LUDWIG-

MAXIMILIANS-
I_IVI u UNIVERSITAT .
MUNCHEN VOLKSWIRTSCHAFTLICHE FAKULTAT

/Ottl, Gregor:

Emission Trading Systems and the Optimal Technology
Mix

Munich Discussion Paper No. 2011-1

Department of EConomics
University of Munich

Volkswirtschaftliche Fakultat
Ludwig-Maximilians-Universitdt Munchen

Online at https://doi.org/10.5282/ubm/epub. 12151



Emission Trading Systems and the Optimal Technology
Mix *

GREGOR ZOETTL'

University of Munich

February 16, 2011

Abstract

Cap and trade mechanisms enjoy increasing importance in environmental legis-
lation worldwide. The most prominent example is probably given by the European
Union Emission Trading System (EU ETS) designed to limit emissions of greenhouse
gases, several other countries already have or are planning the introduction of such
systems.? One of the important aspects of designing cap and trade mechanisms is
the possibility of competition authorities to grant emission permits for free. Free
allocation of permits which is based on past output or past emissions can lead to
inefficient production decisions of firms’ (compare for example Bohringer and Lange
(2005), Rosendahl (2007), Mackenzie et al. (2008), Harstad and Eskeland (2010)).
Current cap and trade systems grant free allocations based on installed production
facilities, which lead to a distortion of firms’ investment incentives, however.! It is
the purpose of the present article to study the impact of a cap and trade mechanism
on firms’ investment and production decisions and to analyze the optimal design of

emission trading systems in such an environment.
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1 Introduction

In the present article we analyze the impact of a cap and trade mechanism on the technology
mix of production facilities and on firms’ final output decisions. We determine the optimal
design of such a mechanism for ideal market conditions but also for non-ideal situations
where competition authorities’ decisions are partially constrained by requirements of the
political or legislative process.

Cap and trade mechanisms designed to internalize social cost of pollution enjoy increas-
ing importance in environmental legislation worldwide. A prominent example is probably
given by the European Union Emission Trading System (EU ETS), several other countries
already have or are planning the introduction of such systems.? An important aspect when
introducing cap and trade mechanisms is the possibility of competition authorities to grant
emission permits for free. This apparently allowed to crucially facilitate the political pro-
cesses which finally lead to the introduction of currently adopted cap and trade systems.
As Convery(2009) in a recent survey on the origins and the development of the EU ETS
observes: “The key quid pro quos to secure industry support in Germany and across the
EU were agreements that allocation would take place at Member State level [...], and that
the allowances would be free”. Very similar observations can also be found in many other

contributions to that issue.?

Clearly, a one and for all lump sum allocation of permits, which is entirely independent
of firms’ actions has a purely distributive impact as the seminal contributions to the design
of cap and trade mechanisms have already illustrated (See Coase (1960), Dales (1968) and
Montgomery (1972)).* However, the design of free allocations in currently active cap and
trade systems is not very likely to have such lump sum property but will include explicit or
implicit features of updating, as several authors argue. Compare for example Neuhoff et al.
(2006) who observe for the case of the EU ETS: “For the phase I trading period, incumbent
firms received allowances based on their historic emissions.]...] For future trading periods,
the Member States have to again define NAPs for the ETS. [...] It is likely that the base

2Those include New Zealand, Australia, Canada, United States, for an overview See IEA (2010).

3As for example Tietenberg (2006) observes: ”free distribution of permits (as opposed to auctioning
them off) seems to be a key ingredient in the successful implementation of emissions trading programs”.

Bovenberg et al. (2008) state: “The compensation issue has come to the fore in recent policy discussions.
For example, several climate change policy bills recently introduced in the U.S. Congress (for example, one
by Senator Jeff Bingaman of New Mexico and another by Senator Dianne Feinstein of California) contain
very specific language stating that affected energy companies should receive just enough compensation to
prevent their equity values from falling.”

4For a recent discussion of the “conditions under which the independence property is likely to hold both
in theory and in practice”, see Hahn and Stavis (2010).



period will be adjusted over time to reflect changes in the distribution of plants over time.
It is, for example, difficult to envisage that in phase II a government will decide to allocate
allowances to a power plant that closed down in phase I. This suggests that some element
of 'updating’ of allocation plans cannot be avoided if such plans are made sequentially.”

Updating of free allocation schemes designed to consistently adapt to an industry’s dy-
namic development has an impact on firms’ behavior, however. First, it leads to a distortion
of the operation of existing production facilities if firms believe that current output or emis-
sions do have an impact on allocations granted to those facilities in the future.® Second, it
has an impact on firms’ incentives to modify their production facilities through upgrading,
retiring and building of new facilities if free (technology specific) allocations are granted
for all installed facilities.® Most contributions to the literature which analyze the impact of
free allocations and the optimal design of emission trading systems have focused on the first
effect and abstract from the latter. That is, they provide very rich insight on the impact of
updating on firms’ production and emission decisions, but abstract from an explicit analysis
of firms’ incentives to modify their production facilities. The most prominent contributions
include Moledina et al. (2003), Bohringer and Lange (2005), Rosendahl(2007), Mackenzie
et al. (2008), or Harstadt and Eskeland (2010).”

In the present article we want to explicitly analyze the impact of updating on firms’
investment incentives which determine their technology mix in the long run. Since the long
run implications to a large extent are responsible for the final success of an environmental
legislation this seems to provide an important aspect for the ongoing debate on the optimal
design of emission trading systems. In order to do so we provide an analytical framework
with an endogenous emission permit market where (strategic) firms chose to invest in two
different production technologies (with different emission intensities) which allow for pro-
duction during a longer horizon of time. We then analyze the impact of a cap and trade

SCompare for example Bohringer and Lange (2005):“As a case in point, one major policy concern is
that [...] the allocation should account for (major) changes in the activity level of firms. Free allocation
schemes must then abstain from lump-sum transfers and revert to output- or emission-based allocation.”

6A recent review of current emission trading schemes by the International Energy Agency (IEA 2010)
reveals that most legislations which provide free emission permits do update their allocation schemes:” An
important detail of systems using grandfathered allocation is the treatment of companies that establish
new facilities or close down. Current or proposed schemes generally provide new entrants with the same
support as existing facilities. The rationale for this is to avoid investment moving to jurisdictions without
carbon pricing.” A prominent example in this respect is given by the legislation currently observed in phase
IT of the EU ETS, in the case of Germany for example new production facilities receive technology specific
free allocations when they start operations, retiring facilities loose their allocations, compare German

Parliament (2007).
"In a recent empirical study on phase I of the EU ETS Anderson and Di Maria (2011) indeed find

evidence that firms’ output decisions have been inflated, “possibly due to future policy design features”.



mechanism on firms’ technology choices and their production decisions. As a benchmark
we determine the first best solution. Analogous to the previous literature, if distributional
concerns do not matter, in an ideal market with perfectly competitive firms it is optimal to
grant no free allocation to any technology and to set the total emission cap such that the
permit price equals to marginal social cost of pollution.

In the main part of the paper we then analyze the optimal design of a cap and trade
system if the market is not ideal. First, we consider the case that firms behave imperfectly
competitive when making their investment and their production decisions. It is then optimal
to grant free allocations in order to stimulate inefficiently low investment incentives. As
we show, however, in a closed system with endogenous permit market it is not optimal to
implement total investment at first best levels since this would imply an inefficiently high
permit price. It can be optimal, furthermore, to set free allocations such as to induce firms
to choose a technology mix which is even cleaner than in the first best scenario in order to

depress the endogenous permit price.®

Second, we analyze the case where the design of the cap and trade mechanism is subject
to political constraints (as extensively discussed above) and the competition authority has
to determine the optimal market design given those constraints.” We first analyze how the
optimal target on total emissions should be set in case free allocations in all technologies
are exogenously fixed. As we find, for moderate levels of free allocations the target on
total emissions should be set such that the equilibrium permit price is above marginal
social cost of pollution. For high levels of free allocation (as for example for the case of
full allocation where all permits used by a certain technology during a compliance period
are freely allocated, compare for example German Parliament (2007))% the total cap on
emissions should be set such that the equilibrium permit price should be below marginal
social cost of pollution.

We then analyze the case that free allocation only for a specific technology is exogenously
fixed and determine the optimal level of free allocation for the remaining technology. In
order to avoid excessive distortions of the resulting technology mix it is typically optimal
to grant free allocation for the remaining technology. That is, the insights obtained from

8Those results have a direct implication also for other measures designed to stimulate investment incen-
tives of firms, as for example capacity mechanisms introduced in electricity markets, compare for example
Cramton and Stoft (2008).

90bserve that to some extend this parallels the fundamental approach found in the previous literature:
Bohringer and Lange(2005) provide second best rules if (for political reasons) updating has to be based on
past output, Harstadt and Eskeland (2010) analyze market design in case governments cannot commit to
full auctioning of permits and Bovenberg et al. (2005, 2008) consider the constraint that firms have to be
fully compensated for the regulatory burden.



the first best benchmark that free allocations are never optimal are no longer true in case
allocation to one of the technologies is exogenously fixed. Moreover, if this technology is
relatively dirty (as compared to the technology with exogenously fixed allocation) the level
of free allocation should remain below the exogenously fixed allocation. If on the contrary
the remaining technology is relatively clean, the level of free allocation should even be above
the exogenously fixed allocation. Observe that the current practice of full allocation (as
currently granted in phase IT of the EU ETS, compare German Parliament (2007) for the
case of Germany) induces a pattern of free allocation which is completely opposed to those
findings.

Let us finally mention that from a modeling perspective the present paper also con-
tributes to the literature of peak load pricing which analyzes optimal investment decisions
in several technologies. For a survey on this literature see Crew and Kleindorfer (1995).
More recent contributions include Ehrenmann and Smeers (2011), Zottl (2010), or Zottl
(2011).'° Our framework introduces an endogenous emission permit market with the pur-
pose to internalizes social cost of emissions. This setup allows us to analyze the optimal
design of a cap and trade mechanism by taking into account firms’ investment and produc-

tion decisions.

The remainder of the article is structured as follows: Section 2 states the model analyzed
throughout this article, section 3 derives the market equilibrium for a given cap and trade
mechanism. In section 4 we determine the optimal markets design, section 5 concludes.

2 The Model

We consider n firms which first have to choose production facilities from two different
technologies prior to competing on many consecutive spot markets with fluctuating demand.
Inverse Demand is given by the function P(Q,6), which depends on Q € RT, and the
variable # € R that represents the demand scenario. The parameter 6 takes on values in
the interval [6, 8] with frequencies f(6). The corresponding distribution is denoted F(#) =
f; f(0)do.r We denote by q(0) = (q1(0), . .., ¢,(0)) the vector of spot market outputs of the
n firms in demand scenario 6, and by Q(0) = > ", ¢; total quantity produced in scenario

10Based on those analytical frameworks a number of numerical studies tries to quantify the impact of a
cap and trade mechanism on firms’ investment decisions for different levels of an exogenously fixed permit
price (compare for example Neuhoff et al. (2006), Matthes (2006) or recently Pahle, Fan and Schill (2011)).

'Mathematically we treat the frequencies associated to the realizations of § by making use of a density
and a distribution-function. Notice, however, that there is no uncertainty in the framework presented —
all realizations of 6 € (6, 6] indeed realize, with the corresponding frequency f(6).



0. Demand in each scenario satisfies standard regularity assumptions, i.e.'?

ASSUMPTION 1 (DEMAND) Inverse demand satisfies P,(Q,0) < 0, Pp(Q,6) > 0,
Pu(Q,0) > 0 and Py(Q,0) + Pp(Q,0)2 < 0 for all Q,0 € R.

Technologies differ with respect to investment and production cost and emission factors.

ASSUMPTION 2 (TECHNOLOGIES) Firms can choose between two different technologies,
t=1,2. Fach technology t has constant marginal cost of investment k;, constant marginal
cost of production c;, and an emission factor w, which measures the amount of the pollutant

emitted per unit of output.

We denote total investment of firm ¢ in both technologies by zy; and investment of
firm ¢ in technology 2 by x;, aggregate total investment is denoted by X; and aggregate
investment in technology 2 by X,.1* We denote aggregate output produced in scenario 6
by Q(6). Each unit of output produced with technology ¢ = 1,2 causes emissions w;. We
denote total emissions (for example of a greenhouse gas) produced at all markets 6 € [0, 4] by
T . The social cost associated to emissions is denoted by D(7). The competition authority

designs a cap and trade mechanism to internalize this social cost.

AssuMPTION 3 (CAP AND TRADE MECHANISM AND SOCIAL COST OF POLLUTION)
Total Pollution T causes a social damage D(T), which satisfies Dp(T) > 0 and
Drp(T) > 0. A cap and trade mechanism limits total emissions such that T < T. FEach

unit invested in technology t = 1,2 is assigned the amount A; of permits for free.

Permits are tradeable, we make the following assumptions regarding the permit market.

ASSUMPTION 4 (PERMIT MARKETS) (i) Emission permit trading is arbitrage—free and
storage of permits is costless.

(i1) Firms are price takers at the permit market.*

We denote the market price for emission permits by e. For given investment decisions of a

firm (xy;, x9;) we can now write down marginal production cost of firm i as follows:

Cy + woe for 0< q; < T,
C(qi, x1i,T2;) = § 1 +we for z9; < q; < xyy,
00 for x1; < q;.

12We denote the derivative of a function g(z,y) with respect to the argument z, by g.(x,), the second
derivative with respect to that argument by g,.(z,y), and the cross derivative by g, (x,y).

13Thus, aggregate investment in technology 1 is given by X; — X,.

1Since emission trading systems typically encompass large regions (several countries in the case of the
EU ETS) this seems to be a quite natural assumption.

6



To sum up, at the first stage, firms simultaneously invest in the two different technologies
at marginal cost of investment kq, ko. Investment choices are observed by all firms. Then,
given their investment choices, firms compete at a sequence of spot markets with fluctuating
demand in the presence of a cap and trade mechanism. At each spot market 6, firms
simultaneously choose output ¢;(6) which causes emissions. Each firm 7 has to cover its
total emissions by permits. Depending on the allocation rule (A;, As) firms obtain permits
for free, contingent on their investment decision. Firms have to purchase permits needed
in excess of the free allocation at the permit market at price e, which is the price at which
the permit market clears given the target T

3 The Market Equilibrium

In this section we derive the market equilibrium with cap and trade mechanism, for the
case of perfect and imperfect competition. Observe that in the framework analyzed, where
demand fluctuates over time it is optimal for firms to invest into a mix of both technologies.
We will consider the case that technology 2 allows cheaper production but exhibits higher
investment cost. Those units have to run most of the time in order to recover their high
investment cost(this is typically denoted ”baseload—technology”). Technology 1 has rela-
tively low investment cost but produces at high marginal cost. Those units are built in order
to serve during periods of high demand (this is typically denoted ”peakload—technology”)
but run idle if demand is low. In order to be able to characterize the market equilibrium
for a given cap and trade mechanism (T, A, Ay), we first determine firms’ profits, given
investments xy, xo and given spot market output ¢(6).

op

(P(Q,0) — co —wee) q;(0, 2)dF (0) + / (P(X3,0) — co — wee) xo;dF(0) (1)

b5

7Ti($1i7$2z‘) =

\m\mqf

b5 3
+ [ (P(Q,0) —c1 —wie) (0, 2)dF(0) + | (P(X41,0) — c1 —wie) 21;,dF ()
/ /
0
— / ((cr +wie) — (co + wae)) woydF(0) — (ke — Ase)xo; — (k1 — Are)(z1; — T2;).
Op

Note that the permit market affects both, the firms’ marginal production cost as well
as their investment cost. No matter whether permits have been allocated for free or have
to be bought at the permit market, firms face opportunity cost of w,e when deciding to
produce one unit of output with technology ¢ = 1, 2. This opportunity cost increases their

7



marginal production cost to ¢; + we, t = 1,2. Investment cost is affected by the firms’
anticipation of a free allocation of permits. A free allocation is equivalent to a subsidy paid
upon investment: If each unit of capacity invested is assigned A; permits, investment cost
k; is reduced by their value, that is by Ae for t =1, 2.

The critical spot market scenarios'® 6z, 0p, 65 indicate wether firms produce either at
the capacity bounds zy,x; (that is, at the vertical pieces of their marginal cost curves),
or on the flat (i.e. unconstrained) parts of their marginal cost curves. They depend on
the intensity of competition at the spot market and are illustrated in Figure 1 both for
the case of perfect and imperfect competition. For 6 € [0, 65 firms produce the output at

Perfect Competition . Imperfect Competition
Price

F 3

Price

-~

/

\P(Q,éf(x])l |P0,6" )] [MRO.65 (| [MRO.6 ()] \

-~

S
Lo L= P . ¢ +we
- PO () \ | Prro.o" o)

c, +w,e P©Q.9)
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L

L/

A J

_>< essssnnnns

Quantity 2 Quantity
Figure 1: Tllustration of the critical spot market scenarios. Left: The case of a perfectly
competitive market, right: the general case with imperfect competition. In the figure we

denote marginal revenue by M R(Q, ) := P(Q,0) + P,(Q, Q)%

marginal cost co. For 6 € [0, 0p] firms are constrained by their investment in the base load
technology and produce Xs, still at marginal cost ¢, and prices are driven by the demand
function. At those demand levels, using the peak load technology 1 is not yet profitable.
Observe that F(6p)— F(65) measures the fraction of time where investment in the base load
technology is binding, which we will refer to as constrained base duration. For 6 € [0p, 65
firms produce output at marginal cost ¢;, we denote 1 — F(6p) as peak duration.'® Finally,

for all realizations above 65, firms are constrained by their total capacity choice X;, and

I5For the precise definition of those critical spot market scenarios, see appendix A.
6The equivalent base duration would be given by 1 — F() = 1, it is not explicitly introduced, however.



prices are driven exclusively by the demand function, we denote 1 — F/(p) as constrained
peak duration. In the subsequent lemma we characterize the market equilibrium when firms

invest in the base load and in the peak load technology.

LEMMA 1 For a given cap and trade mechanism (T, Ay, Ay), define the toal investment
condition Uy, the base investment condition Wiy and the permit pricing condition'” Vg as
follows:

- /66 [P(Xf,&)vLPq(Xf,@)%—(cl+wle*)} AF(0) — (b — Are™) (2)
Uy o= /9 " [P(X;,G) +Pq(X§,9))§ (e +w26*)} dF(0) + (3)

B

0
/9 (Cl — 02) + (w1 — wg)e*dF(Q) - (k’g — k’l) + (A2 — Al)e*

Uy = /9 wyQ(e*, 0)dF(0) + /9 wy X3dF () + /9 w1 Q(e*, 0)dF(0) (4)

B P

0 0
0= 0

P £

Equilibrium investment X', X?* and the equilibrium permit price e* simultaneously solve

\IJII\DHI\I’E:O.

PROOF See appendix A. O

In the lemma, (2) is the first order condition that determines total investment. Firms
choose their total investment % as to equal marginal profits generated by their last running
unit (running at total marginal cost ¢; +wye*) to the investment cost of that unit (given by
ki — Aie*). As already mentioned above, under a cap and trade mechanism, the value of the
permits reuired for production at the spot market is part of the firms” marginal production

cost, the value of free allocations is of firms’ marginal cost of investment.

Now let us provide some intuition on the determinants of the optimal base load in-
vestment. Since total investment X; has already been fixed (it is determined by (2)), the
firms’ decision when choosing X5 has to be interpreted as a decision of virtually replacing
units of technology 1 by technology 2. The cost of such virtual replacement of the marginal

unit (given by ko — k1 — (As — Aj)e*) has to equal the extra profits generated by that unit

ITFor a positive permit price, we might also obtain the situation, where production for very low demand
realizations is suppressed and positive output is produced only for demand realizations which satisfy 6 :
P(0,0) — C(0,0) — e > 0. For ease of notation we disregard this corner solution, which could be easily
included in the entire analysis.



due to lower marginal production cost. Lower production cost of one additional unit has
two effects: First, for all demand realizations 6 € [#5, 0p] one more unit is produced (that
would not have been produced without the replacement); for 6 € [0p, 5] one more unit can
be produced at lower marginal cost ¢y +wqe* (instead of ¢ +wye*) due to the replacement.

(Compare also figure 1).

The market price for permits, e*, depends on the emission target T" set by the market
designer as well as the technology mix installed by the firms. At the equilibrium permit
price the market exactly clears, allowing for total emission of T units of the pollutant.
Notice that the left hand side of expression (4) is just total production at all spot markets
multiplied by the emission factors of the respective Technologies (wy,ws), total emissions

are obtained by integrating over emissions at all spot markets 6 € [0, 6].

Finally observe that lemma 1 characterizes the market solution when firms decide to
invest in both technologies, that is, when indeed 0 < XJ < X7| obtains. First, whenever
the base load technology (ks, co) is very unattractive,'® then only the peak load technology
(k1,c1) is active. Second, if the base load technology (ko,cy) is always more attractive!®
than the peak load technology (&1, ¢1), then only technology (ks, c2) is active in the market
equilibrium. Notice that in principle the case of investment in a single technology is cov-
ered by out framework, it obtains by eliminating the possibility to invest in technology 2,
expression (2)) then determines investment in the single technology. To keep the notational
burden limited, however, we do not explicitly include those corner solution in the exposition
of the paper, but opted to focus on all those cases when firms indeed choose to investment
in both technologies.

To conclude the discussion of lemma 1 let us already at this point mention the rele-
vance of endogenously modeling the emission permit market as compared to the case which
assumes an exogenously fixed price for pollution. Observe that, for a constant emission
price equilibrium investment under imperfect competition differs from that obtained under
perfect competition by the terms fel; Py(X1,0)2 and f;; Py(X5,0)22dF(6) respectively,
which corresponds to the difference between scarcity prices and marginal scarcity profits.
Since those terms are negative (and profits concave given our assumptions) investment in-
centives under imperfect competition are lower than under perfect competition. That is,
in the absence of an explicit market for emission permits (when pollution is for example
taxed at some fixed level €°) subsidies for investment (for example by granting free tax
vouchers A; > 0 and As > A; respectively) which exactly compensate for those differences

would induce optimal investment incentives. Since the emission price is endogenous in our

18That is expression (3) yields X3 < 0.
9That is expressions (3) and (2) yield X; > X7.
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framework, however, we will obtain a different result (compare theorem 2).

Before we now discuss existence of the market equilibrium we introduce the follow-
ing definitions which will simplify the subsequent analysis and allow for a more intuitive
discussion of our results:

DEFINITION 1 (i) We denote the impact of increased total investment on total emissions

(for fized e) by AF = gg’(? = (1—F(0p)) w, observe A¥ > 0. This allows to state

the impact of changed emission price e* on the equilibrium condition Vi as follows
9l = A, — AL

(i1) We denote the impact of increased base load investment on total emissions (for fived
e) by A .= 2% = (1 — F(05)) wy — (1 — F(0p))w,. This allows to state the impact

X3
of changed emission price e* on the equilibrium condition V;; as follows % =
Ay — Ay — AP, We furthermore denote w¥ = iigzgwl (which implies AY > 0

F(05)~F(0p

if and only if wy > w¥) and wk := TR Ly (which implies AY + A¥ > 0 if and

only if wy > w¥).

(ii) We denote the impact of changed X, on the equilibrium condition V; by Wy := g%,
1

the impact of changed Xy on the equilibrium condition Vir by Wi = %‘I)’é’ and the

impact of changed e on the equilibrium condition Vg by Vg, = 88\1;5. Observe that

those three expressions are negative.

Observe®® that AF = (1 — F(0p)) w; determines the total amount of additionally neces-

sary permits resulting from an additionally invested unit of total capacity (formally given

ov
)

the permit price e now has two opposing effects on total investment incentives: on the one

by the partial derivative of total emission with respect to Xj, i.e. . An increase of
hand investment incentives are reduced by the amount A¥, on the other hand they increase
by A; due to the increased value of free allocations.

A similar reasoning obtains for investment incentives in the base load technology. A
determines the total amount of additionally necessary permits resulting from the replace-

ment of one unit of the peak technology with one unit of the base technology (formally
o

ey
of the permit price e has two opposing effects on total investment incentives: on the one

given by the partial derivative of total emission with respect to Xs, i.e. ). An increase

hand they are reduced by the amount A¥, on the other hand they increase by (A; — A;)
due to the increased value of free allocations.

2ONotice that the statements of definition 1 and the subsequent discussion exclusively refer to partial
derivatives. In equilibrium total emissions do not change since they are capped at T

11



Notice that AF > 0 whereas AY can also become negative. That is, an increased level of
total investment X7 always implies additionally necessary emission permits. An increased
level of base investment Xj does only imply additionally necessary emission permits if
the base technology is “dirtier” than the peak technology. Interestingly the cut—off point
obtains for wy, = w¥ < wy, since an increased level of X leads to increased emissions for

0 € [0p, 0] if wy > wy but also leads to one unit of additional output for the demand levels
0 € [05,0p].

As already argued, lemma 1 only characterizes the market equilibrium by establishing
necessary conditions. In the subsequent lemma ne now want to establish conditions second
order conditions for the existence of the market equilibrium.

LEMMA 2 (SECOND ORDER CONDITIONS) (i) Lemma 1 characterizes the market equi-
librium of
(a) (A —AF)AY -V Tp <0, (b) (Ay— A1 —AF)AY — V1 ¥p. <0
(¢) ((A1—AP) A — 0 Up.) (A — Ay — AF) AY — W1 100p.) > (AL — AY) AY (A — Ay — AF) AY

(it) If the levels of free allocation satisfy (A1 — AF) AF <0 and (Ay — Ay — AF) A¥ <0,
then condition (i) is satisfied.

(iti) Define by AY™ the highest Ay yielding (A1 — AY) AF =V U, <0, define by AY™ the
highest Ay yielding (A2 — AF — Af) (AJIE + Af) — (U 4+ VUye) Vg <0. The second
order conditions (i) cannot be satisfied if either Ay > AY™, or Ay > A{m.

PROOF See appendix B. O

Part (i) of the lemma establishes the standard second order conditions which establishes
negative semi—definiteness of the Hessian matrix of firms’ optimization problem. It allows
the usual application of the implicit function theorem in order to conduct an analysis of
comparative statics for the equilibrium characterized in lemma 1. In part (ii) we establish
conditions when those second order conditions are satisfied and part (iii) provides an upper
bound on the levels of free allocation such that higher allocations always violate those
second order conditions.

Let us explicitly mention at this point that our analysis throughout this article focuses
on symmetric investment decisions, the second order conditions established in lemma 2(i)
guarantee that lemma 1 characterizes a unique symmetric solution. Since for the case of a
monopolistic or a perfectly competitive market asymmetric investment levels are irrelevant?

lemma 2(i) guarantees a existence and uniqueness of the market equilibrium in those cases.

21For perfect competition observe that both marginal cost of investment and marginal cost of production
are constant, for monopoly observe that asymmetries cannot arise by definition.

12



For the case of oligopoly, when firms behave strategically, asymmetric investment levels
might be relevant, however. Indeed, as we show in a companion paper (Zoettl(2010))
for investment decisions in a discrete number of technologies symmetric equilibria can only
exist if technologies are sufficiently different, for sufficiently similar technologies a symmetric
equilibrium of the investment game always fails to exist and asymmetric equilibria might

arise.??

After having established the market equilibrium, we now determine the impact of chang-
ing the parameters of the cap and trade mechanism (A, A, T') in an analysis of comparative
statics. If the second order conditions specified in lemma 2 (i) are satisfied we obtain the
following results:

LEMMA 3 (COMPARATIVE STATICS OF THE MARKET EQUILIBRIUM) (i) Higher
free allocation for the base load technology As always yields higher investment
in the base load technology (i.e. % > 0). We furthermore obtain le_it(; < 0
if and only if (A1 —AF)AY < 0. Define AT as the highest A yielding
(A1 —AF) AY < Up U, — (A1 —A{J) AEwe obtain % < % if and only if
(wy > w¥) and Ay € (A§os, Ajm).

(ii) Higher free allocation for the peak load technology A, always yields higher investment
in the peak load technology (i.e. % > ZT)%). Define by AP the highest Ay which
yields (Ay — AF — AD)Y AY — U150 p, < 0 and by A% the highest Ay which yields

1 2 ) A3 2
(A2 — AF — AQE) AE — W U, < 0. There exists a unique wy with wy < ws < w,
such that X1 < 0 if and only if we > ws and Ay € (Aletal, ALm). Furthermore, we

dA; Y 2 2 2

obtain % > 0 if and only if wy < w5 and Ay € (AFoss, AGm™).

(i1i) For a change of the total emission cap T we obtain d;;f > 0 if and only if (A1 < AF),

we furthermore obtain di;; > 0 if and only if (Ay — Ay < AL).

PrRoOOF See appendix C. ([l

As we establish in the theorem, an increase of the free allocation As in the base load
technology always leads to increased base load investment (i.e. % > 0, see point (i)),
an increase of the free allocation A; in the peak load technology always leads to increased

dx; dX3

investment in the peak load technology (i.e. i > gi» see point (i1)). The impact of

22 As analyzed in Zoett]1(2010) those problems can be overcome when firms are allowed to choose from
a continuum of technologies, when existence and uniqueness of the symmetric equilibrium can be reestab-
lished. Those findings to some extend seem to be parallel the discussion on supply function equilibria, where
Klemperer and Meyer (1989) show existence and uniqueness of the market equilibrium when firms can bid
smooth supply functions, whereas von der Fehr and Harbord (1993) show than a symmetric equilibrium in
discrete step functions fails to exist.
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Figure 2: Results of comparative statics in the degree of free allocation. Left: For the degree
of free allocation to the base load technology A, Right: For the degree of free allocation
to the peak load technology A;. For the case of linear demand we obtain,

left: ASToss(w) = %F(@ Yws, ASoss(wE) = wE, Am(0) = (1 — F(0p)) wy and

right: Aftel (1) = (1 . %F(G@) wa, AZOS(wS) = wP.

such changes on the remaining investment decisions is more ambiguous. In the subsequent
paragraphs we briefly sketch the central trade-offs, a complete proof is only provided in
the appendix, however. First consider a variation of the free allocation A, and determine

its impact on the system of equilibrium conditions established in lemma 1. The total
differential yields:?3
T = Vngp e =0 )
C?X; = \1:,,2% + \1/,,55—2 + %\Z’ =0 (6)
(2:1/4? Ve Ziif + ¥ 2)22 + Y 5/6; =0 (7)
In order to directly evaluate the impact of the changed emission price C‘lij on the equilib-

rium conditions for total investment and investment in the base load technology, we solve

ow ow
ger = Vies ot = Yiles

= Wy, in a second step we make use of A¥ and AL introduced in definition 1.

23For a better traceability of our computations we denote the partial derivatives

Vg __
oXy

= Vg and 2 8X*
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for 4 _ W AX[ | Wpp dX3

expression (7) and plug into expression (5), which yields:

dAy = “Wp. dAy T “Wp. dAs

dU; Ve \ dXT Upo \ dX3

—_— = \I/ \I/ e——— \I, e — = 0 8

dA2 ( i + ! *\IJEG dAQ + ! *\I}Ee dAQ ( )
dx: dXx;

& (¥ + (A1 — A7) AT) 5 + (A1 — A7) A7) —2 =0
dA2 dA2
dX;

Observe that the coefficient on the expression determines the total impact of changed

A,
X on the equilibrium condition W;. This is given by the direct impact (i.e. ¥yy) and the
indirect impact which takes into account the impact of changed X on the emission price
and its feed back on the equilibrium condition ¥; (i.e. ¥y, _‘I’\I;EEl = _‘I]I-Ee (A; — AF) AD).
Observe that the total impact of changed X7 on the equilibrium condition ¥; is negative

if the second order conditions established in lemma 2(i) are to be satisfied. This directly
X3

71 cannot drop to zero.

Furthermore, observe that the total impact of changed X on the equilibrium condition

illustrates why

U, is only indirect, since W; does not directly depend on X,. That is, we only have to
take into account the impact of increased X; on the emission price e* and its feedback
on the equilibrium condition W;. According to definition 1 an increase of X5 leads to an
increased equilibrium emission price if AY > 0 (i.e. for wy > w¥, we obtain a decreased
equilibrium emission price if A < 0, i.e. for wy < w¥). The impact of an increased
emission price on the equilibrium condition ¥; depends on the the degree of free allocation
A;. Whenever A; < AF (ie. % < 0, compare definition 1) an increased emission price
leads to a decrease of firms’ total investment activity X;. In this case the reduction of
scarcity rents (obtained when total capacity is binding) caused by the increased emission
price dominates the increased value associated to the permits granted for free. The reverse
holds true for a high level of free allocation, i.e. A; > A¥ where an increased emission
price leads to increased total investment X;. Whenever the impact of increased investment
X yields a decreased emission price, which obtains for cleaner base load technologies (for
AL < 0, ie. wy < wl), we obtain the opposite results. In sum, ZLAZ > 0 if and only if
(A; — AF) A > 0, as stated in the theorem.

Finally expression (8) also provides the intuition under which conditions we obtain

dX;

% > T (i.e. also investment in the peak load technology increases). To this end observe

dX:  dXi
that i = i

of the same size as the total impact of changed X;, but of opposite sign. As shown in

if and only if in expression (8) the total impact of changed X7 is precisely

the theorem this only obtains in case the increase of investment in the base technology
leads to an increase of the emission price (for A¥ > 0, i.e. wy > wf) and if this increase
has a sufficiently positive impact on the equilibrium condition ¥;, i.e. for allocation A,
sufficiently big (for A; > A8 > AF). All those results are illustrated in the left graph of
figure 2.
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Likewise we can analyze the impact of changing A;, as established in theorem 3(ii).
Analogous to expressions (19) (20) and (21) we can determine the total derivative and

solve for . After plugging in, we obtain for d‘I’I + dq’” (observe gif = _%LAIII =e):

dU;  d; U U \ dX; U po Upo \ dX3

— =(W v Uite—— v v + U — =0 (9

dA1+ dA; ( n+W¥re— Ee+ IIe_\I]Ee) dA, +< 2+ Vire " Ie_\I]Ee) dA; 9)
<:>(7\PE6\I’]1+(A27A1 7A2)A1) dA, +(7\IIE6\IJIIQ+(A27A1 7A2)A2) dA, =0

dx;
Analogous to above the coefficients on the expressions 77>

changed investment X7 or X3 on both equilibrium conditions. The sum of both coefficients

is strictly negative if second order conditions are not to be violated (compare lemma 2(iii)).

dX2

This directly illustrates why 252 cannot reach the level of % (in other words, increased

free allocation A; cannot leave 1nvestment in the peak load technology unchanged).

Furthermore, as we show for small A, both coefﬁ(:lents are negative (thus d)jl and dX2
have opposite 81gns) since —+ > dX2 this 1mphes < 0. Observe that the coefﬁ01ent of

*

is increasing in A if

the expression z)j the coefﬁ(:lent of expression Zﬁ
AL >0 (i.e. wy > wk). That is, for Ay high enough the coefficients become non-negative,
leading to altered monotonicity behavior. As we show in the theorem we can establish a
relative level of dirtiness w5 (with w5 > wf and w5 = w¥ in the case of linear demand),
which separates the cases when either of the coefficients becomes zero for higher levels of
Ay (Remember the sum of both coefficients has to be negative in order to satisfy the second
order conditions see above) Whenever the coefficient of —+ equals to zero, expression (9)

directly 1mphes = 0 and vice versa, as stated in the theorem

Finally, in theorem 3(iii) we provide the results of comparative statics with respect to
the parameter T'. For an intuition of those results observe first of all that an increase of
the total emission cap T leads to a reduction of the equilibrium permit price. This in turn
induces increased total investment X7 if (similar to the intuition for part (i)) the increase
of scarcity rents (which obtains due to lower emission price) dominates the decreased value
of the emission permits granted for free, i.e. A; < AF. The opposite result obtains for
A; > AF. Similarly, the reduced emission price induces increased investment in the base
load technology X3 if the total impact of reduced emission price on the base load investment
condition is negative, i.e. if and only if Ay < A; + AF (i.e. Uy, < 0). If we denote total
emissions which obtain in the absence of any environmental policy by T. Lowering the cap
on total emissions 7" below T corresponds to the introduction of a cap and trade mechanism.

To provide the direct connection of our framework with current practice in competition
policy, let us conclude this section by briefly discussing the impact of introducing a cap and
trade mechanism as observed for example during the current phase of the EU ETS. In this
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phase, the free allocations granted for free to a unit of each class of technologies were such
as to cover the total needs necessary on average to operate that unit.?* In our framework
that would correspond to levels of free allocation A" € [1 — (F(6p))wy,1 — (F(0p))w]
and Al € [1 — (F(05))wsy, ws). 2 With an allocation scheme (A7, AJ"") which aims at
covering the average total needs of a unit of specific technology we obtain increased total
investment and increased base load investment when introducing the trading system (i.e.
the emission cap is lowered below T' in our framework). To see this, first observe that
AT~ AE which according to lemma 3 (iii) leads to an increase of X7. Second observe
that A" — AT > AE (since AJ"" > (1 — F(65))w, and A" < (1 — F(p))w,), which
according to lemma 3 (iii) leads to increased investment in the base load technology.

In order to apply our findings of lemma 3(i) consider again our example of an electricity
markets with lignite or coal fired plants as a representative base load technology and open
cycle gas turbines as a representative peak load technology. Since open cycle gas turbines
have lower emission factors, we obtain ws > w;, which directly implies wy > w# (compare
definition 1). Since furthermore A7 > AP as established above, we can directly conclude
that an increase (decrease) of the free allocation As not only would yield increased base
load investment but also an increased (decreased) emission price and increased (decreased)

total investment.

After having analyzed the market equilibrium which obtains in the presence of an emis-
sion trading system and derived its properties of comparative statics we now proceed to the
main part of this article and analyze the optimal design of a cap and trade mechanism.

4 The Optimal Cap and Trade Mechanism

In this section we determine the optimal cap and trade mechanism. We first determine the
first best solution as a benchmark, which obtains for the case of a perfectly competitive
market when a regulator can freely choose all parameters (A1, Ay, T) of the cap and trade

mechanism (see theorem 1). We then analyze several market imperfections and solve for

24To give a specific example: In the German electricity market free allocation is determined by a tech-
nology specific emission factor which measures average emissions per unit of electricity produced (0.365
tCO2/MWh for gaseous fuels and 0.750 tCO2/MWh for solid and liquid fuels) multiplied by a preestab-
lished technology specific average usage. For open cycle gas turbines in Germany the average usage is
established at 0.11 (i.e. 1000 hours per year), for coal and combined cycle gas turbines it is given by 0.86
(i.e. 7500 hours per year) and for lignite plants it is given by 0.94 (i.e. 8250 hours per year), See appendices
3 and 4 of German Parliament (2007).

25To be precise, in our framework average usage of the base technology is X12 f;ﬁ Q*(0)dF(0) + (1 —
F(65)), the average usage of the peak technology is 7){;5{; Jo (Q*(0) — X3)dF(0) + (1 — F(6p)). The
corresponding emission factors are given by w; and wsy respectively.
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the corresponding second best solutions. We first determine the optimal cap and trade
mechanism which should be chosen for an imperfectly competitive market (see section 4.1).
We then analyze the case when competition authorities cannot freely choose all parameters
(A1, A2, T) of the cap and trade mechanism but only a subset of them (see section 4.2). In
order to answer all those questions we first determine total welfare generated in a market

with some cap and trade mechanism (A, Ay, T):

- Op

Q" X 1
/ (P(Y,0) — c3) YdY | dF(6) + / / (P(X3,0) — c) YdY | dF(6)
0 i 6 0 _

W(Ay, A2, T) =

Q" or X7 |
/ (P(Y,0) — c1) YdY dF(0)+/ / (P(X{,0) —c1)YdY | dF(0)
0 0 ]

m 0?_

)
&) \*JT 5 \mq‘)
r 1

0
/ c1 — ) X3dF(0) — ko X — ki (X7 — X3) — D(T). (10)
Op

Observe, that welfare does not directly depend on the parameters (A;, As,T) chosen for
the cap and trade mechanism but only indirectly through the implied investment and
production decisions X7, X3 and @*. In order to maintain presentability of the results, we
relegated all computations to the appendix and directly characterize the optimal cap and

trade mechanism in the subsequent lemma.

LEMMA 4 The optimal cap and trade mechanism solves the following conditions:

. dX; . dX3
= Q; Qrr =
() Wa, dA; + dA, =0
.. dX7 dXx
(44) Wa, = dA; Qr + dA2 Qrr=0
_dxP dX3 LA
(ii)  Wr:= diTQI + diTQH —Dp(T) +e* + o= 0.

The expressions 2 and Qr; determine the total impact of changed X; and changed X
respectively on total Welfare. They are defined as follows:

0 0
—P X7 A £ P, X3 A
Q[ = / LdF(Q) — Ale* — 7Af7 Q[[ = / AdF(Q) — (A2 — Al)e* — ng
0— n 0 n

n n

f;EdQ*( Py )dF () +f6PdQ (—P, %) ar(6)

The term 2 = de o
n fe (dQ: wz)dF(9 +f6P (dQ: wl)dF(Q)

changed emissions on wglfare for those spot markets where investment is not binding.

> 0 determines the impact of

PROOF See appendix D. O
We now provide some intuition for the conditions which characterize an optimal cap and

trade mechanism. We first consider the optimal choice of the free allocation to the peak
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load technology given by A;. Observe that the optimality conditions (i) and (ii) express
the impact of changed free allocation on total welfare exclusively through the channel of
changed investment in the base load technology X3 and changed total investment X7. The
total impact of changed investment on total welfare is denoted by €2; and €2;;, this total
impact can be broken down into three components corresponding to the three summands
of Q; and €27 respectively.

First, observe that at all those spot markets where total investment is binding (i.e.
for 6 € [65,0p] and 6 € [0, 0] respectively) imperfectly competitive investment behavior
induces too low investment incentives, an increase of investment X; or X7 leads to increased
welfare given by the markup —Pq%. Second, free allocation A; > 0 or (As—A;) > 0 induces
too high investment incentives, thus an increase of investment would lead to a reduction
of welfare given by the monetary value of the free allocation (i.e. Aje* and (Ay — Ay)e*).
Notice that in a world with exogenously fixed emission price e* the optimal level of free
allocation should be chosen such as to balance those two effects.?® Since the emission price
is endogenous in our analysis, an additional term obtains. An increase of investment d.X;
or dX; leads to increased emissions of dX;AF and dX;AL at those spot markets where
investment is binding. Since total emissions are capped by 7', however, this necessarily
has to imply an equivalent reduction of emissions at those spot markets where investment
is not binding (i.e. for § € [0,05] or 6 € [0p,0p]). Since production decisions are also
imperfectly competitive, a reduction of output leads to reduced welfare generated at those
spot markets. This impact is quantified by the term % defined in the lemma. That is,
taking into account the endogenous nature of the emission price leads to a lower degree of
optimal free allocation A; than suggested by an analysis with exogenously fixed emission
price.

The impact of a changed emission cap T on total welfare has a similar structure than
the impact of changed free allocations. Analogous to above, a changed emission cap leads
to changed investment incentives, the impact of changed investment incentives on welfare
is given by the terms Q; and 7, which have already been discussed above. As we will
see later on in theorems 1 and 2, if the levels of free allocation are chosen optimally such
as to obtain 0; = Q;; = 0 those terms will not be relevant for the optimal choice of the
emission cap. If the levels of free allocation are not chosen optimally, however, they have to
be considered when determining the optimal level of the emission cap T' (compare theorems
3,4, 5 and 6).

26That is, the monetary subsidy A;e* for example should then equate to the integral of the markups
over all relevant spot markets. The intuition for this result in some sense parallels the quite well known
insight obtained for a simple static model where a monopolist can be induced to produce first best output
if he obtains a subsidy corresponding to his markup.
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Apart from having an impact on investment incentives, a changed emission cap T leads
to changed welfare also through several other channels. First, most apparently an increased
emission cap leads to increased emissions which reduce welfare by the marginal social cost of
pollution Dp. Second, observe that on the other hand an increased emission cap leads to a
welfare increase since it implies a reduced emission price which allows for increased output.
The welfare increase at each spot market is given by the changed output multiplied by
the difference between marginal cost as perceived by the firms and true marginal cost, i.e.
dQ(we*), for ¢ = 1,2. Put differently however, this corresponds to the changed pollution
at each spot market multiplied by the emission price e*, the change in welfare at all spot
markets then is simply given by the total change of emissions multiplied by the emission
price i.e. dTe*. As we will see in the subsequent theorem 1, for a perfectly competitive
market the optimal cap and trade mechanism only balances those two effects and equates
the marginal social cost of pollution to the emission price (i.e. e* = Dr).?" Third, observe
that an increased emission cap 7' leads to a reduced emission price. This allows to reduce the
welfare loss obtained due to imperfect competition at those spot markets where investment
is not binding and output too low. Notice that the impact of changed emissions on welfare
at those spot markets where investment is not binding has already been discussed above,

it is given by %.

Based on the findings of lemma 4 as the first best benchmark we can now directly
establish the optimal cap and trade mechanism which obtains for a perfectly competitive
market

THEOREM 1 (OPTIMAL MARKET DESIGN, FIRST BEST BENCHMARK) Under  perfect

competition the optimal market design satisfies
(1) A7=0 (i) A3 =10 (zit) T* : e = Dp(T).

PROOF See appendix E. O

The theorem demonstrates that in a competitive market (i.e. n — o0), full auctioning
is unambiguously optimal (i.e. no free allocations should be granted). A brief glance to
lemma 4 and the intuition provided reveals that investment incentives of firms under perfect
competition are optimal, positive free allocation would lead to reduced welfare. Moreover,
as condition (iii) shows, the emission target 7' should be set such that the equilibrium
permit price equals marginal social cost of environmental damage. That is, as already dis-

cussed above, the optimal cap and trade mechanism balances welfare losses due to foregone

2TThis parallels the fundamental tradeoff obtained in a simple static model where a Pigou tax should
just equal to the marginal social damage of pollution.
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production at all spot markets given by e* with the marginal social cost of pollution given
by DT.

in the subsequent two sections we now consider market imperfections which make an
attainment of the first best outcome impossible. First, we determine the design of an
optimal cap and trade mechanism for an imperfectly competitive market (see section 4.1).
Apart from imperfect competition, another source of market imperfection arises when the
competition authorities cannot freely choose all parameters (A;, As, T') of the cap and trade
mechanism, but only a subset. Such situations arise for example when the level of free
allocation for (some of) the different technologies or the total emission cap is exogenously
fixed due to political arrangements or lobbing of firms and the competition authority can

only determine the remaining parameters (see section 4.2).

4.1 Optimal Market Design under Imperfect Competition

After having determined the first best benchmark (theorem 1) we now determine the optimal

cap and trade mechanism for an imperfectly competitive market.

THEOREM 2 (OPTIMAL MARKET DESIGN UNDER IMPERFECT COMPETITION) Under
imperfect competition the optimal market design satisfies

i) A;:i ’ — L)V gF(h) — —AF
< ([ () aror- 2]

e*
P

y , 1 ([ -Px; (P, X; A e
(iii)  T*: e =Dp(T)— %
Now assume that Py = 0. We then obtain A} > 0. For wy < w¥ we obtain A} > A}, for
wy > wE we can obtain Ay = 0.

PROOF See appendix E. O

The optimal levels of free allocations (A}, A3) under imperfect competition are thus
typically different from zero, a striking difference to the result obtained under perfect com-
petition (see theorem 1). The fundamental reason why this is the case follows directly from
the insights provided by lemma 1 and the subsequent discussion of the results: Imperfectly
competitive firms not only exercise market power at the spot markets, but also choose their
capacity such that they optimally benefit from scarcity prices, implying reduced production

and investment incentives.

As already discussed in the text following lemma 1 (compare the last paragraph which
discusses lemma 1), for an exogenously fixed price for pollution (e.g. a pigouvian tax at
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some fixed level e*) optimal investment incentives are obtained by subsidizing investment
such as to precisely compensate for the difference between scarcity rents and marginal
scarcity profits. To stick as close as possible to our notation such subsidy could be made
by assigning the amounts A; and A, of free tax vouchers to each unit invested in either of
the technologies. The optimal level of tax vouchers is then given by expressions (i) and (ii)
of theorem 2 (notice that for exogenously fixed permit price we have A = 0).

Remember that in our framework the expression % allowed to quantify the impact of
changed emissions at those spot markets where investment is not binding. Positive free allo-
cation leads to increased investment incentives, which (through an increased emission price)
can lead to reduced output (and thus pollution) at those spot market where investment is
not binding. The terms including the expression % take this welfare loss into account. This
leads to a reduced level of the optimal degree of free allocation. As we show in the theorem,
under imperfect competition the degree of free allocation for the peak load technology is
always positive. For the optimal allocation for the base load technology ambiguous results
obtain. If the base load technology is less emission intensive than the peak load technology
(i.e. wy < wy) increased investment in the base load technology leads to reduced emissions
and thus allows for more output at spot markets where investment is not binding. As we
show this always implies A5 > A}. On the other hand, if the base load technology is more
emission intensive than the peak load technology (ws > wq, i.e. an increase of base load
investment leads to increased emission price), then it might be optimal to set A5 < A} or
even A5 < 0 as we show.

Finally consider the optimal choice of the total emission cap 1" for the case of imperfect
competition. A brief look at the optimality condition (iii) established in lemma 4 reveals,
that the impact of a changed emission cap on investment decisions can be neglected since the
levels of free allocation are determined optimally (such as to obtain Q; = Q;; = 0). What
matters, however, is the fact that an increased emission cap leads to a reduced emission
price which in turn allows to reduce the welfare loss induced by imperfectly competitive
production decisions at those spot markets where investment is not binding (given by %)
As a result the optimal cap on total emissions is chosen such as to yield an emission price

below the marginal social cost of pollution.

In sum, the main intuition why an optimal cap and trade mechanism (with endogenous
emission price) implies levels of free allocation which are different from zero is similar to the
intuition obtained for the case of an exogenously fixed price for pollution (e.g. a pigouvian
tax): Under imperfect competition firms’ investment and production incentives are too low,
leading to decreased welfare. Free allocations can provide adequate incentives which lead to
an increase of welfare. However, for the case of an endogenous emission price, as modeled

in the present paper, increased investment incentives also lead to an increased emission
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price which in turn aggravates welfare losses at those spot market where investment is not

binding.

Let us finally discuss those results in the light of recently proposed measures thought
to increase firms’ investment incentives, as for example observed in liberalized electricity
markets. In the perception of many economists and policy makers investment incentives in
those markets are too low, one of the reasons potentially being market power as modeled
in the present paper. To resolve those problems of too low investment incentives, several
measures have been proposed, among them capacity mechanisms.?® For the present discus-
sion we clearly have to abstract form the specific problems encountered when designing real
capacity markets, and just consider some subsidy s; paid to the firms per unit of invest-
ment made in technology ¢ = 1,2. Notice that in the present framework it is equivalent if
a monetary payment s; or free allocations with value A;e* for t = 1, 2 are granted to a firm
per unit of investment in a technology t. What exclusively matters for firms’ investment
incentives is the total value s; + A;e* granted to firms per unit of investment, this total
value should be set at an optimal level.?

This in turn implies, however, that, once a cap and trade mechanism is put in place in
specific given market, the implications of this cap and trade have to be taken into account
when designing the capacity market. More specifically the design of a capacity market
which disregards the endogenous nature of emission prices, will lead to too high investment
incentives. However, we establish furthermore that also when taking into account the
endogenous nature of the emission price, the subsidy granted to the peak load technology
should be positive, if the base load technology is less emission intensive it should receive a
subsidy which exceeds that of the peak load technology. However, a relatively dirty base
load technology should not receive any free allocations.

4.2 Optimal Design of a Partially Constrained Cap and Trade
Mechanism

In theorems 1 and 2 we determined the optimal design of a cap and trade mechanism when
all its parameters (A;, A2, T) can be freely chosen by the competition authority. We first

28In most restructured electricity markets in the United States so called ” capacity markets” are installed
in order to increase inefficiently low investment incentives, also in Europe policy makers consider their
introduction (see e.g. Cramton and Stoft (2008)).

29Consequently, optimality just requires that the sum of both parameters satisfies the above optimality
conditions. An immediate and interesting implication is that possible inefficiencies due to grandfathering
could be healed by capacity payments that compensate for the distorting effect without any efficiency losses
(as long as the subsidies resulting from free allocations are not higher than the sum of both parameters
should be).
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analyzed the case of a perfectly competitive market, which yields the first best benchmark
(theorem 1) and then the case of imperfect competition (theorem 2). Another source of
market imperfection, apart from imperfect competition, arises when the competition au-
thorities cannot freely choose all parameters (Ay, Ay, T') of the cap and trade mechanism.
Such rigidities might be due to political constraints and arrangements or due to lobbing of
firms. As already discussed extensively in the introduction of this article free allocations
have been key to guarantee the political support necessary to introduce cap and trade sys-
tems, compare Convery(2009), Tietenberg(2006), Bovenberg (2008), or for example Grubb
and Neuhoff (2006)°. It is the purpose of the present section to analyze how a compe-
tition authority should optimally design a cap and trade mechanism if it can determine
only a subset of the parameters of the cap and trade mechanism, whereas the remaining
parameters are exogenously fixed due to the above discussed problems.

Theorem 3 determines the optimal degree of free allocations for the case of exogenously
fixed level of the total emission cap 1. In theorems 4, 5 and 6 we determine the optimal
degree of free allocation to the remaining technologies and the corresponding level of the
optimal total emission cap 7. Observe that our results obtained in lemma 4 in principle
would allow for a detailed analysis of those questions both for the cases of perfect and
imperfect competition. In order to limit the notational burden in the present paper we
restrict ourselves to the case of perfect competition, however. In this case the optimality

conditions determined in lemma 4 read as follows

o dXy . dX3 .
WAl = dAl (—Al) e + dA1 (A1 - Ag) e =0 (11)
_dX; . dX3 .
WA2 = dA2 ( Al) e + dA2 (Al Ag) e =0 (12)
dXy dX3
Wr = —o (A€ + 2 (A~ Ay)e” = Dr(T) + ¢ =0. (13)

We first analyze the case of an exogenously fixed level of the cap on total emissions 7T,
an example might be a situation where politicians are willing to introduce a cap and trade
mechanism but are reluctant to induce too severe (even though optimal from an overall
welfare point of view) distortions on the economy. The above optimality conditions directly
reveal that in a perfectly competitive market no free allocations should be granted to firms,

independently of the level of the emission cap.?! This is summarized in theorem 3.

30“Due in part to the sheer scale of the EU ETS, governments are subject to intense lobbying relating to
the distributional impact of the scheme, and are constrained by this and by concerns about the impact of
the system on industrial competitiveness. Few academics understand the real difficulties that policy-makers
face when confronted with economically important industries claiming that government policy risks putting

them at a disadvantage relative to competitors.”
31The results of theorem 3 for the case of imperfect competition obtain analogously, the optimal levels
of free allocation are given by conditions (i) and (ii) established in theorem 2.
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THEOREM 3 (OPTIMAL DESIGN FOR FIXED EMISSION CAP T') For any exogenously fixed
total emission cap T it is optimal to choose the levels of free allocation A7 = A5 = 0.

That is, the result obtained in the first best benchmark (theorem 1), where no free allocation
has been found to be optimal also obtains if the total emission cap is not set at an optimal
level. Observe that the reverse does not hold as we show in the subsequent theorem,

however.

THEOREM 4 (OPTIMAL DESIGN FOR FIXED ALLOCATIONS A; AND A,) Suppose the ini-
tial allocations Ay and As are fized exogenously. Define

Fo(Al, AQ) = (A1 - AlE)All:[jjl + (AQ — Al — AQE)(AQ — Al)\II[IQ. (14)

The optimal emission cap T* has to be set such as to satisfy e* = Dp(T*) for I'g(Ay, A2) =
0, e* > DT(T*) fO’f’ Fo(Al,Ag) > 0, and e* < DT(T*) fO?" F()(Al,AQ) < 0.

PROOF See appendix F. O

Case: w, >w," (ie. 4 >0) Case: w, <w,” (ie. 4; <0)

Allocation A,
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Allocation A,

'y
e<DT

AI}'. +Azl'._
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AI E + Azl‘._

>

At Allocation A,

Allocation A;

A

Figure 3: Choosing the optimal T* for exogenously fixed initial allocations A; and A,.
Left: for relatively dirty base technology, i.e. wy > w¥, Right: for relatively clean base
technology, i.e. wy < w¥.

That is, for levels of free allocation A;, As which are not set optimally the optimal cap
on emissions 7' typically does not implement an emission price e* equal to the social cost of
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pollution Dp. To get an intuition for the result, note first that the cap 7" on total emissions

*

governs the price for emission certificates e*, which in turn influences both investment
decisions and unconstrained production decisions at those spot markets where investment
is not binding. Optimal production decisions are induced by an emission price equal to the
social cost of pollution. This is only overall optimal in case of optimal investment incentives.

Now first observe that in case of positive free allocations (as considered in the theorem)
investment incentives are distorted, however. That is, for A; > 0 investment incentives in
the peak load technology are too high, for Ay > A; (Ay < A;) investment incentives in the
base load technology are too high (low). A distortion of the emission price can then be
suited to at least partially adjust investment incentives.

Second observe that the impact of a changed emission cap 7" on investment incentives
already has been derived in lemma 3 (iii) and discussed in the subsequent text. As estab-
lished there a higher emission cap T' (implying a lower emission price €*) leads to increased
investment in the peak load technology X if and only if A; < AP, it leads to increased
investment in the base load technology Xj if and only if A, < A; + AF.

Intuitively theorem 4 formally joins those two effects, that is, whenever the levels of
free allocation A;, Ay are such as to induce over investment, the total cap on emissions
should be set such as to induce an emission price which leads to a reduction of investment
incentives and vice versa. All those findings are illustrated graphically in figure 3.

Consider the case Ay = A; > 0, where all technologies get the same amount of free
allocations (the 45-degree line of figure 3). In the light of the above discussion this implies
first of all that investment incentives in the base load technology are undistorted (since
Ay = A;) and investment incentives in the peak load technology are too high. For A; < AF
investment incentives are reduced for a higher emission price, for A; > A¥ they are reduced
for a lower emission price. Next consider the case Ay = A; + AY. In this case a changed
emission price e* has no impact on investment in the base load technology, analogous
to above the optimal cap T is thus designed exclusively such as to reduce the too high
investment incentives in the peak load technology (i.e. for A; < AF we have e* > Dy and
vice versa).?

We conclude the discussion of theorem 4 by applying our findings to the current policy of
full allocation (A", AJ"") as observed during the current phase of the EU ETS and already
introduced at the end of section 3. Remember that we derived the following properties for
the levels of full allocation: A" > AF and A" > A" 4 AF. As already discussed,

320bserve that an analogous reasoning obtains for the case A; = 0, when only investment incentives in
the base load technology are distorted and the case A; = A when a changed emission price has no impact
on investment in the peak load technology and only distortions of base load investment are to be adjusted
by the total emission cap.
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if we consider either lignite or coal fired plants as the representative base load technology
and open cycle gas turbines as the representative peak load technology we also obtain
A > AT For our framework we thus obtain that the optimal cap on total emissions
has to be set such that the equilibrium permit price is lower than the social cost of pollution,
ie. e < Drp.

In the subsequent theorem 5 we consider the case that only allocation for the peak load
technology A; is exogenously fixed, allocation for the base load technology A, and the total
emission cap T can be determined optimally, however.

THEOREM 5 (OPTIMAL DESIGN FOR FIXED ALLOCATION A;) Suppose the allocation for
the peak technology Ay is exogenously fized. The optimal allocation for the base technology

then solves A% = dxék/'jl’;‘é;jﬁ/d/‘zfll. More specifically we obtain (see left graph of figure 4)
A5 =0 if  (A§oss < Ay < Al

0< Ay <A if ((0< A <AP) & (wy <wf)) OR ((Af < Ay < A7) & (wy > wh))
Ay < A if  ((AF < Ap < A7) & (wo < w§)) OR ((0 < Ay < AF) & (wy > wh)).

The optimal cap T* is such that e* > Dy if Ay < AY and e* < Dy if Ay > AF,
PrROOF See appendix G. ([l
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Figure 4: Left: Choosing the optimal A3 for exogenously fixed initial allocation A;. Right:
Choosing the optimal A} for exogenously fixed initial allocation A,.

Observe that the optimality condition for A, as stated in the theorem obtains directly
by rearranging expression (12). To derive the properties of the optimal degree of allocation
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for the base load technology A} as stated in the theorem we can now make use of the
properties of comparative statics derived in lemma 3(i). Most importantly, as established
there, we always obtain % > 0. We thus obtain A} > A; if and only if % < 0. Since we
only consider non-negative levels of free allocation we furthermore obtain A5 = 0 whenever
0< % < %. All those results of comparative statics have been derived in lemma 3 and
have been discussed subsequently in section 3. Figures 2 and 4 do thus in principle look
identical, observe however, that figure 2 exclusively states results of comparative statics,
whereas figure 4 illustrates the properties of the optimal allocation A} by making use of
the previously obtained findings.

The Intuition for the optimal level of free allocation T in principle goes along the
same lines as the one provided for the findings of theorem F. As compared to the first best
benchmark, for positive allocation A; investment incentives in the peak load technology are
too high. Whenever A; < A‘F we obtain Wy, < 0 which implies that a higher emission price
e* allows to reduce investment incentives in the peak load technology. Observe furthermore
that investment incentives in the base load technology as induced by A} are either too high
or too low (i.e. Ay > Ay for wy > w¥ and vice versa). As we show in the theorem it is
optimal to set the total cap such as to obtain an emission price e* > Dy which induce
reduced investment incentives in the peak load technology whenever A; < A{. Observe
that for A; = A{ we obtain A5 = A; = A{, which implies undistorted investment incentives
in the base load technology, in this case we thus obtain e* = Dp. The reverse hold true
for the case A; > A{ where the optimal emission cap T* has to be set to obtain e* < Dy

which induces reduced investment incentives in the peak load technology.

In the subsequent theorem 6 we consider the case that allocation for the peak load
technology As is exogenously fixed, allocation for the base load technology A, and the total
emission cap 1" are determined optimally.

THEOREM 6 (OPTIMAL DESIGN FOR FIXED ALLOCATION Ajy) Suppose the allocation for
the base technology As is exogenously fixed. The optimal allocation for the peak technology

. dX3/dA;
then solves A = IXFJdAL —dXF AT

Ay. More specifically (see right graph of figure 4)

A =0 if (Agos < Ay < Alim)
0< A} <Ay if ((0< Ay <AF*) & (w2 < wh)) OR ((0 < Ay < AP & (wy > w3))
Ay < Aj if (ARt < Ay < AL,

Define A5™ .= AF + AF. We obtain AS™ < AR and AS™ < AS°ss. The optimal cap T* is
such that e < D if Ay < AS™ and e* > Dy if Ay > AS™.

PROOF See appendix H. 0
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Observe that the optimality condition for A; as stated in the theorem obtains directly
by rearranging expression (11). To derive the properties of the optimal degree of allocation
for the peak load technology A} as stated in the theorem we can now make use of the
properties of comparative statics derived in lemma 3(ii). Most importantly, as established

. Xy ax; . .

there, we always obtain > Since we only consider non—negative levels of free
. . dxx* .

allocation we obtain A > 0 whenever 72 < 0. Furthermore we obtain A} > A, whenever

dx; _ dXp

i < <0

Let us finally provide some intuition for the optimal cap on total emissions T". First of all
observe that for Ay < AP and Ay < AS°%% we always obtain 0 < A} < A, which implies
that investment incentives both in the base load and the peak load technology are too high
as compared to the first best benchmark. For low levels of allocation to the base load
technology (i.e. Ay < A%(Ay) + AE) we obtain ¥;;, < 0 which makes it optimal to induce
an emission price e* > Dy to lower investment incentives for both technologies.?® Observe
that for Ay = Aj(As) + AY we obtain ¥, = 0, a distortion of the emission price above
(or below) social cost of pollution has no impact on investment incentives in the base load
technology. However, investment incentives in the peak load technology are too high (since
A; > 0). Since ¥;. < 0 the distortion of the emission price above social cost of pollution
is thus still suited to reduce investment incentives in the peak load technology. In total,
the theorem thus balances increased investment incentives in the base load technology with
reduced investment incentives in the peak load technology. The cut—off is reached where
Vire + Y7, = 0 which implies Ay = AiE + AF = Ag™. That is for A, < A§™ it is optimal
to set an emission cap 7™ which induces e* > Dy and for A; > A$™ the optimal cap T™
induces e* < Dp.3* All those results are illustrated in figure 4.

We conclude the discussion of theorems 5 and 6 by applying our findings to the current
policy of full allocation (A", AJ*") as observed during the current phase of the EU ETS
which served as the main illustrating example throughout this article:

First consider the case of theorem 5, where the allocation A; for the peak technology
is exogenously fixed. As already shown, under full allocation we obtain A{u” e [AF (1 -
F(0p))w;]. For the case of a completely clean base load technology (that is ws = 0, in the
context of electricity markets this would be the case for nuclear power plants for example)
under the current rules such technology would not obtain any permits. As our result
directly show, however, such technology should be granted more free allocations than the
peak technology, i.e. A5 > A{“”. Moreover the total emission cap 7™ should be chosen such

330bserve that for A < 0 this range is degenerated at zero.
3For Ay > AST°% only investment incentives in the base load technology are distorted, since A§ % >

A§™ the optimal cap then clearly has to implement e* > Dr. For Ay > ALt the optimal Af(As) > As is
so large that the optimal cap also has to implement e* > Dy, as we show.
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as to implement e* < Dr in order to dampen excessive investment incentives induced by
those levels of free allocation.

Next consider the case of theorem 6, where the allocation Ay for the base technology is
exogenously fixed. The optimal level of free allocation for the peak technology has to be
strictly positive if the peak technology is less emission intense than the base technology.
In particular, if the peak technology is completely clean (that is w; = 0, in the context
of electricity markets this would be the case for small bio-gas fired engines or turbines for
example), under full free allocation this technology would not receive any free permits. As
our result directly show, however, such technology should be granted a positive amount of
free permits. Unlike in the case discussed in the preceding paragraph, however, the level
of free allocation for the peak load technology should remain below the exogenously fixed
level of free allocation for the base load technology. The reason for this difference lies in
the fact that free allocations A, for the base load technology only have an impact on the
resulting technology mix, free allocations A; to the peak load technology have an impact
on the resulting technology mix and on firms’ total investment activity. For exogenously
fixed A, the optimal level of A} is thus more moderate since it also leads to distorted
total investment decisions. Finally notice for the optimal cap on total emissions: Since
AG™ < (1— F(05))wy < A" (compare definition 1 and the last paragraph of section 3) we
can directly conclude that the total cap on emission has to be chosen such as to implement
e* < Dr in order to dampen excessive investment incentives induced by those levels of free
allocation.

In sum, if one of the technologies is granted an exogenously fixed level of free allocation
(e.g. due to lobbying) then the optimal pattern of allocations to the remaining technology
is completely different from the one that obtains under full allocation (for example as given
by current legislation in the EU ETS, compare German Parliament (2007)). Furthermore
for high levels of free allocation, the cap on total emissions should be chosen such as to
induce an emission permit price which is below marginal social cost of pollution in order to

reduce the distortions on the resulting technology mix.

5 Conclusion

Tradeable pollution permits are an increasingly important policy tool in environmental leg-
islation worldwide. The possibility of freely allocate permits provides an important possibil-
ity to share the regulatory burden. This seems to significantly enhance the political support
for recently introduced legislations (see for example Tietenberg(2006), Bovenberg(2008), or
Convery(2009)). Since free allocations typically are subject to implicit or explicit updating
the allocation of permits has an impact on firms’ decisions: First, updating of free alloca-
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tions on the one hand has an impact on firms’ operation of existing production facilities
if they believe that current output or emissions do have an impact on allowances granted
in future periods. Second, updating also has an impact on firms’ incentives to modify
their production facilities if free allocations are granted based on all current installations
of a firm.*® The first phenomenon, where updating has an impact on current output and
emissions, has already been intensively analyzed in the literature (compare for example
Bohringer and Lange (2005), Rosendahl (2007), Mackenzie et al. (2008), or Harstadt and
Eskeland (2010)). All those contributions abstract however from an explicit analysis of the
impact of updating on firms’ investment incentives which determine their technology mix
in the long run. We thus want to contribute to this literature by explicitly analyzing the
impact of a cap and trade scheme on firms’ investment incentives. Since to a large extent
the long run implications are responsible for the final success of a given environmental leg-
islation we have the impression that this provides an important contribution to the ongoing
debate on the optimal design of emission trading systems.

In the present article we have thus analyzed an analytical framework with tradeable
permits and a cap on total emissions. Potentially strategically acting firms have been
able to invest into production facilities (with different emission intensities), which allow
for production for a longer horizon of time. After establishing the market equilibrium and
the resulting technology mix, we have analyzed the optimal design of the cap and trade
mechanism.

As a benchmark we established the first best solution which obtains for an ideal mar-
ket. We then have derived the optimal design of the cap and trade system for a series of
market imperfections. First we have analyzed the case of strategic investment and produc-
tion decisions in an imperfectly competitive market. This allowed to highlight the close
interdependency of mechanism to overcome low investment incentives (such as for example
capacity markets in electricity markets) and cap and trade mechanisms: If the endogenous
nature of emission prices in the presence of a cap and trade system is disregarded too high
investment incentives are induced.

We then have analyzed the case that the competition authority cannot freely choose all
parameters of the cap and trade system due to restrictions imposed by the political processes
(as intensively discussed in the literature). The optimal choice of the remaining parameters
differs substantially from that observed for the first best benchmark. Our result showed for
example that if a certain technology receives free allocations it is typically optimal to grant
free allocations also to the remaining technology. However, those free allocations should

be the higher the less emission intensive the technology is. Interestingly those findings are

35Compare Neuhoff et al. (2006), IEA (2010), or the current legislation of the EU ETS, for example
German Parliament (2007).
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entirely opposed to the pattern of free allocations granted in a system of full free allocation
as currently observed in EU ETS for example.
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A  Proof lemma 1

Note that given our assumptions on demand and cost, existence of spot market equilibrium
at each demand scenario 6 is ensured for the case of perfect and imperfect competition.
We denote by ¢ (6, x) spot market output of firm ¢ in scenario 6, given investments z =
(11, -+, T1n, To1, - - -, Top). Remember, X; and X, denote industry investment in either
technology and @Q*() industry output at each spot market 6, it is given as follows:

Q:P(Q,0) + PyQ,0)2 —co —wae* =0 if 0 €1[0,05]

Q* = Xo if 0 € [9§792] (15)
) Q:P(Q0)+P(Q0)2 —ci —wier =0 if 0 € [0p,0p)
X, if 0 €050

The critical spot market scenarios are defined as follows:

05 : P(Xs,05) + Py(Xo, HE)% —cy—wee* =0
Op : P(XQ,HB)—}—Pq(XQ,GB)%—cl—wle*:0
05 : P(Xl,eﬁ)—kpq(Xl,&ﬁ)%—cl—wle*zo

That is, at spot market 65 investment X, in the base-load technology (ca, ko) starts to
be binding, at fp firms start to produce with the peak-load technology (c1, k1) and at 65
the total capacity bound X is met. The first order conditions stated in lemma (1) obtain
when equating expressions (16), (17), and (18) to zero. Notice that the case solution for
the case perfect competition obtains as the special case where n — oo.

We first derive the first order conditions for optimal investment decisions. Note that,
although in equilibrium at different demand realizations € firm ¢ might sometimes produce

an unconstrained equilibrium quantity and sometimes is constrained by its choice xy; or o;,
equilibrium profit of firm ¢ is continuous in €. Thus, by Leibniz’ rule, the first derivatives
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of the profit function are given as follows:

‘ 7

= [P+ RS - @t wa)] aF©) - - A0 (16)
A d

ZZ - /9 [P(Xz,ﬁ) +Py(X2,0)22 — (e +w26>} dF(6) +

B

[4
‘/9' (Cl — 62) + (’U)l — ’(UQ)@dF(Q) - (k)g - Aze) + (kl - Ale) (17)

In the market solution the emission price e has to be such as to equate the following
expression to zero:

b5 Op o5
[ wsearo)+ [ wnxaaro)+ [ ui@rare)

9 b op
0 0
b5 op

Which are the conditions ¥;, ¥;; and Vg as given in the lemma.

Let us directly at this point determine all partial derivatives of the equilibrium system
characterized in the lemma. The partial derivatives of Uy (expression (16)), ¥y (expression
(17)) and ¥ (expression (18)) read as follows:

oV o . o+l . X

T = i _/QP Py (X{,0) ™5 4 Py (X7,0) S L () < 0

Oy £ . on+1 . X3

oxX; =V = . Py (X3,0) —— + Pyq (X3,0) n2 dF(9) <0

OV o w3 b2 w?

— Uy, = —dF(0) + - dF(0) <0
de B o Py(Q*,0)™L + Py (Qr,0)% (©) op Pp(Q*,0) + P (Q,0)<% (©)
oV ov

B Wy = (1-F(0p)w, = A¥ >0 L v =A - (1-Fp)w, = A, — AP
0X} Oe
oV
L = Wpy = (1- F(0p))wz — (1 — F(fp))w; = AY
0X;
Wi g a4 (1 05 — Ay — A, — AE
50 = Yire = Az — 1= (1=F(0p))wa+ (1 = F(0p))ws = Ay — A; — Ay

8‘1’] 3\1111 8\1111 8\I/E

04, ¢ oA, ¢ aa, € T

B Proof lemma 2

Part (i): To derive the second order conditions established in lemma 2, first observe that
differentiation of the permit pricing condition W with respect to X; and slight rearranging

yields gj:l = _\Iill—EEl Plugging into the derivatives of ¥; and ¥;; and replacing for A¥ and
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AY as introduced in definition 1 yields:

d¥; U o AP d¥;; L5 By AT

Sy, 4, =0+ (A —A — Uy, =(Ay— A~ A

dX, n —VUpe n (4 ! )—\I’Ee dXy e up, (42 ' 2 )_‘I’Ee

Likewise we obtain

d‘l’[ \IIEQ E AQE d‘l’][ \IIE E AQE
—L2 (A - A L g+ U —E2 =@ Ay — A — A

dX2 I . (Aq 1 )*‘IfEe X, 2+ Vs 0. 112 + (Ag 1— Ay )*‘IfEe

dV;/dX,  dV;/dX,
AV, /dX, dV;;/dXs
(a), (b) and (c) established in lemma 2 (i) are satisfied. To save on notation we introduce
C :=det(H), observe that C' > 0 if H is negative definite (compare (c) in lemma 2 (i)).

The matrix H = is negative definite if and only if conditions

Part (ii): Since VU3 < 0, ¥y < 0 and ¥p, < 0 (see appendix A) the conditions
provided in lemma 2 (ii) are sufficient to guarantee negative definiteness of the matrix H.
Part (iii): To see why this is true, just observe that for A; > A}{™ condition (a)
established in lemma 2(i) will be violated. The condition defining A¥™ is given by the sum
of conditions (a) and (b) of lemma 2(i), for A; > AY™ at least one of those two conditions

will be violated.

C Proof lemma 3

C.1 Preliminaries: Comparative Statics

. . dx; dX; dX; dX; dX3 dX3
The differentials for i da o and g3, o3, 7 are obtained by applying the implicity

function theorem to the equilibrium conditions established in lemma 1. The total derivative
of this equations system with respect to the parameter A; yields:

Wy Uy Z)ji + Uy, ;lj;l + % =0 (19)
Wy Uire le)j* + Urre ;lj;l + %\i]f =0 (20)
oo Wt S+ T =0 (21)
In order to derive an explicit formulation for %, we solve expression (21) for j—f:l and

expression (20) for dT Plugging into expression (19) yields:

YE2 oVrr
Y U (‘I/He AX* oW ‘1’15_76) .
((\1111—1—\1116 51 )-(‘1’16 152)( ‘I/E) )) P, 0 ( Uno) 0AL
Ee

Be Voo ) (Wips + Wppe g2 ddy 04 (‘1’112 + VUrre ?fE?c)
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By making use of the definition of the variable C' (compare appendix B) we can rearrange
this expression and obtain:

ax;

. (‘I’Hz +Wrre— \I’EQ ) - %\i’f (‘I’Ie ,\I’\IFEQ
dA, C

) = ((Ay — AY — AD)AY — U 150p) ———

‘IlEeC (22)

Likewise, to obtain an explicit formulation for d)j , we analogously solve expression (21)

for g%l and expression (19) for %. Plugging into expression (20) and solving for a2

_ A,
yields:

* 8‘1’11 \Ij + \I] _ 8‘1/1 \Ij \I/El
dX. I1 Ie— DA, II(:'_‘I,Eﬂ e
dAi = (*1) ( C> ( ) = ((Ay — AT — AD)AT — V1 Up,) 0.0 (23)
Analogously we obtain:
dXy e dX3 —e
dA: = ((Al - AlE)A2E) 7\PEeC dAz = ((Al - AIE)AlE - \IJlllpEe) TE‘BCV (24)
dX{ o my Vi dX5 .« .m  Vn
ar (41— A7) —VpC ar (42 = Ay = 47) —VUp.C
C.2 Proof lemma 3(i)
First, we define
. Ve 0 A AE AE
Thm(Ay) == T g +Ure— Bl / Py(X7,0)dF(0) + ——— ( 1= A . (25)
e Jop J" =il AP 0) + [yF —pdegdF(6)

Observe, that the second order sufficient conditions for existence of the market equilibrium
specified in 2(i) require T¥™(A;) < 0. Since I'f™(A,) is increasing in A; we can define a
unique AY™ which solves T4™(A{™) = 0 and conclude that Zﬁf > 0 for all A; < Alim,

Second, we define

Ay — AP) AF
I\total(Al) _ \I}Ie _\IJ\IJEQ _ — — ( 1 1 )972 - (26)
P " mGra PO+ Jo) R dF ()
This allows us to rewrite y A as established in expression (24) as follows:
de __ Ttotal ﬁ
T =T AN G (27)

We finally show that AP < A{™. To see this, observe that I'{™(AF) = ¥, < 0. Since
['Ym(Ay) is increasing in Ay, we necessarily obtain A{™ > AF.

37



Third, we define

v v
L{oss(Ay) = ¥ +¥p _\;; + ¥y _\;EQ‘ =

(A1 — AT) (AT + AF)
05 wg 05 wf
Jo" =mGm A O) + Jo., —pmaydF(0)

/9 P,(XT,0)dF(0) +
o5

Observe that % < % if and only if T'{"***(A;) > 0 (compare expression (24)). We define
the locus where I'{"***(A;) = 0 by A{™***. We now compare the critical allocation A{"°*

relative to the critical values A{™ and AF:

e For wy > w¥, we can establish the following ranking: A¥ < A§ross < Alm.

To show the first inequality observe that for all A; < AF we obtain T'%%!(A;) < 0.
As shown above we also obtain T (A;) < 0, which implies T'§%(A;) = T (A4;) +
rietal(A;) < 0. This directly implies, however, that A{°** cannot be in the interval
[0, AT].

To show the second inequality observe that for A; > AEF we have I'P"/(A;) > 0.
Whenever ['§7%(A;) = '™ (A;) + TP(A;) = 0 we must thus have T'{™(A;) < 0.
Since '™ (A,) is strictly increasing in A; this implies A{™ > A¢ross,

e For wy < w¥ we establish that T'¢°(A;) < 0 (i.e. A% > 0) for all A; € (0, A4™].
First, observe that for A; > AF we obtain TP (A;) < 0, which implies that
[§ross(Ay) = Tim(Ay) + Tietel(Ay) < 0 for Ay € [AF, Alim].

Second observe that for A; < A and ((1 — F(6g))w, — (F(05) — F(0p))w;) > 0 we
obtain T'{"**5(A;) < 0.
Third observe that for A; < A¥ and ((1 — F(65))w; — (F(65) — F(0p))w,) < 0,
['{7o55(A;) is maximized for A; = 0. Expression (28) then reads as follows:
— (1= F(6p)) w1 ((1 - F(b5))ws — (F(05) — F(0p))w1)
Jy? =t dF(0) + [yF =5ty dF (0)
Which can be guaranteed to be negative if P, < 0 and P > 0. Without those

additional assumptions it might happen that A} = 0 in the region where A; < AF
and (1 = F(65))ws — (F(6p) — F(8p))uwn) < 0.

0
157055 (0) = /@ Py(X7.6)dF(6) +
P

C.3 Proof lemma 3(ii)

First, we define

TYm(Ay) := (\11112 + ¥+ (Yrre + ¥re)
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In order to precisely define A{™ first observe that Uy +Wp = AP+ AP (compare definition
1), we thus have to consider the following two cases:

e For the case wy > wl (ie. AF + AF > 0) TE™ is strictly increasing in Ay, we can
define a unique AY™ which solves T¥™(A{™) = 0

e For the case wy < wk (i.e. AF + AP <0) TY™(A,) is non-increasing in Aj, it is thus
minimized for A, = 0, which yields

AP 4 AP

L™ =Wy + Uy + (A2 — (A + Af)) U,

< 0.

That is, I¥™(A;) < 0 for all Ay > 0. For ease of notation we thus define AY™ = oo
in this case.

We now determine % — % as given by expressions (22) and (22). After plugging in
for g—ii = ¢* and %‘I’T’f = —e* (compare appendix A) we obtain for % — ﬁf:

Vg Vg Vg Vg R N
<<‘I’HQ + ‘I/He_q/Ee> + <‘Iffe _\I/Ee> + <\III1 + VUre —‘I/Ee> + <‘I’He —‘I’Ee>> o = l2 (A2)
Since T'Y™(A,) < 0 as established above, we conclude that % > % for all A, € [0, AF™].

Second, we define

v v AF
Il (Ay) = <(‘I’112 + ‘I’Ue_\IIEEQ> + (‘I’IG_WEEQ>> = <‘I’112 + (A — A7 — Af) _\I/2E > (29)

e For wy > wl (i.e. AV > 0, see definition 1) T'5"( A,) is strictly increasing in Ay. Since
['ietel(0) < 0, we can thus define a unique A% > 0 which satisfies Tyl ( Aletal) = (.

e For the case wy < wf (i.e. AF <0, see definition 1) T¥(A,) is non-increasing in
Ay. Observe that in this case I't"™ is maximized for (Ay = 0, w, = 0) which yields:

AE
0l ) = (s + (42— af ) S <o (30)

That is, for Ay > 0 we obtain T'"(A4,) < 0. For ease of notation we thus define
Aletal .= o0 whenever wy < w¥.

Observe now that we can rewrite i (established in expression (23)) in terms of Tt

. . dAl
which yields:
dXy total —e”
— [tota 1
aa, ) (31)
Third, we define
v v AP
Fgross(AQ) — (\Ijll + \IjIe ‘IlE'l ) + (qllje 51 ) — \I}Il —+ (A2 — AlE — A2E) \I/l (32)
—VEe —Wre — Y Fe



We now rewrite Zf’f as established in expression (23) in terms of I'°%*, which yields:

dX; cross i
T = T8 (4) (33)

C
Observe that I'§7°% is strictly increasing in As (see appendix A). Since I'§°**(0) < 0, we

can thus define a unique A$°** > 0 which satisfies I'§%*(A5°**) = 0:

Vn¥ee
A7

Agross = AP+ AP + (34)

Finally we compare the different critical values: AL{™, A%l and AS*. We have to
consider the following three cases:

e For wy < wk : In this case we obtain ['Y™(Ay) < 0 and '™ Ay) < 0 for all Ay > 0.
Thus A§™** provides the only critical level of initial allocation (remember, we defined

Alm = o0 and A = 00), we thus obtain A5 < Ajm™,

e For wl < wy < wl: In this case we obtain T¥% (A,) < 0 for all Ay > 0 (remember, we
defined AY"! = o0). Observe, furthermore that T¥™(Ay) = it ( Ay) + 5% (Ay) for
all Ay. This directly implies, however, that T'5*5¢(AY™) > 0 and thus A% < Ajm.

e For wy > w¥ we evaluate T¥%(AS%%), which yields (compare expressions (29)
and(34)):

A7

AP

=7 (1= F(65))ws — (1 — F(0p))w:

= P2 (F(0p) — F(b5)) — P (35)

Pgotal(Agross) _ \:[1112 _ \1111

w1

Observe that we denote by Fql the average slope of demand for those demand levels

where total investment is binding and by P_q2 the average slope of demand for those
demand levels where base load investment is binding, i.e.:

9 0p

J Py(X{,0)dF(0) [ Py(X5,0)dF(6)
(i) Pr:="F (i) P2.=% (36)
! 1 - F(6p) ! F(0p) — F(05)
Rearranged this yields:
B Rl (1— F(0p)) + (F(0p) — F(05))
Fgotal(Agross) _ Pq (lwlF( B)) wo — = F(gﬁ) B Pq w1 (37)
Now define
(1 - F(6p)) + (F(0p) - F(65)) 2%
wy = Lwq (38)

1 - F(b5)

Observe, that wf < w§ < w; since F(0p) — F(f5) > 0 and 0 < % < 1, notice
q

that for P_q2 = PT} (e.g. for P, = P,y = 0) we obtain w§ = w;. Furthermore, for
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wy > wjy we obtain [P (ASo5%) > 0 and for wy < w5 we obtain [itel(ASross) < 0.
Since Thm(Ay) = Tt Ay) + ['570%(Ay) for all Ay we obtain:

0 < Alftel < AL™ < AZ% if wy > w)
0 < Alptal = Alim — Agoss if 1wy = ws (39)
0 < Agross < Alim < Alotalif @l < wy < w5

C.4 Proof lemma 3(iii)

axy
ar
3(iii) follow directly since W;; < 0, Wy < 0 and W, < 0 (see definition 1).

Observe that we have derived and ddiT; in expression (24). The statements of lemma

D Proof lemma 4

To derive the optimal design of the cap and trade mechanism (A, Ay, T)) we first differ-
entiate Welfare as given by expression (10) with respect to each of those parameters. We

obtain for %:
aw Y5 4Q* . o5 4O )
dA, /9 A, P@ ,9)—cz]dF(9)+/0P i [P(Q.0) — ] dF(0) +
dXxX3 b5 7
dAi l/@B [P(X5,0) — ca] dF(9)+/9 (c1 — c2)dF(0) — (ko — k1) | +
ax: | r°?
dAi /GP[P(XT,Q)—cl]dF(Q)_kI]

We can now plug in the equilibrium conditions for firms’ investment choices given by
expressions (2) and (3) and we can plug in the optimality conditions for the unconstrained
spot markets, whenever investment is not binding. 3¢ This yields:

05 * * 05 * *
W[ [chiwze] o+ 79 {pq%wle} dF ()
0 4

dA; dA; dA;

P

* Op * 0
X / P22 4 e dF(9)+/ (s — wn)edF(0) — (As — Ay)e
dAl ) n 9£

B

_|_

dX; l

[4
A, /0 [P, +wie] dF(0) — Ase

P

This can be further simplified by making use of the derivative of the permit pricing given
by expression 4 with respect to A; (i.e. ‘1114—’1‘3. This allows to eliminate all terms containing

the emission factors wy and wy from the above expression (shown explicitly in expression

36That is for spot markets 6 € [0, 65] U [0p, 65], in those cases the optimality conditions are simply given
by P(Q*,0) + P, —¢; —w;e* =0, for i = 1,2.
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(41) just below). We thus obtain
v [mdQr T, @ 7 dQ Q*
o [ S e [ ]

/GZP {— )1(12} dF(0) — (Ay — Ar)e| + /Gi [ );1} dF(0) — Are

In order to show why indeed expression (40) is obtained, we now differentiate the permit
pricing condition Vg (compare lemma 1) with respect to A;, this yields

dX3
dA,

dX;
dA,

05 Q* %= dQ* B
- [Tl (@—/gp VP dr(8) - (41)
dXx Op 0 dX* 9
dAj [/HB wng(9)+/9P(w2—w1)dF(9) dAi /epwldF(G) :

Now observe that & 7 A1 = Cﬁg jj;, since unconstrained spot market output does not directly

depend on the degree of free allocation A;. By multiplying expression (41) with A (as
defined in the lemma) we obtain:

5 dQ” Q" 7 dQ* Q" de* =N (dX3 p  dX{ g
(/9 de* [_ n]dF(e) /gp de* {_Pq n]dF(e) dA; _n<dA1A2 Taa ) (42)

We can now plug expression (42) into expression (40), which yields

AV A (X e dXG
dAl n dA1 2 dA1 1
ax; | o= X3 ax; | r? Xy
dAl l/eB <—Pqn>dF(9)—(A2—A1)6 +dA1 /GP —Pqn dF(G)—Ale
Rearranging finally yields
aw  dx; | [ X; A g
- Veg <—Pq ; )dF(G)—(AQ—Al)e— A |+
axy [ ? X5 A g
0 [ () art e 2
Which corresponds exactly to the expression for stated in the lemma. The very same
steps yleld M = Xm QI —|— A Q[I as stated in the lemma
We finally determlne .. Analogous to expression (40) we obtain:
aw  dxz | [ X3 ax: [ ° X1
&= = /QB [— g } AF(0) ~ (4 — Av)e| + L /ep P L AR 0) ~ Ave| ()

/eaB dd%* {_ Q*} dF(0) + /:’ ddc;* {_ qQ*} dF(0) + ¢* — Dp(T)

42



Which obtains since all terms containing the emission factors w; and w, integrate to 1.
Why this is the case becomes clear when differentiating the permit pricing condition Vg
with respect to T

0= * (= *
_/ L dF(e)_/ " L gy = B2 g AT e
[ Op

Yar ar dr

Now observe that dd% = (fg: %, since unconstrained spot market output does not directly

depend on the total emission cap T. By multiplying expression (44) with % we obtain:

%5 dQ* Q* % 4Q* Q* de*  —A (dX] axXy
</9 de* [ “n ] 4F () + /9 de* { “n ] dF(G)) d'  n ( dT2 A3+ clT1 AP - ) (44)

gl

We can now plug expression (44) into expression (43), which yields after rearranging:

aw  dx; | [ X2 A L
ax;: | ? X7 ALl oA,
- Vep (—P - )dF(@) ~ e 2af| 2 e D)
Which corresponds exactly to the expression for stated in the lemma.

E Proof theorems 1 and 2

The optimality conditions established in lemma 4 are satisfied if the following conditions

hold:

7 X
Q= / %dF(H) — Aje* — éAF =0
o N n

o _p X3 A
Q= / — 2GR (0) — (Ay — Ay)e* — ZA;E =0
(%

5 n
A
e = Dr(T) - .
The case of perfect competition as analyzed in theorem 1 obtains for n— > in fty. Observe
that elimination of all terms involving the number of firms n in the denominator in the
above conditions yields the characterization of the first best solution stated in theorem 1.
In order to obtain the solution obtained for the case of imperfect competition as established

in theorem 2 we solve the first two conditions for the levels of free allocation A; and As.

F Proof theorem 4

The optimality condition for 7 has been derived in lemma 4 (iii). After plugging in the

results of comparative statics for d)g_l and dX2 derived in expression (24) we obtain:

Uy v
e =Dy = <(A2 — Al)e‘I/UeTEeO + Are¥re —\I/IEI:C’> (45)
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We now make use of the notation introduced in definition 1, which allows us to rewrite

expression (45) as follows:

*

e

6* _ DT = ((AQ — Al — A2E)(A2 — Al)\I/IIQ —+ (Al — AIE)Al\Iljl) m

(46)

Notice that —5=— > 0 as established in appendix A. The remainder of the right hand side
of expression (46) states I'o(Ay, Ay) as defined in expression (14). The expression e* — D (T')
and I'y do thus exhibit the same sign, which proofs the theorem.

G Proof theorem 5

As a first step we determine the properties of the optimal allocation A35. Observe that

the optimality condition A} = 2/ Z’;‘f&jﬁ/ 942 A, stated in the theorem directly obtains by
2

rearranging expression (12). In lemma 3 (i ) we have estabhshed > 0 for all A; < Alim,

We thus obtain A5 > A; if and only if —1 < 0. Furthermore we obtain A} = 0 if
X3 _ Xy
dA2 dAs
of the properties of comparative statics established in lemma 3 (i) we directly obtain the

since we only consider nonfnegatlve levels of free allocation. By making use

properties of A} as stated in the theorem.

As a second step we determine the optimal emission cap 7. The optimality condition
for T has been derived in expression (13) and yields after substituting for A3:

dX; Xy, [dXi/dAs
*—D LAle— —=Ae
A LZX2 JdA, |
After substituting for dd)?, djg?, % and % (expression (24)) this reads as follows:

U
e — Dy = ((\I’Hz‘l’le) —(¥n¥rre) [ (\(p \PIE\I} \1>1E1)] ) —;;e C
=¥ —Vre ¢

\IjEe

Rearranging and plugging in for WU, (compare appendix A) we obtain:

)) Are (47)

(‘1/11 (‘I’He ) +VUrro (‘1’11 + Ure—

(‘Ifn + U % ) Vg, C

6* 7D7‘: (AlE 7A1)

Observe that for A; < A¥™ the sign of the right hand side of expression (47) is entirely
determined by the expression (A¥ — A;), the remainder of expression (47) is strictly positive
since <\I/ n+ Yy :I’\I,EEI ) < 0 and (\If Ile :P\r/E; ) < 0 (as shown further below in step three).

Finally notice that expression (47) has been derived without non—negativity constraint
on Aj. As shown above, however, for wy > wf and A; € [AF, AY™] we obtain A3 = 0
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(instead of a negative value as resulting in the computations leading to expression (47)).
In this case the optimality condition given by expression (13) simplifies as follows:
Ale

) Ale = (\IJIIQ\I/IE - \Iljlq]]]e) Tw < 0 (48)

AXj _dX,
dT ar

G*DT—<

The inequality obtains since W7, > 0 and ¥y, < 0 for wy > w¥ and A; € [AF Al™]
(compare appendix A). We thus summarize the results obtained in expressions (47) and
(54) as follows:

e* > Dy if A < AF

e*=Dr if A =AF (49)

e* < Dy if A} > AF

As a third step We finally show that the second order conditions established in lemma 2
(i) are indeed satisfied for all A; € [0, A{™], A%. Since <\I/H + Uy ) <0 for A; < Alm

Ee

we just need to show that <\If ITe _‘Ile? > <0 for A; < Alfm. Notice first that we can rewrite

Urre (compare appendixA) and thus obtain:

Vs
_\I’Ee

Vs

Urre
I ..

= (A5 — A1 — Upo)

(50)

Furthermore, we obtain for (A3 — A;) (compare expressions (12) and (24)):

ax, (\p 1oLz >A1
5 Ay =i g o M)
dAs (\Illl + \I/Ie ,\IJE;G)

Plugging in allows us to rewrite expression (50) as follows:

v W) A v
Wrre 52 = ( 52) <\Iffe \I,l - <\I'11 + \11167\;1 ))
—YEe (\IIH + Uy, 7\IJEEI€) (_\I/Ee) —* Fe — ¥ FEe

Substituting for ¥y, = A; — AF and U, = AP (see appendix A) then yields:

o W)’ Ay — AF)2
o _ (V2) <‘I’11_(1q,1)><0
T T Ee (\1’114-‘1’18 Lo )(‘I’Ee) T ke

—¥Fe

Urre

We can thus conclude that the second order conditions established in in lemma 2 (i) are
satisfied if and only if A; < A{™ (Notice that the “only if” part follows directly from lemma

2 (iii)).

H Proof theorem 6

As a first step we determine the properties of the optimal allocation A}. Observe that
dX3/dA,
ax; TdA, —dX7/dA;

the optimality condition A} = Aj stated in the theorem directly obtains
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dX;
dA;

0. Furthermore, we obtain

for all

by rearranging expression (11). In lemma 3 (ii) we have established % >
Ay < AY™. We thus obtain A7 > 0 if and only if /%4
A7 > A, if and only if % < % < 0. By making use of the properties of comparative
statics established in lemma 3 (ii) we directly obtain the properties of A} as stated in the
theorem.

As a second step we determine the optimal emission cap T*. The optimality condition
for T* has been derived in expression (13) and yields after substituting for A} (compare
the first step above):

aXiy * dXs *
* _ dX2 * * de * % dX2 WA26 dXik T dA A2€
TS e A S e e
We can now plug in for % and % as derived in expressions (22) and (23) and for %
and % as derived in expressions (24), which yields:
—1) Ay (e*)? L4 v
¢ —Dr=7— ( dZ( 2 (¢") <(‘I’Ie‘11112) [(‘Pn + Uy _\I;El ) + (‘I’He _51 )} +
(dAi - dAf) (—¥pe) € e e
v v —1) A, (e)?
(Wrre¥r) {(‘1’112 + \I/IIe_\I/EQ) + (‘I’Ie_\Ijmﬂ) = (Wre + Vi) 7 ( d)X 2 () (51)
Ee Be (dAi - dAf) (=¥Ege)C
Now define:
Fgm(AQ) =VUre +Vrre = Ay — (A{E + AQE) (52)

Observe that T5™(AS™) = 0. Furthermore notice that AS™ < 0 for wy < wk, that is,
['5™(Ag) > 0 for all Ay > 0 whenever wy < wf. In order to compare A§™ to the previously
established critical levels of initial allocation we make the following two observations:

FEOt“l(ASm) =W <0 and [gross(Ag™) =¥n <0

This allows to directly conclude that AS™ < Afefal and A§™ < ASoss.
By making use of the newly introduced ['§™ we can rewrite expression (51) as follows:
Age*

e’ =Dy = -I'9"(A2)
(8- 92) e

(53)

Finally notice that expression (53) has been derived without non—negativity constraint
on Ai. As shown in step one of the present proof, however, for wy, < wj and Ay €
[Agross | ALm] we obtain A% = 0 (instead of a negative value as resulting in the computations
leading to expression (53)). In this case the optimality condition given by expression (13)
simplifies as follows:

dX; U, dx;
Age” = Age” =
R R

Observe that the above inequality is satisfied, since Ay > A; + AY whenever ASo% < Ay <
ALm (compare expression (34), remember that A; = A} = 0 in the case considered).

U Ase™*
Age™ = (Ay — Ay — AF) Rt i EA) (54)

*_D —
€ T V. C
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We can thus establish the following results for the optimal cap on total emissions:

e*>Dp if Ay < AF™
e*=Dyp it Ay = A" (55)
e* < Dp if A2 > Agm
As a third step We finally show that the second order conditions established in lemma
2(i) are indeed satisfied for all Ay € [0, AY™], A;. Remember we obtained for Aj:

Fgross Fgross
lim 2 = Tcross total
F2 FQ + 1_‘2

Al = Ay

In order to verify the second order conditions established in lemma 2(i) (a), (b), and (c)
we now separately analyze the following cases:

e First, observe that

Vo

— ¥ FEe

Urre——— = (A2 — A1 — Upo)

W] Ftotal
E2 < 2 (56)

.. T Ay — ‘I’E2>

— For wy < w¥ (i.e. Upy < 0) expression (56) is negative, since I'?** < 0 and
Iim < 0 if Ay < AY™ and wy < w¥ (compare appendix C).

— For wy > w¥ (i.e. Upy > 0) and Al < A, < AY™ expression (56) is negative,
since It > (0 and T'¥™ < 0.

Whenever expression(56) is negative this directly implies that condition (b) is satis-

fied. Since furthermore Ay < AY™ also conditions (a) and (c) are satisfied.

e Second, for A5 < Ay < AL™ we obtain A7 = 0 (compare step one of the present
proof). We thus directly obtain:
Tre _\p\;l = —AF _\I’El <0 (57)
Ee Ee

This directly implies that condition (a) is satisfied. Since furthermore Ay < AY™ also
conditions (b) and (c) are satisfied.

e Third, for wy > w¥ (ie. Ugy > 0) and 0 < Ay < min( AP Agoss)

— Whenever A5 < A; + Ag (i.e. Uy < 0), we directly obtain Wy, _‘I’\I,EQ < 0. This

Ee .
directly implies that condition (b) is satisfied. Since furthermore A, < A¥™  also

conditions (a) and (c) are satisfied.

— Whenever Ay > Ay + A¥ (i.e. Wyp, > 0), then Uy, _‘IJ\IIE; > 0. Since ['§** < 0 in

the region considered this directly implies that condition (a) is satisfied. Since

furthermore A, < AY™ also condition (b) is satisfied. Finally, since conditions
(a) and (b) are satisfied and I's°** < 0 and T¥" < 0, also condition (c) is
satisfied.
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We can thus conclude that the second order conditions as established in lemma 2(i) are
satisfied for all 0 < A, < Alzim.
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