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Abstract: Fraction of exhaled Nitric Oxide (FeNO) is a marker of airway inflammation. We examined
the main effects and interactions of relative humidity (RH) and air pollution on adolescents’ FeNO.
Two thousand and forty-two participants from the 15-year follow-up of the German GINIplus and
LISA birth cohorts were included. Daily meteorological (maximum [Tmax], minimum [Tmin] and
mean [Tmean] temperatures and RH) and air pollution [Ozone (O3), nitrogen dioxide (NO2) and
particulate matter < 2.5 µm (PM2.5)] were assessed. Linear models were fitted with Ln(FeNO) as
the outcome. Increases in FeNO indicate an increase in lung inflammation. Increased FeNO was
associated with an increase in temperature, PM2.5, O3 and NO2. A 5% increase in RH was associated
with a decrease in FeNO. Interactions between RH and high (p = 0.007) and medium (p = 0.050)
NO2 were associated with increases in FeNO; while interactions between RH and high (p = 0.042)
and medium (p = 0.040) O3 were associated with decreases in FeNO. Adverse effects were present
for male participants, participants with low SES, participants with chronic respiratory disease, and
participants from Wesel. Short-term weather and air pollution have an effect on lung inflammation
in German adolescents. Future research should focus on further assessing the short-term effect of
multiple exposures on lung inflammation in adolescents.

Keywords: relative humidity; air pollution; environmental epidemiology; fraction of exhaled nitric
oxide; adolescent; cohort studies
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1. Introduction

The absolute global burden of chronic respiratory diseases has increased since 1990 [1].
Whilst tobacco smoking remains the leading cause of respiratory disability in men, house-
hold and ambient air pollution are the predominant risk factors for women in many regions
of the world. Globally, in 2017, ambient ozone (O3) and particulate matter (PM) pollution
were associated with 96.4 and 206 Disability Adjusted Life Years (DALYs) per 100,000 peo-
ple of all ages, respectively [1]. As climate change accelerates, there is increasing interest
in the relationship between weather variables and respiratory health outcomes. Relative
humidity (RH) and temperature have typically been treated as confounders in time-series
studies of air pollution and all-cause or respiratory mortality [2].

During periods of increased lung inflammation, the concentration of nitric oxide
accumulates in the lungs and can be measured during exhalation [3]. Fractional exhaled
nitric oxide (FeNO) is a noninvasive biomarker that assesses lung inflammation and assists
in the diagnosis and assessment of asthma [4]. Previous studies in children, young adults
(aged 20 and above) and the elderly found that exposure to O3, PM with a diameter less
than 2.5 µm (PM2.5), PM with a diameter less than 10 µm (PM10) and nitrogen dioxide
(NO2), and ambient temperature were associated with an increase in FeNO [4–9].

Although the short-term dose–response relationship between air pollution and FeNO
has been described in children, young and older adults, there are limited data for adoles-
cents. Additionally, there are no studies that provide information on the effect of RH on
FeNO. This is concerning as adolescence is an important period of lung development as
physical growth is rapid, and asthma becomes more common in females than in males [10].

Information on the interactive or modifying effect of weather and air pollution on
FeNO is limited and, as far as we are aware, no research looking into how this interaction
impacts adolescents during a crucial time of growth. Thus, this analysis aimed to exam-
ine the main effects and interactions of low-level short-term air pollutants and weather
variables on adolescents’ airway inflammation (FeNO).

2. Materials and Methods
2.1. Study Population

Participants were recruited for two ongoing German population-based, birth cohort
studies, which recruited healthy full-term neonates with normal birthweight in Munich and
Wesel. The German Infant Study on the Influence of Nutrition Intervention plus Air Pollu-
tion and Genetics on Allergy Development (GINIplus) recruited a total of 5991 neonates
in Munich and Wesel between September 1995 and July 1998. The Influence of Lifestyle
Factors on the Development of the Immune System and Allergies in East and West Ger-
many Study (LISA) recruited a total of 3097 neonates in Bad Honnef, Leipzig, Munich and
Wesel between November 1997 and January 1999. The study areas of the cohorts are shown
in Figure S1. Data from these two birth cohorts were collected at birth as well as three
follow-ups, which occurred at ages 6, 10, and 15, and then due to their harmonised design,
pooled for Wesel (GINIplus/LISA North: number = 3390) and Munich (GINIplus/LISA
South: number = 4413). Parents completed questionnaires that collected data on respiratory
conditions and covariates such as the sex of the child, parental/personal smoking and
socioeconomic status (parental education). Further details of recruitment and follow-up
to 15 years have been presented elsewhere [11]. The data in this analysis were from the
15-year follow-up assessments for both cohorts in Munich and Wesel. Ethical approval
was granted by the Bavarian Board of Physicians (10090 and 12067), Board of Physicians
of North-Rhine Westphalia (20101424 and 2012446), and Board of Physicians of Saxony
(EK-BR-02/13-1). The parents of participants provided written informed consent.

2.2. Assessment of Lung Function

Fraction of exhaled nitric oxide (FeNO) is a well-established biomarker of airway
inflammation. FeNO is routinely used in clinical practice in many countries and has
also been investigated as a biomarker in epidemiological studies of air pollution. FeNO
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measurements, which were adjusted for the nonlinear effects of age, height, weight, and
sex, were made between the years 2011 and 2013 with a handheld device (NIOX MINO,
Aerocrine, Solna, Sweden) following the guidelines of the American Thoracic Society and
European Respiratory Society [12]. Any respiratory tract infections, personal smoking and
anti-inflammatory medications were recorded. Since FeNO followed an approximately
log-normal distribution, the data were loge-transformed before analysis.

2.3. Assessment of Environmental Exposures

Short-term air pollution exposure was assessed as average concentrations of 24 h O3,
NO2 and PM2.5. The air pollutant exposures at participants’ 15-year residential addresses
were estimated at a spatial resolution of 2 × 2 km by chemical transport models and data
provided by the German Environment Agency (Umwelt Bundesamt, UBA [13]). Weather
variables (daily maximum (Tmax), minimum (Tmin) and mean (Tmean) temperature
and RH) were obtained for Munich and Wesel from the German Weather Service’s high-
resolution reanalysis system COSMO-REA6 at a spatial resolution of 6 × 6 km [14]. The
warm season was defined as May to October and the cold season as November to April.

2.4. Statistical Analysis

There was little variation in temperature and RH between the study sites in Munich
and Wesel; as such, it was decided to pool the participants to increase the power of the
statistical analysis as in previous studies [15]. We performed correlation tests and checked
the collinearity between variables as well as normality tests. Linear regression models
were fitted with Ln(FeNO) as the outcome and continuous RH as our main exposure. We
determined the main effects for continuous RH and air pollution (i.e., O3, NO2 and PM2.5).
The model was further adjusted for age, height, weight, sex, a temperature variable (Tmax,
Tmin, or Tmean), season with the warm season as the reference category, history of respira-
tory disease with “No” as the reference category, and location with Munich as the reference
category. An interaction model was then fitted with an interaction term between RH and
categorical air pollution included in the main model. The air pollution categorical variable
was defined as the following: <25% (Low), 25–75% (Medium), and >75% (High). We chose
“Low” as the reference category, as it represented the optimum exposure, while “Medium”
represented the most common exposure and “High” represented nonoptimum exposure.
Effect modification was examined by the site (Munich/Wesel), binary sex characterisation
(female/male), maximum parental education as an indicator of socioeconomic status (SES),
body mass index (BMI) and history of respiratory conditions. Respiratory conditions were
defined as a history of asthma, a history of chronic bronchitis, a history of chronic wheeze,
and/or asthma, chronic bronchitis and/or wheeze at the time of assessment.

2.5. Sensitivity Analysis

To test the robustness of the core model, sensitivity analyses were conducted to explore
the lagged effects up to 10 days prior, location, age, the effect of sex, history of respiratory
conditions, height, weight, maximal parental education (as an indicator of SES) and parental
smoking. Based on the sensitivity analysis, we chose the Lag01 (one-day moving average)
effect for all environmental factors in the core model.

Statistical analysis and data summary were conducted in R version 4.0.4 (15 Febru-
ary 2021) using the packages “stats”, “gtsummary”,“MASS“, and “data.table” [16]. A
decrease in FeNO indicates a decrease in lung inflammation. Results were calculated as
a percentage increase per 5% increase in RH. A two-sided p-value < 0.05 was considered
statistically significant.

3. Results
3.1. Description of Participants and Exposures

This analysis included 2042 participants, 1191 participants in Munich and 851 in Wesel.
Their mean (±Standard Deviation [SD]) age was 15.06 (±0.29) years. There were slightly
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more females than males (51% vs. 49%) (Table 1). The majority of the parents in Munich
than in Wesel had completed over 10 years of education (78.3% vs. 52.6%). Just under a
third of participants in both centres had a history of respiratory conditions. Approximately
70% of participants had a normal BMI, while 21.58% of participants were underweight and
9.7% were overweight. More participants from Wesel were overweight than participants
from Munich (12.10% vs. 7.98%) (Table 1).

Table 1. Description of participants.

Characteristic Overall 1 Munich 1 Wesel 1 p-Value 2

Number of Participants 2042 1191 851

Age 15.06 (0.29) 15.09 (0.29) 15.02 (0.28) 0.049

Sex
Female
Male

1050 (51%)
992 (49%)

609 (51%)
582 (49%)

441 (52%)
410 (48%)

0.8

Height (cm) 171.4 (8.30) 170.8 (8.22) 172.4 (8.32) <0.001

Weight (Kg) 61.74 (11.96) 60.46 (11.10) 63.53 (12.86) <0.001

FeNO (ppb) 23.1 (20.94) 25.48 (22.60) 19.77 (17.86) <0.001

Respiratory condition
Yes
No
NA

643 (31.5%)
1397 (68.4%)
2 (0.1%)

388 (32.58%)
801 (67.25%)
2 (0.17%)

255 (29.96%)
596 (70.04%)
0

0.2

Maximal parental
education
Low (<10 years)
Medium (=10 years)
High (>10 years)
NA

118 (5.78%)
539 (26.40%)
1380 (67.58%)
5 (0.24%)

46 (3.86%)
210 (17.63%)
932 (78.25%)
3 (0.25%)

72 (8.46%)
329 (38.66%)
448 (52.64%)
2 (0.24%)

<0.001

Body Mass Index
(Kg/m2)
Low (<18.5)
Normal (18.5–24.9)
High (>25)

414 (20.27%)
1430 (70.03%)
198 (9.70%)

257 (21.58%)
839 (70.45%)
95 (7.98%)

157 (18.45%)
591 (69.45%)
103 (12.10%)

0.004

1 Mean (Standard Deviation); n (%). 2 Wilcoxon rank sum test; Pearson’s Chi-squared test.

Tmin, Tmean, Tmax, and RH were similar in Munich and Wesel (Table 2). Among
air pollutants, PM2.5 and O3 concentrations were slightly higher in Wesel, while NO2
concentrations were higher in Munich. Most measurements of FeNO were performed
during the warm season.

Table 2. Description of environmental factors.

Characteristic Overall 1 Munich 1 Wesel 1 p-Value 2

Season
Warm
Cold

1315 (64%)
727 (36%)

776 (65%)
415 (35%)

539 (63%)
312 (37%)

0.4

Relative Humidity (%) 75.22 (10.60) 75.03 (11.07) 75.49 (9.90) 0.047

Tmax (◦C) 16.43 (7.83) 16.50 (8.24) 16.34 (7.22) 0.6

Tmin (◦C) 8.61 (6.08) 8.36 (6.13) 8.95 (6.00) 0.058

Tmean (◦C) 12.36 (6.80) 12.24 (7.00) 12.53 (6.50) 0.4

PM2.5 (µg/m3) 11.09 (6.58) 9.75 (6.34) 12.96 (6.46) <0.001

NO2 (µg/m3) 13.17 (8.39) 16.29 (8.79) 8.79 (5.28) <0.001

O3 (µg/m3) 53.54 (19.76) 49.96 (20.98) 58.55 (16.68) <0.001
1 Mean (standard deviation); n (%). 2 Wilcoxon rank sum test; Pearson’s Chi-squared test.
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3.2. The Main Effects of Weather Variables and Air Pollution on FeNO

A 5% increase in RH showed a consistent nonsignificant trend towards a decrease
in FeNO, and, as such, a decrease in lung inflammation across all temperature and air
pollution models (percentage change = −0.01%; 95% CI: −0.03 to 0.01) (Table 3). PM2.5
(percentage change = 0.19; 95% CI: −0.23 to 0–64), O3 (percentage change = 0.02; 95% CI:
−0.18 to 0.20), and NO2 (percentage change = 0.31; 95% CI: −0.08 to 0.71) were all associated
with an increase in FeNO and therefore an increase in lung inflammation; however, this
result was not statistically significant (Table 3). Tmax, Tmin, and Tmean were all not
significantly associated with an increase in FeNO (Table 3).

Table 3. The main effects of RH, air pollution, and temperature on FeNO in a cohort of German adolescents.

Tmax Tmin Tmean

Percentage
Change (95% CI) * p-Value 1,*

Percentage Change
(95% CI) * p-Value 1,*

Percentage
Change (95% CI) * p-Value 1,*

RH 2 −0.01 (−0.02, 0.01) 0.265 −0.01 (−0.03, 0.00) 0.074 −0.01 (−0.02, 0.00) 0.179
PM2.5 0.19 (−0.24, 0.63) 0.382 0.20 (−0.23, 0.64) 0.355 0.20 (−0.23, 0.63) 0.367

Temperature 0.29 (−0.28, 0.86) 0.314 0.27 (−0.41, 0.94) 0.439 0.32 (−0.31, 0.96) 0.321

RH 2 −0.01 (−0.03, 0.01) 0.316 −0.01 (−0.03, 0.00) 0.144 −0.01 (−0.03, 0.01) 0.237
O3 0.01 (−0.18, 0.19) 0.949 0.02 (−0.17, 0.20) 0.849 0.01 (−0.18, 0.20) 0.928

Temperature 0.31 (−0.29, 0.91) 0.308 0.25 (−0.45, 0.95) 0.486 0.33 (−0.33, 1.00) 0.328

RH 2 −0.01 (−0.03, 0.01) 0.199 −0.01 (−0.03, −0.00) 0.039 −0.01 (−0.03, 0.00) 0.122
NO2 0.31 (−0.29, 0.91) 0.117 0.32 (−0.07, 0.71) 0.107 0.32 (−0.07, 0.71) 0.109

Temperature 0.35 (−0.22, 0.92) 0.225 0.35 (−0.33, 1.04) 0.311 0.40 (−0.24, 1.04) 0.222
1 p-value < 0.05 in bold. 2 per 5% increase in RH at Lag01. * Adjusted for indicated study location, season, chronic
respiratory disease.

3.3. Interactive Effects of RH and Air Pollution on FeNO

The interactive effect between RH and PM2.5 showed a nonsignificant trend towards
an increase in FeNO for days with medium (percentage change = 0.02; 95% CI: −0.02 to 0.05)
and high (percentage change = 0.02; 95% CI: −0.02 to 0.06) PM2.5 concentrations compared
to days with low PM2.5 concentrations (Table 4). There was a statistically significant
decrease in FeNO per 5% increase in RH on days with medium (percentage change = −0.04;
95% CI: −0.08 to 0.00) and high (percentage change = −0.04; 95% CI: −0.09 to 0.00) O3
concentrations (Table 5). On days with medium (percentage change = 0.03; 95% CI: 0.00 to
0.07) and high (percentage change = 0.05; 95% CI: 0.01 to 0.08) concentrations of NO2, there
was a statistically significant increase in FeNO per 5% increase in RH (Table 6).

Table 4. The interactive effects of RH and PM2.5 on FeNO in a cohort of German Adolescents.

Interaction Term 2,*
Percentage Change

(95% CI) 2,* p-Value 1,*

Tmax *
RH: High PM2.5 0.02 (−0.02, 0.06) 0.256
RH: Medium PM2.5 0.02 (−0.02, 0.05) 0.388

Tmin *
RH: High PM2.5 0.02 (−0.02, 0.06) 0.256
RH: Medium PM2.5 0.02 (−0.02, 0.05) 0.389

Tmean *
RH: High PM2.5 0.02 (−0.02, 0.06) 0.258
RH: Medium PM2.5 0.02 (−0.02, 0.05) 0.389

1 p-value < 0.05 in bold. 2 per 5% increase in RH at Lag01. * Adjusted for indicated study location, season, chronic
respiratory disease, and indicated temperature.
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Table 5. The interactive effects of RH and O3 on FeNO in a cohort of German Adolescents.

Interaction Term 2,*
Percentage Change

(95% CI) 2,* p-Value 1,*

Tmax *
RH: High O3 −0.04 (−0.09, −0.00) 0.042

RH: Medium O3 −0.04 (−0.07, −0.00) 0.040

Tmin *
RH: High O3 −0.04 (−0.09, −0.00) 0.042

RH: Medium O3 −0.04 (−0.08, −0.00) 0.038

Tmean *
RH: High O3 −0.04 (−0.09, −0.00) 0.043

RH: Medium O3 −0.04 (−0.07, −0.00) 0.040
1 p-value < 0.05 in bold. 2 per 5% increase in RH at Lag01. * Adjusted for indicated study location, season, chronic
respiratory disease, and indicated temperature.

Table 6. The interactive effects of RH and NO2 on FeNO in a cohort of German Adolescents.

Interaction Term 2,*
Percentage Change

(95% CI) 2,* p-Value 1,*

Tmax *
RH: High NO2 0.05 (0.01, 0.08) 0.007

RH: Medium NO2 0.03 (0.00, 0.07) 0.050

Tmin *
RH: High NO2 0.05 (0.01, 0.08) 0.008

RH: Medium NO2 0.03 (0.00, 0.07) 0.050

Tmean *
RH: High NO2 0.05 (0.01, 0.08) 0.008

RH: Medium NO2 0.03 (0.00, 0.07) 0.050
1 p-value < 0.05 in bold. 2 per 5% increase in RH at Lag01. * Adjusted for indicated study location, season, chronic
respiratory disease, and indicated temperature.

3.4. Effect Modification

When we stratified the analysis by sex, we found that RH was associated with a
statistically nonsignificant decrease in FeNO in both male and female participants (Table S1).
PM2.5 and NO2 both showed a nonsignificant trend towards an increase in FeNO in both
male and female participants. However, O3 was associated with a decrease in FeNO in
female participants, while in male participants, O3 was associated with an increase in FeNO
(Table S1). An increase in temperature was associated with an increase in FeNO in both
male and female participants; however this effect, while not statistically significant, was
stronger in male participants than female participants (Table S1).

When we assessed the modifying effect of BMI, we found that an increase in RH was
consistently associated with a decrease in FeNO (Table S2). PM2.5 was associated with
a decrease in FeNO in underweight and overweight participants, while in participants
who were classified as having normal weight, PM2.5 was associated with a decrease in
FeNO (Table S2). O3 was associated with a decrease in FeNO in both underweight and
normal-weight participants, while in overweight participants, O3 was associated with an
increase in FeNO (Table S2). NO2 was consistently associated with an increase in FeNO
across all participants (Table S2). Temperature increases were associated with an increase in
FeNO across all participants; however, this effect was stronger in overweight participants
(Table S2).

RH was associated with an increase in FeNO per 5% increase in RH in low SES
participants, while in medium and high SES participants, RH was associated with a decrease
in FeNO (Table S3). NO2 was consistently associated with an increase in FeNO for all
participants; however, this effect was stronger in low SES participants (Table S3). PM2.5 was
associated with an increase in FeNO in low and high SES participants, while in medium SES
participants, PM2.5 was associated with a decrease in FeNO (Table S3). O3 was associated
with a decrease in FeNO in both low and high SES participants; however, O3 was associated
with an increase in FeNO in those with medium SES (Table S3). Temperature was associated
with an increase in FeNO across all participants; however, the effect was stronger in low
SES participants (Table S3).
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In those with CRD, RH and NO2 showed a nonsignificant trend towards a decrease
in FeNO; while PM2.5, O3, and temperature were associated with an increase in FeNO
(Table S4). In those without CRD, RH, PM2.5, and temperature were associated with a
nonsignificant trend towards an increase in FeNO, and NO2 was statistically significantly
associated with an increase in FeNO (Table S4). O3 was associated with a decrease in FeNO
in those without CRD (Table S4). The effect of temperature was greater in those with CRD.

In participants from Wesel, RH, O3, NO2, and temperature all showed nonsignificant
trends towards an increase in FeNO, while PM2.5 was significantly associated with an
increase in FeNO (Table S5). RH, PM2.5, and O3 were all associated with a decrease in
FeNO in participants from Munich, while NO2 and temperature were both associated with
an increase in FeNO (Table S5).

3.5. Sensitivity Analyses

We conducted a series of sensitivity analyses to test the robustness of the results. First,
we used different lags of RH, temperature and air pollution for up to 10 days. While
results were similar across all lag periods for RH, temperature, and all air pollutants, it
was found that these exposures were most associated with FeNO at Lag01. Secondly,
we adjusted the model for additional covariates. However, associations of prior day RH
with FeNO were unchanged after adjusting for age, height, weight, sex, respiratory tract
infections, personal and second-hand smoking, family history of respiratory disease, and
anti-inflammatory medications.

4. Discussion

This analysis of a large cohort of 15-year-old German adolescents has shown that
FeNO, a marker of airway inflammation, was consistently associated with short-term RH,
temperature, air pollution and interactions between RH and air pollution. There were no
statistically significant main effects; however, important trends were apparent. Increases in
air pollution and temperature were both associated with an increase in lung inflammation,
while increases in RH were associated with a decrease in lung inflammation. Interactions
between RH and PM2.5 indicated a nonsignificant trend towards an increase in FeNO
per 5% increase in RH on days with medium (25th to 75th percentile) and high (>75th
percentile) daily average concentrations compared to days with low (<25th percentile)
concentrations. There were significant associations between RH and O3, and RH and NO2;
there was a significant increase in FeNO per 5% increase in RH on medium and high NO2
concentration days compared to low concentration days. On days with medium and high
O3 concentrations, there was a decrease in FeNO per 5% increase in RH, this could be
because RH could counter the adverse effects of O3.

When we stratified the analysis by sex, we found that, while not statistically significant,
male participants experienced a stronger effect of temperature than female participants.
Participants with a low SES were more likely to experience adverse effects of RH, NO2, and
temperature than those with a higher SES. Participants with CRD experienced an increase
in lung inflammation with increasing RH, temperature and O3 concentrations. Participants
from Wesel were more likely than participants from Munich to experience an increase in
FeNO with increasing RH, temperature, O3, PM2.5, and NO2.

Germany generally has a temperate rainy climate with high levels of humidity and
consistently moderate temperatures [17,18]. However, there were different sources of air
pollution, with high traffic-related emissions likely explaining the higher concentrations of
NO2 in urban Munich compared to rural Wesel. On the other hand, agricultural emissions
are a major source of PM2.5 in rural Wesel compared to urban Munich [19].

It is not that straightforward to put our results in the context of previous research for
several reasons. Weather variables have typically been regarded only as confounders in
respiratory epidemiology and not much has been published on associations with markers
such as FeNO. Most research has concentrated on long-term exposure to environmental
factors. Considering that FeNO is sensitive to external factors, investigating how short-term
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exposure impacts FeNO is of interest [3]. While we failed to find any significant associations
between FeNO and PM2.5 in our adolescent participants, several studies investigating the
effect of PM2.5 on university students did find adverse effects. A panel study of university
students in a highly polluted city in China (72 < weekly mean PM2.5 < 180 µg/m3) found
that temperature and PM2.5 were both positively associated with FeNO [4]. Also, a study of
healthy university students exercising in a highly polluted city in Poland (median indoor
PM2.5 114 vs. 26.5 µg/m3) found that increased FeNO during high exposure was associated
with higher outdoor PM10, NO2 and RH [5].

More is known about the long-term effects of air pollution on airway inflammation. We
have previously shown that long-term exposures to NO2, PM2.5 and PM10 were associated
with increased FeNO in a cohort of older (mean age 75) German women [6,7]. While the
Southern California Children’s Health Study recently reported that long-term (annual)
exposures to PM2.5 and NO2 were associated with increased FeNO after adjustment for
covariates, including sex, asthma, second-hand tobacco smoke, temperature and short-term
pollutant exposures [8,9]. The limited information on short-term exposures highlights the
necessity for this study, which helps to fill this gap in the literature.

The findings of our analysis have biological plausibility. We found that Tmax, Tmin,
and Tmean were associated with an increase in FeNO. This is consistent with literature that
found that cold seasons and low temperatures have long been associated with respiratory
infections and exacerbation of respiratory conditions, probably because people congregate
more indoors [20]. Indeed, due to cold dry air being a common asthma trigger, the cold
dry air challenge is used as a diagnostic test for asthma in children [21]. On the other hand,
children with asthma have often been encouraged to take up swimming, because the warm
moist air does not trigger attacks, in contrast to other sports such as running or cycling [22].

Females typically have a lower metabolic rate, lower skin temperature, lower body
mass, higher body fat, and less surface area, but a higher surface area to mass ratio than
males. Additionally, females have a slower blood flow, indicating that females are more
sensitive to low temperatures than males, who are more sensitive to high temperatures,
as cold exposure causes their skin temperature to lower even further, especially in the
extremities [23,24].

To obtain further insights into the causal pathways, it is necessary to study surrogate
subclinical endpoints such as lung function and biomarkers. Further investigation includes
investigating epigenetic markers, as 15 genes have been identified whose methylation
status is associated with ambient temperature [25]. Further studies should also be con-
ducted examining other systemic inflammatory biomarkers such as blood neutrophil and
eosinophil counts, serum interleukin 6 [26], C reactive protein [27], etc.

This analysis has several strengths. The data were obtained from well-characterised
birth cohorts. Short-term air pollution and meteorological exposures were estimated by
well-validated high-resolution models. An objective marker of airway inflammation was
measured following standard guidelines [12].

However, there were also some limitations: Participant numbers were low, limiting
statistical power in some analyses. Although the GINIplus/LISA cohort has been well
described, the findings might not be generalisable to adolescents in other countries with
higher levels of air pollution and/or different meteorological conditions.

5. Conclusions

This analysis of a large data set of German adolescents from two birth cohorts demon-
strates that there is an interaction between climate variables and air pollution and FeNO,
which is supported by those observed in other age groups. An increase in lung inflam-
mation was associated with the interacting effects of RH and air pollution in this cohort.
These findings may have important clinical implications, as they indicate an increase in
negative respiratory health outcomes and provide evidence on a relatively unknown topic.
Considering the acceleration of climate change, future research should focus further not
just on the potential impacts of extreme climate events or individual exposure effects on
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health, but also on the short- and long-term impacts of daily weather variables as well as
the effect of multiple exposures on all facets of health.
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