on BO’s performance is recommended.

Albeit the random sample of 50 test functions was drawn from a
wide range of established benchmark functions, the analysis does by
far not comprise all types of possible target functions, not to mention
real-world optimization problems. Additionally, the presented findings
regarding kernel and mean function parameters are influenced by the
degree of variation, the latter being a subjective choice. Statements
comparing the influence of the functional form with the parameters are
thus to be treated with caution. Yet, the comparison between kernel and
mean function parameters is found valid, as both have been altered by
the same factors.

What weighs more, interaction effects between the four prior com-
ponents were partly left to further research. The reported 𝐴𝐷 values
for mean parameters and mean functional forms were computed using
a Gaussian kernel. Since other kernels may interact differently with the
mean function, the analysis was revisited using a power exponential
kernel as well as a Matérn kernel. As we observe only small changes in
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Table 1
Accumulated differences of mean optimization paths for Bayesian optimization of selected test functions from smoof. Please find complete
results in Tables E.4 and E.5 in the Appendix.
Test function mean mean kernel kernel
(Dimension of ) functional form parameters functional form parameters

Ackley (1) 23 38 67 23
Cosine Mixture (1) 0.073 0.07 0.11 0.14

Six-Hump Camel Back (2) 1.3 3.3 2.9 0.71
Matyas (2) 0.28 0.59 2.7 0

Hartmann (3) 3 4.8 5.3 0.82
Alpine N. 2 (3) 14 25 30 4.6

Sum of Different Squares (4) 0.37 1.4 0.32 0
Bent-Cigar (4) 3.6 ⋅ 109 2 ⋅ 1010 7 ⋅ 109 5.7 ⋅ 108

Deflected Corrugated Spring (7) 16 38 11 0
Sphere (7) 1.5 ⋅102 4.4 ⋅102 97 8.5
D

I

Table 2
Sum of relative ADs of all 50 MOPs per prior specification.

Mean Kernel Mean Kernel
functional form functional form parameters parameters

42.49 68.20 77.91 11.40

𝐴𝐷 values, the sensitivity analysis can be seen as relatively robust in
this regard, at least with respect to these three widely-used kernels.

4. Theoretical analysis

In light of the previous empirical results, we aim at a better un-
derstanding of the effect of prior mean parameter misspecification on
BO’s performance. We thus conduct a theoretical analysis of how prior
mean parameter misspecification affects regret bounds of Bayesian
optimization. Regret bounds are a well-established theoretical tool,
with the help of which we can derive probabilistic guarantees for BO’s
performance. We will build on established regret bounds for Gaussian
processes with (lower) confidence bound as acquisition function [72]
which are still the tightest bounds in this general setup [87,88]. Note
that they have been originally formulated for the bandit setup, but
apply to Bayesian optimization analogously. Here, the action space and
the reward function in the bandit setup corresponds to the parameter
space  and the unknown target function in Bayesian optimization,
respectively, see [89, section 10] for details. We will build on tech-
niques in [72,90]. Our theoretical analysis will focus on the cumulative
regret, i.e., a non-observable quantity that describes the accumulated
difference between our incumbent best BO configuration and the prima
acie unknown optimum.

efinition 8 (Regret, Cumulative Regret). Let 𝑟𝑡 = 𝛹 (𝒙𝑡) − min𝒙∈ 𝛹 (𝒙)
e the instantaneous regret in iteration 𝑡 ∈ {1,… , 𝑇 } with 𝛹 (𝒙𝑡) the
arget value of proposal 𝒙𝑡 in iteration 𝑡 and min𝒙∈ 𝛹 (𝒙) the universal
ptimum. Then 𝑅𝑇 =

∑𝑇
𝑡=1 𝑟𝑡 shall be called the cumulative regret.

In the following, we assume the GP’s zero-mean noise 𝝐, see Eq. (2),
o be sub-Gaussian. This is a customary technical assumption in the
ontext of regret analysis, see [70,73,91,92] for recent examples.

efinition 9 (K-sub-Gaussian). A zero-mean real-valued random vari-
ble 𝑋 shall be called 𝐾-sub-Gaussian, if there exists a constant 𝐾2

uch that ∀𝜆 ∈ R it holds E
[

𝑒𝜆𝑋
]

≤ 𝑒
𝜆2𝐾2

2 .

In order to analyze the above described regret bound, we further
eed the concept of (maximum) information gains from information
heory, see [93] for a textbook reference. It has previously been used

o study regret bounds, see [24,72] for instance.

7 
efinition 10 (Maximum Information Gain [93]). First denote by
I
(

𝒚𝐴;𝛹𝐴
)

the mutual information between 𝛹𝐴 = [𝛹 (𝒙)]𝒙∈𝐴 and 𝒚𝐴 =
𝛹𝐴 + 𝜺𝐴, where 𝜺𝐴 ∼ 

(

0, 𝜎2𝑰
)

, as
(

𝒚𝐴;𝛹
)

= H
(

𝒚𝐴
)

− H
(

𝒚𝐴 ∣ 𝛹
)

,

where 𝐻(⋅) is the entropy and 𝐻(⋅ ∣ ⋅) the conditional entropy, as
convention dictates. It quantifies the reduction in uncertainty about 𝜳
after observing 𝒚𝐴 at points 𝐴 ⊂  . The maximum information gain at
iteration 𝑡 shall be defined as

𝛾𝑡 ∶= max
𝐴⊂∶|𝐴|=𝑡

𝐼
(

𝒚𝐴;𝜳𝐴
)

.

Note that 𝛾𝑡 is a problem-dependent quantity and can be found given
the knowledge of the covariate space  and the kernel. This is the very
reason why it can be expressed in terms of the predictive variances.
The following lemma by [72] formalizes this fact. We will need it later
in our regret analysis.

Lemma 1 (Information Gain in Terms of Variances [72]). For real-valued
𝛹 (𝒙) it holds

I
(

𝒚𝑇 ;𝜳 𝑇
)

= 1
2

𝑇
∑

𝑡=1
log

(

1 + 𝜎−2𝜎2𝑡−1
(

𝒙𝑡
))

.

Proofs of all lemmas and theorems can be found in Appendix A.
In order to facilitate a theoretical analysis of BO’s sensitivity to GP
prior mean, let us assume the ground truth 𝑓 to be sampled from
a Gaussian process.14 We will point to ways of how to relax this
assumption later. We mainly base our theoretical analysis on [72],
where cumulative regret bounds are derived for bandit optimization
of Gaussian processes, which corresponds to BO in case of the ground
truth being sampled from a GP and the action (covariate) space to be
infinite.

In order to analyze the effect of GP prior mean misspecification
on BO performance, recall Definition 1 of a Gaussian process. Further
bear in mind the experimental results from the sensitivity analysis,
presented above in Section 3. The main takeaway was that prior mean
parameters were the most influential GP prior components. We further
learned that constant prior mean parameters can both slow down
and speed up BO’s convergence. Thus, we will restrict the analysis
to constants as functional form of the prior mean to foster a ceteris
paribus analysis of the prior mean parameter’s worst case influence on
BO. Let us consider a GP with zero prior mean as surrogate model
first: (0, 𝑘(𝒙,𝒙′)). Its predictive posterior mean in BO iteration 𝑇
is 𝜇𝑇 (𝒙) = 𝒌𝑇 (𝒙)′

(

𝑲𝑇 + 𝜎2𝑰
)−1 𝒚𝑇 . In case of a non-zero prior mean

𝑚(𝒙) the predictive posterior mean corresponds to the one obtained
when applying the usual zero mean GP to the difference between the

14 Note that this translates to 𝛹 being sampled from a Gaussian process as
well, since 𝛹 (𝒙) = 𝑓 (𝒙) + 𝝐, 𝝐 𝑖.𝑖.𝑑.∼ 𝑁(0, 𝜎2𝑰), and the fact that a sum of i.i.d.
normally distributed random variables is again normally distributed.
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observations and the fixed mean function [22, page 27]. In our setup,
this gives:

𝜇𝑇 (𝒙) = 𝑚(𝒙) + 𝒌𝑇 (𝒙)′
(

𝑲𝑇 + 𝜎2𝑰
)−1 (𝒚𝑇 − 𝑚𝑇 (𝒙))

= 𝒌𝑇 (𝒙)′
(

𝑲𝑇 + 𝜎2𝑰
)−1 𝒚𝑇

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝜇𝑇 (𝒙) for prior mean zero

+𝑚(𝒙) − 𝒌𝑇 (𝒙)′
(

𝑲𝑇 + 𝜎2𝑰
)−1 𝑚𝑇 (𝒙)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜖𝑇 (𝒙)

, (8)

here 𝑚𝑇 (𝒙) = [𝑚(𝒙1),… , 𝑚(𝒙𝑇 )]′. The term 𝜖𝑇 (𝒙) is positive in case the
rior function predicts higher values than the posterior based on 𝑚(𝒙),
nd vice versa. It quantifies the deviation from the predictive posterior
ean with zero mean prior and will be the pivotal quantity in what

ollows. This is due to the fact that we will leverage results from [72]
hat apply to GPs with zero mean function, thereby in turn relying on
echniques from [90]. In particular, the strategy will be to first prove a
egret bound for finite  and then extend it to any compact and convex

along the lines of [72, Theorem 2].
We will base our analysis on using the lower confidence bound

Definition 5) as an acquisition function since it is the starting point
or our robust extension in Section 5. Deploying the lower confidence
ound as acquisition function with a GP surrogate model translates to
roposing

𝑡 = arg max
𝒙∈

𝐴𝐹𝐿𝐶𝐵 = arg max
𝒙∈

{−𝜇𝑡−1(𝒙) + 𝜏𝑡 ⋅ 𝜎𝑡−1(𝒙)} (9)

in iteration 𝑡 ∈ {1,… , 𝑇 }. The idea now is to bound |

|

𝛹 (𝒙) − 𝜇𝑡−1(𝒙)||
for all 𝑡 ∈ N and all 𝒙 ∈  . Closely leaning on [72, Lemma 5.1], the
following Lemma formalizes this rationale. Note that the proof directly
follows from the proof of [72, Lemma 5.1] and Eq. (8).

Lemma 2 (Confidence Bound). Assume finite  , a GP with prior mean
function 𝑚(𝒙) inducing 𝜖𝑇 (𝒙), and BO proposing 𝒙𝑡 according to Eq. (9).
Pick 𝛿 ∈ (0, 1) and set 𝜏𝑡 = 4 log

(

||𝜋𝑡∕𝛿
)2, where ∑

𝑡≥1 𝜋
−1
𝑡 = 1, 𝜋𝑡 > 0.

The following then holds ∀𝒙 ∀𝑡 ≥ 1 with probability ≥ 1 − 𝛿

|

|

𝛹 (𝒙) − 𝜇̃𝑡−1(𝒙)|| ≤

{

𝜏𝑡𝜎𝑡−1(𝒙) − 𝜖𝑡−1(𝒙), if 𝜖𝑡−1(𝒙) ≥ 0
𝜏𝑡𝜎𝑡−1(𝒙) + 𝜖𝑡−1(𝒙), if 𝜖𝑡−1(𝒙) < 0,

here 𝜇̃𝑡−1(𝒙) is the posterior mean of the GP with prior mean zero.

Based on Lemma 2, we make the simplifying assumption of the prior
ean being uniformly too optimistic or too pessimistic, respectively.
e simplify things this way, since we are interested in an extreme case

nalysis of how the GP prior mean affects BO regrets. That is, we focus
n the cases

𝑡 ∀𝒙 ∶ 𝑚(𝒙) > 𝒌𝑇 (𝒙)′
(

𝑲𝑇 + 𝜎2𝑰
)−1 𝑚(𝒙) ⟺ 𝜖𝑇 (𝒙) > 0 (10)

and ∀𝑡 ∀𝒙 ∶ 𝑚(𝒙) < 𝒌𝑇 (𝒙)′
(

𝑲𝑇 + 𝜎2𝑰
)−1 𝑚(𝒙) ⟺ 𝜖𝑇 (𝒙) < 0,

respectively. Theorem 1 will require the former, while Theorem 5 in
Appendix B will address the latter in an analogous way. Notably, the
sign of the misspecification (optimistic or pessimistic) will not affect
the growth rate of any of the subsequently presented regret bounds,
which are the primary target of our analysis, see Theorem 6, 7, and 8
in Appendix B for a detailed reasoning.

Theorem 1 (Regret Bound For Optimistic GP Misspecification). Let 𝛿 ∈
(0, 1) and 𝜏𝑡 =

√

2 log
(

||𝑡2𝜋2∕6𝛿
)

with finite  . Bayesian optimization
with a GP surrogate with prior mean function 𝑚(𝒙) inducing 𝜖𝑇 (𝒙) (Eq. (8))
with ∀𝑡 ∀𝒙 ∶ 𝑚(𝒙) > 𝒌𝑇 (𝒙)′

(

𝑲𝑇 + 𝜎2𝑰
)−1 𝑚(𝒙) has a cumulative regret 𝑅𝑇

such that

P
{

𝑅𝑇 ≤
√

𝑇
√

𝜏2𝑇𝐶1𝛾𝑇 + ℰ
(

2𝜏𝑡𝒮 + ℰ
)

∀𝑇 ≥ 1
}

≥ 1 − 𝛿,

here 𝐶1 = 8∕ log
(

1 + 𝜎−2
)

, 𝒮 =
∑𝑇
𝑡=1 𝜎𝑡−1

(

𝒙𝑡
)

the accumulated GP vari-
nces of BO proposals, and ℰ =

∑𝑇
𝑡=1 𝜖𝑡−1(𝒙𝑡) the accumulated prior-mean
induced error terms.

8 
Proofs of all Lemmas and Theorems can be found in Appendix A.
Note that this cumulative regret bound grows linear in ℰ . It is of order


(

√

𝑇
√

𝛾𝑇 log || + ℰ
(

4𝜏𝑡𝒮 + ℰ
)

)

(11)

with high probability. The same holds for pessimistic misspecification,
see Theorem 5 in Appendix B. Under the same assumptions, [72]
retrieve sublinear regret bounds. Note that the results do not contradict
the sublinearity of the bound obtained in [72, Theorem 3], since the
latter requires 𝜏𝑡 to depend on an upper bound for 𝑓 (more restrictive
than Theorem 1) and applies to any 𝑓 from a RKHS corresponding to
the kernel (less restrictive than Theorem 1).

Summing things up, we thus observe that misspecified GP prior
means lift BO’s regret bounds from sublinearity to linear growth. How-
ever, we have not made any further assumptions on the misspecifi-
cation of the prior mean parameters. By having to account for any
misspecification, the obtained general regret bounds might be wider
than in specific scenarios. The question arises as to whether we can
make the bounds tighter by restricting the misspecification. The fol-
lowing Theorem 2 gives an affirmative answer. The key is to bound
the misspecification-induced error, not the misspecification itself.

Theorem 2 (Regret Bound For Sub-Variance GP Misspecification). Let 𝛿 ∈
0, 1) and 𝜏𝑡 =

√

2 log
(

||𝑡2𝜋2∕6𝛿
)

with finite  . Bayesian optimization
ith a GP surrogate with prior mean function 𝑚(𝒙) inducing sub-variance
rror 𝜖𝑇 (𝒙) (Eq. (8)) s.t. ∀𝑇 ∶ 𝜖𝑇 (𝒙) ≤ 𝜎𝑇 (𝒙) with ∀𝑡 ∀𝒙 ∶ 𝑚(𝒙) >
𝒌𝑇 (𝒙)′

(

𝑲𝑇 + 𝜎2𝑰
)−1 𝑚(𝒙) has a cumulative regret 𝑅𝑇 such that

P
{

𝑅𝑇 ≤
√

𝑇 (8𝜏2𝑇 + 8𝜏𝑇 + 2)𝛾𝑇 ∕ log(1 + 𝜎−2) ∀𝑇 ≥ 1
}

≥ 1 − 𝛿.

Crucially, this regret bound grows


(

√

𝑇 𝛾𝑇 log ||

)

(12)

with high probability. That is, it is of the same order as the regret
bound for BO with correctly specified zero mean GP, see [72].15 In other
words, the sublinearity of the regret bounds is restored in case of the
misspecification error being upper-bounded by the variance. We have
identified the pivotal property of the GP-prior-induced error, namely
being bounded by the GP’s variance or not.

Closely following [72], we will now lift the regret bound from
finite  to (presumably practically more relevant) compact and convex
 . This endeavor requires mild conditions on the kernel of the GP,
from which 𝑓 is assumed to be sampled. The condition is fulfilled by
any stationary kernel that is four times differentiable [72, section 4].
It ensures the samples from the corresponding GP are almost surely
continuously differentiable [94, Theorem 5]. Examples of kernels that
fulfill the condition comprise e.g., the previously introduced power-
exponential kernels, see Eq. (C.5), with 𝑝 = 2. It is also fulfilled by
all Matérn-kernels, see Eq. (C.6), with 𝜈 > 2.

Condition 1 (Kernel Smoothness [72]). Consider any compact and convex
 with dim() = 𝑑 and denote by 𝛹 a sample from a GP with kernel
𝑘
(

𝒙,𝒙′
)

and by 𝜕𝛹∕𝜕𝒙 its partial derivative with regard to 𝒙. A kernel
𝑘
(

𝒙,𝒙′
)

satisfies the hereby defined smoothness condition if

P
{

sup
𝒙∈

(

𝜕𝛹∕𝜕𝒙𝑗
)

> 𝐿
}

≤ 𝑎𝑒−(𝐿∕𝑏)
2
, 𝑗 = 1,… , 𝑑,

for constants 𝑎, 𝑏 > 0.

15 The same holds for pessimistic misspecification, see Theorem 6 in
Appendix B.
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Theorem 3 (Regret Bound For Optimistic GP Misspecification on Infinite
). Let  ⊂ [0, 𝑟]𝑑 be compact and convex, 𝑑 ∈ N, 𝑟 ∈ R≥0. Fix 𝛿 ∈ (0, 1),

and set

𝜏2𝑡 = 2 log
(

𝑡22𝜋2∕(3𝛿)
)

+ 2𝑑 log
(

𝑡2𝑑𝑏𝑟
√

log(4𝑑𝑎∕𝛿)
)

with 𝑎, 𝑏 as in condition 1. If Bayesian optimization with misspecified prior
mean inducing ∀𝑡 ∶ 𝜖𝑡(𝒙) > 0 is run on 𝛹 that satisfies condition 1, we
obtain the following cumulative regret bound

P

{

𝑅𝑇 ≤
√

𝜏2𝑇𝐶1𝛾𝑇 + (ℰ + 1)
(

2𝒮 𝜏𝑡 + ℰ
)

+ 𝜋2
6

∀𝑇 ≥ 1

}

≥ 1 − 𝛿

with 𝐶1 = 8∕ log
(

1 + 𝜎−2
)

as in Theorem 1, 𝒮 =
∑𝑇
𝑡=1 𝜎𝑡−1

(

𝒙𝑡
)

, and
ℰ =

∑𝑇
𝑡=1 𝜖𝑡−1(𝒙𝑡) the accumulated prior-mean induced error terms.

The idea of the proof is to show Lemma 2 in this setup ∀𝑡 ≥ 1
and fixed 𝑥 instead of showing it ∀𝒙 ∈  ∀𝑡 ≥ 1. Then consider a
discretization 𝑡 ⊂  for each 𝑡 in order to prove Lemma 2 ∀𝒙 ∈ 𝑡 ∀𝑡 ≤
1 and then let 𝑡 get dense as 𝑡 gets large. Note that the cumulative
regret bound remains linear in ℰ like in the finite  case, see Eq. (11).
The same holds for pessimistic misspecification, see Theorem 7 in
Appendix B.

The only thing that is left now is to lift Theorem 2 for the sub-
variance GP misspecification to the case of infinite  , too. Theorem 4
does the job.

Theorem 4 (Regret Bound For Sub-Variance GP Misspecification on Infinite
). Let  ⊂ [0, 𝑟]𝑑 be compact and convex, 𝑑 ∈ N, 𝑟 ∈ R≥0. Fix 𝛿 ∈ (0, 1),
and set

𝜏2𝑡 = 2 log
(

𝑡22𝜋2∕(3𝛿)
)

+ 2𝑑 log
(

𝑡2𝑑𝑏𝑟
√

log(4𝑑𝑎∕𝛿)
)

with 𝑎, 𝑏 as in condition 1. If Bayesian optimization with misspecified prior
mean inducing sub-variance error 𝜖𝑇 (𝒙), i.e., ∀𝑇 ∶ 𝜖𝑇 (𝒙) ≤ 𝜎𝑇 (𝒙) with
∀𝑡 ∶ 𝜖𝑡(𝒙) > 0 is run on target function 𝛹 that satisfies condition 1, we
obtain the following cumulative regret bound.

P
{

𝑅𝑇 ≤
√

(8𝜏2𝑇 + 4𝜏𝑇 + 2)𝛾𝑇 ∕ log
(

1 + 𝜎−2
)

+ 𝜋2

6
∀𝑇 ≥ 1

}

≥ 1 − 𝛿.

. PROBO: Prior-mean-robust Bayesian optimization

The sensitivity analysis in Section 3 has shown that the algorithm’s
onvergence is especially sensitive towards the prior mean function’s
arameters. It was followed by a theoretical analysis in Section 4
uggesting that misspecification of the latter has the potential to lift the
egret bounds of Bayesian optimization from sub-linearity to linearity.
n summary, we conclude that Bayesian optimization heavily depends
n its hyperparameters, in particular on the Gaussian process prior
ean specification.

Ignoramus et ignorabimus. (We do not know and we will never know.)
– attributed to Emil Heinrich Du Bois-Reymond, cited after [95]

In light of these findings, it appears desirable to mitigate BO’s
ependence on the prior mean parameters by expressing a state of
gnorance about the latter. Recall that Bayesian optimization is typ-
cally used for ‘‘black-box-functions’’, where very little, if any, prior
nowledge about the functional relationship under study exists. The
lassical approach would be to specify a so-called non-informative
yperprior over the prior mean parameters. However, such a prior
s not unique [96,97] and choosing different priors among the set
f all non-informative priors would lead to different posterior in-
erences [14,98]. Such classical non-informative priors can thus not
e regarded as fully uninformative and represent indifference rather
han ignorance. Generally, unique priors describing a state of total
gnorance are ‘‘missing ingredients required by the [Bayesian] prescrip-
ion’’ [99, p. 162]. In response to this disillusioning fact, practitioners
ften turn to empirical Bayes. That is, they estimate prior parameters
9 
from the data, deliberately violating the Bayesian paradigm by peek-
ing at the observations before stating prior knowledge. [99, p. 162]
aptly characterizes empirical Bayes as a ‘‘pragmatic remedy for man-
aging the headache created by the missing ingredients required by the
prescription.’’

In this work, we argue that in the case of Bayesian optimization,
this widely adopted pragmatic remedy of empirical Bayes might cause
serious side effects. This is simply due to the fact that such Bayes-
optimal estimation of a location parameter (empirical Bayes) does
not necessarily equal the Bayes-optimal action in cumulative regret
minimization as in BO. The deeper reason for this is that the prior
components’ effect on BO goes beyond mere inferential (or predic-
tive) purposes. Instead, they interfere with the exploration–exploitation
trade-off, which is essential to BO’s convergence. Optimization and
estimation of 𝑓 (𝒙) can be competing aims. In other words, a prior that
is optimal for inferential purposes not necessarily equates the one most
favorable for fast convergence towards the optimum. Consider the bias
of the estimator as an exemplary statistical property for illustrative
intuition. The estimation of a population’s location parameter through
empirical Bayes via maximum likelihood from an i.i.d. sample is typi-
cally unbiased. The Bayes-optimal settings of the GP mean parameters
in BO, however, might correspond to systematically over- or under-
estimating the true mean, since this can speed up convergence, see
experimental results in Section 3, depending on the target function and
the explore–exploit setting. Since these Bayes-optimal settings, how-
ever, are generally unknown, arbitrary choices might as well hamper
convergence. As our theoretical analysis in Section 4 has revealed,
they can even lift the regret bounds from sublinear to linear growth.
For even more intuition on how the GP prior mean can fiddle with
the explore–exploit trade-off, think of the toy example of a simple-
to-optimize (low-dimensional, unimodal and highly smooth) unknown
target function that is being optimized by BO with LCB. Assume now a
risk-averse decision maker with high 𝜏 in the LCB, see Definition 5. In
this case, BO would waste budget by unnecessarily exploring regions
of the covariate space with sub-optimal function values. This latter
behavior can – loosely speaking – be both mitigated and enforced
by the prior mean, since it dominates the posterior mean in regions
with few observations. For instance, a severe underestimation of the
true function would ceteris paribus lead to the LCB being dominated
by the mean estimation, thus attenuating the influence of the vari-
ance term (Definition 5 of LCB) and reducing exploration, and vice
versa.

Principled approaches argue that this dilemma of Bayesian infer-
ence in the absence of prior information cannot be solved within the
framework of classical precise probabilities. Methods working with sets
of priors have thus attracted increasing attention, see e.g. [100,101]
for an introduction and [102–106] for applications. Truly uninfor-
mative priors, however, would entail sets of all possible probability
distributions and thus lead to vacuous posterior inference. That is,
prior beliefs would not change with data, which would make learning
impossible. [98] thus propose prior near -ignorance models as a com-
promise that conciliates learning and almost non-informative priors.
Prior near-ignorance models are characterized by placing a ‘‘probability
interval’’ [0, 1] on certain ‘‘standard’’ events, expressing ignorance about
their tendency to occur. A popular example for a prior near-ignorance
model is the imprecise Dirichlet model [107], which has wide reaching
applications [108].

In the case of Gaussian processes, so-called imprecise Gaussian pro-
cesses (IGP) were introduced by [13,14] as prior near-ignorance models
for GP regression. The general idea of an IGP is to incorporate the
model’s imprecision regarding the choice of the prior’s mean function
parameter, given a constant mean function and a fully specified kernel.
In the case of univariate regression, given a base kernel 𝑘(𝑥, 𝑥′) and a
degree of imprecision 𝑐 > 0, [13, definition 2] defines a constant mean

imprecise Gaussian process as a set of GP priors:
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𝑐 =
{

𝐺𝑃
(

𝑀ℎ, 𝑘(𝑥, 𝑥′) + 1 +𝑀
𝑐

)

∶ ℎ = ±1,𝑀 ≥ 0
}

. (13)

It can be shown that 𝑐 verifies prior near-ignorance [13, page 194]
nd that 𝑐 → 0 yields the precise model [13, page 189]. Note that the
ean functional form (constant) as well as both kernel functional form

nd its parameters do not vary in set 𝑐 , but only the mean parameter
ℎ ∈ ]−∞,∞[. For each prior GP, a posterior GP can be inferred. This

esults in a set of posteriors and a corresponding set of mean estimates
̂(𝑥), of which the upper and lower mean estimates 𝜇̂(𝑥), 𝜇̂(𝑥) can be
erived analytically. To this very end, let 𝑘(𝑥, 𝑥′) be a kernel function

as defined in [22]. The finitely positive semi-definite matrix 𝑲 is then
formed by applying 𝑘(𝑥, 𝑥′) on the training data vector 𝒙 ∈  :

𝑲 = [𝑘(𝑥𝑖, 𝑥′𝑗 )]𝑖𝑗 . (14)

Following [13], we call 𝑲 base kernel matrix. Note that 𝑲 is
restricted only to be finitely positive semi-definite and not to have
diagonal elements of 1. In statistical terms, 𝑲 is a covariance matrix
and not necessarily a correlation matrix. Hence, the variance 𝐼𝜎2 is
included. Now let 𝑥 be a scalar input of test data, whose 𝑓 (𝑥) is to
be predicted. Then recall 𝒌(𝒙) = [𝑘(𝑥, 𝑥1),… , 𝑘(𝑥, 𝑥𝑛)]′ is the vector
of covariances between 𝑥 and the training data. Furthermore, define
𝒔𝑘 = 𝑲−11𝑛 and 𝑺𝑘 = 1′

𝑛𝑲
−11𝑛. Then [13] shows that upper and lower

bounds of the posterior predictive mean function 𝜇̂(𝑥) for 𝑓 (𝑥) can be
derived. If | 𝒔𝑘𝒚𝑺𝑘

| ≤ 1 + 𝑐
𝑺𝑘

, they are:

̂(𝑥) = 𝒌(𝒙)′𝑲−1𝒚 + (1 − 𝒌(𝒙)′𝒔𝑘)
𝒔′𝑘
𝑺𝑘

𝒚 + 𝑐
|1 − 𝒌(𝒙)′𝒔𝑘|

𝑺𝑘
(15)

̂(𝑥) = 𝒌(𝒙)′𝑲−1𝒚 + (1 − 𝒌(𝒙)′𝒔𝑘)
𝒔′𝑘
𝑺𝑘

𝒚 − 𝑐
|1 − 𝒌(𝒙)′𝒔𝑘|

𝑺𝑘
(16)

If | 𝒔𝑘𝒚𝑺𝑘
| > 1 + 𝑐

𝑺𝑘
:

̂(𝑥) = 𝒌(𝒙)′𝑲−1𝒚 + (1 − 𝒌(𝒙)′𝒔𝑘)
𝒔′𝑘
𝑺𝑘

𝒚 + 𝑐
1 − 𝒌(𝒙)′𝒔𝑘

𝑺𝑘
(17)

̂(𝑥) = 𝒌(𝒙)′𝑲−1𝒚 + (1 − 𝒌(𝒙)′𝒔𝑘)
𝒔′𝑘𝒚
𝑐 + 𝑺𝑘

(18)

The corresponding variance estimate of both 𝜇(𝑥) and 𝜇(𝑥) is

𝜎2𝑓 (𝑥) = 𝑘(𝑥, 𝑥) − 𝒌(𝒙)′𝑲−1𝒌(𝒙) +
(1 − 𝒌(𝒙)′𝒔𝑘)2

𝑺𝑘
(19)

We can retrieve credible intervals for the predictions of an imprecise
P as follows. For 𝛼 ∈ [0, 1] and 𝑧𝑞 the 𝑞-quantile of the standard
ormal distribution, the 1 − 𝛼 credible intervals of the mean estimate
or 𝑓 (𝑥) is

𝑟𝐼𝛼 = [𝑓
𝑥
= 𝜇(𝑥) − 𝑧1− 𝛼

2
⋅ 𝜎2𝑓 (𝑥), 𝑓𝑥 = 𝜇(𝑥) + 𝑧1− 𝛼

2
⋅ 𝜎2𝑓 (𝑥)]. (20)

[13, Theorem 4] shows that 𝐶𝑟𝐼𝛼 = [𝑓
𝑥
, 𝑓𝑥] satisfies 𝑃 (𝑓 (𝑥) < 𝑓

𝑥
) ≤ 𝛼

2
nd 𝑃 (𝑓 (𝑥) > 𝑓𝑥) ≤

𝛼
2 . Fig. 3 visualizes upper and lower mean function

stimates as well as corresponding credible intervals of an imprecise
aussian process trained on data generated by 𝑓 (𝑥) = 𝑥 ⋅ sin(𝑥) + 0.1𝑥.

The prediction function including credible intervals of a precise (clas-
sical) Gaussian process is also depicted. As can be seen by comparing
predictions in 𝑥 ∈ [−10,−5] to 𝑥 ∈ [4, 7], the model imprecision
𝜇(𝑥) −𝜇(𝑥) is greater than the classical prediction uncertainty (credible
interval of precise GP) in the absence of data. Here, the prior dominates
the data in the posterior. The opposite holds in the abundance of data.
Noteworthy, imprecise Gaussian processes require the estimated target
function to be univariate, i.e., dim() = 1. Our proposed extension
of BO will inherit this restriction, limiting its applicability. However,
we emphasize that many multivariate optimization problems can be
embedded in univariate subspaces, see [109,110] for instance, with-
10 
out substantial loss of the solution’s efficiency. In the next Section 6
on PROBO’s application, we practically demonstrate the feasibility of
such embedding techniques both in general and in combination with
our method in particular. We particularly point to embedding-based
benchmarking of PROBO against the classical LCB for the problem of
graphene, as summarized in Appendix G for random embedding and
in Appendix H for embedding based on principal component analysis
(PCA).

Inspired by multi-objective BO [111], one might think (despite
knowing better) of an IGP and a GP as surrogate models for dif-
ferent target functions. A popular approach in multi-objective BO to
proposing points based on various surrogate models is to scalarize their
predictions by an acquisition function defined a priori. The proposed
generalized lower confidence bound (GLCB) is such an acquisition
function, since it combines mean and variance predictions of a precise
GP with upper and lower mean estimates of an IGP, see also [1].
In this way, it generalizes the popular upper/lower confidence bound
𝐿𝐶𝐵(𝒙) = 𝜇̂(𝒙) − 𝜏𝑡 ⋅

√

𝑣𝑎𝑟(𝜇̂(𝒙)), recall Definition 5.

Definition 11 (Generalized Lower Confidence Bound (GLCB)). Let 𝒙 ∈  .
As above, let 𝜇̂(𝒙), 𝜇̂(𝒙) be the upper/lower mean estimates of an IGP
with imprecision 𝑐. Let 𝜇̂(𝒙) and 𝑣𝑎𝑟(𝜇̂(𝒙)) be the mean and variance
redictions of a precise GP. The prior-mean-robust acquisition function
eneralized lower confidence bound (GLCB) shall then be

𝐿𝐶𝐵(𝒙) = 𝜇̂(𝒙) − 𝜏𝑡 ⋅
√

𝑣𝑎𝑟(𝜇̂(𝒙)) − 𝜌 ⋅ (𝜇̂(𝒙) − 𝜇̂(𝒙)).

By explicitly accounting for the prior-induced imprecision, GLCB
generalizes the trade-off between exploration and exploitation: 𝜏𝑡 > 0
controls the classical ‘‘mean vs. data uncertainty’’ trade-off (degree of
risk aversion) and 𝜌 > 0 controls the ‘‘mean vs. model imprecision’’
trade-off (degree of ambiguity aversion). Notably, 𝜇̂(𝒙)− 𝜇̂(𝒙) simplifies
to an expression only dependent on the kernel vector between 𝑥 and
the training data 𝒌(𝒙) = [𝑘(𝑥, 𝑥1),… , 𝑘(𝑥, 𝑥𝑛)]′, the base kernel matrix 𝑲
(Eq. (14)) and the degree of imprecision 𝑐, which follows from Eqs. (17)
and (18) in case |

𝒔𝑘𝒚
𝑺𝑘

| > 1 + 𝑐
𝑺𝑘

:

̂(𝑥) − 𝜇̂(𝑥) = (1 − 𝒌(𝒙)′𝒔𝑘)
(
𝒔′𝑘
𝑺𝑘

𝒚 + 𝑐
𝑺𝑘

−
𝒔′𝑘𝒚
𝑐 + 𝑺𝑘

)

(21)

As can be seen by comparing Eqs. (15) and (16), in case of |

𝒔𝑘𝒚
𝑺𝑘

| ≤

1 + 𝑐
𝑺𝑘

, the model imprecision 𝜇̂(𝒙) − 𝜇̂(𝒙) even simplifies further, as
ollows.

̂(𝑥) − 𝜇̂(𝑥) = 2𝑐
|1 − 𝒌(𝒙)′𝒔𝑘|

𝑺𝑘
(22)

In this case, the GLCB comes down to 𝐺𝐿𝐶𝐵(𝒙) = 𝜇̂(𝒙) − 𝜏𝑡 ⋅
𝑣𝑎𝑟(𝜇̂(𝒙)) − 2 ⋅ 𝜌𝑐 |1−𝒌(𝒙)

′𝒔𝑘|
𝑺𝑘

and the two hyperparameters 𝜌 and 𝑐

collapse to one. In both cases, the surrogate models 𝜇̂(𝑥) and 𝜇̂(𝑥) do not
have to be fully implemented. Only 𝑲 and 𝒌(𝒙) = [𝑘(𝑥, 𝑥1),… , 𝑘(𝑥, 𝑥𝑛)]′

eed to be computed. GLCB can thus be plugged into standard BO
ithout much additional computational cost.16 Algorithm 2 describes

he procedure.

16 Further note that with expensive target functions to optimize, the com-
putational costs of surrogate models and acquisition functions in BO can be
regarded as negligible. The computational complexity of PROBO is the same
as for BO with GP.
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Fig. 3. Upper and lower mean estimates of imprecise GP and precise GP estimates from data generated by 𝑓 (𝑥) = 𝑥 ⋅ sin(𝑥) + 0.1𝑥 (‘‘alpine function’’), see [84].
Fig. 4. Producing graphene via laser irradiation. Image credits: [112, page 3].
Algorithm 2 Prior-mean-RObust Bayesian Optimization (PROBO)

1: create an initial design 𝐷 = {(𝒙(𝑖), 𝛹 (𝑖))}𝑖=1,...,𝑛𝑖𝑛𝑖𝑡 of size 𝑛𝑖𝑛𝑖𝑡
2: specify 𝑐 and 𝜌
3: while termination criterion is not fulfilled do
4: train a precise GP on data 𝐷 and obtain 𝜇̂(𝒙), 𝑣𝑎𝑟(𝜇̂(𝒙))
5: compute 𝒌(𝒙), 𝒔𝑘 and 𝑺𝑘
6: if | 𝒔𝑘𝒚

𝑺𝑘
| > 1 + 𝑐

𝑺𝑘
then

7: 𝜇̂(𝑥) − 𝜇̂(𝑥) = (1 − 𝒌(𝒙)′𝒔𝑘)
( 𝒔′𝑘
𝑺𝑘
𝒚 + 𝑐

𝑺𝑘
− 𝒔′𝑘𝒚

𝑐+𝑺𝑘

)

8: else 𝜇̂(𝑥) − 𝜇̂(𝑥) = 2𝑐 |1−𝒌(𝒙)′𝒔𝑘 |
𝑺𝑘

9: compute 𝐺𝐿𝐶𝐵(𝒙) = −𝜇̂(𝒙) + 𝜏𝑡 ⋅
√

𝑣𝑎𝑟(𝜇̂(𝒙)) + 𝜌 ⋅ (𝜇̂(𝒙) − 𝜇̂(𝒙))
10: propose 𝒙𝑛𝑒𝑤 that optimizes 𝐺𝐿𝐶𝐵(𝒙)
11: evaluate 𝛹 on 𝒙𝑛𝑒𝑤

12: update 𝐷 ← 𝐷 ∪ (𝒙𝑛𝑒𝑤, 𝛹 (𝒙𝑛𝑒𝑤))
13: end while
14: return argmin𝒙∈𝐷𝛹 (𝒙) and respective 𝛹 (argmin𝒙∈𝐷𝛹 (𝒙))

Just like LCB, the generalized LCB balances optimization of 𝜇̂(𝑥)
and reduction of uncertainty with regard to the model’s prediction
variation

√

𝑣𝑎𝑟(𝜇̂(𝒙)) through 𝜏𝑡. What is more, GLCB aims at reducing
model imprecision caused by the prior specification, controllable by 𝜌.
This allows returning optima that are robust not only towards classical
prediction uncertainty but also towards imprecision of the specified
model, see Section 1.

6. Application on graphene production

We test our method on a univariate target function generated
from a data set that describes the quality of experimentally produced
11 
Table 3
Graphene data set [81].

covariate min max type description

power 10 5555 real-valued power of the laser
time 500 20210 real-valued irradiation time
gas categorical gas used in the reaction chamber

(Nitrogen, Argon, Air)
pressure 0 1000 real-valued pressure in the reaction chamber
target quality 0.1 5.5 real-valued quality of induced graphene

graphene, an allotrope of carbon with potential use in semiconductors,
smartphones and electric batteries [81]. The data set comprises 𝑛 = 210
observations of an experimental manufacturing process of graphene.
High-performance plastics like polyimide films, typically Kapton, are
irradiated with a laser in a reaction chamber in order to trigger a
chemical reaction that results in graphene, see Fig. 4. Four covariates
influence the manufacturing process, namely power and time of the
laser irradiation as well as gas in and pressure of the reaction cham-
ber [81]. The target variable (to be maximized) is a measure for the
quality of the induced graphene, ranging from 0.1 to 5.5 (see Table 3).

In order to construct a univariate target function from the data
set, a random forest was trained on subsets of it (target quality and
power as well as target quality and time, see Fig. 5). The predictions of
these random forests were then used as target functions to be optimized
in order to compare the proposed BO method to existing ones on a
real-world problem.

We compare GLCB to its classical counterpart LCB, see Definition 5,
as well as to six other popular acquisition functions like expected im-
provement (EI), see Definition 4. Fig. 6 highlights the results for GLCB
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Fig. 5. Univariate target functions estimated from graphene data.
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vs. LCB on the graphene-time function, while all remaining results
can be found in Appendix F. These include, besides other competing
acquisition functions, the benchmarks on the graphene-power target
function. For each comparison, we observe 𝑛 = 60 BO runs with
a budget of 90 evaluations and an initial design of 10 data points
generated by Latin hypercube sampling [113] each. Focus search [21,
page 7] was used as AF optimizer with 1000 evaluations per round
and 5 maximal restarts. All experiments were conducted in R version
.0.3 [114] on a high-performance computing cluster using 20 cores
linux gnu). Fig. 6 depicts mean optimization paths of BO with GLCB
ompared to LCB on the graphene-time target function. The paths are
hown for three different GLCB settings: 𝜌 = 1, 𝑐 = 50 and 𝜌 = 1, 𝑐 = 100
s well as 𝜌 = 10, 𝑐 = 100. We observe that GLCB surpasses LCB (all
ettings). Results in Appendix F show that we retrieve similar results
or EI (with 𝜌 = 10, 𝑐 = 100) in late iterations and other acquisition
unctions, except for one purely exploratory and thus degenerated
cquisition function. The results on the graphene-power target function
eveal a similar pattern, except that GLCB is outperformed by EI, see
lso Appendix F.

Generally, it becomes evident that none of the methods reaches
he global optimum of 5.5 or come close to it within the allocated
udget. This can be attributed to the general hardness of the problem of
raphene production and the high costs of conducting one experiment,
hich mainly stem from the required time to set up an experiment:

‘The preparation of a sample to be irradiated requires about one week
o produce the graphene oxide powder and 1-2 days to create the ink
nd deposit it onto the subs’’ [112]. For more background on the nature
f experimental graphene production, see [81,112].

Moreover, we benchmark our proposed methods on synthetic func-
ions to study how these results generalize to applications beyond
raphene production. We select a series of synthetic benchmarking
roblems for optimizer benchmarking from [85] which includes test
unctions from the well-established BBOB benchmarking suite [115–
17]. The results can be summarized as follows: As long as the objec-
ive function is sufficiently wiggly and multimodal, PROBO achieves
tate-of-the-art results, see in particular the results on the noisy and
ultimodal drop-wave function in Appendix I. For smooth, uni- or

imodal target functions, however, PROBO is outperformed by com-
eting methods, see particularly the results for the alpine function in
ppendix J. Apparently, the superiority on noisy, multimodal targets

that are typically hard to optimize) like the graphene production
roblem does not come for free. It entails slower convergence in case of
very) simple optimization problems. In light of PROBO’s motivation,
his appears quite plausible: Our method hedges against the risk of
odel misspecification. The latter has only limited effect and does not
12 
utweight the additional exploration in case the model specification
oes not matter that much due to the true target function’s simplicity.
e recommend further research to better understand the determi-

ants of optimization problems that can be solved more efficiently by
ccounting for model imprecision.

Another pattern from the results catches one’s attention imme-
iately, namely the late iterations, in which GLCB outperforms its
ompetitors. Loosely speaking, accounting for model imprecision ap-
arently needs time to play out its strengths. Only logically, the re-
uction of model imprecision needs a few iterations to impact the
odel’s predictions that in turn impact the algorithm’s proposals. This
otivates an extension of our acquisition function to more complex
ultivariate target functions, as they usually require a higher budget of
O evaluations to be optimized. Recall that we restricted ourselves to
he univariate case due to the one-dimensional nature of the imprecise
aussian processes proposed by [13]. The fruitful application of impre-
ise Gaussian processes in BO might initiate a more general formulation
f imprecise Gaussian processes.

We further point to benchmarking results based on other target
unctions resulting from univariate embeddings of all covariates power,
ime, gas (one-hot encoding), and pressure. As briefly mentioned in
ection 5, these results are summarized in Appendix G for random
mbedding and in Appendix H for more statistically informed em-
edding based on principal component analysis (PCA).17 These results
onfirm the competitive performance of PROBO. However, GLCB does
ot statistically outperform LCB on these embedding-based problems.

. Discussion

The promising results presented above should not hide the fact that
he proposed modification makes the optimizer robust only with regard
o possible misspecification of the mean function parameter given a
onstant trend. Albeit the sensitivity analysis conducted in Section 3
emonstrated its importance, the mean parameter is clearly not the
nly influential component of the GP prior in BO. For instance, the
unctional form of the kernel also plays a major role, see Table 2. The
uestion of how to specify this prior component is discussed in [4,61].
part from this, it is important to note that PROBO depends on a
ubjectively specified degree of imprecision 𝑐. It does not account
or any imaginable prior mean (the model would become vacuous,
ee Section 5). What is more, it may be difficult to interpret 𝑐 and

17 The first principal component’s scores were taken as univariate
representation in this type of embedding strategy.
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Fig. 6. Benchmarking results from graphene data: Generalized lower confidence bound (GLCB) vs. lower confidence bound (LCB). Shown are 60 runs per Acquisition Function
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thus specify it in practical applications. However, our method still
offers more generality than a precise choice of the mean parameter.
Specifying 𝑐 corresponds to a weaker assumption than setting precise
mean parameters.

Notwithstanding such deliberations concerning PROBO’s robustness
and generality, the method simply converges faster than BO when faced
with graphene production. Such multimodal and wiggly (see Fig. 5)
functions latter make up an arguably considerable part of problems
not only materials science, but also in other relevant applications of
BO such as hyperparameter-tuning [19], engineering [118] or drug
discovery [16]. We thus conclude that PROBO has high potential
in several real-world applications of Bayesian optimization, where a
univariate embedding along the lines of [109] is feasible.

The herein proposed BO robustification framework PROBO as well
as the empirical and theoretical analysis of BO under GP misspecifi-
cation open up several venues for further work. First and foremost,
multi-objective optimization problems appear to constitute a fruitful
field of further study. We have already hinted at potential extensions in
Section 2.4. Moreover, an extension of the rationale behind PROBO to
other Bayesian surrogate models seems feasible, since there is a variety
of prior near-ignorance models besides imprecise Gaussian processes.
What is more, also non-Bayesian surrogate models like random forests,
boosting methods or support vector machines can be altered such that
they account for imprecision in their assumptions, see [119–125] for
instance. Generally speaking, IP models appear very fruitful in the
context of optimization based on surrogate models. They not only
offer a vivid framework to represent prior ignorance, as demonstrated
in this very paper, but may also be beneficial in applications where
prior knowledge is abundant. In such situations, in the case of data
contradicting the prior, precise probabilities often fail to adequately
represent uncertainty, whereas IP models can handle these prior-data
conflicts, see e.g., [105,106,126].

Furthermore, the theoretical analysis in Section 4 paves the way
for several extensions, two of which shall be briefly outlined in what
follows. First, the assumption of the ground truth 𝑓 being sampled from
a Gaussian process could be dropped. Analogous to [72, Theorem 3]
and based on Theorem 3 and Theorem 4 regret bounds for 𝑓 from

reproducing kernel Hilbert space (RKHS) might be within reach. In
his agnostic setting, the challenge will be to define misspecification

ince a ground truth mean function is unavailable, as GPs from an m

13 
RKHS are identified with their kernel only. Second, recall that the
kernel’s functional form was found to be the second most influential
GP prior component in the empirical analysis in Section 3. It might
be of interest to conduct a similar theoretical analysis of its influence
on cumulative regret bounds. We point to the kernel-based Defini-
tion 10 of information gain and corresponding regret analyses in [23,
section 4] and [24, section 3.1]. Since they are based on (conditional)
entropy, they can be extended to account for sets of kernel functional
forms using upper and lower entropy measures proposed by [127].
An additional theoretical extension of this work would be to focus on
convergence rather than probabilistic regret bounds under GP prior
misspecification, see [128,129] for pointers to convergence analyses.

As mentioned in Section 1, there are many more derivative-free
optimizers with probabilistic elements. Consider, for instance, simu-
lated annealing [130]. Inspired by cooling-down processes of metals
and liquids, simulated annealing is a local search (i.e., it uniformly
samples from a hypercube or an 𝜖-ball around the current optimal value
𝒙𝑡) that casually accepts parameters from the rejection area {𝒙𝑡+1 ∶
(𝒙𝑡+1) − 𝑓 (𝒙𝑡) > 0}. It uses the co-called Metropolis criterion: Accept
arameter 𝒙𝑡+1 from rejection area with P = exp

( 𝑓 (𝒙𝑡+1)−𝑓 (𝒙𝑡)
𝑇

)

, where 𝑇
is the temperature of the system, which monotonically decreases with
the iterations. P constitutes an exponential distribution with 𝜆 = 1.
Different distributions from the same distributional family and their
effect on the optimization path could be assessed in future work.
Furthermore, the interaction of the two probability measures (uniform
distribution and exponential distribution) might be investigated. An-
other example of optimizers relying on probabilistic assumptions are
evolutionary algorithms mimicking the evolution of animal populations
through natural selection. A crucial part of EA is the mutation operator,
as it ensures diversity in following generations [131]. Besides uniformly
sampling 𝒙𝑡+1 from the covariate space, the Gauss-mutation has gained
popularity in recent years: 𝒙𝑡+1 = 𝒙𝑡 ± 𝜎 (𝟎, 𝐈). Leaning on so-called
eighborhood models [132], one could sample from a set of (normal)
istributions. The resulting set of populations could then be ordered
y a fitness function. The induced ordering can itself be imprecise,
s proposed by [133, Chapter 5.1] as ‘‘imprecise fitness comparison’’.
nother point of attack from a robustness point of view can be the
pecification of covariance matrices in the highly popular covariance

atrix adaptation evolutionary search (CMAES) algorithm [6].
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Appendix A. Proofs

Lemma 1 (Information Gain in Terms of Variances [72]). For real-valued
𝛹 (𝒙) it holds

I
(

𝒚𝑇 ;𝜳 𝑇
)

= 1
2

′
∑

𝑡=1
log

(

1 + 𝜎−2𝜎2𝑡−1
(

𝒙𝑡
))

.

roof. See proof of [72, Lemma 5.3]. □

emma 2 (Confidence Bound). Assume finite  , a GP with prior mean
unction 𝑚(𝒙) inducing 𝜖𝑇 (𝒙), and BO proposing 𝒙𝑡 according to Eq. (9).

Pick 𝛿 ∈ (0, 1) and set 𝜏𝑡 = 4 log
(

||𝜋𝑡∕𝛿
)2, where ∑

𝑡≥1 𝜋
−1
𝑡 = 1, 𝜋𝑡 > 0.

The following then holds ∀𝒙 ∈  ∀𝑡 ≥ 1 with probability ≥ 1 − 𝛿

|

|

𝛹 (𝒙) − 𝜇̃𝑡−1(𝒙)|| ≤

{

𝜏𝑡𝜎𝑡−1(𝒙) − 𝜖𝑡−1(𝒙), if 𝜖𝑡−1(𝒙) ≥ 0
𝜏𝑡𝜎𝑡−1(𝒙) + 𝜖𝑡−1(𝒙), if 𝜖𝑡−1(𝒙) < 0,

where 𝜇̃𝑡−1(𝒙) is the posterior mean of the GP with prior mean zero.

Proof. Fix 𝑡 ≥ 1 and 𝒙 ∈  . Completely analogous to [72], consider
𝛹 (𝒙) ∼ 𝑁

(

𝜇𝑡−1(𝒙), 𝜎2𝑡−1(𝒙)
)

and deterministic
{

𝒙1,… ,𝒙𝑡−1
}

conditioned
on observed vector 𝒚𝑡−1 in iteration 𝑡 − 1. Defining

𝜌 ∶=
(

𝛹 (𝒙) − 𝜇𝑡−1(𝒙)
)

∕𝜎𝑡−1(𝒙),

it holds 𝜌 ∼ 𝑁(0, 1) and thus

P{𝜌 > 𝜏𝑡} = 𝑒−𝜏
2
𝑡 ∕2(2𝜋)−1∕2 ∫ 𝑒−(𝜌−𝜏𝑡)

2∕2−𝜏𝑡(𝜌−𝜏𝑡)𝑑𝜌

≤ 𝑒−𝜏
2
𝑡 ∕2 P{𝜌 > 0} = (1∕2)𝑒−𝜏

2
𝑡 ∕2

for 𝜏𝑡 > 0, since 𝑒−𝜏𝑡(𝜌−𝜏𝑡) ≤ 1 for 𝜌 ≥ 𝜏𝑡. Therefore

P
{

|𝛹 (𝒙) − 𝜇 (𝒙)| > 𝜏 𝜎 (𝒙)
}

≤ 𝑒−𝛽𝑡∕2.

| 𝑡−1 | 𝑡 𝑡−1

14 
Boole’s inequality (by 𝜎-subadditivity of P) delivers that
|

|

𝛹 (𝒙) − 𝜇𝑡−1(𝒙)|| ≤ 𝜏𝑡𝜎𝑡−1(𝒙) ∀𝒙 ∈ 

holds with probability ≥ 1 − ||𝑒−𝛽𝑡∕2. Choosing ||𝑒−𝛽𝑡∕2 = 𝛿∕𝜋𝑡 and
using Boole’s inequality for 𝑡 ∈ N, see proof of [72, Lemma 5.1], it
holds that
|

|

𝛹 (𝒙) − 𝜇𝑡−1(𝒙)|| ≤ 𝜏𝑡𝜎𝑡−1(𝒙) ∀𝒙 ∈  ∀𝑡 ≥ 1

with probability ≥ 1 − 𝛿. Now use Eq. (8) to get
|

|

𝛹 (𝒙) − 𝜇̃𝑡−1(𝒙) + 𝜖𝑡−1(𝒙)|| ≤ 𝜏𝑡𝜎𝑡−1(𝒙) ∀𝒙 ∈  ∀𝑡 ≥ 1

with probability ≥ 1−𝛿, from which the statement follows directly. □

Theorem 1 (Regret Bound For Optimistic GP Misspecification). Let 𝛿 ∈
(0, 1) and 𝜏𝑡 =

√

2 log
(

||𝑡2𝜋2∕6𝛿
)

with finite  . Bayesian optimiza-
ion with a GP surrogate with prior mean function 𝑚(𝒙) inducing
𝑇 (𝒙) (Eq. (8)) with ∀𝑡 ∀𝒙 ∶ 𝑚(𝒙) > 𝒌𝑇 (𝒙)′

(

𝑲𝑇 + 𝜎2𝑰
)−1 𝑚(𝒙) has a

cumulative regret 𝑅𝑇 such that

P
{

𝑅𝑇 ≤
√

𝑇
√

𝜏2𝑇𝐶1𝛾𝑇 + ℰ
(

2𝜏𝑡𝒮 + ℰ
)

∀𝑇 ≥ 1
}

≥ 1 − 𝛿,

here 𝐶1 = 8∕ log
(

1 + 𝜎−2
)

, 𝒮 =
∑𝑇
𝑡=1 𝜎𝑡−1

(

𝒙𝑡
)

the accumulated GP
ariances of BO proposals, and ℰ =

∑𝑇
𝑡=1 𝜖𝑡−1(𝒙𝑡) the accumulated

rior-mean induced error terms.

roof. It directly follows from the premise ∀𝑡 ∀𝒙 ∶ 𝑚(𝒙) > 𝒌𝑇 (𝒙)′

𝑲𝑇 + 𝜎2𝑰
)−1 𝑚(𝒙) and from Lemma 2 that

𝛹 (𝒙) − 𝜇𝑡−1(𝒙)|| ≤ 𝜏𝑡𝜎𝑡−1(𝒙) + 𝜖𝑡−1(𝒙).

onsider any 𝑡 ≥ 1 and set 𝒙𝑜𝑝𝑡 = argmin𝒙∈𝛹 (𝒙). Because of 𝒙𝑡 =
rg max𝒙∈{−𝜇𝑡−1(𝒙) + 𝜏𝑡 ⋅ 𝜎𝑡−1(𝒙)}, we have

𝜇𝑡−1
(

𝒙𝑡
)

+ 𝜏𝑡𝜎𝑡−1
(

𝒙𝑡
)

≥ −𝜇𝑡−1
(

𝒙𝑜𝑝𝑡
)

+ 𝜏𝑡𝜎𝑡−1
(

𝒙𝑜𝑝𝑡
)

.

esides, we can set 𝜏𝑡 (and we will, later on) such that −𝜇𝑡−1
(

𝒙𝑜𝑝𝑡
)

+
𝑡𝜎𝑡−1

(

𝒙𝑜𝑝𝑡
)

≥ −𝛹
(

𝒙𝑜𝑝𝑡
)

. Combining all three inequalities gives for the
nstantaneous regret (Definition 8):

𝑡 = 𝛹 (𝒙𝑡) − min
𝒙∈

𝛹 (𝒙) = 𝛹 (𝒙𝑡) − 𝛹 (𝒙𝑜𝑝𝑡)

≤ 𝛹 (𝒙𝑡) − 𝜇𝑡−1
(

𝒙𝑡
)

+ 𝜏𝜎𝑡−1
(

𝒙𝑡
)

≤ 2𝜏𝑡𝜎𝑡−1
(

𝒙𝑡
)

+ 𝜖𝑡−1(𝒙𝑡).

We will now show that the following holds with probability ≥ 1−𝛿:
𝑇
∑

𝑡=1
𝑟2𝑡 ≤

𝑇
∑

𝑡=1
4𝜏2𝑇 𝜎

2𝐶2 log
(

1 + 𝜎−2𝜎2𝑡−1
(

𝒙𝑡
))

+ 4𝜏𝑡𝜎𝑡−1
(

𝒙𝑡
)

⋅ 𝜖𝑡−1(𝒙𝑡) + 𝜖𝑡−1(𝒙𝑡)2 ∀𝑇 ≥ 1

with 𝐶2 = 𝜎−2∕ log
(

1 + 𝜎−2
)

in order to use the representation from
Lemma 1 of the maximum information gain, see Definition 10. We have
that

𝑟2𝑡 ≤ (2𝜏𝑡𝜎𝑡−1
(

𝒙𝑡
)

+ 𝜖𝑡−1(𝒙𝑡))2 ∀𝑡 ≥ 1

with probability ≥ 1 − 𝛿. Recall that we have set
𝜏𝑡 =

√

2 log
(

||𝑡2𝜋2∕6𝛿
)

, i.e., 𝜏𝑡 is non-decreasing in 𝑡. Hence,

𝑇
∑

𝑡=1
𝑟2𝑡 ≤

𝑇
∑

𝑡=1
(2𝜏𝑡𝜎𝑡−1

(

𝒙𝑡
)

+ 𝜖𝑡−1(𝒙𝑡))2

≤
𝑇
∑

𝑡=1
(2𝜏𝑡𝜎𝑡−1

(

𝒙𝑡
)

)2 + 4𝜏𝑡𝜎𝑡−1
(

𝒙𝑡
)

⋅ 𝜖𝑡−1(𝒙𝑡) + 𝜖𝑡−1(𝒙𝑡)2

≤
𝑇
∑

𝑡=1
(4𝜏2𝑇 𝜎

2 (𝜎−2𝜎2𝑡−1
(

𝒙𝑡
))

+ 4𝜏𝑡𝜎𝑡−1
(

𝒙𝑡
)

⋅ 𝜖𝑡−1(𝒙𝑡) + 𝜖𝑡−1(𝒙𝑡)2

≤
𝑇
∑

𝑡=1
4𝜏2𝑇 𝜎

2𝐶2 log
(

1 + 𝜎−2𝜎2𝑡−1
(

𝒙𝑡
))

( ) 2
+ 4𝜏𝑡𝜎𝑡−1 𝒙𝑡 ⋅ 𝜖𝑡−1(𝒙𝑡) + 𝜖𝑡−1(𝒙𝑡)
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with probability ≥ 1 − 𝛿. We further used 𝐶2 = 𝜎−2∕ log
(

1 + 𝜎−2
)

≥
1, since 𝑠2 ≤ 𝐶2 log

(

1 + 𝑠2
)

for 𝑠 ∈
[

0, 𝜎−2
]

, and 𝜎−2𝜎2𝑡−1
(

𝒙𝑡
)

≤
𝜎−2𝑘

(

𝒙𝑡,𝒙𝑡
)

≤ 𝜎−2, see also [72, Lemma 5.4]. We are now using the
following representation of the information gain from Lemma 1

I
(

𝒚𝑇 ,𝜳 𝑇
)

= 1
2

𝑇
∑

𝑡=1
log

(

1 + 𝜎−2𝜎2𝑡−1
(

𝒙𝑡
))

,

ee [72, Lemma 5.3]. In the following, denote by 𝒮 =
∑𝑇
𝑡=1 𝜎𝑡−1

(

𝒙𝑡
)

and
ℰ =

∑𝑇
𝑡=1 𝜖𝑡−1(𝒙𝑡) the accumulated variances and prior-mean induced

error terms. Recall Definition 10 of the maximum information gain
𝛾𝑡 ∶= max I

(

𝒚𝑇 ;𝒇𝑇
)

to get

𝑇
∑

𝑡=1
𝑟2𝑡 ≤

𝑇
∑

𝑡=1
4𝜏2𝑇 𝜎

2𝐶2 log
(

1 + 𝜎−2𝜎2𝑡−1
(

𝒙𝑡
))

+ 4𝜏𝑡𝜎𝑡−1
(

𝒙𝑡
)

⋅ 𝜖𝑡−1(𝒙𝑡) + 𝜖𝑡−1(𝒙𝑡)2

≤ 8𝜏2𝑇 𝜎
2𝐶2𝛾𝑇 + 4𝒮 𝜏𝑡ℰ + ℰ2

≤ 𝜏2𝑇𝐶1𝛾𝑇 + ℰ
(

4𝒮 𝜏𝑡 + ℰ
)

with probability ≥ 1 − 𝛿 where we used 𝐶1 = 8𝜎2𝐶2 and the trivial fact
that the information gain is upper-bounded by the maximum informa-
tion gain. Eventually, note that 𝑅2

𝑇 ≤ 𝑇
∑𝑇
𝑡=1 𝑟

2
𝑡 by Cauchy–Schwarz. We

thus have

𝑅𝑇 ≤
√

𝑇
√

𝜏2𝑇𝐶1𝛾𝑇 + ℰ
(

4𝜏𝑡𝒮 + ℰ
)

,

ith probability ≥ 1 − 𝛿, which was to be demonstrated. □

heorem 2 (Regret Bound For Sub-Variance GP Misspecification). Let 𝛿 ∈
(0, 1) and 𝜏𝑡 =

√

2 log
(

||𝑡2𝜋2∕6𝛿
)

with finite  . Bayesian optimization
ith a GP surrogate with prior mean function 𝑚(𝒙) inducing sub-
ariance error 𝜖𝑇 (𝒙) (Eq. (8)) s.t. ∀𝑇 ∶ 𝜖𝑇 (𝒙) ≤ 𝜎𝑇 (𝒙) with ∀𝑡 ∀𝒙 ∶
𝑚(𝒙) > 𝒌𝑇 (𝒙)′

(

𝑲𝑇 + 𝜎2𝑰
)−1 𝑚(𝒙) has a cumulative regret 𝑅𝑇 such that

P
{

𝑅𝑇 ≤
√

𝑇 (8𝜏2𝑇 + 8𝜏𝑇 + 2)𝛾𝑇 ∕ log(1 + 𝜎−2) ∀𝑇 ≥ 1
}

≥ 1 − 𝛿.

Proof. By exploiting Lemma 2, the proof of Theorem 1 entails

𝑟𝑡 = 𝛹 (𝒙𝑡) − min
𝒙∈

𝛹 (𝒙) = 𝛹 (𝒙𝑡) − 𝛹 (𝒙𝑜𝑝𝑡)

≤ 𝛹 (𝒙𝑡) − 𝜇𝑡−1
(

𝒙𝑡
)

+ 𝜏𝜎𝑡−1
(

𝒙𝑡
)

≤ 2𝜏𝑡𝜎𝑡−1
(

𝒙𝑡
)

+ 𝜖𝑡−1(𝒙𝑡).

We will now show that the following holds with probability ≥ 1 − 𝛿:
𝑇
∑

𝑡=1
𝑟2𝑡 ≤ (8𝜏2𝑇 + 4𝜏𝑇 + 2)𝜎2𝐶2𝛾𝑇 ∀𝑇 ≥ 1

with 𝐶2 = 𝜎−2∕ log
(

1 + 𝜎−2
)

) and 𝛾𝑡 the maximum information gain,
see Definition 10. We have that

𝑟2𝑡 ≤ (2𝜏𝑡𝜎𝑡−1
(

𝒙𝑡
)

+ 𝜖𝑡−1(𝒙𝑡))2 ∀𝑡 ≥ 1

with probability ≥ 1−𝛿. Recall that we have set 𝜏𝑡 = 4 log
(

||𝑡2𝜋2∕6𝛿
)2,

i.e., 𝜏𝑡 is non-decreasing in 𝑡. Hence,
𝑇
∑

𝑡=1
𝑟2𝑡 ≤

𝑇
∑

𝑡=1
(2𝜏𝑡𝜎𝑡−1

(

𝒙𝑡
)

+ 𝜖𝑡−1(𝒙𝑡))2

≤
𝑇
∑

𝑡=1
(2𝜏𝑇 𝜎𝑡−1

(

𝒙𝑡
)

)2 + 4𝜏𝑇 𝜎𝑡−1
(

𝒙𝑡
)

⋅ 𝜖𝑡−1(𝒙𝑡) + 𝜖𝑡−1(𝒙𝑡)2

≤
𝑇
∑

𝑡=1
4𝜏2𝑇 𝜎

2
𝑡−1(𝒙𝑡) + 4𝜏𝑇 𝜎2𝑡−1

(

𝒙𝑡
)

+ 𝜎2𝑡−1
(

𝒙𝑡
)

,

with probability ≥ 1 − 𝛿 using the critical assumption ∀𝑡 ∶ 𝜎𝑡−1
(

𝒙𝑡
)

≤
𝜖𝑡−1(𝒙𝑡). Analogous to the proof of Theorem 1, we can now exploit

−2 ( −2) −2 2 ( ) −2 ( ) −2
𝐶2 = 𝜎 ∕ log 1 + 𝜎 ≥ 1, and 𝜎 𝜎𝑡−1 𝒙𝑡 ≤ 𝜎 𝑘 𝒙𝑡,𝒙𝑡 ≤ 𝜎

15 
again, see also [72, Lemma 5.4]. This yields

𝑇
∑

𝑡=1
4𝜏2𝑇 𝜎

2
𝑡−1(𝒙𝑡) + 4𝜏𝑇 𝜎2𝑡−1

(

𝒙𝑡
)

+ 𝜎2𝑡−1
(

𝒙𝑡
)

,

=
𝑇
∑

𝑡=1
𝜎2

(

𝜎−2𝜎2𝑡−1
(

𝒙𝑡
)) (

4𝜏2𝑇 + 4𝜏𝑇 + 1
)

≤
𝑇
∑

𝑡=1
𝜎2𝐶2 log

(

1 + 𝜎−2𝜎2𝑡−1
(

𝒙𝑡
)) (

2𝜏𝑇 + 1
)2

with probability ≥ 1 − 𝛿. Just like in the proof of Theorem 1, we
are now using the representation of the information gain I

(

𝒚𝑇 ,𝜳 𝑇
)

=
1
2
∑𝑇
𝑡=1 log

(

1 + 𝜎−2𝜎2𝑡−1
(

𝒙𝑡
))

. Furthermore, recall Definition 10 of the
maximum information gain 𝛾𝑡 ∶= max I

(

𝒚𝑇 ;𝒇𝑇
)

once more to get

𝑇
∑

𝑡=1
𝑟2𝑡 ≤

𝑇
∑

𝑡=1
𝜎2𝐶2 log

(

1 + 𝜎−2𝜎2𝑡−1
(

𝒙𝑡
)) (

4𝜏2𝑇 + 4𝜏𝑇 + 1
)

≤ (8𝜏2𝑇 + 8𝜏𝑇 + 2)𝜎2𝐶2𝛾𝑇

with probability ≥ 1 − 𝛿 where we again used the trivial fact that the
information gain is upper-bounded by the maximum information gain.
Finally, recall that 𝑅2

𝑇 ≤ 𝑇
∑𝑇
𝑡=1 𝑟

2
𝑡 by Cauchy–Schwarz. We thus have

𝑅𝑇 ≤
√

𝑇 (8𝜏2𝑇 + 8𝜏𝑇 + 2)𝜎2𝐶2𝛾𝑇 ,

with probability ≥ 1 − 𝛿, or

P
{

𝑅𝑇 ≤
√

𝑇 (8𝜏2𝑇 + 8𝜏𝑇 + 2)𝛾𝑇 ∕ log(1 + 𝜎−2)
}

≥ 1 − 𝛿,

hich was to be demonstrated. □

heorem 3 (Regret Bound For Optimistic GP Misspecification on Infinite
). Let  ⊂ [0, 𝑟]𝑑 be compact and convex, 𝑑 ∈ N, 𝑟 ∈ R≥0. Fix 𝛿 ∈ (0, 1),

and set

𝜏2𝑡 = 2 log
(

𝑡22𝜋2∕(3𝛿)
)

+ 2𝑑 log
(

𝑡2𝑑𝑏𝑟
√

log(4𝑑𝑎∕𝛿)
)

with 𝑎, 𝑏 as in condition 1. If Bayesian optimization with misspecified
rior mean inducing ∀𝑡 ∶ 𝜖𝑡(𝒙) > 0 is run on 𝛹 that satisfies condition 1,

we obtain the following cumulative regret bound

P

{

𝑅𝑇 ≤
√

𝜏2𝑇𝐶1𝛾𝑇 + (ℰ + 1)
(

2𝒮 𝜏𝑡 + ℰ
)

+ 𝜋2
6

∀𝑇 ≥ 1

}

≥ 1 − 𝛿

with 𝐶1 = 8∕ log
(

1 + 𝜎−2
)

as in Theorem 1, and 𝒮 =
∑𝑇
𝑡=1 𝜎𝑡−1

(

𝒙𝑡
)

, and
=
∑𝑇
𝑡=1 𝜖𝑡−1(𝒙𝑡) the accumulated prior-mean induced error terms.

roof. Based on the discretization of  in [72, Lemmas 5.6 and 5.7]
nd [72, Lemma 5.8] it holds that ∀𝑡 ≥ 1:

𝑡 ≤ 2𝜏𝑡𝜎𝑡−1(𝒙) +
1
𝑡2
,

in the case of zero-mean GP. We can directly apply the discretiza-
tion technique from [72] to our instantaneous regret bound 𝑟𝑡 ≤
2𝜏𝑡𝜎𝑡−1

(

𝒙𝑡
)

+ 𝜖𝑡−1(𝒙𝑡) from the case of finite  to get the following
instantaneous regret bound for convex and compact  :

𝑟𝑡 ≤ 2𝜏𝑡𝜎𝑡−1
(

𝒙𝑡
)

+ 𝜖𝑡−1(𝒙𝑡) +
1
𝑡2
,∀𝑡 ≥ 1,

with probability greater than 1 − 𝛿. Thus,

𝑟2𝑡 ≤
(

2𝜏𝑡𝜎𝑡−1
(

𝒙𝑡
)

+ 𝜖𝑡−1(𝒙𝑡) +
1
𝑡2

)2 ∀𝑡 ≥ 1

with probability greater than 1 − 𝛿. Now we are ready to complete the
proof in analogy to the proof of Theorem 1, just that we have to expand
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a trinomial instead of a binomial.
𝑇
∑

𝑡=1
𝑟2𝑡 ≤

𝑇
∑

𝑡=1
4𝜏2𝑇 𝜎

2𝐶2 log
(

1 + 𝜎−2𝜎2𝑡−1
(

𝒙𝑡
))

+ 4𝜏𝑡𝜎𝑡−1
(

𝒙𝑡
)

⋅ 𝜖𝑡−1(𝒙𝑡) + 𝜖𝑡−1(𝒙𝑡)2

+
4𝜏𝑡𝜎𝑡−1

(

𝒙𝑡
)

𝑡2
+

2𝜖𝑡−1(𝒙𝑡)
𝑡2

+ 1
𝑡4

≤ 8𝜏2𝑇 𝜎
2𝐶2𝛾𝑇 + 4𝒮 𝜏𝑡ℰ + ℰ2 + 4𝒮 𝜏𝑡 + 2ℰ +

∑ 1
𝑡4

≤ 𝜏2𝑇𝐶1𝛾𝑇 + ℰ
(

4𝒮 𝜏𝑡 + ℰ + 2
)

+ 4𝒮 𝜏𝑡 +
𝜋2

6
,

tilizing 𝑡 ≥ 1, 𝐶1 = 8𝜎2𝐶2, and ∑ 1
𝑡2

= 𝜋2

6 (Euler’s solution to the
Basel problem). The assertion now follows by the Cauchy–Schwarz
inequality. □

Theorem 4 (Regret Bound For Sub-Variance GP Misspecification on Infinite
). Let  ⊂ [0, 𝑟]𝑑 be compact and convex, 𝑑 ∈ N, 𝑟 ∈ R≥0. Fix 𝛿 ∈ (0, 1),
and set

𝜏2𝑡 = 2 log
(

𝑡22𝜋2∕(3𝛿)
)

+ 2𝑑 log
(

𝑡2𝑑𝑏𝑟
√

log(4𝑑𝑎∕𝛿)
)

with 𝑎, 𝑏 as in condition 1. If Bayesian optimization with misspecified
prior mean inducing sub-variance error 𝜖𝑇 (𝒙), i.e., ∀𝑇 ∶ 𝜖𝑇 (𝒙) ≤ 𝜎𝑇 (𝒙)
with ∀𝑡 ∶ 𝜖𝑡(𝒙) > 0 is run on target function 𝛹 that satisfies condition 1,
we obtain the following cumulative regret bound.

P
{

𝑅𝑇 ≤
√

(8𝜏2𝑇 + 4𝜏𝑇 + 2)𝛾𝑇 ∕ log
(

1 + 𝜎−2
)

+ 𝜋2

6
∀𝑇 ≥ 1

}

≥ 1 − 𝛿.

roof. From the proof of Theorem 2 we have the following ∀𝑇 ≥ 1:
𝑇

𝑡=1
𝑟2𝑡 ≤

𝑇
∑

𝑡=1
(2𝜏𝑡𝜎𝑡−1

(

𝒙𝑡
)

+ 𝜖𝑡−1(𝒙𝑡))2

≤
𝑇
∑

𝑡=1
𝜎2𝐶2 log

(

1 + 𝜎−2𝜎2𝑡−1
(

𝒙𝑡
)) (

2𝜏𝑇 + 1
)2

≤ (8𝜏2𝑇 + 8𝜏𝑇 + 2)𝜎2𝐶2𝛾𝑇

with probability ≥ 1 − 𝛿 where the critical assumption ∀𝑇 ∶ 𝜖𝑇 (𝒙) ≤
𝜎𝑇 (𝒙) was used as well as the representation of the information gain
I
(

𝒚𝑇 ,𝜳 𝑇
)

= 1
2
∑𝑇
𝑡=1 log

(

1 + 𝜎−2𝜎2𝑡−1
(

𝒙𝑡
))

, and 𝐶2 = 𝜎−2∕ log
(

1 + 𝜎−2
)

,
see the proof of Theorem 1. By Cauchy–Schwarz this implies
𝑇
∑

𝑡=1
2𝜏𝑡𝜎𝑡−1

(

𝒙𝑡
)

+ 𝜖𝑡−1(𝒙𝑡) ≤
√

(8𝜏2𝑇 + 8𝜏𝑇 + 2)𝜎2𝐶2𝛾𝑇 ∀𝑇 ≥ 1 (A.1)

From the proof of Theorem 3 we further have for the regret in the case
of infinite  :

P
{

𝑟𝑡 ≤ 2𝜏𝑡𝜎𝑡−1
(

𝒙𝑡
)

+ 𝜖𝑡−1(𝒙𝑡) +
1
𝑡2

∀𝑡 ≥ 1
}

≥ 1 − 𝛿.

Summing over and using Eq. (A.1) now directly delivers that

P

{ 𝑇
∑

𝑡=1
𝑟𝑡 ≤

√

(8𝜏2𝑇 + 8𝜏𝑇 + 2)𝜎2𝐶2𝛾𝑇 + 𝜋2

6
∀𝑇 ≥ 1

}

≥ 1 − 𝛿,

where we again use Euler’s solution to the Basel problem: ∑ 1
𝑡2

=
𝜋2

6 . With 𝐶2 = 𝜎−2∕ log
(

1 + 𝜎−2
)

and 𝑅𝑇 =
∑𝑇
𝑡=1 𝑟𝑡 the assertion

ollows. □

ppendix B. Regret bounds for pessimistic GP misspecification

Crucially, the cumulative regret bound for pessimistic Gaussian
rocess misspecification s.t. ∀𝑡 ∀𝒙 ∶ 𝑚(𝒙) < 𝒌𝑇 (𝒙)′

(

𝑲𝑇 + 𝜎2𝑰
)−1 𝑚(𝒙)

are of the same order as the ones for optimistic GP, namely linear in
ℰ :


(

√

𝑇
√

𝛾𝑇 log || − ℰ4𝜏𝑡𝒮 + ℰ2
)

. (B.1)
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For the sake of completeness, we provide the respective theorem in
what follows. The proof is equivalent to the proof of Theorem 1 up to
the sign of 𝜖𝑡−1(𝒙𝑡).

Theorem 5 (Regret Bound For Pessimistic GP Misspecification). Let
𝛿 ∈ (0, 1) and 𝜏𝑡 =

√

2 log
(

||𝑡2𝜋2∕6𝛿
)

. In case of finite  , Bayesian
optimization with a GP surrogate with prior mean function 𝑚(𝒙) inducing
𝑇 (𝒙) (Eq. (8)) with ∀𝑡 ∀𝒙 ∶ 𝑚(𝒙) < 𝒌𝑇 (𝒙)′

(

𝑲𝑇 + 𝜎2𝑰
)−1 𝑚(𝒙) has a

umulative regret 𝑅𝑇 such that
{

𝑅𝑇 ≤
√

𝑇
√

𝜏2𝑇𝐶1𝛾𝑇 − ℰ
(

4𝜏𝑡𝒮 − ℰ
)

∀𝑇 ≥ 1
}

≥ 1 − 𝛿,

here 𝐶1 = 8∕ log
(

1 + 𝜎−2
)

, 𝒮 =
∑𝑇
𝑡=1 𝜎𝑡−1

(

𝒙𝑡
)

the accumulated GP vari-
nces of BO proposals, and ℰ =

∑𝑇
𝑡=1 𝜖𝑡−1(𝒙𝑡) the accumulated prior-mean

induced error terms.

Proof. It directly follows from the premise ∀𝑡 ∀𝒙 ∶ 𝑚(𝒙) > 𝒌𝑇 (𝒙)′
(

𝑲𝑇+
𝜎2𝑰

)−1 𝑚(𝒙) and from Lemma 2 that

𝛹 (𝒙) − 𝜇𝑡−1(𝒙)|| ≤ 𝜏𝑡𝜎𝑡−1(𝒙) − 𝜖𝑡−1(𝒙).

onsider any 𝑡 ≥ 1 and set 𝒙𝑜𝑝𝑡 = argmin𝒙∈𝛹 (𝒙). Because of 𝒙𝑡 =
rg max𝒙∈{−𝜇𝑡−1(𝒙) + 𝜏𝑡 ⋅ 𝜎𝑡−1(𝒙)}, we have

𝜇𝑡−1
(

𝒙𝑡
)

+ 𝜏𝑡𝜎𝑡−1
(

𝒙𝑡
)

≥ −𝜇𝑡−1
(

𝒙𝑜𝑝𝑡
)

+ 𝜏𝑡𝜎𝑡−1
(

𝒙𝑜𝑝𝑡
)

.

esides, we can set 𝜏𝑡 (and we will, later on) such that −𝜇𝑡−1
(

𝒙𝑜𝑝𝑡
)

+
𝑡𝜎𝑡−1

(

𝒙𝑜𝑝𝑡
)

≥ −𝛹
(

𝒙𝑜𝑝𝑡
)

. Combining all three inequalities gives for the
nstantaneous regret (Definition 8):

𝑡 = 𝛹 (𝒙𝑡) − min
𝒙∈

𝛹 (𝒙) = 𝛹 (𝒙𝑡) − 𝛹 (𝒙𝑜𝑝𝑡)

≤ 𝛹 (𝒙𝑡) − 𝜇𝑡−1
(

𝒙𝑡
)

+ 𝜏𝜎𝑡−1
(

𝒙𝑡
)

≤ 2𝜏𝑡𝜎𝑡−1
(

𝒙𝑡
)

− 𝜖𝑡−1(𝒙𝑡).

he strategy will now be to show that the following holds with proba-
ility ≥ 1 − 𝛿:
𝑇
∑

𝑡=1
𝑟2𝑡 ≤

𝑇
∑

𝑡=1
4𝜏2𝑇 𝜎

2𝐶2 log
(

1 + 𝜎−2𝜎2𝑡−1
(

𝒙𝑡
))

− 4𝜏𝑡𝜎𝑡−1
(

𝒙𝑡
)

⋅ 𝜖𝑡−1(𝒙𝑡) + 𝜖𝑡−1(𝒙𝑡)2 ∀𝑇 ≥ 1

ith 𝐶2 = 𝜎−2∕ log
(

1 + 𝜎−2
)

in order to use the representation from
emma 1 of the maximum information gain, see Definition 10. We have
hat
2
𝑡 ≤ (2𝜏𝑡𝜎𝑡−1

(

𝒙𝑡
)

− 𝜖𝑡−1(𝒙𝑡))2 ∀𝑡 ≥ 1

ith probability ≥ 1 − 𝛿. Recall that we have set

𝑡 =
√

2 log
(

||𝑡2𝜋2∕6𝛿
)

, i.e., 𝜏𝑡 is non-decreasing in 𝑡. Hence,

𝑇
∑

𝑡=1
𝑟2𝑡 ≤

𝑇
∑

𝑡=1
(2𝜏𝑡𝜎𝑡−1

(

𝒙𝑡
)

− 𝜖𝑡−1(𝒙𝑡))2

≤
𝑇
∑

𝑡=1
(2𝜏𝑡𝜎𝑡−1

(

𝒙𝑡
)

)2 − 4𝜏𝑡𝜎𝑡−1
(

𝒙𝑡
)

⋅ 𝜖𝑡−1(𝒙𝑡) + 𝜖𝑡−1(𝒙𝑡)2

≤
𝑇
∑

𝑡=1
(4𝜏2𝑇 𝜎

2 (𝜎−2𝜎2𝑡−1
(

𝒙𝑡
))

− 4𝜏𝑡𝜎𝑡−1
(

𝒙𝑡
)

⋅ 𝜖𝑡−1(𝒙𝑡) + 𝜖𝑡−1(𝒙𝑡)2

≤
𝑇
∑

𝑡=1
4𝜏2𝑇 𝜎

2𝐶2 log
(

1 + 𝜎−2𝜎2𝑡−1
(

𝒙𝑡
))

− 4𝜏𝑡𝜎𝑡−1
(

𝒙𝑡
)

⋅ 𝜖𝑡−1(𝒙𝑡) + 𝜖𝑡−1(𝒙𝑡)2

ith probability ≥ 1 − 𝛿. We further used 𝐶2 = 𝜎−2∕ log
(

1 + 𝜎−2
)

≥
, since 𝑠2 ≤ 𝐶2 log

(

1 + 𝑠2
)

for 𝑠 ∈
[

0, 𝜎−2
]

, and 𝜎−2𝜎2𝑡−1
(

𝑥𝑡
)

≤
−2𝑘

(

𝑥𝑡, 𝑥𝑡
)

≤ 𝜎−2, see also [72, Lemma 5.4]. We are now using the
ollowing representation of the information gain from Lemma 1

(

𝒚𝑇 ,𝜳 𝑇
)

= 1
𝑇
∑

log
(

1 + 𝜎−2𝜎2𝑡−1
(

𝒙𝑡
))

,

2 𝑡=1
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see [72, Lemma 5.3]. In the following, denote by 𝒮 =
∑𝑇
𝑡=1 𝜎𝑡−1

(

𝒙𝑡
)

and
ℰ =

∑𝑇
𝑡=1 𝜖𝑡−1(𝒙𝑡) the accumulated variances and prior-mean induced

error terms. Recall Definition 10 of the maximum information gain
𝛾𝑡 ∶= max I

(

𝒚𝑇 ;𝒇𝑇
)

to get

𝑇
∑

𝑡=1
𝑟2𝑡 ≤

𝑇
∑

𝑡=1
4𝜏2𝑇 𝜎

2𝐶2 log
(

1 + 𝜎−2𝜎2𝑡−1
(

𝒙𝑡
))

− 4𝜏𝑡𝜎𝑡−1
(

𝒙𝑡
)

⋅ 𝜖𝑡−1(𝒙𝑡) + 𝜖𝑡−1(𝒙𝑡)2

≤ 8𝜏2𝑇 𝜎
2𝐶2𝛾𝑇 − 4𝒮 𝜏𝑡ℰ + ℰ2

≤ 𝜏2𝑇𝐶1𝛾𝑇 − ℰ
(

4𝒮 𝜏𝑡 − ℰ
)

with probability ≥ 1 − 𝛿 where we used 𝐶1 = 8𝜎2𝐶2 and the trivial
fact that the information gain is upper-bounded by the maximum infor-
mation gain. Eventually, note that 𝑅2

𝑇 ≤ 𝑇
∑𝑇
𝑡=1 𝑟

2
𝑡 by Cauchy–Schwarz.

We thus have

𝑅𝑇 ≤
√

𝑇
√

𝜏2𝑇𝐶1𝛾𝑇 − ℰ
(

4𝜏𝑡𝒮 − ℰ
)

,

ith probability ≥ 1 − 𝛿, which was to be demonstrated. □

Similar reasoning applies to the case of sub-variance GP misspecifi-
ation.

heorem 6 (Regret Bound For Pessimistic Sub-Variance GP Misspecifica-
ion). Let 𝛿 ∈ (0, 1) and 𝜏𝑡 =

√

2 log
(

||𝑡2𝜋2∕6𝛿
)

. In case of finite  ,
ayesian optimization with a GP surrogate with prior mean function 𝑚(𝒙)
inducing sub-variance error 𝜖𝑇 (𝒙) (Eq. (8)) s.t. ∀𝑇 ∶ 𝜖𝑇 (𝒙) ≤ 𝜎𝑇 (𝒙) with
𝑡 ∀𝒙 ∶ 𝑚(𝒙) < 𝒌𝑇 (𝒙)′

(

𝑲𝑇 + 𝜎2𝑰
)−1 𝑚(𝒙) has a cumulative regret 𝑅𝑇 such

hat
{

𝑅𝑇 ≤
√

𝑇 (8𝜏2𝑇 − 8𝜏𝑇 + 2)𝛾𝑇 ∕ log(1 + 𝜎−2) ∀𝑇 ≥ 1
}

≥ 1 − 𝛿.

Again, this regret bound is of the same order as the one for opti-
mistic sub-variance GP misspecification:


(

√

𝑇 𝛾𝑇 log ||

)

. (B.2)

Proof. By exploiting Lemma 2, the proof of Theorem 1 entails

𝑟𝑡 = 𝛹 (𝒙𝑡) − min
𝒙∈

𝛹 (𝒙) = 𝛹 (𝒙𝑡) − 𝛹 (𝒙𝑜𝑝𝑡)

≤ 𝛹 (𝒙𝑡) − 𝜇𝑡−1
(

𝒙𝑡
)

+ 𝜏𝜎𝑡−1
(

𝒙𝑡
)

≤ 2𝜏𝑡𝜎𝑡−1
(

𝒙𝑡
)

− 𝜖𝑡−1(𝒙𝑡).

We will now show that the following holds with probability ≥ 1 − 𝛿:
𝑇
∑

𝑡=1
𝑟2𝑡 ≤ (8𝜏2𝑇 + 4𝜏𝑇 + 2)𝜎2𝐶2𝛾𝑇 ∀𝑇 ≥ 1

with 𝐶2 = 𝜎−2∕ log
(

1 + 𝜎−2
)

) and 𝛾𝑡 the maximum information gain,
see Definition 10. We have that

𝑟2𝑡 ≤ (2𝜏𝑡𝜎𝑡−1
(

𝒙𝑡
)

− 𝜖𝑡−1(𝒙𝑡))2 ∀𝑡 ≥ 1

with probability ≥ 1−𝛿. Recall that we have set 𝜏𝑡 = 4 log
(

||𝑡2𝜋2∕6𝛿
)2,

i.e., 𝜏𝑡 is non-decreasing in 𝑡. Hence,
𝑇
∑

𝑡=1
𝑟2𝑡 ≤

𝑇
∑

𝑡=1
(2𝜏𝑡𝜎𝑡−1

(

𝒙𝑡
)

− 𝜖𝑡−1(𝒙𝑡))2

≤
𝑇
∑

𝑡=1
(2𝜏𝑇 𝜎𝑡−1

(

𝒙𝑡
)

)2 − 4𝜏𝑇 𝜎𝑡−1
(

𝒙𝑡
)

⋅ 𝜖𝑡−1(𝒙𝑡) + 𝜖𝑡−1(𝒙𝑡)2

≤
𝑇
∑

𝑡=1
4𝜏2𝑇 𝜎

2
𝑡−1(𝒙𝑡) − 4𝜏𝑇 𝜎2𝑡−1

(

𝒙𝑡
)

+ 𝜎2𝑡−1
(

𝒙𝑡
)

,

with probability ≥ 1 − 𝛿 using the critical assumption ∀𝑡 ∶ 𝜎𝑡−1
(

𝒙𝑡
)

≤
𝜖𝑡−1(𝒙𝑡). Analogous to the proof of Theorem 1, we can now exploit
𝐶 = 𝜎−2∕ log

(

1 + 𝜎−2
)

≥ 1, and 𝜎−2𝜎2
(

𝑥
)

≤ 𝜎−2𝑘
(

𝑥 , 𝑥
)

≤ 𝜎−2
2 𝑡−1 𝑡 𝑡 𝑡
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again, see also [72, Lemma 5.4]. This yields
𝑇
∑

𝑡=1
4𝜏2𝑇 𝜎

2
𝑡−1(𝒙𝑡) − 4𝜏𝑇 𝜎2𝑡−1

(

𝒙𝑡
)

+ 𝜎2𝑡−1
(

𝒙𝑡
)

,

=
𝑇
∑

𝑡=1
𝜎2

(

𝜎−2𝜎2𝑡−1
(

𝒙𝑡
)) (

4𝜏2𝑇 − 4𝜏𝑇 + 1
)

≤
𝑇
∑

𝑡=1
𝜎2𝐶2 log

(

1 + 𝜎−2𝜎2𝑡−1
(

𝒙𝑡
)) (

2𝜏𝑇 − 1
)2

with probability ≥ 1 − 𝛿. Just like in the proof of Theorem 1, we
are now using the representation of the information gain I

(

𝒚𝑇 ,𝜳 𝑇
)

=
1
2
∑𝑇
𝑡=1 log

(

1 + 𝜎−2𝜎2𝑡−1
(

𝒙𝑡
))

. Furthermore, recall Definition 10 of the
maximum information gain 𝛾𝑡 ∶= max I

(

𝒚𝑇 ;𝒇𝑇
)

once more to get
𝑇
∑

𝑡=1
𝑟2𝑡 ≤

𝑇
∑

𝑡=1
𝜎2𝐶2 log

(

1 + 𝜎−2𝜎2𝑡−1
(

𝒙𝑡
)) (

4𝜏2𝑇 − 4𝜏𝑇 + 1
)

≤ (8𝜏2𝑇 − 8𝜏𝑇 + 2)𝜎2𝐶2𝛾𝑇
with probability ≥ 1 − 𝛿 where we again used the trivial fact that the
information gain is upper-bounded by the maximum information gain.
Finally, recall that 𝑅2

𝑇 ≤ 𝑇
∑𝑇
𝑡=1 𝑟

2
𝑡 by Cauchy–Schwarz. We thus have

𝑅𝑇 ≤
√

𝑇 (8𝜏2𝑇 − 8𝜏𝑇 + 2)𝜎2𝐶2𝛾𝑇 ,

or

𝑅𝑇 ≤
√

𝑇 (8𝜏2𝑇 − 8𝜏𝑇 + 2)𝛾𝑇 ∕ log(1 + 𝜎−2),

ith probability ≥ 1 − 𝛿, which was to be demonstrated. □

Considering infinite  does not change the order of the regret
ounds either. The proofs are equivalent to the proofs of Theorem 3
nd Theorem 4 up to the sign of the misspecification-induced error.

heorem 7 (Regret Bound For Pessimistic GP Misspecification on Infinite
). Let  ⊂ [0, 𝑟]𝑑 be compact and convex, 𝑑 ∈ N, 𝑟 ∈ R≥0. Fix 𝛿 ∈ (0, 1),
nd set
2
𝑡 = 2 log

(

𝑡22𝜋2∕(3𝛿)
)

+ 2𝑑 log
(

𝑡2𝑑𝑏𝑟
√

log(4𝑑𝑎∕𝛿)
)

with 𝑎, 𝑏 as in condition 1. If Bayesian optimization with misspecified prior
mean inducing ∀𝑡 ∶ 𝜖𝑡(𝒙) < 0 is run on 𝛹 that satisfies condition 1, we
btain the following cumulative regret bound
{

𝑅𝑇 ≤
√

𝜏2𝑇𝐶1𝛾𝑇 − ℰ
(

4𝒮 𝜏𝑡 − ℰ + 2
)

+ 4𝒮 𝜏𝑡 +
𝜋2
6

∀𝑇 ≥ 1

}

≥ 1 − 𝛿

ith 𝐶1 = 8∕ log
(

1 + 𝜎−2
)

as in Theorem 1, and 𝒮 =
∑𝑇
𝑡=1 𝜎𝑡−1

(

𝒙𝑡
)

, and
=
∑𝑇
𝑡=1 𝜖𝑡−1(𝒙𝑡) the accumulated prior-mean induced error terms.

The idea of the proof is to show Lemma 2 ∀𝑡 ≥ 1 and fixed 𝑥 instead
f ∀𝒙 ∈  ∀𝑡 ≥ 1. Then consider a discretization 𝑡 ⊂  for each 𝑡 in
rder to prove Lemma 2 ∀𝒙 ∈ 𝑡 ∀𝑡 ≤ 1 and then let 𝑡 get dense as 𝑡

gets large. Note that the cumulative regret bound remains linear in ℰ
like in the finite  case, see Eq. (11).

Proof. Based on the discretization of  in [72, Lemmas 5.6 and 5.7]
and [72, Lemma 5.8] it holds that ∀𝑡 ≥ 1:

𝑟𝑡 ≤ 2𝜏𝑡𝜎𝑡−1(𝒙) +
1
𝑡2
,

in the case of zero-mean GP. We can directly apply the discretiza-
tion technique from [72] to our instantaneous regret bound 𝑟𝑡 ≤
2𝜏𝑡𝜎𝑡−1

(

𝒙𝑡
)

− 𝜖𝑡−1(𝒙𝑡) from the case of finite  to get the following
instantaneous regret bound for convex and compact  :

𝑟𝑡 ≤ 2𝜏𝑡𝜎𝑡−1
(

𝒙𝑡
)

− 𝜖𝑡−1(𝒙𝑡) +
1
𝑡2
,∀𝑡 ≥ 1,

with probability greater than 1 − 𝛿. Thus,

𝑟2 ≤
(

2𝜏 𝜎
(

𝒙
)

− 𝜖 (𝒙 ) + 1 )2 ∀𝑡 ≥ 1
𝑡 𝑡 𝑡−1 𝑡 𝑡−1 𝑡 𝑡2
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with probability greater than 1 − 𝛿. Now we are ready to complete the
proof in analogy to the proof of Theorem 1, just that we have to expand
a trinomial instead of a binomial.
𝑇
∑

𝑡=1
𝑟2𝑡 ≤

𝑇
∑

𝑡=1
4𝜏2𝑇 𝜎

2𝐶2 log
(

1 + 𝜎−2𝜎2𝑡−1
(

𝒙𝑡
))

− 4𝜏𝑡𝜎𝑡−1
(

𝒙𝑡
)

⋅ 𝜖𝑡−1(𝒙𝑡) + 𝜖𝑡−1(𝒙𝑡)2

+
4𝜏𝑡𝜎𝑡−1

(

𝒙𝑡
)

𝑡2
−

2𝜖𝑡−1(𝒙𝑡)
𝑡2

+ 1
𝑡4

≤ 8𝜏2𝑇 𝜎
2𝐶2𝛾𝑇 − 4𝒮 𝜏𝑡ℰ + ℰ2 + 4𝒮 𝜏𝑡 − 2ℰ +

∑ 1
𝑡4

≤ 𝜏2𝑇𝐶1𝛾𝑇 − ℰ
(

4𝒮 𝜏𝑡 − ℰ + 2
)

+ 4𝒮 𝜏𝑡 +
𝜋2

6
,

tilizing 𝑡 ≥ 1, 𝐶1 = 8𝜎2𝐶2, and ∑ 1
𝑡2

= 𝜋2

6 (Euler’s solution to the
Basel problem). The assertion now follows by the Cauchy–Schwarz
inequality. □

The only thing that is left now is to lift Theorem 2 for the sub-
variance GP misspecification to the case of infinite  , too. Theorem 4
does the job.

Theorem 8 (Regret Bound For Pessimistic Sub-Variance GP Misspec. on
Infinite ). Let  ⊂ [0, 𝑟]𝑑 be compact and convex, 𝑑 ∈ N, 𝑟 ∈ R≥0. Fix
𝛿 ∈ (0, 1), and set

𝜏2𝑡 = 2 log
(

𝑡22𝜋2∕(3𝛿)
)

+ 2𝑑 log
(

𝑡2𝑑𝑏𝑟
√

log(4𝑑𝑎∕𝛿)
)

with 𝑎, 𝑏 as in condition 1. If Bayesian optimization with misspecified prior
mean inducing sub-variance error 𝜖𝑇 (𝒙), i.e., ∀𝑇 ∶ 𝜖𝑇 (𝒙) ≤ 𝜎𝑇 (𝒙) with
∀𝑡 ∶ 𝜖𝑡(𝒙) < 0 is run on target function 𝛹 that satisfies condition 1, we
obtain the following cumulative regret bound.

P
{

𝑅𝑇 ≤
√

(8𝜏2𝑇 + 4𝜏𝑇 + 2)𝛾𝑇 ∕ log
(

1 + 𝜎−2
)

+ 𝜋2

6
∀𝑇 ≥ 1

}

≥ 1 − 𝛿.

We reason the cumulative regret stays sublinear for sub-variance
P prior mean parameter misspecification for infinite  . Our main ob-

ervation from above thus also holds for the practicably more relevant
ase of infinite  .

roof. From the proof of Theorem 2 we have the following ∀𝑇 ≥ 1:
𝑇

𝑡=1
𝑟2𝑡 ≤

𝑇
∑

𝑡=1
(2𝜏𝑡𝜎𝑡−1

(

𝒙𝑡
)

− 𝜖𝑡−1(𝒙𝑡))2

≤
𝑇
∑

𝑡=1
𝜎2𝐶2 log

(

1 + 𝜎−2𝜎2𝑡−1
(

𝒙𝑡
)) (

2𝜏𝑇 − 1
)2

≤ (8𝜏2𝑇 − 8𝜏𝑇 + 2)𝜎2𝐶2𝛾𝑇
with probability ≥ 1 − 𝛿 where the critical assumption ∀𝑇 ∶ 𝜖𝑇 (𝒙) ≤
𝜎𝑇 (𝒙) was used as well as the representation of the information gain
I
(

𝒚𝑇 ,𝜳 𝑇
)

= 1
2
∑𝑇
𝑡=1 log

(

1 + 𝜎−2𝜎2𝑡−1
(

𝒙𝑡
))

, and 𝐶2 = 𝜎−2∕ log
(

1 + 𝜎−2
)

,
see the proof of Theorem 1. By Cauchy–Schwarz this implies
𝑇
∑

𝑡=1
2𝜏𝑡𝜎𝑡−1

(

𝒙𝑡
)

− 𝜖𝑡−1(𝒙𝑡) ≤
√

(8𝜏2𝑇 − 8𝜏𝑇 + 2)𝜎2𝐶2𝛾𝑇 ∀𝑇 ≥ 1 (B.3)

From the proof of Theorem 3 we further have for the regret in the case
of infinite 

𝑟𝑡 ≤ 2𝜏𝑡𝜎𝑡−1
(

𝒙𝑡
)

− 𝜖𝑡−1(𝒙𝑡) +
1
𝑡2

∀𝑡 ≥ 1

with probability greater than 1 − 𝛿. Summing over and using Eq. (A.1)
ow directly delivers that
𝑇

𝑡=1
𝑟𝑡 ≤

√

(8𝜏2𝑇 − 8𝜏𝑇 + 2)𝜎2𝐶2𝛾𝑇 + 𝜋2

6
∀𝑇 ≥ 1,

ith probability greater than 1−𝛿, where we again used Euler’s solution
o the Basel problem: ∑ 1

𝑡2
= 𝜋2

6 . With 𝐶2 = 𝜎−2∕ log
(

1 + 𝜎−2
)

and
=
∑𝑇 𝑟 the assertion follows. □
𝑇 𝑡=1 𝑡
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Appendix C. Kernels

Recall Definition 2 from Section 2: A function 𝑓 ∶  ×  → R is
initely positive semi-definite if it is symmetric (∀𝒙, 𝒛 ∈  ∶ 𝑓 (𝒙, 𝒛) =
(𝒛,𝒙)) and the matrix 𝑲 formed by applying 𝑓 to any finite subset of
is positive semi-definite, i.e. for its quadratic form it holds 𝒙′𝑲𝒙 ≥ 0

𝒙 ∈  . A kernel is said to be isotropic if it is a function of the distance
𝒙−𝒙′‖, conditioned on a norm, mostly the L2-Norm. Popular isotropic
ernel families are linear kernels

(𝒙,𝒙′) = 𝜎2𝑏 + 𝜎
2(𝒙 − 𝑐)(𝒙′ − 𝑐), (C.1)

olynomial kernels

(𝒙,𝒙′) =
(

𝜎2𝑏 + 𝜎
2(𝒙 − 𝑐)(𝒙′ − 𝑐)

)𝑝 , (C.2)

aussian kernels

(𝒙,𝒙′) = 𝜎2 exp
(

−
‖𝒙 − 𝒙′‖2

2𝓁2

)

, (C.3)

exponential kernels

𝑘(𝒙,𝒙′) = 𝜎2 ⋅ exp
(

−
‖𝒙 − 𝒙′‖

2𝓁

)

, (C.4)

ower-exponential kernels18

(𝒙,𝒙′) = 𝜎2 ⋅ exp
(

−
‖𝒙 − 𝒙′‖

2𝓁

)𝑝
(C.5)

nd Matérn-kernels

(𝒙,𝒙′) = 𝜎2
(

1 +

√

𝜈 ∗ ‖𝒙 − 𝒙′‖
𝓁

+ 𝜈
3

(

‖𝒙 − 𝒙′‖
𝓁

)𝜌
)

× exp
(

−
√

𝜈 ⋅
‖𝒙 − 𝒙′‖

𝓁

)

, 𝜈, 𝜌 ∈ R, (C.6)

to name only a few. In all kernels, 𝜎2 is the variance that can be viewed
as the average distance away from the mean. In kernels with offset 𝑐,
the base variance 𝜎2𝑏 additionally determines the uncertainty around
𝑐. Parameter 𝓁 determines the smoothness of the GP. For isotropic
kernels, there even exists an exact mapping from 𝓁 to the expected
number of up-crossings at level 0 in the unit interval (with 𝑚(𝒙) = 0,
of course). Sometimes the effect of the kernel on the GP is reduced to
this smoothness parameter 𝓁.19 However, as any finitely positive semi-
definite function is a kernel, it can include various other parameters
and represent all possible covariance structures.

Appendix D. Prior conference publication

A prior version of parts of this work had been presented at the Ninth
International Symposium on Integrated Uncertainty in Knowledge Modelling
and Decision Making (IUKM) in March 2022 and published under the
title ‘‘Accounting for Gaussian Process Imprecision in Bayesian Opti-
mization’’ in the conference proceedings as part of the Lecture Notes in
Computer Science book series (LNAI, volume 13199), see [1]. In that
paper, we proposed the conceptual idea of PROBO without any detailed
analysis and theoretical results. The paper at hand goes substantially
beyond this proceedings paper. In particular,

• Section 1 (Introduction) is completely new and unrelated to the
proceedings paper.

• Section 2 (Background and Related Work) borrows Definition
1 (Gaussian Process) and Algorithm 1 (Bayesian Optimization)
from the IUKM paper, but additionally introduces and moti-
vates definitions 3 (Reproducing Kernel Hilbert Space), 4 (Ex-
pected Improvement), and 5 (Lower Confidence Bound). More-
over, it includes novel discussions of optimality and convergence
of Bayesian optimization.

18 For 𝑝 = 2: Gaussian kernel.
19 Also called kernel-bandwidth or length-scale parameter.
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Table E.4
Accumulated difference for BO of 50 randomly selected test functions from smoof, see Section 5.
Test Function Mean Mean Kernel Kernel

functional form parameters functional form parameters

1-d Ackley Function 23 38 67 23
1-d Alpine01 Function 2.8 1.8 2 1.2
1-d Alpine N. 2 Function 0.11 0.15 0.16 0.079
1-d Chung Reynolds Function 9.1e+03 5.4e+03 9.3e+03 5.4e+03
Cosine Mixture Function 0.073 0.07 0.11 0.14
1-d Deflected Corrugated Spring function 1.4 1.7 2.1 0.77
1-d Double-Sum Function 0.076 0.044 6.9 0.021
1-d Exponential Function 0.00036 0.0015 0.00064 0.00017
1-d Generalized Drop-Wave Function 0.7 1.4 1.7 0.59
1-d Griewank Function 1.1 0.71 1.9 0.69
2-d Hyper-Ellipsoid Function 0.24 2 3.7 0.0012
Six-Hump Camel Back Function 1.3 3.3 2.9 0.71
Price Function N. 4 1.9e+16 1.1e+16 1.1e+16 3.5e+15
Schaffer Function N. 2 0.79 1.3 0.9 0
Beale Function 27 17 20 0.76
Matyas Function 0.25 0.67 3.8 0.0014
Engvall Function 1.7e+11 3.7e+11 2.7e+11 1.2e+11
El-Attar-Vidyasagar-Dutta Function 3e+07 4.6e+07 7.7e+07 4e+07
Cube Function 2.6e+03 6.3e+03 4.8e+03 0
Holder Table Function N. 1 1.1e+02 62 74 1.8
Goldstein-Price Function 8e+02 5.2e+02 6.8e+02 0
3-d Dixon-Price function 1.5e+03 2.2e+03 9.6e+02 1.3e+03
Schaffer Function N. 2 0.32 0.9 0.94 0.078
Giunta Function 0.16 0.29 0.1 0.00018
Chichinadze Function 19 29 66 3.6
Kearfott Function 3.4 7.8 5.7 0
3-d Hartmann Function 3 4.8 5.3 0.82
3-d Alpine N. 2 Function 14 25 30 4.6
Complex Function 3.1 4 1.4 0
Carrom Table Function 71 71 81 0.2
4-d Alpine N. 2 Function 86 33 66 4.7
Adjiman Function 0.34 0.024 1.6 0.00099
Bird Function 1.4e+02 5.1e+02 1.5e+02 0
4-d Generalized Drop-Wave Function 1.5 2.1 1 0.015
Chichinadze Function 54 47 44 16
Brent Function 0.44 0.47 13 4.4e−05
Bukin Function N. 2 3.1 2.2 1.6e+02 0.089
4-d Sum of Different Squares Function 0.37 1.4 0.32 0
Bent-Cigar Function 3.6e+09 2e+10 7e+09 5.7e+08
Booth Function 13 14 47 15
Bartels Conn Function 2.2e+03 1.3e+04 4e+04 27
7-d Sphere Function 1.5e+02 4.4e+02 97 8.5
Goldstein-Price Function 5.8e+02 4e+02 4.4e+02 0
Price Function N. 2 0.36 1.7 0.84 0.21
Engvall Function 1.4e+11 5.1e+11 2.5e+11 4.7e+10
7-d Deflected Corrugated Spring function 16 38 11 0
7-d Hyper-Ellipsoid function 5e+02 1.7e+03 3.4e+02 0
Bent-Cigar Function 4.8e+10 1.5e+11 3.4e+10 0
Trecanni Function 1.5 3.4 7 0
Matyas Function 0.28 0.59 2.7 0
• Section 2.5 on related work is entirely new and unrelated to the
proceedings paper.

• Section 3 (Bayesian Sensitivity Analysis) builds on Section 2
in the proceedings paper. It now provides more details on the
experiments and more comprehensive results.

• Section 4 (Theoretical Analysis) is completely new and unrelated
to the proceedings paper. The herein-derived regret bounds are
novel.

• Section 5 (PROBO: Prior-Mean-Robust Bayesian Optimization)
borrows from Section 3 in the proceedings paper. It additionally
includes derivations of the GLCB as well as further illustrations of
the methods (e.g., figure 3).

• Section 6 (Application on Graphene Production) reports on a
superset of experiments described in the proceedings paper and
entails further illustrations of graphene productions (e.g., figures
4 and 5). In particular, all results in the power setup are novel
19 
as well as all results in the time setup except for LCB and EI (see
Appendix B).

• Section 7 (Discussion) contains two revised paragraphs (roughly
50 percent) from the proceedings paper and two paragraphs that
are entirely novel, containing – amongst other things – a novel
outlook to future work.

In summary, we have extended the conference proceedings paper
by novel theoretical results, additional experiments, a general intro-
duction, a summary of related work as well as a broader discussion
of the results and an outlook to future work. Furthermore, we have
thoroughly revised the parts of the earlier paper that are included in
the manuscript at hand.

This manuscript further builds on and includes parts of the master
thesis ‘‘Robust Generalizations of Stochastic Derivative-Free Optimiza-
tion’’, see [84]. As part of the standard examination procedure, this

master thesis was made available via a preprint server hosted by
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Table E.5
Standardized accumulated differences for BO of 50 randomly selected test functions from smoof, see Section 5.
Test function Mean Mean Kernel Kernel

functional form parameters functional form parameters

1-d Ackley Function 0.62 1 1.8 0.61
1-d Alpine01 Function 1.4 0.94 1 0.62
1-d Alpine N. 2 Function 0.87 1.2 1.3 0.62
1-d Chung Reynolds Function 1.3 0.74 1.3 0.73
Cosine Mixture Function 0.75 0.72 1.1 1.4
1-d Deflected Corrugated Spring function 0.96 1.1 1.4 0.51
1-d Double-Sum Function 0.043 0.025 3.9 0.012
1-d Exponential Function 0.54 2.3 0.95 0.25
1-d Generalized Drop-Wave Function 0.65 1.3 1.5 0.54
1-d Griewank Function 1 0.64 1.7 0.62
2-d Hyper-Ellipsoid Function 0.16 1.3 2.5 0.00083
Six-Hump Camel Back Function 0.63 1.6 1.4 0.35
Price Function N. 4 1.7 0.99 0.99 0.32
Schaffer Function N. 2 1.1 1.7 1.2 0
Beale Function 1.7 1.1 1.2 0.047
Matyas Function 0.22 0.57 3.2 0.0012
Engvall Function 0.72 1.6 1.2 0.51
El-Attar-Vidyasagar-Dutta Function 0.62 0.96 1.6 0.82
Cube Function 0.75 1.8 1.4 0
Holder Table Function N. 1 1.8 0.99 1.2 0.028
Goldstein-Price Function 1.6 1 1.4 0
3-d Dixon-Price function 1 1.5 0.65 0.85
Schaffer Function N. 2 0.56 1.6 1.7 0.14
Giunta Function 1.2 2.1 0.73 0.0013
Chichinadze Function 0.64 0.99 2.3 0.12
Kearfott Function 0.8 1.8 1.4 0
3-d Hartmann Function 0.86 1.4 1.5 0.24
3-d Alpine N. 2 Function 0.75 1.4 1.6 0.25
Complex Function 1.5 1.9 0.64 0
Carrom Table Function 1.3 1.3 1.4 0.0036
4-d Alpine N. 2 Function 1.8 0.7 1.4 0.1
Adjiman Function 0.69 0.049 3.3 0.002
Bird Function 0.68 2.6 0.76 0
4-d Generalized Drop-Wave Function 1.3 1.8 0.88 0.013
Chichinadze Function 1.3 1.2 1.1 0.39
Brent Function 0.13 0.14 3.7 1.3e−05
Bukin Function N. 2 0.074 0.053 3.9 0.0021
4-d Sum of Different Squares Function 0.73 2.6 0.63 0
Bent-Cigar Function 0.46 2.6 0.9 0.073
Booth Function 0.59 0.61 2.1 0.67
Bartels Conn Function 0.16 0.93 2.9 0.002
7-d Sphere Function 0.84 2.6 0.56 0.049
Goldstein-Price Function 1.6 1.1 1.2 0
Price Function N. 2 0.47 2.2 1.1 0.27
Engvall Function 0.59 2.1 1.1 0.2
7-d Deflected Corrugated Spring function 1 2.3 0.65 0
7-d Hyper-Ellipsoid function 0.79 2.7 0.53 0
Bent-Cigar Function 0.83 2.6 0.59 0
Trecanni Function 0.51 1.1 2.4 0
Matyas Function 0.31 0.66 3 0
Ludwig-Maximilians-Universität (LMU) Munich, but has not been sub-
mitted for publication to a peer-reviewed venue. Prior ideas have
also been presented on a poster at the International Symposium on
Imprecise Probabilities (ISIPTA) 2021 [134]

Appendix E. Bayesian sensitivity analysis

E.1. Accumulated differences of mean optimization paths for Bayesian
optimization of 50 randomly selected test functions

See Table E.4.

E.2. Standardized accumulated differences of mean optimization paths for
BO of 50 randomly selected test functions

See Table E.5.
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Appendix F. PROBO application on graphene data

See Figs. F.7–F.10.

Appendix G. PROBO application on graphene with random em-
bedding

See Fig. G.11.

Appendix H. PROBO application on graphene with PCA-based em-
bedding

See Fig. H.12.

Appendix I. PROBO application on drop-wave functions

See Figs. I.13 and I.14.
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Fig. F.7. Graphene and time: Benchmarking results from graphene quality as function of laser irradiation time: GLCB vs. several established Acquisition Functions (1).
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Fig. F.8. Graphene and time: Benchmarking results from graphene quality as function of laser irradiation time: GLCB vs. several established Acquisition Functions (2).
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Fig. F.9. Graphene and power: Benchmarking results from graphene quality as function of laser irradiation power: GLCB vs. several established Acquisition Functions (1).
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Fig. F.10. Graphene and power: Benchmarking results from graphene quality as function of laser irradiation power: GLCB vs. several established Acquisition Functions (2).
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Fig. G.11. Benchmarking results from graphene data with random embedding of covariates power, time, gas (one-hot encoding), and pressure, see also Table 3 and explanations on
embeddings in Sections 5 and 6. Generalized lower confidence bound (GLCB) vs. lower confidence bound (LCB). Figure shows 60 runs per Acquisition Function with 90 evaluations
and initial sample size 10 each. Error bars represent 95% confidence intervals. GLCB-1-100 means 𝜌 = 1 and c = 100; 𝜏𝑡 = 1 for all GLCBs and LCB.
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Fig. H.12. Benchmarking results from graphene data with principal component analysis (PCA) based embedding of covariates power, time, gas (one-hot encoding), and pressure,
see also Table 3 and explanations on embeddings in Sections 5 and 6. Generalized lower confidence bound (GLCB) vs. lower confidence bound (LCB). Figure shows are 60 runs
per Acquisition Function with 90 evaluations and initial sample size 10 each. Error bars represent 95% confidence intervals. GLCB-1-100 means 𝜌 = 1 and c = 100; 𝜏𝑡 = 1 for all
GLCBs and LCB.
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Fig. I.13. Benchmarking results from synthetic drop wave function: Generalized Lower Confidence Bound (GLCB) vs. established acquisition functions.
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Fig. I.14. Benchmarking results from synthetic drop wave function: Generalized Lower Confidence Bound (GLCB) vs. established acquisition functions.
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Fig. J.15. Benchmarking results from synthetic Alpine function: Generalized Lower Confidence Bound (GLCB) vs. EI and LCB.
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Appendix J. PROBO application on alpine functions

See Fig. J.15.
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