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A B S T R A C T

Objective: The imbalanced nature of real-world datasets is an ongoing challenge in the field of machine and deep
learning. In medicine and in dentistry, most data samples represent patients not affected by pathologies, and on
imagery, pathologic image areas are often smaller than healthy ones. Selecting suitable loss functions during
deep learning is essential and may help to overcome the resulting imbalance. We assessed six different loss
functions for one exemplary task, tooth structure segmentation on bitewing radiographs, for their performance.
Methods: Six different loss functions (Focal Loss, Dice Loss, Tversky Loss and hybrid losses of Cross-Entropy and
Dice Loss, Focal and Dice Loss, Focal and Generalized Dice Loss) were compared on a tooth structure segmen-
tation task of 1,625 bitewing radiographs. Training was performed using three different model architectures (U-
Net, Linknet, DeepLavbV3+) over a 5-fold cross-validation. Tooth structures consisted of the classes (occurrence
in% of samples/captures areas measured on pixel level) enamel (100 %/25 %), dentin (100 %/50 %), root canal
(100 %/10 %), filling (81 %/8 %) and crown (28 %/5 %).
Results: Hybrid loss functions significantly outperformed standalone ones and provided robust results over the
different architectures for the classes enamel, dentin, root canal and filling. Specifically, the Dice Focal loss
reached high performance to conquer both image level and pixel level class imbalance, respectively.
Clinical Significance: In dental use cases it is often important to predict minority classes such as pathologies
accurately. Using specific loss function may be an effective strategy to overcome data imbalance when training
deep learning models.

1. Introduction

Image diagnostics has emerged as one of the most prevalent research
fields for Machine Learning and, specifically Deep Learning (DL), in
dentistry [1–4]. Nevertheless, challenges of DL-based systems in the
field of dentistry remain [5]. Among them is the often-imbalanced na-
ture of real-world datasets, which is likely to degrade the performance of
DL models [6]. Imbalance in a dataset may occur in several ways,
depending on the task at hand; for example, images with certain pa-
thologies may be much less frequent than images of healthy conditions
(we here refer to this as image-level class imbalance). In segmentation
tasks, where a DL model assigns pixels to specific classes (like being
healthy or affected by a pathology), imbalance may additionally occur

pixel level, with pathologies capturing smaller areas than healthy area
(or, generally, the background class).

As any DL model is gaining its knowledge from the dataset, it is likely
to learn better how to distinguish the majority class than the minority
class, as it is confronted with significantly more examples from the
former than the latter [6]. If no appropriate actions are taken by DL
researchers, the model may run the risk of neglecting the minority class,
treating it as noise, and instead focusing on maximizing its performance
on the majority class to optimize its objective function. Notably, from a
clinical perspective it is often specifically important to predict the mi-
nority class (e.g. a certain pathology) correctly. There is great need to
address dataset imbalances in DL in dentistry.

Different methods aim to achieve this, often grouped into data and
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algorithm level approaches [7]. Data-level approaches attempt to ach-
ieve class balance by modifying the training dataset, often through
resampling (over- or undersampling of certain images) [8]. Another
data-level method evolves around the generation of synthetic data for
minority classes, for example by using Generative Adversarial Networks
(GANs) [9] and Stable Diffusion Models [10].

Algorithm-level methods use another approach and may involve
employing different loss functions. The loss function quantifies the dif-
ference between the predictions of a DL model and the actual ground
truth. DL aims to minimize the loss and therefore the differences be-
tween the prediction and the ground truth. For this, the outcome of the
loss functions iteratively guides the learning process of the model.
Algorithm-level methods may emphasize the importance of the minority
classes in two different approaches. First, one may incorporate different
weightings for the classes in the loss function. Providing larger
weightings to minority classes in the loss function assigns a higher
weight on the errors made on samples of the minority class. This helps to
steer the learning process towards the minority class. Secondly, one may
adjust the loss function itself to overcome pixel-level class imbalance.
Different loss functions were proposed with the goal of handling such
imbalances. Dice Loss [11] is a popular loss function that captures the
overlap of the predicted pixel area and the ground truth area and is
particularly useful to conquer the imbalance between the background
class and that of interest (e.g., pathology). By default, the Dice Loss does
not address the imbalance between minority and majority classes, that
is, difficult classes due to limited number of image examples in the data
set. This ability was specifically aimed for when the Focal Loss [12] was
proposed, which guides the model towards improving on those example
it currently predicts wrong rather than those it can predict already with
high confidence. The Focal Loss is based on the Cross-Entropy loss [13],
which captures the difference between the predicted probability distri-
bution and the ground truth values. Another loss function aiming to
solve data imbalance challenges is the Tversky loss [14]. It is also built
on the Sørensen-Dice Coefficient, but adds two parameters, α and β,
which allow to penalize false negative pixels or false positive pixels,
respectively.

As some of the loss functions address different types of imbalance, it
is also frequent practice to employ hybrid loss function based on the
combination of two loss functions such as the Focal Dice Loss [15],
Cross-Entropy Dice Loss or the Generalized Dice Focal loss. The latter
one is a combination of the Focal and Generalized Dice Loss [16]. The
Generalized Dice Loss extends the Dice loss by adding a weight to each
class, which is typically inversely proportional to the squared volume of
the class in the ground truth. This ensures that all classes contribute
equally to the loss, independent of their size. A graphical display and
mathematical summary of the loss functions can be found in the
appendix.

Research around data imbalance in the field of dentistry is highly
limited. We here aimed to benchmark different loss functions regarding
their ability to handle class imbalance on an exemplary task, segmenting
tooth structures, namely enamel, dentin, root canal, filling, crown, on
bitewing radiographs. We hypothesized that hybrid loss functions yield
better performance than single loss functions. We additionally assess the
impact of different loss functions when combined with different model
architectures.

2. Materials and methods

2.1. Study design

The present study involved several experiments. First, it was evalu-
ated whether certain loss functions reached universally better results on
the underlying imbalanced segmentation task than others. Second, it
was assessed whether hybrid loss functions such as the Dice Focal loss
performed better than standalone loss functions like the Dice loss.
Finally, it was analyzed whether hybrid loss functions provided more

robust results over different architectures than standalone loss func-
tions. Fig. 1 gives an overview of the study design.

Six loss functions, namely Focal Loss, Dice Loss, Tversky Loss as well
as the hybrids Cross-Entropy Dice Loss, Dice Focal Loss and Generalized
Dice Focal Loss were employed and compared regarding their ability to
overcome class imbalance in a tooth structure segmentation task of
bitewing radiographs. The analysis was based on 90 experiments con-
ducted with three different model architectures U-Net [17] (with Den-
senet121 [18] backbone), Linknet [19] (with ResNet152 [20] backbone)
and DeepLabV3+ [21] (with ResNet152 [20] backbone) in a 5-fold
cross-validation. Train, validation and test datasets for each fold con-
sisted of proportions of 60 % (3 folds), 20 % (1 fold), and 20 % (1 fold),
respectively. Hyperparameters were automatically tuned for each
configuration of architecture and loss.

2.2. Dataset

A dataset of 1625 dental radiographic bitewings with a maximum of
8–9 teeth per image, which were collected during routine care at XXX
between 2019 and 2020, were utilized in this study under ethical
approval (EA4/080/18). The descriptive statistics of the dataset
included a mean (SD, min, max) age of 35.6 (15.5, 11, 83) years and a
gender ratio of 52 % to 48 % of males and females, respectively. The
samples originated from radiographic machines of Dentsply Sirona (51.5
%) and Dürr Dental (47.9 %). For 0.6 % of the images, there was no
information about machinery available.

For the annotation of the tooth structures in a pixel-wise manner, one
dental expert performed the annotation and a second dental expert
reviewed it regarding its validity and correctness. Annotations were
performed in a standardized custom-built annotation tool that has been
used in several previous studies [22,23]. All examiners were trained and
calibrated on how to conduct the segmentations. The prevalence of the
classes in the dataset, which reflected the image-level imbalance were
enamel (100 %), dentin (100 %), root canal (100 %), filling (81 %) and
crown (28 %). The pixel-level imbalance was quantified through the
amount of foreground pixels assigned to each class over the whole
dataset were enamel (25 %), dentin (50 %), root canal (10 %), filling (8
%) and crowns (5%). The resolution of the samples was downsampled to
224 × 224.

2.3. Hyperparameter tuning

To provide a fair comparison of the different loss functions for the
different model architectures, an extensive hyperparameter search was
conducted. Since hyperparameters have a strong impact on the model
performance, and to base the comparison only on the best performing
model, the best training settings for each loss function with every ar-
chitecture were identified. Hyperparameters were the optimizer with or
without regularization, learning rate and batch size. The optimizer
choices included Adam and SGD and the batch size was chosen from
4,8,16 and 32. The learning rate options were 0.001, 0.005, 0.01, 0.05
and 0.08.

Further, we provided different options for loss specific attributes e.g.,
the weighting of Focal and Dice Loss in the Dice Focal loss. Additional
weights for balancing of classes were provided: First, equal weighting of
all classes, second; weightings based on the share of the dataset ([0.048,
0.067, 0.049, 0.154, 0.680]); third, two sets of weights that were
manually created ([0.15,0.15,0.15,0.2,0.35], [0.1,0.1,0.1,0.25,0.45]).
The full overview of the loss specific attributes is listed in the Appendix.

We randomly sampled 100 configurations from the listed options for
each combination of loss and model architecture and evaluated the re-
sults based on the validation set. We used the Asynchronous Successive
Halving Algorithm (ASHA) algorithm, which allows performing
massively parallel hyperparameter optimization with early stopping to
avoid unnecessary computational efforts. Hyperparameter tuning was
solely performed on one of the cross-validation splits to reduce
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computational efforts. Tuning was performed with Ray 2.6.1 on four
NVIDIA A100 40 G GPUs.

2.4. Training

The model architectures U-Net [17] (with Densenet121 [18] back-
bone), Linknet [19] (with ResNet152 [20] backbone) and DeepLavbV3+
[21] (with ResNet152 [20] backbone) were trained to solve the tooth
structure segmentation task by utilizing the Dice Loss, Focal Loss,
Tversky Loss, as well as combinations of Cross-Entropy and Dice Loss,
Focal and Dice loss, Focal and Generalized Dice Loss, as laid out.
Training was performed with the respectively tuned hyperparameters to
prevent biases within the comparison. Models were utilized from Seg-
mentation Models Pytorch [24]. Training was implemented with
Pytorch 2.0 andMONAI 1.2 and was performed on four NVIDIA A100 40
G GPUs.

2.5. Performance metrics and statistical analysis

Model performance was primarily quantified by the harmonic mean
of recall (specificity) and precision (positive predictive value (PPV)),
also known as F1-score. The computation was based on the sum of sum
of true positives, false positives, and false negatives over all channels of
segmentation masks to reach unbiased results [25]. Secondary metrics
were precision, sensitivity and specificity. Due to the non-normal dis-
tribution of the results, statistical analysis was performed with
non-parametric tests, which were applied to different groups of results,
depending on the focus of the analysis. To assess whether certain loss
functions generally perform better than others, a Kruskal-Wallis test
[26] was employed to test for significant differences between the results
reached with the different loss functions. In case of significant differ-
ences, a post-hoc Dunn’s test [27] was applied to find the ranking of the
performances reached. P-values were adjusted using the
Benjamini-Hochberg method [28] to account for the multiple
comparisons.

The hypothesis that hybrid loss functions outperform standalone loss

functions was tested with the non-parametric Mann-Whitney-U-Test
[29]. Finally, it was assessed whether hybrid loss functions provide more
robust results than standalone losses by considering the standard devi-
ation reached by different losses across the different architectures. The
collection of standard deviations of hybrids was tested against the
standard deviations of the standalones by the Mann-Whitney-U-Test.
Statistical testing was implemented with statsmodels 0.14,
scikit-posthocs 0.7 and scipy 1.11.

3. Results

A detailed report of the tuned hyperparameters is provided in Ap-
pendix Table S1. Training was performed with the selected hyper-
parameters for all three model architectures with the six different loss
functions in a 5-fold cross-validation and results were summarized as
mean F1-scores for each class as represented Fig. 2.

In alignment with the individual comparison of loss functions, it was
observed that hybrid loss functions universally outperformed single loss
functions with statistically significant difference for all classes (p <

0.01/Mann-Whitney-U-Test). Focal loss was outperformed by all other
losses for classes enamel, dentin and root canal (p< 0.01/Kruskal-Wallis
with post hoc Dunn’s). For the class filling, performances from stand-
alone loss functions ranged between 0.59 (Dice) and 0.66 (Tversky) in
F1-score. Even the Tversky loss improved the results in comparison to
the Focal loss, the hybrid loss functions Generalized Dice Focal Loss and
the Dice Focal loss outperformed all standalone loss functions (p< 0.01).

For the minority class with the lowest occurrence, crowns, perfor-
mance differed more widely between the loss functions and ranged be-
tween an F1-score of 0.05 (Dice) and 0.75 (Focal Dice). The Focal Dice
Loss outperformed all other losses (p < 0.05). All detailed results are
reported in Appendix Table S2. Secondary metrics were represented in
Appendix Table S3. Examples of the predictions provided for an exem-
plary radiographic bitewing with the U-Net architecture for the different
loss functions are represented in Fig. 3.

Further, measured on the standard deviation of the performances
reached over the different architectures with hybrid and standalone loss

Fig. 1. Overview of the study design. All three model architectures were combined with all six loss functions in independent experiments. Through automatic
hyperparameter tuning the best setting of hyperparameters were selected before training was conducted. Finally, all results were compared and hypotheses were
assessed with statistical testing.
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Fig. 2. Mean F1-scores reached with the different loss functions, namely Focal Loss, Dice Loss, Tversky Loss, Cross-Entropy Dice Loss (CEDice), Dice Focal Loss
(DiceFocal) and Generalized Dice Focal Loss (GenDiceFocal). Mean values were aggregated from the results of the 5-fold cross-validation with different model
architectures.

Fig. 3. Exemplary representation of a bitewing radiograph (a) with its Ground Truth (b) and predictions provided by models based on the U-Net architecture trained
with the six different loss functions (c-h).
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functions, hybrid loss functions reached more robust results for classes
enamel, dentin, root canal and filling (p < 0.01). Only for the class with
the least occurrence in the dataset, crowns, there was no significant
difference between the robustness of single and hybrid losses (p > 0.2).

4. Discussion

In the present study, we compared six different loss functions
regarding their performance on an imbalanced segmentation task in
dentistry. We found significant differences when different loss functions
were employed; these differences appeared consistently over different
model architectures employed and also, by large, across different clas-
ses. Notably, performances were highest for the most common classes,
enamel and dentin, and lower for less prevalent classes, filling and
crown. Hybrid loss functions universally outperformed single loss
functions with statistically significant difference for all classes (p <

0.01/Mann-Whitney-U-Test). Hence, our hypothesis that hybrid loss
functions outperformed standalone loss functions was accepted. Our
findings require further discussion.

For Dice and Tversky loss, their ability to address the imbalance
between the background class and the classes of interest seems to lead to
good performance for the majority classes. However, the lack of tar-
geting the imbalance between individual was evident in the low per-
formance of the minority classes, where they reached significantly worse
performances than hybrid losses. Focal loss showed a slightly different
behavior: It was already inferior for the majority classes but reached the
second-best performance for the class with the lowest occurrence. This
exactly aligns with the functionality of the focal loss explained above. By
DownWeighting of the majority classes, its performance on these classes
degrades while minority class segmentation is improved. Hybrid losses
were able to bridge the shortcomings of different loss functions; the
hybrid Dice Focal loss reached consistent results over all classes, for
examples. This is in line with previous studies, which found that opti-
mization for multiple objectives in hybrid loss functions improves the
convergence of the training process and allows the model to find more
stable parameters [30].

We further assessed the impact of different loss functions when using
different model architectures. As different model architectures have
different complexity, feature sensitivity and learning robustness may
lead to different robustness towards class imbalances. The good per-
formance of the hybrid loss function for the classes enamel, dentin, root
canal, filling regardless of the model architecture leads us to the
assumption that the choice of loss function is more important than the
choice of the architecture when dealing with class imbalance. The su-
perior performance of the focal loss for the class crown supports this
assumption. Our findings have implications for researchers in the field.
If facing imbalances, testing different loss functions should be attempted
for optimizing performances. However, there is no one-size-fits-all so-
lution and hence, we suggest experimentation with varying loss func-
tions for each individual task. Moreover, the context and clinical
relevance of identifying different classes should be considered.
Combining this experimentation with different architectures may be of
less relevance than assessing the impact of loss functions for different
classes and tasks, as demonstrated in our case.

This study was subjected to a range of strength and limitations. It is
the first holistic evaluation of the ability of different loss functions to
overcome class imbalance in dentistry and may provide guidance for
dental researchers in the selection of loss functions for the training
process of their DL models. The inclusion of different model architec-
tures as well as the extensive hyperparameter tuning process was
another strength. However, as this analysis was only conducted on one
task, a tooth structure segmentation task on bitewing radiographs, we
cannot claim generalizability to other tasks. In addition, data stemmed
only from one center, and transferability to other datasets may not be
fully given. A similar constraint pertains to different data modalities (e.
g. other radiographs, or generally other imagery). Further, data

imbalance was limited on image-level (but more pronounced on pixel-
level). For more aggravated class imbalance, combining the optimal
loss function with other means of addressing imbalance (e.g., the use of
GANs or Diffusion Models) may be needed. Lastly, all employed archi-
tectures were based on Convolutional Neural Networks and, hence, may
not be applicable to other architecture types, e.g. those based on Vision
Transformers.

5. Conclusions

In the present study, six different loss functions were assessed
regarding their ability to tackle class imbalance on the exemplary task of
tooth structure segmentation on bitewing radiographs trained with
three different model architectures. Hybrid loss functions such as the
Cross-Entropy Dice loss, Focal Dice loss and Generalized Dice loss
reached overall better performances than single loss functions e.g., Dice
loss, Tversky loss and Focal loss. This superiority of hybrids was
confirmed for four out of five classes and different model architectures.
Modelers faced with class imbalance should test for the impact of
different loss functions in addition to other, more common strategies for
tackling imbalance.
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MICCAI 2017, Québec City, QC, Canada, Springer, 2017, pp. 240–248. September
14, Proceedings 3.

[17] O. Ronneberger, P. Fischer, T. Brox, U-Net: convolutional Networks for Biomedical
Image Segmentation, in: Proceedings of the Medical Image Computing and
Computer-Assisted Intervention (MICCAI), Springer, 2015, pp. 234–241. htt
p://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a.

[18] G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected
convolutional networks, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 4700–4708.

[19] A. Chaurasia, E. Culurciello, Linknet: exploiting encoder representations for
efficient semantic segmentation, in: 2017 IEEE Visual Communications and Image
Processing (VCIP), IEEE, 2017, pp. 1–4.

[20] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770–778.

[21] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, Encoder-decoder with
atrous separable convolution for semantic image segmentation, in: Proceedings of
the European Conference on Computer Vision (ECCV), 2018, pp. 801–818.

[22] M. Büttner, L. Schneider, A. Krasowski, J. Krois, B. Feldberg, F. Schwendicke,
Impact of noisy labels on dental deep learning–calculus detection on bitewing
radiographs, J. Clin. Med. 12 (2023), https://doi.org/10.3390/jcm12093058.

[23] L. Schneider, R. Rischke, J. Krois, A. Krasowski, M. Büttner, H. Mohammad-
Rahimi, A. Chaurasia, N.S. Pereira, J.-H. Lee, S.E. Uribe, S. Shahab, R.B. Koca-
Ünsal, G. Ünsal, Y. Martinez-Beneyto, J. Brinz, O. Tryfonos, F. Schwendicke,
Federated vs local vs central deep learning of tooth segmentation on panoramic
radiographs, J. Dent. 135 (2023) 104556, https://doi.org/10.1016/j.
jdent.2023.104556.

[24] P. Iakubovskii, Segmentation Models Pytorch, GitHub Repository (2019). http
s://github.com/qubvel/segmentation_models.pytorch.

[25] L. Schneider, P. Dave, L. Arsiwala-Scheppach, F. Schwendicke, J. Krois, Exploring
bias in F-score computation methods of multi-class segmentation models, in:
Proceedings of the 2021 The 5th International Conference on Video and Image
Processing, 2021, pp. 76–84.

[26] P.E. McKight, J. Najab, Kruskal-wallis test. The Corsini Encyclopedia of
Psychology, 2010, p. 1.

[27] O.J. Dunn, Multiple comparisons using rank sums, Technometrics 6 (1964)
241–252.

[28] Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a practical and
powerful approach to multiple testing, J. R. Stat. Soc. Series B Stat. Methodol. 57
(1995) 289–300.

[29] H.B. Mann, D.R. Whitney, On a test of whether one of two random variables is
stochastically larger than the other, Ann. Math. Stat. (1947) 50–60.

[30] T. Lodkaew, K. Pasupa, Hybrid loss for improving classification performance with
unbalanced data, in: H. Yang, K. Pasupa, A.C.-S. Leung, J.T. Kwok, J.H. Chan,
I. King (Eds.), Neural Information Processing, Springer International Publishing,
Cham, 2020, pp. 807–814, https://doi.org/10.1007/978-3-030-63820-7_92.

M. Büttner et al.

https://doi.org/10.1016/j.neunet.2018.07.011
https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.1007/s13748-016-0094-0
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0008
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0008
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0008
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0008
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0009
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0009
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0009
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0011
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0011
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0011
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0012
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0012
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0012
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0013
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0014
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0014
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0014
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0014
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0015
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0015
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0015
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0016
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0016
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0016
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0016
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0016
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0016
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0016
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0018
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0018
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0018
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0019
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0019
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0019
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0020
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0020
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0020
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0021
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0021
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0021
https://doi.org/10.3390/jcm12093058
https://doi.org/10.1016/j.jdent.2023.104556
https://doi.org/10.1016/j.jdent.2023.104556
https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0025
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0025
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0025
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0025
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0026
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0026
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0027
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0027
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0028
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0028
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0028
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0029
http://refhub.elsevier.com/S0300-5712(24)00232-X/sbref0029
https://doi.org/10.1007/978-3-030-63820-7_92

	Conquering class imbalances in deep learning-based segmentation of dental radiographs with different loss functions
	1 Introduction
	2 Materials and methods
	2.1 Study design
	2.2 Dataset
	2.3 Hyperparameter tuning
	2.4 Training
	2.5 Performance metrics and statistical analysis

	3 Results
	4 Discussion
	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Supplementary materials
	References


