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Chapter 1

Introduction

One kind of data statisticians often face in their work are survey data, where
respondents assess their attitude to a subject or express their level of agreement
with a statement. Such data are frequently collected using questionnaires con-
taining a set of discrete ratings scales, where respondents have to choose one
of a few categories in each question. These scales are often called Likert scales
and are commonplace for example in psychology, sociology or market research.
From a statistical point of view, this kind of data present two kinds of difficul-
ties. The first is their categorical character and, inherently connected with it, a
reduction of information in comparison to standard metric data. The second is
a certain level of subjectivity resulting from the self-assessing character of the
answers. Despite the fact that all respondents face the same ratings scales, the
final interpretation of the ratings, even if categories are labelled, is always left
to the person who answers questions. This leads to a situation where the same
categories may have different meanings for various persons, which consequently
questions the validity of interpersonal comparisons of their answers. Because of
possible different interpretations of the meaning of the scales’ categories, the use
of such ratings scales is much varied - a phenomenon termed a scale usage het-
erogeneity. The statistical analysis of data affected by scale usage heterogeneity
is the subject of my thesis.

The way people use discrete ratings scales with possible biases resulting from
it has been an important subject of psychological research for more than sixty
years (see e.g. Cronbach, 1946). Paulhus (1991) gives a detailed reference of
psychological literature dedicated to this subject, as well as discusses three most
prominent response biases: socially desirable responding (SDR), acquiescence
response style (ARS), and extreme response style (ERS). Some researches (e.g.
Watkins and Cheung, 1995) distinguish between response styles and response
sets. The former term refers to a systematical distortion of answers in the way
that is independent of the content of questions, the latter to the contamination
caused by people’s desire to give a particular picture of themselves. Using this
distinction, SDR is a response set, whereas ARS and ERS are response styles. In
my thesis, I restrict myself to response styles only as, contrary to response sets,
they may be accounted for without explicitly taking into account the content
of questions. Thus, the terms “response bias” and “response style” will be used
interchangeably in the thesis. A more detailed catalogue of possible response
styles is presented by Baumgartner and Steenkamp (2001) who mention no less
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6 CHAPTER 1. INTRODUCTION

than seven response styles along with their definitions, theoretical explanations
and ways of measuring.

Contrary to the psychological aspects of scale usage heterogeneity, relatively
little attention has been devoted to developing statistical methods capable of
accounting for differences in response styles. At present, one may differentiate
between three not necessarily disjoint, approaches.

The first one assumes that a categorical answer of a respondent results from
a discretisation of some latent continuous “true” attitude by a set of thresholds
corresponding to categories of the ratings scale. In this case, the response bias
affects the way the continuous latent attitude is “translated” into a categorical
answer. There are two ways of modeling scale usage heterogeneity using this
approach. One is to estimate individual location and scale parameters and,
after correcting for them, to use the categorical answers as if they had metrical
properties. This allows correcting for most prominent response styles, which
are ARS and ERS. Examples of this methodology are (Lenk et al., 2006; Wolfe
and Firth, 2002). Alternatively, instead of manipulating distribution of the
latent variable, scale usage heterogeneity may be accounted for by allowing
heterogeneous thresholds. Depending on the parametrisation of thresholds, such
method may be more flexible than the previous one. This methodology was
adopted by Johnson (2003). Some authors also combine both methodologies
(Rossi et al., 2001; Javaras and Ripley, 2007).

The second approach is based on the item response theory. In this frame-
work, the model predicts the probability of choosing a given category depending
on the question being answered and the optional set of regressors. The inclusion
of additional variables representing the response style in this set allows one to
account for the scale usage heterogeneity. This approach was applied by De
Jong et al. (2008), Johnson and Bolt (2010), and Van Rosmalen et al. (2010).

An interesting third approach has been recently proposed by Johnson and
Bolt (2010), who use a factor analysis model to identify response styles as ad-
ditional factors.

In my thesis I analyse scale usage heterogeneity in the context of market
segmentation. I examine a method which allows simultaneous classification of
respondents with respect to market segments as well as response styles. The
method considered in this document follows the first of the aforementioned ap-
proaches. I model differences in response styles through heterogeneous thresh-
olds. The reason for that is twofold. Firstly, the use of thresholds offers much
greater flexibility in modelling scale usage behaviour than the use of scale and
location shift without substantially increasing the number of parameters. Esti-
mation of thresholds gives one the means to model all coherent response styles,
i.e. such that preserve the original ordering of categories. For limitations of the
scale and location shift methodology in this respect see (Rossi et al., 2001, p.
23). Secondly, using heterogeneous thresholds allows factorisation of scale us-
age behaviour out of the “true” respondents’ attitude in an elegant manner. In
this case the whole information about the respondents’ attitudes is represented
solely by the distribution of the latent variable, whereas the whole scale usage
behaviour is represented solely by the thresholds.

This thesis is divided into five chapters. Chapter 1 is introductory, Chap-
ter 2 presents the theory of the considered method. In Chapter 3 I present a
set of functions that I wrote in R (R Development Core Team, 2009) for esti-
mating models introduced in Chapter 2, as well as some sample ways of their
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use. Results of a simulation study aiming to investigate the performance of the
presented method are given in Chapter 4 and a real data example is shown in
Chapter 5. Final remarks and a discussion are to be found in Chapter 6.



8 CHAPTER 1. INTRODUCTION



Chapter 2

Theory

In this chapter I propose a method of a simultaneous estimation of two sorts of
clusters: with respect to market segments (hereinafter “opinion clusters” or in
short “O-clusters”) and scale usage (also referred to as “answer clusters” or in
short “A-clusters”).

2.1 Statistical model

The presented method assumes that the analysed dataset consists of J cate-
gorical variables. Each variable may take one of K values, where 1 represents
the least and K the most favourable category (or the weakest and the strongest
agreement respectively).

Equations (2.1) to (2.7) present mathematical formulation of the model.
Variable xij represents a categorical response of person i to question j. This
takes value k if and only if the corresponding underlying continuous variable zij
takes a value in the interval (τa,k−1, τa,k]. τa,k−1 and τa,k are the two thresholds
defining the interval corresponding to category k. Since there are K possible
categories, there must be K + 1 thresholds. The thresholds’ values depend on
A-cluster the person belongs to, but are common across all questions. Vector zi
represents the respondent’s i attitude to all questions and is assumed to follow
multivariate normal distribution with parameters defined by the O-cluster he or
she belongs to. The parentheses around the subscript by the covariance matrix
in (2.2) indicate that it may or may not be O-cluster specific. This is analogous
to the situation in finite mixture modelling (see e.g. Celeux and Govaert, 1995;
Fraley and Raftery, 2002, for more details). Equations (2.3) to (2.5) state that
there are K categories, A answer clusters and O opinion clusters. Because z is
assumed to follow the normal distribution, both most extreme thresholds are
fixed at infinities.

9



10 CHAPTER 2. THEORY

xij = k ⇔ τa,k−1 < zij ≤ τa,k (2.1)

zi ∼ N(µo,Σ(o)) (2.2)

k = 1 . . .K (2.3)

a = 1 . . . A (2.4)

o = 1 . . . O (2.5)

τa,0 = −∞ (2.6)

τa,K =∞ (2.7)

2.2 Estimation

The most fundamental idea behind the model formulated above is that hetero-
geneity of the whole analysed population may be accurately summarised with
respect to both the represented opinions and exhibited scale usage behaviour
by a moderate number of homogeneous clusters. If this is true, we may be in-
terested in identifying these clusters and utilising the information gained in one
sort of clustering in order to improve the quality of the other sort of clustering
and vice versa. To achieve such mutual reinforcement of both sorts of clusters,
I propose an iterative procedure described in Algorithm 1.

• Choose initial partition into O-clusters and latent distribution for every
O-cluster.

• Choose initial partition into A-clusters and thresholds’ values in every
A-cluster.

• Repeat until a satisfying solution is found or the maximum number of
iterations is reached:

1. Find O-clusters conditional to the current thresholds’ estimates.

2. Estimate distribution parameters of the O-clusters found.

3. Find A-clusters conditional to the current distribution estimates.

4. Estimate thresholds for the A-clusters found.

Algorithm 1: Estimation algorithm for the presented model.

Algorithm 1 is very general so in order to be applicable it needs further
specification. First of all, clustering procedures for both types of clustering
must be chosen. Some clustering procedures may require computing expected
values of latent variables z. This is done within step 1. The two steps before
the main loop of the algorithm allow the set up of initial partitions, if required
by chosen clustering procedures. Any existing prior knowledge regarding one or
both partitions can be used here. If no prior knowledge is available, all the cases
will typically be classified into a single cluster. Algorithm 1 is not guaranteed to
converge, hence a very general exit condition for the main loop of the algorithm.
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In the following I present specifications of Algorithm 1, which I examined
in detail. They differ with respect to the clustering procedures applied and the
way they handle the categorical nature of data. A natural way of dealing with
categorical character of data seems to be a latent version of the model-based
clustering presented in Section 2.2.1. Due to a large computational burden
connected with this procedure, one may be interested in simpler and faster
alternatives presented in Section 2.2.2.

2.2.1 Latent model-based O- & hierarchical A- clustering

The approach presented in this section proposes a latent version of model-based
clustering for O-clustering (see e.g. Fraley and Raftery, 2002, for a review). It
gives the advantage of direct accounting for the categorical character of data.
Large computational burden connected with computing O-clusters and the fact
that, as a consequence, the number of O-clusters must be chosen practically in
advance are its shortcomings.

Initialisation Latent model-based O-clustering does not require initial
O-partition, so only preliminary A-clusters need to be specified. If no prior
knowledge regarding the scale usage is available in a given sample, a single A-
cluster with thresholds equal to the quantiles of the standard normal distribution
is a natural choice. This fixes the location and scale of estimated O-clusters’ la-
tent distributions and allows to relate them to the standard normal. In this case,
0 value of latent variable z corresponds to the middle of the middle category (if
the number of categories is odd) or to the value of the threshold between the
two middle categories (if the number of categories is even). Variance is fixed
in such a way that when the expected value is 0, a unit variance in a given
O-cluster means equal probability of selecting any of K categories. Once the
initial A-partition is set, the main loop of Algorithm 1 may be entered.

Steps 1 and 2 In model-based clustering, the optimal partition and clusters’
parameters are estimated simultaneously, so that steps 1 and 2 of Algorithm
1 are merged. The analysed population is assumed to follow a finite mixture
of multivariate normal distributions, every component of which corresponds to
one O-cluster. Model-based clusters are estimated using the EM algorithm
(Dempster et al., 1977), which consists of two steps: an expectation and a
maximisation step. In the former a (fuzzy) partition into clusters is estimated.
In the latter clusters’ parameters as well as mixture proportions are determined.

In order to apply the EM algorithm, the likelihood function needs to be
specified. We start with defining a conditional probability that person i, who
belongs to A-cluster a and to O-cluster o, in response to J questions gives a
categorical vector k:

πi|ao , P (xi = k|µo,Σo, τ a) =

∫ τa,k(1)

τa,k(1)−1

∫ τa,k(2)

τa,k(2)−1

. . .

∫ τa,k(J)

τa,k(J)−1

dN(µo,Σo).

(2.8)
Notation

∫
dN(µo,Σo) represents the integral over the density function of the

normal distribution with parameters µo and Σo, whereas k(j) represents the j-
th element of vector k. Vectors k will be also referred to as “response patterns”
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and indexed with r. Therefore, the above probability will also sometimes be
denoted πr|ao when it refers to a particular response pattern r instead of a
person i.

A-clusters are defined and fixed during O-clustering. Fuzzy A-clusters are
not allowed, so every person belongs to only one A-cluster. It is assumed that A-
and O-clusters are independent, so that A-cluster membership does not directly
influence O-cluster membership. Furthermore, every response pattern r has
an unambiguously specified A-cluster it belongs to. Because of this, the only
way how the A-clusters must be accounted for during O-clustering is by using
appropriate thresholds τ a in computing πi|ao.

The probability that a person i belongs to the o-th component of the mixture
density and responds a vector k given that they belong to the A-cluster a, is:

P (xi = k|λo,µo,Σo, τ a) = λoπi|ao, (2.9)

where λo is a mixture proportion of component o in the mixture density.
Let us introduce an additional set of O variables γio which represent the

O-cluster membership of the person i. If the person i belongs to the O-cluster
o, the o-th of these variables equals 1 and the rest are 0s, hence (2.9) may be
rewritten as:

P (xi = k|λo,µo,Σo, τ a) =
∏
o

(λoπi|ao)
γio . (2.10)

In the above equation
∏
o denotes the product over all O-clusters. An analogous

notation for products and sums will be used throughout the rest of the thesis.
Equation (2.10) leads to the following (log-)likelihood function1:

L =
∏
i

∏
o

(λoπi|ao)
γio , (2.11)

l = lnL =
∑
i

∑
o

γio ln(λoπi|ao), (2.12)

where ∑
o

γio = 1 ∧ ∀γio ≥ 0. (2.13)

Having the above log-likelihood function in mind, we may specify the two steps
of the EM algorithm (for details see e.g. McLachlan and Peel, 2000, sec. 2.8).

In the E step the γio’s are estimated using their conditional expected values:

γio =
λoπi|ao∑
u∈O λuπi|au

. (2.14)

In the M step λo’s are estimated as mean values of γio’s in a given O-cluster:

λo =
1

N

∑
i

γio, (2.15)

1In the literature dedicated to the EM algorithm this likelihood is also called “complete
data likelihood” (for details see e.g. McLachlan and Peel, 2000, sec. 1.9).
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and the parameters of O-clusters µo and Σo are estimated by likelihood maximi-
sation. However, a direct maximisation of the log-likelihood given in equation
(2.12) requires integration over multivariate normal density function, dimen-
sionality of which is equal to the number of questions. This is computationally
feasible only when the number of variables is small (Lee et al., 1990; Jöreskog
and Moustaki, 2001). In order to estimate parameters of the mixture den-
sity’s components, I use the “Underlying Bivariate Normal” (UBN) approach
proposed by Jöreskog and Moustaki (2001). This is a limited information max-
imum likelihood method. Instead of maximising the full likelihood function of
J dimensional distribution, it maximises the sum of univariate and bivariate
marginal likelihoods only. The univariate marginal probability that a person i
from A-cluster a and O-cluster o responds k to question j is:

π
(j)
k|ao , P (xij = k|µoj , σ2

oj , τ a) =

∫ τa,k

τa,k−1

dN(µoj , σ
2
oj). (2.16)

The analogous bivariate probability that a person i responds k to question j
and m to question l is:

π
(jl)
k,m|ao , P (xij = k ∧ xil = m | µoj , µol, σ2

oj , σ
2
ol, ρjl, τ a)

=

∫ τa,k

τa,k−1

∫ τa,m

τa,m−1

dN(µjl,Σjl),
(2.17)

where

µjl ,

[
µoj
µol

]
, Σjl ,

[
σ2
oj ρjlσojσol

ρjlσojσol σ2
ol

]
. (2.18)

The sum of all univariate and bivariate log-likelihoods for a model-based O-cluster
o has the following form:

l(UBN)
o =

∑
a

ṗa|o

( J∑
j=1

K∑
k=1

ṗ
(j)
k|ao lnπ

(j)
k|ao+

J∑
j=2

j∑
l=1

K∑
k=1

K∑
m=1

ṗ
(jl)
k,m|ao lnπ

(jl)
k,m|ao

)
,

(2.19)

where

ṗa|o ,

∑
i∈I(a) γio∑
i γio

, (2.20)

ṗ
(j)
k|ao ,

∑
i∈{I(a) ∩ I(xij=k)} γio∑

i∈I(a) γio
, (2.21)

ṗ
(jl)
k,m|ao ,

∑
i∈{I(a) ∩ I(xij=k) ∩ I(xil=m)} γio∑

i∈I(a) γio
. (2.22)

In the above equations, I() denotes a set of respondents for whom the condition
in brackets is true, whereas I(a) denotes a set of respondents belonging to the
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A-cluster a. The ṗ terms may be interpreted respectively as a proportion of
weights γio of cases belonging to the A-cluster a among the members of the O-
cluster o, proportion of weights γio of cases who answered k to question j in the
interception of the A-cluster a and the O-cluster o and proportion of weights γio
of cases who answered k to question j and m to question l in the interception
of the A-cluster a and the O-cluster o.

Iterating E and M steps until convergence leads to a partition of the dataset
into O-clusters and delivers estimates of parameters of every O-cluster. The
convergence of the EM algorithm was proved in the seminal paper by Dempster
et al. (1977).

If the model were estimated using the usual log-likelihood function, the qual-
ity of the fit could be evaluated using the value of the log-likelihood function
given by (2.12). However, since I use the function given by (2.19) instead, I
derive an analogous criterion using this function. Hence, equation (2.12) may
be transformed to the following form:

l =
∑
i

∑
o

γio lnλo +
∑
i

∑
o

γio lnπi|ao. (2.23)

The two above terms have clear interpretations. The former is responsible for
estimating the mixture proportions (its differentiation with respect to λo’s leads
to (2.15)), the latter is responsible for the parameters of particular O-clusters.
In the UBN approach, instead of the latter term I maximise the expression given
by (2.19). Thus, a natural approach is to use analogous substitution in the fit
function. As a consequence, the UBN equivalent of the log-likelihood, which
can be used to assess the model fit, has the following form:

l(UBN) =
∑
o

lnλo
∑
i

γio +

∑
o

∑
a

ṗa|o

( J∑
j=1

K∑
k=1

ṗ
(j)
k|ao lnπ

(j)
k|ao +

J∑
j=2

j∑
l=1

K∑
k=1

K∑
m=1

ṗ
(jl)
k,m|ao lnπ

(jl)
k,m|ao

)
.

(2.24)

Step 3 Once the O-partition and the O-clusters are estimated, the data are
clustered according to scale usage pattern. In my thesis I examine three ap-
proaches for finding optimal A-partitions. Here, the all three are combined with
hierarchical clustering, but in principle, any standard clustering method could
be used instead. The first step for each of these approaches is computing indi-
vidual thresholds τ i. They are estimated by maximising individual likelihoods
given by (2.10) with respect to a vector of individual thresholds τ i, which re-
places A-cluster specific thresholds τ a. In order to reduce the computational
burden, a simplifying assumption is made that the covariance matrices in all
O-clusters are diagonal. This results in ignoring all the correlations computed
in step 2. Thus, the conditional probability of a response pattern r πr|ao may
be computed simply as a product of univariate marginal probabilities:

πr|ao =
∏
j

π
(j)
k(j)|ao, (2.25)
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where π
(j)
k(j)|ao is defined as in (2.16).

Logarithming (2.10) utilising (2.25) leads to the following log-likelihood:

ln
(
P (xi = k|λo,µo,Σo, τ i)

)
(2.26)

= ln
(∏

o

(λoπi|ao)
γio
)

(2.27)

=
∑
o

γio ln
(
λo
∏
j

π
(j)
k(j)|ao

)
(2.28)

=
∑
o

γio lnλo︸ ︷︷ ︸
const(τ i)

+
∑
o

γio
∑
j

lnπ
(j)
k(j)|ao (2.29)

∝
∑
o

γio
∑
j

lnπ
(j)
k(j)|ao. (2.30)

Having the individual thresholds computed, the three aforementioned ap-
proaches differ in the way these thresholds are utilised. In the first approach,
the thresholds are directly clustered, which has the following drawback: in cases
where respondents did not choose some of the extreme categories, the estimates
of the corresponding thresholds tend to have large absolute values. This may re-
sult in the respondents being divided into groups according to irrelevant criteria.
To avoid such influence, before applying clustering, I truncate all thresholds’ val-
ues at 4. In the second approach, I apply estimated thresholds to the standard
normal distribution to compute probabilities for each category and use these
probabilities in clustering. In the third approach, along with the previously
mentioned probabilities, a measure of acquiescence is computed and added to
probabilities while clustering. The measure of acquiescence is computed in the
following way: first, the categories are renumbered so that the middle category
(or the neutral, if they do not coincide) has 0 value, positive categories have
the following positive integers, and the negative categories analogous negative
values. Then, the values for all categories are multiplied by corresponding prob-
abilities and summed. This may be interpreted as the expected value of the cat-
egorical answer after renumbering under the probability distribution induced by
the estimated thresholds and the underlying standard normal distribution. The
rationale for all the three approaches is given in Section 4.3.1 ,which presents
the results of clustering using expected values of latent variables on simulated
data.

Independently of the approach used, the result of this step is a new partition
of data with respect to the scale usage behaviour, which is then used in step 4.

Step 4 In step 4 new thresholds for every newly found A-cluster are estimated
by maximising the same log-likelihood as in (2.30), but over all members of the
A-cluster and with respect to A-cluster thresholds τ a. The (log-)likelihood
function for the A-cluster a has the following form:
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La =
∏
i∈I(a)

∏
o

(λoπi|ao)
γio , (2.31)

la =
∑
i∈I(a)

∑
o

γio lnλo +
∑
i∈I(a)

∑
o

γio
∑
j

lnπ
(j)
k(j)|ao (2.32)

∝
∑
i∈I(a)

∑
o

γio
∑
j

lnπ
(j)
k(j)|ao. (2.33)

The full form of the log-likelihood function in (2.32) may be used to assess the
fit of A-clusters.

Once the new estimates of distributions within O-clusters and new threshold
estimates for every A-cluster are computed, the next iteration of the main loop
may begin.

2.2.2 Clustering using expected values of latent variables

This approach is a way to overcome computational problems connected with
the latent model-based clustering presented in Section 2.2.1. Instead of using
computationally demanding probabilities of hyperrectangular cut-outs of the
multivariate normal distribution, an expected value of latent variables z for ev-
ery hyperrectangle is computed and used in classical clustering procedures. For
the sake of computational simplicity, independence of all variables is assumed
analogous to step 3 of the previous section.

Theoretically, any clustering procedure can be used. Here, I consider hi-
erarchical clustering when the number of clusters is unknown, and k-means
clustering when the number of clusters is known.

Initialisation At the beginning, all cases are classified into a single O-cluster
for which multivariate spherical standard normal distribution is assumed. Next,
all cases are classified into a single A-cluster and thresholds corresponding to
the quantiles of the standard normal distribution are assumed.

Step 1 In step 1 expected values of the latent variables z are computed for
every person conditional on the A- and O- cluster the person belongs to. Due to
the independence assumption, this may be done separately for every univariate
zj . Then, these expected values are clustered in a standard way using e.g.
hierarchical or k-means clustering.

Step 2 In step 2 parameters of the latent distribution are computed for every
O-cluster using the maximum likelihood method. The (log-)likelihood for the
O-cluster o is:
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Lo =
∏
a

∏
r

πnaor

r|ao , (2.34)

lo = lnLo =
∑
a

∑
r

naor lnπr|ao (2.35)

= no
∑
a

∑
r

par|o lnπr|ao (2.36)

∝
∑
a

pa|o
∑
r

pr|ao lnπr|ao. (2.37)

In the above equations naor denotes the number of answered response patterns
r in the intersection of the A-cluster a and the O-cluster o, no is the number of
persons in the O-cluster o, par|o is the proportion of response patterns r given
in the A-cluster a in relation to the size of the O-cluster o (i.e. naor/no), pa|o is
the proportion of members of the A-cluster a in the O-cluster o (nao/no) and
pr|ao is the proportion of the number of response patterns r in the intersection
of appropriate A- and O- clusters.

Step 3 In step 3 individuals are A-clustered in similar manner as in Sec-
tion 2.2.1, i.e. the optimal individual thresholds are estimated first and then,
depending on the chosen approach, appropriate values are clustered using stan-
dard procedures, such as hierarchical or k-means clustering. Since, contrary to
the latent model-based O-clusters, we have hard O-clusters and the latent vari-
ables zj are assumed to be independent, the individual log-likelihood is simply
the product of j marginal probabilities from equation (2.16) with τ a replaced
by τ i.

Step 4 In step 4 A-cluster specific thresholds are estimated by maximising
likelihood in an analogous manner as used in step 2, but with respect to the
vector of thresholds τ a:

La =
∏
o

∏
r

πnaor

r|ao , (2.38)

la = lnLa =
∑
o

∑
r

naor lnπr|ao (2.39)

= na
∑
o

∑
r

par|o lnπr|ao (2.40)

∝
∑
o

po|a
∑
r

pr|ao lnπr|ao. (2.41)

Once new thresholds are estimated, a new iteration of the main loop may
begin.
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Chapter 3

Implementation

This chapter describes implementation of the methods presented in Chapter 2.
Due to general character of Algorithm 1, these methods were implemented as a
set of functions in R language (R Development Core Team, 2009). This allows
flexible construction of the main loop of Algorithm 1 using various functions
depending on the chosen building blocks of the algorithm. In this chapter I
present and describe examples of the main loop of the algorithm for both vari-
ants presented in Sections 2.2.1 and 2.2.2 constructed with a set of functions
I implemented. In all listings ,these functions are coloured violet; for the sake
of simplicity, in all listings X represents the data matrix containing categorical
responses on the scale from 1 to 5.

3.1 Latent model-based O- & hierarchical A- clus-
tering

Listing 3.1 presents a sample code for the procedure described in Section 2.2.1.
In this variant, O-clustering is performed using latent model-based clustering,
whereas A-clustering is carried out using hierarchical clustering of thresholds.

1 ###

### Latent model -based O- and hierarchical A- clustering.

3 ###

5 iters <- list()

7 a.part <- rep(1, nrow(X))

aclust <- list(thrs=matrix(qnorm (1:4/5) , nrow =1))

9 no <- 4

oclust <- list(p.mat=v2mx(rep(1:no,length=nrow(X)),no))

11
for (i in 1:10) {

13 print(paste("Iteration",i))

15 ## Steps 1,2

## Latent model -based O-clustering:

17 oclust <- latent.Mclust(data=X, no=no , aclust=a.part ,

aclust.thrs=aclust$thrs , p.mat=oclust$p.mat)

fit.value(lMclust=oclust)

19
## Step 3

19
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21 ## Estimating individual thresholds given O-clusters

ind.thrs <- estimate.ind.thresholds(data=X,

oclust.pars=oclust$o.pars , p=oclust$p.mat)

23 pairs(ind.thrs)

25 ## A-clustering

ind.thrs.r <- apply(ind.thrs ,c(1,2), to.range ,4)

27 ad <- dendrogram(ind.thrs.r)

a.part <- clusters(3,ad)

29 abarplots(data=X, aclust=a.part)

31 ## Step 4

## Computing thresholds for A-clusters

33 aclust <- estimate.cluster.thresholds(data=X, aclust=a.part ,

oclust.pars=oclust$o.pars , p=oclust$p.mat)

fit.value(lMclust=oclust ,aclust=aclust)

35 plot.thrs(aclust$thrs , c=2)

37 ## Saving iteration:

iters[[i]] <- list(oclust=oclust , ind.thrs=ind.thrs , ad=ad,

a.part=a.part , aclust=aclust)

39 }

Listing 3.1: A sample code for latent model-based O- & hierarchical A-
clustering.

In the first step in Listing 3.3, before the algorithm begins, a list iters is
created. It holds all objects created in every iteration, which allows tracing of
the course of the algorithm.

Initialisation The algorithm starts with setting up an initial A-partition.
Here, all observations are classified into a single A-cluster with thresholds cor-
responding to the quantiles of the standard normal distribution. Latent model-
based O-clustering requires some starting values for the EM algorithm used for
estimating O-clusters. This may be the initial partition of data or parameters
of the mixture distribution. In this case, I set the number of O-clusters in the
variable no to 4 and define a starting partition using a matrix of γio’s. Function
v2mx in line 10 converts the vector of repeating 1 to 4 sequences into a matrix
with the number of rows equal to the length of the vector and four columns.
In every row of the matrix a 1 is put in a column indicated by the value of the
corresponding vector’s entry and the remaining entries of the matrix are filled
with 0s. In this way every person is classified into one of the O-clusters and,
if the number of cases is a multiple of the number of assumed O-clusters, all
clusters have equal size.

Steps 1 and 2 As mentioned in Section 2.2.1 steps 1 and 2 are merged. The
whole latent model-based clustering is performed by function latent.Mclust.
The required input in this function is a data matrix, the number of O-clusters to
estimate, parameters of the A-clusters and a starting point for the EM algorithm
- in this example the matrix defined in the initialisation step.

The object returned by latent.Mclust function may be used to assess the
quality of fit by function fit.value, which evaluates the fit function in (2.24).

Step 3 In step 3, individual thresholds are estimated by maximising the log-
likelihood function given by (2.30) for every person. This is done by function
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estimate.ind.thresholds. These individual thresholds can be visualised using
e.g. pairs function. Extreme values of the “outer” thresholds are a frequently
seen pattern, which may lead to irrelevant partitions from the scale usage point
of view. To avoid this, all thresholds’ values are truncated to interval [-4,4] by
applying function to.range to every entry of matrix ind.thrs. The result is a
matrix of truncated thresholds ind.thrs.r, used for actual A-clustering. This
is done using dendrogram function, which performs hierarchical clustering and
displays the resulting dendrogram in order to facilitate the choice of the number
of clusters. When the number of clusters is chosen, partitioning of data is done
using function clusters, which is merely a wrapper for the standard R function
cutree. Function abarplots displays barplots showing the distribution of the
categories in all created A-clusters.

To use a different method of A-clustering rather than direct clustering of
thresholds, one must change lines 25 - 29 in Listing 3.1. Listing 3.2 presents a
sample code for A-clustering using induced probabilities and the ARS measure.
First, individual thresholds are transformed into induced probabilities using
function tau2prob. Then, the ARS measure is computed. Since there are
5 categories and the rating scale is symmetric, new categories span from -2
to 2. Finally, dendrogram function is applied to the probabilities combined
with the ARS measure. Since the ARS measure has a different scale than the
probabilities, it is scaled by a factor of 0.6. The rationale for using this particular
value is given in Section 4.3.1. The rest of the code remains unchanged.

## A-clustering using induced probabilities

2 ## and the ARS measure.

ind.thrs.p <- tau2prob(ind.thrs)

4 ars <- apply(ind.thrs.p,1,function(x) sum (( -2:2)*x))

ad <- dendrogram(cbind(ind.thrs.p,0.6* ars))

6 a.part <- clusters(3,ad)

abarplots(data=X, aclust=a.part)

Listing 3.2: A sample code for A-clustering using induced probabilities and the
ARS measure.

Step 4 In this step, thresholds τ a are estimated for every A-cluster. Function
estimate.cluster.thresholds maximises thelog-likelihood given in (2.33) us-
ing the A-partition from step 3 and thecurrent O-partition. Function fit.value

in line 34 evaluates the log-likelihood function given by (2.32) to assess the qual-
ity of fit. Estimated thresholds may be visualised using function plot.thrs.

Finally, all objects created in the current iteration are saved in the iters list
and a new iteration begins.

3.2 Clustering using expected values of latent
variables

Listing 3.3 presents a code for the faster procedure using expected values of
latent variables described in Section 2.2.2. To illustrate both the k-means and
hierarchical clustering, I use the former for O-clustering and the latter for A-
clustering.
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Similarly to the previous section, I start with creating a list which will store
all important objects created during the course of the algorithm.

Initialisation Contrary to the previous section, both types of partitions
must be fully specified in the initial step, so that the expected values
could be computed. Here, I classify all observations into single A- and
O- clusters. I choose standard normal quantiles as thresholds for the
A-cluster. The parameters of the initial O-cluster are estimated using
function distributions.within.oclusters, described along with function
plot.oclust in step 2, where they are typically used.

Step 1 Step 1 starts with computing expected values of the latent variables z.
This is done by function compute.latent.variables. Since all latent variables
zj are assumed to be independent, as explained in Section 2.2.2, each univariate
expected value is computed separately . Subsequently, all are combined in a vec-
tor. These vectors are computed for every person in a sample and form a matrix
denoted with z in Listing 3.3. The expected values are clustered in a standard
way using the kmeans function to find four clusters using 5 different starting
values. The best partition found is saved as o.part. Function oboxplots offers
a visualisation of newly estimated O-clusters.

Step 2 A multivariate normal distribution is assumed for every O-cluster
found in step 1. Parameters of each such distribution are estimated using func-
tion distributions.within.oclusters, which maximises the log-likelihood in
(2.37). Function plot.oclust offers visualisation of O-clusters. Quality of
fit may be assessed using function fit.value, which, given the output from
distributions.within.oclusters, returns the value of the full log-likelihood
function as defined in (2.36).

Step 3 A-clusters are built in a similar manner to the one described
in Section 4.2. First, individual thresholds are estimated using function
estimate.ind.thresholds. The only difference is that instead of (2.30), it
maximises (2.41). Then, like in Section 4.2, these thresholds are truncated to
the interval [-4,4] and clustered hierarchically. Alternatively, induced probabili-
ties with or without the ARS measure may be used in exactly the same manner
as in Listing 3.2.

Step 4 Step 4 goes exactly as in Section 4.2. Function
estimate.cluster.thresholds maximises for every A-cluster (2.41) to
estimate A-cluster specific thresholds. In this case, function fit.value

evaluates (2.40) and plot.thrs offers a visualisation of the thresholds.

After all the relevant objects are saved in iters, a new iteration begins.
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1 ###

### K-means O- and hierarchical A- clustering:

3 ###

5 iters <- list()

7 a.part <- rep(1, nrow(X))

o.part <- rep(1, nrow(X))

9 aclust <- list(thrs=matrix(qnorm (1:4/5) , nrow =1))

11 ## Initial global distribution

oclust <- distributions.within.oclusters(data=X, ncat=5,

oclust=o.part , aclust.thrs=aclust$thrs , aclust=a.part)

13 plot.oclust(oclust$pars , 1, ncat=5, r=3, c=3)

15 for (i in 1:10) {

print(paste("Iteration",i))

17
## Step 1

19 ## estimating expected values of latent variables z

z <- compute.latent.variables(data=X, oclust.pars=oclust$pars ,

oclust=o.part , aclust.thrs=aclust$thrs , aclust=a.part)

21
## O-clustering

23 okm <- kmeans(z,centers=4,nstart =5)

o.part <- okm$cluster

25 oboxplots(z, oclust=o.part , c=2)

27 ## Step 2

## Estimating parameters of the latent distributions

29 ## within O-clusters

oclust <- distributions.within.oclusters(data=X,

oclust=o.part , aclust.thrs=aclust$thrs , aclust=a.part ,

ncat =5)

31 for (o in 1:4) plot.oclust(oclust$pars , o, ncat=5, r=3, c=3)

fit.value(oclust=oclust)

33
## Step 3

35 ## Estimating individual thresholds given O-clusters

ind.thrs <- estimate.ind.thresholds(data=X,

oclust.pars=oclust$pars , oclust=o.part)

37 pairs(ind.thrs)

39 ## A-clustering

ind.thrs.r <- apply(ind.thrs , c(1,2), to.range , 4)

41 ad <- dendrogram(ind.thrs.r)

a.part <- clusters(3, ad)

43 abarplots(data=X, aclust=a.part)

45 ## Step 4

## Computing thresholds for A-clusters

47 aclust <- estimate.cluster.thresholds(data=X, aclust=a.part ,

oclust.pars=oclust$pars , oclust=o.part)

fit.value(aclust=aclust)

49 plot.thrs(aclust$thrs , c=2)

51 ## Saving iteration

iters[[i]] <- list(z=z, od=od , o.part=o.part , oclust=oclust ,

ad=ad, a.part=a.part , aclust=aclust)

53 }

Listing 3.3: Sample code for clustering using expected values of latent variables.
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Chapter 4

Simulated data results

In this chapter I present the results of applying the methods described in Chap-
ter 2 to simulated data. In the first section I describe simulated data. In the
following sections I present the results of applying the methods described in
Sections 2.2.1 and 2.2.2 to these data.

4.1 Data

To test the methods presented in Chapter 2, I simulated a dataset consisting
of nine categorical variables, each taking one of five values between 1 and 5.
The data were generated in two steps. First, latent variables z were simulated.
300 observations were drawn from each of 4 multivariate normal distributions
with different mean vectors, to get a dataset presented in Figure 4.1. As can
be seen in the figure, the nine variables form three blocks. The variables are
strongly correlated within the blocks, but there are no correlations between the
blocks. Then, every hundred in each O-cluster was categorised using thresholds
corresponding to one of three A-clusters. The thresholds used for every of these
A-clusters are shown in Table 4.2 and plotted in Figure 4.2. Additionally, Figure
4.3 depicts distributions of answered categories in every A-cluster. The effect of
varying thresholds on categorical data is illustrated in Figure 4.4. In this way
a dataset of 1200 observations is created, one hundred for every intersection of
the A- and O- clusters.

O-cluster Mean vector µTo

O1 [ 0 0 0 0.7 0.7 0.7 0.7 0.7 0.7 ]
O2 [ 0.7 0.7 0.7 -0.7 -0.7 -0.7 0 0 0 ]
O3 [ -0.7 -0.7 -0.7 0.7 0.7 0.7 -0.7 -0.7 -0.7 ]
O4 [ -0.7 -0.7 -0.7 0 0 0 0.7 0.7 0.7 ]

Table 4.1: Vectors of means of four simulated O-clusters.

25
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Figure 4.1: Scatterplot matrix of simulated latent variables.

A-cluster Vector of thresholds τTa

A1 [ −∞ -0.84 -0.25 0.25 0.84 ∞ ]
A2 [ −∞ -1.34 -0.75 -0.25 0.34 ∞ ] (ARS)
A3 [ −∞ -0.25 -0.2 0.2 0.25 ∞ ] (ERS)

Table 4.2: Thresholds used in three simulated A-clusters.
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Figure 4.2: Thresholds used in three simulated A-clusters.

Figure 4.3: Distributions of answers within true A-clusters.
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Figure 4.4: The effect of varying thresholds on categorised data. True latent
scores for variables z3 and z4 in O-cluster O1 and three different A-clusters are
shown on the left, whereas categorical answers resulting from applying appro-
priate A-cluster thresholds on z3 and z4 are presented on the right. Points in
the plots on the right have been jittered to visualise the number of points in
each category.
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4.2 Latent model-based O- & hierarchical A- clus-
tering

Due to a large computational burden connected with latent model-based clus-
tering, only limited testing was possible. I limited my computations to five
iterations of Algorithm 1, with five iterations of the EM algorithm within each.
Despite these severe limitations, the computations took more than a week on
a state-of-the-art 4-core machine. For the same reason I only used induced
probabilities with the ARS measure for A-clustering. For a discussion regard-
ing alternative ways of A-clustering see Section 4.3.2. To compensate for very
low numbers of iterations, I started algorithm with reasonable starting values
for O-cluster means, i.e. far from each other and near the true values. Ear-
lier experiments with latent model-based clustering suggest that the algorithm
finds good estimates, even if initialised with poor starting values. However, the
convergence in such cases may be very slow.

Values of both fit criteria are presented in Figure 4.5. It shows that the
values of both criteria increase monotonically, except for the initial iteration.
However, the five iterations long run is too short to speculate about monotonic
properties of the algorithm. In latent model-based clustering, due to using the
UBN approach instead of full information maximum likelihood, both fit criteria
have different scales, which makes choosing the best iteration more difficult
than in clustering of expected values presented in the next section. Fortunately,
because of the monotonic increase, the choice of the optimal iteration is simple
and the fit criteria unambiguously suggest the last iteration.

Figure 4.6 illustrates the four true simulated mixture components (without
considering the thresholds) and the true Γ-matrix of γio values. Figures 4.7 and
4.8 present the estimates of O-clusters after respectively 2nd and 5th iteration.
These figures show that well separated clusters O2 and O3 (“red” and “green”)
are easy to identify in the algorithm, but lying close to each other clusters O1 and
O4 pose some difficulties. As can be seen in Table 4.3, estimates of the means
lie within the range of 0.3 - 0.4 from the true values, but also much greater
differences are possible (variables 7 - 9 in the cluster O1). Figures 4.9 and 4.10
show that the thresholds estimates, in general, identify response patterns in
the data correctly, but these estimates are not very precise and do not change
substantially during the course of the algorithm. Tables 4.4 and 4.5 confirm the
above conclusions. The O-clusters O2 and O3 are nearly perfectly identified,
whereas the classification rate for the O-clusters O1 and O4 amounts to about
2/3. As far as A-clusters are concerned, the algorithm identifies two clusters
representing response styles quite well. The A-cluster A1 is also identified, but
the identification in here is not so sharp. The percentage of correctly classified
respondents in case of O-clusters amounts to 82.6% and in case of A-clusters to
76.2%.
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Figure 4.5: Values of the fit criteria for both sorts of clustering during the
algorithm’s course.

O-cluster Mean vector µTo

O1 [ -0.12 -0.07 -0.17 0.88 0.88 0.90 1.56 2.84 1.91 ]
O2 [ 1.03 1.03 1.02 -0.90 -0.89 -0.92 0.30 0.31 0.33 ]
O3 [ -0.93 -0.93 -0.91 1.03 1.05 1.03 -0.87 -0.90 -0.91 ]
O4 [ -0.63 -0.65 -0.62 0.43 0.39 0.40 0.83 0.78 0.84 ]

Table 4.3: Estimated means of four simulated O-clusters.

estimated O-clusters

true O-clusters O1 O2 O3 O4

O1 193 0 4 103
O2 0 300 0 0
O3 0 0 298 2
O4 100 0 0 200

Table 4.4: True and estimated O-clusters after fifth iteration of the algorithm.

estimated A-clusters

true A-clusters A1 A2 A3

A1 102 258 40
A2 334 66 0
A3 76 1 323

Table 4.5: True and estimated A-clusters after fifth iteration of the algorithm.
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Figure 4.6: Three true bivariate marginal distributions with respect to variables
3, 4, 6 and 7 of the four mixture components and corresponding true matrix Γ
of γio values. The Γ-matrix presented in the bottom-right panel consists of 1200
rows representing observations and 4 columns representing A-clusters. Colours
ranging from red to light yellow represent values from 0 to 1 respectively. Since
the true Γ-matrix consists of 0’s and 1’s only, only these two colours are present
in the picture.
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Figure 4.7: Three bivariate marginal distributions of four estimated mixture
components and the Γ-matrix after second iteration.
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Figure 4.8: Three bivariate marginal distributions of four estimated mixture
components and the Γ-matrix after fifth iteration.
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Figure 4.9: Thresholds estimates after second iteration.
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Figure 4.10: Thresholds estimates after fifth iteration.
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4.3 Clustering using expected values of latent
variables

I tested two variants of Algorithm 1 using expected values of latent variables.
In the first one, I used hierarchical clustering for both sorts of clustering. In
the second one, I used k-means clustering for the O-clusters and hierarchical
clustering for A-clusters, similarly to the procedure described in Section 3.2. In
both variants I also examine various approaches to A-clustering described in
step 3 in Section 2.2.1.

4.3.1 Hierarchical O- & A- clustering

In clustering using expected values, initial partitions with respect to both sorts
of clusters are required. Following recommendations given in Section 3.2 I start
with classifying all observations into single O- and A- clusters. After that, I
proceed with hierarchical O- and A- clustering, each time using Ward method
with Euclidean metric and choosing the true number of clusters. Apart from
Ward method, also single-, complete- and average- linkage as well as centroid
methods were examined, but none of them revealed better performance.

Figure 4.11a presents the dendrogram of the first iteration of O-clustering.
It suggests three rather than actual four clusters. A contingency table of the
true and estimated O-clusters after selecting four clusters is presented in Ta-
ble 4.6. We can see that, except for the O-cluster O1, all O-clusters are very
well identified already in the first iteration. The analogous dendrogram and
the contingency table for the first iteration of A-clustering are presented in Fig-
ure 4.11b and Table 4.7. Also here the dendrogram suggests a different to the
true number of clusters. In this case two or four rather than three. The con-
tingency table shows that the both A-clusters representing response patterns
are relatively easy to identify. However, respondents from the true A-cluster
A1 representing “normal” respondents have been distributed among all three
estimated A-clusters.

estimated O-clusters

true O-clusters O1 O2 O3 O4

O1 115 9 176 0
O2 1 0 0 299
O3 7 293 0 0
O4 297 0 3 0

Table 4.6: True and estimated O-clusters after first iteration of the algorithm.

The algorithm ran 40 iterations, after which both fit criteria defined in (2.36)
and (2.40) as well the parameters’ values practically do not change any more.
The values of the fit criteria for all 40 iterations are presented in Figure 4.12. We
see that after a few initial oscillations in the first few iterations, the algorithm
achieves an equilibrium and converges gradually to final values. However, as
shown later on, this is rather untypical behaviour for the analysed algorithm.
In most cases the algorithm changes both partitions during its course, which
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(a) (b)

Figure 4.11: Dendrograms of first iteration of the algorithm.

estimated A-clusters

true A-clusters A1 A2 A3

A1 159 177 64
A2 394 1 5
A3 76 0 324

Table 4.7: True and estimated A-clusters after first iteration of the algorithm.

may cause substantial fluctuations of the fit statistics. Another characteristic
of the algorithm is that even if convergence is achieved, it does necessarily
indicate the optimum. This is the case in this example: despite the fact that in
its course the algorithm converges to some value, the maximal value of the sum
of both statistics is achieved already in the second iteration, before the plateau
is achieved.

Figure 4.13 shows dendrograms for the second iteration of the algorithm,
whereas Tables 4.8 and 4.9 present corresponding contingency tables. Both
dendrograms give a stronger indication for the true number of clusters than
their equivalents from the first iteration, especially as far as O-clusters are con-
cerned. Of course, manual imposing of the correct number of clusters in the first
iteration may have a substantial influence. However, the contingency tables do
not indicate any improvement in the classification. In case of A-clusters, even
some deterioration can be noticed as members of the true A-cluster A2 are more
evenly distributed between estimated A-clusters A1 and A2. An examination of
the final thresholds of the three estimated A-clusters in Figure 4.14 shows that
the A-clusters A1 and A3 resemble relatively well the true thresholds. As for
A2, however, we see a typical for the clustering of thresholds effect of setting
outer thresholds to extremes, so that the probabilities for the corresponding
categories are practically equal to 0, and respondents who have not chosen any
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Figure 4.12: Values of the fit criteria for both sorts of clustering during the
algorithm’s course.

of the two lowest categories are clustered together. A comparison of the dis-
tributions of answers in the estimated (Figure 4.15) and the true (Figure 4.3)
A-clusters confirm this conclusion.

estimated O-clusters

true O-clusters O1 O2 O3 O4

O1 122 9 169 0
O2 0 0 0 300
O3 1 299 0 0
O4 299 0 1 0

Table 4.8: True and estimated O-clusters after iteration with the best fit.
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(a) (b)

Figure 4.13: Dendrograms of iteration with the best fit.

estimated A-clusters

true A-clusters A1 A2 A3

A1 261 76 63
A2 223 174 3
A3 6 70 324

Table 4.9: True and estimated A-clusters after iteration with the best fit.
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Figure 4.14: Thresholds of iteration with the best fit.

Figure 4.15: Distributions of answers within A-clusters in iteration with the
best fit.
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4.3.2 Effect of using alternative measures for A-clustering

A-clustering using induced probabilities

A direct use of individual thresholds in A-clustering results in a very strong
tendency to bind together respondents who did not choose some of the extreme
categories, which was also visible in the results presented in the previous sec-
tion. This effect is so strong that it often dominates all other possible response
patterns.

One way to overcome this shortcoming is to replace the thresholds with
probabilities. First, individual thresholds are estimated. Next, they are applied
to the standard normal distribution and probabilities between the thresholds,
hereinafter “induced probabilities”, are computed. These probabilities are clus-
tered instead of thresholds. The advantage of using probabilities is that they
are much more stable than the thresholds’ values, firstly because they sum to 1
and secondly because the lack of responses in extreme categories does not result
in extreme values of corresponding probabilities.

Similarly to the previous section, I iterated the algorithm 40 times. Both fit
measures for this approach are presented in Figure 4.16. The maximum value
for both criteria is achieved already in the second iteration, so I choose the
results of this iteration as final. Figure 4.17 presents both final dendrograms.
Whereas the O-cluster dendrogram indicates quite clearly the true number of
clusters, the A-cluster dendrogram may indicate any number of clusters between
2 and 4. Tables 4.10 and 4.11 present contingency tables of the true and the es-
timated clusters. Comparing these tables with their counterparts from Section
4.3.1 reveals that whereas there is practically no change in the quality of the
O-clusters, the A-clusters are better identified. Using probabilities instead of
thresholds leads to a situation where in the A-cluster A1 there are 344 correctly
classified cases compared to 261, in the A-cluster A2 there are 182 compared
to 174; only in the A-cluster A3 there is a slight decrease from 324 to 318 cor-
rectly classified cases. All in all, replacing thresholds with induced probabilities
increased the classification rate on the examined dataset from 59.5% to 70.3%.
The barplots presented in Figure 4.18 reveal two characteristics which are typi-
cal for A-clusters obtained through clustering of induced probabilities. The first
one is that they are not so sensible to the usage of extreme categories by the
respondents as the A-clusters obtained through clustering of thresholds. All the
A-clusters presented in Figure 4.18 contain answers in all categories. Even in
the A-cluster A2 there are four answers in the first category. Unfortunately,
the second characteristic of these clusters is that they tend to be difficult to
interpret. The A-cluster A2 can be used again as a good illustration of the
problem. Although it generally resembles the true A-cluster A2, the peaks in
category 3 and 5 combined with a relatively low fraction of category 4 is difficult
to explain.



42 CHAPTER 4. SIMULATED DATA RESULTS

Figure 4.16: Values of fit criteria for both sorts of clustering during the algo-
rithm’s course.

estimated O-clusters

true O-clusters O1 O2 O3 O4

O1 121 10 169 0
O2 1 0 0 299
O3 0 300 0 0
O4 299 0 1 0

Table 4.10: True and estimated O-clusters after iteration with the best fit.

estimated A-clusters

true A-clusters A1 A2 A3

A1 344 49 7
A2 215 182 3
A3 14 68 318

Table 4.11: True and estimated A-clusters after iteration with the the best fit.
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(a) (b)

Figure 4.17: Dendrograms of iteration with the best fit.

Figure 4.18: Distributions of answers within three estimated A-clusters.
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A-clustering using induced probabilities and the ARS measure

One problem of A-clustering that remains unsolved after changing from the
direct clustering of thresholds to the clustering of induced probabilities is the
difficulty in identifying the clusters which represent the acquiescence response
style. I address this problem by an explicit inclusion of an ARS measure in the
set of variables used for clustering. The construction of the ARS measure is
presented in step 3 in Section 2.2.1.

Since this measure has a different scale than the probabilities, and the scale
of a variable affects the strength with which this variable influences clustering,
I use a scaling factor for it. To find the optimal value for the scaling factor I
examined various values in the range from 0 to 1.5.

Figure 4.19: Effect of using different values of the scaling factor on A-clustering
results.

Figure 4.19 presents the sums of the log-likelihoods defined in (2.36) and
(2.40) for 20 iterations long runs of Algorithm 1. Sixteen values differing by
0.1 were tried. The figure presents selected results only. Figure 4.20 shows
percentages of correctly classified cases for corresponding runs.

First of all, one may notice a great level of agreement between the log-
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Figure 4.20: Effect of using different values of the scaling factor on A-clustering
results.

likelihood values and the classification rates, which shows that the former is
a good measure of assessing the model quality. The examination showed that
the increasing of the scaling factor from 0 to about 0.5 increases the fit quality,
values between 0.5 and 1.2 give the best results and that further increasing of
the parameter value over 1.2 causes a decrease in model quality. The highest
values of both measures were achieved using the scaling factor of 0.9. However,
the fact that those values were achieved in the initial and possibly unstable
phase of the algorithm and that after this phase both measures reveal a clear
decline, casts some doubt on the stability of this result. Thus, I chose 0.6 as the
optimal value of the scaling factor, for which the algorithm, after a few initial
iterations, achieves a high, stable level with the maximum value only slightly
lower than the maximum achieved with the scaling factor of 0.9.

After choosing the optimal value for the scaling factor, I examine the per-
formance of A-clustering using induced probabilities and the ARS measure.
Similarly to the previous cases, I run 40 iterations of the algorithm and choose
the best iteration according to the fit criteria. Values of these criteria for all 40



46 CHAPTER 4. SIMULATED DATA RESULTS

iterations are presented in Figure 4.21. The sum of both criteria achieves its
maximal value in the 16th iteration and this one is chosen as the final. Figure
4.22 presents dendrograms for both sorts of clusterings. Like in other cases,
the O-cluster dendrogram clearly indicates four O-clusters. The interpretation
of the A-cluster dendrogram is much more vague, because it suggests two or
three clusters. Tables 4.12 and 4.13 reveal that the classification with respect to
market segments is practically identical to the previously investigated variants,
whereas the classification of the response styles has substantially improved. In
particular, the discrimination between the clusters A1 and A2 is much clearer.
Including the ARS measure in the A-clustering process not only improved the
rate of correctly classified respondents to 81.7%, but also made the interpreta-
tion of the obtained clusters much easier. Figure 4.23 shows that the resulting
A-clusters resemble the true clusters quite exactly.

Figure 4.21: Values of fit criteria for both sorts of clustering, for A-clustering
using induced probabilities and ARS measure.

estimated O-clusters

true O-clusters O1 O2 O3 O4

O1 122 9 169 0
O2 1 0 0 299
O3 0 300 0 0
O4 299 0 1 0

Table 4.12: True and estimated O-clusters after iteration with the best fit.
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(a) (b)

Figure 4.22: Dendrograms of iteration with the best fit.

estimated A-clusters

true A-clusters A1 A2 A3

A1 112 272 16
A2 391 9 0
A3 77 6 317

Table 4.13: True and estimated A-clusters after iteration having the best fit.

Figure 4.23: Distributions of answers within three estimated A-clusters.
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4.3.3 K-means O- & hierarchical A- clustering

This section presents the results of applying expected values version of Al-
gorithm 1 with k-means algorithm used for O-clustering and hierarchical A-
clustering, i.e. in the same way as described in Section 3.2. In the two sections
that follow, I combine this approach with two possible ways of A-clustering: (1)
clustering of thresholds and (2) clustering of induced probabilities with the ARS
measure.

A-clustering using thresholds

Similarly to Section 4.3.1 the algorithm is initialised by classifying all observa-
tions to single O- and A- clusters. After that, the main loop of the algorithm is
iterated 40 times, and the true number of clusters is chosen in every iteration.

Tables 4.14 and 4.15 present the accuracy of both sorts of clustering after
the first iteration. Here we can observe a similar situation to the one in Section
4.3.1, i.e. the O-clusters as well as the two A-clusters representing response
styles are well identified already in the first step, but the respondents from the
A-cluster A1 are distributed among other clusters.

estimated O-clusters

true O-clusters O1 O2 O3 O4

O1 243 53 1 3
O2 0 0 300 0
O3 4 0 0 296
O4 14 286 0 0

Table 4.14: True and estimated O-clusters after first iteration of the algorithm.

estimated A-clusters

true A-clusters A1 A2 A3

A1 75 148 177
A2 7 392 1
A3 329 71 0

Table 4.15: True and estimated A-clusters after first iteration of the algorithm.

Figure 4.24 depicts changes of the fit criteria for the whole course of the
algorithm. It shows a possibly unstable behaviour of the algorithm quite clearly.
After the initial oscillation, it seems to converge like in Section 4.3.1. However,
gradual changes in expected values of z lead to a reclassification of the O-clusters
in iteration 22. After that, the algorithm continues with higher values for both
fit criteria. The iterations 29 to 40 exhibit another characteristic pattern of the
algorithm’s behaviour, i.e. oscillating between two partitions. Also similarly to
Section 4.3.1 the maximal fit value is achieved before the final iteration, in this
case in the 28th.

An examination of Tables 4.16 and 4.17 shows that applying the algorithm
does not lead to better identification of the true clusters. The final O- as well
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Figure 4.24: Values of fit criteria for both sorts of clustering during the algo-
rithm’s course.

estimated O-clusters

true O-clusters O1 O2 O3 O4

O1 220 3 1 76
O2 0 0 300 0
O3 1 298 0 1
O4 59 0 0 241

Table 4.16: True and estimated O-clusters after iteration with the best fit.

as both A- partitions show poorer resemblance of the true partitions than their
counterparts from the first iteration. Discrepancy between the final O-partition
found by k-means and the true O-partition is also stronger than in hierarchical
O-clustering despite higher values of the fit criteria for both sorts of clusters.
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estimated A-clusters

true A-clusters A1 A2 A3

A1 261 76 63
A2 223 174 3
A3 6 70 324

Table 4.17: True and estimated A-clusters after the iteration with the best fit.
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A-clustering using induced probabilities and the ARS measure

Due to the substantial improvement in the A-clustering that resulted from the
replacement of the thresholds with the induced probabilities together with the
ARS measure in Section 4.3.1 I decided to examine the effect of this change in
combination with O-clustering using the k-means algorithm. In this section I
present the performance of this combination on the distance of 40 iterations of
Algorithm 1.

Figure 4.25: Values of fit criteria for both sorts of clustering.

estimated O-clusters

true O-clusters O1 O2 O3 O4

O1 3 1 84 212
O2 0 300 0 0
O3 298 0 0 2
O4 0 0 292 8

Table 4.18: True and estimated O-clusters after iteration with the best fit.

The values of the fit criteria are depicted in Figure 4.25. As can be seen,
having reached a relatively high plateau in the initial phase, the model fit de-
creases significantly after the 21st iteration. The sum of both fit criteria achieves
its maximum in the 8th iteration. Despite the lack of improvement in later iter-
ations, this combination outperforms all the previously analysed variants. The
sum of both criteria in the 8th iteration amounts -12 312.99. This is better
than the analogous A-clustering combined with hierarchical O-clustering, which
achieved the fit equal to -12 638.64 and much better than the third ranked
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Figure 4.26: A-dendrogram of the optimal iteration.

variant of k-means O-clustering combined with A-clustering of thresholds (-14
355.23). The A-cluster dendrogram for the optimal iteration of this variant
presented in Figure 4.26 is almost identical to its equivalent in Section 4.3.2
(A-clustering using induced probabilities and the ARS measure) and similarly
suggests two or three A-clusters. Contingency tables presented in Tables 4.18
and 4.19 show that this variant identifies all O- and A- clusters correctly. In
every O-cluster at least 2/3 of cases are correctly classified and an analogous
value for the A-clusters amounts 3/4. The distributions of selected categories
within the A-clusters presented in Figure 4.27 are very close to those obtained
when this variant of A-clustering was combined with hierarchical O-clustering.
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estimated A-clusters

true A-clusters A1 A2 A3

A1 301 91 8
A2 14 383 3
A3 23 69 308

Table 4.19: True and estimated A-clusters after iteration with the best fit.

Figure 4.27: Distributions of answers in three estimated A-clusters.
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4.4 Conclusions

Table 4.20 summarises the results obtained in this chapter. It presents all ex-
amined combinations of various variants of O- and A- clustering along with the
fit statistics and classification rates under the limitations imposed in my simula-
tions. We can clearly see that the great computational cost of latent model-based
O-clustering supported with its appealing theoretical properties does not lead
to high classification accuracy. Quite the opposite, the O-cluster classification
rate of the latent model-based clustering is clearly the poorest. Furthermore,
the classification rate with respect to response styles is the worst among the
combinations using A-clustering of probabilities and the ARS measure (P+A
A-clustering). Different definitions of the log-likelihoods for the latent model-
based clustering and methods based on expected values make these measures
impossible to compare between the two groups of algorithms. What is most
striking among methods that use the expected values of the latent variables is
a great difference between the variants using P+A A-clustering compared with
other variants of A-clustering. Using P+A A-clustering improves both sorts
of clustering by about 1000 points in terms of log-likelihoods. This gain in
log-likelihood is mainly the consequence of much better A-clustering. The clas-
sification rates for A-clusters are even up to 20% better than in case of other
variants of A-clustering. Although the results of O-clustering are quite stable for
all examined variants even here, combined with k-means O-clustering the P+A
variant of A-clustering brings some gain in the classification quality. Changing
from the A-clustering of thresholds to probabilities does not seem to improve
the log-likelihood, but the classification rate for A-clustering of probabilities
is higher by about 7%. Finally, both variants which use O-clustering perform
better than their hierarchical counterparts. However, the differences are rather
small both in terms of log-likelihoods and classification rates. The only excep-
tion is the 3% difference in the O-clustering classification rates between the two
variants using P+A A-clustering.

An important aspect one should keep in mind when comparing the three ap-
proaches to A-clustering, is the tendency to identify particular kinds of thresh-
olds, which is not reflected in Table 4.20. The main problem of direct clustering
of thresholds is its great sensitivity to the lack of answers in extreme categories.
In such situation, the algorithm tends to cluster together respondents who did
not choose extreme categories. According to professor Leisch’s suggestion, in
order to weaken this tendency I used induced probabilities. Clustering prob-
abilities weakens substantially the above mentioned tendency. However, the
resulting clusters may be difficult to interpret and it does not solve the other
problem, which is difficulty in identifying respondents exhibiting acquiescence.
This problem is addressed by explicit including an ARS measure among vari-
ables used in the clustering. This increases greatly the classification accuracy
and results in well interpretable clusters.
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O-clustering A-clust.1 Total LL2 O-LL3 A-LL4 O-CR5 A-CR6

k-means P+A -12 312.99 -6 156.68 -6 156.31 91.83% 82.67%
hierarchical P+A -12 638.64 -6 313.54 -6 325.10 88.92% 81.67%
k-means T -14 355.23 -7 177.64 -7 177.59 88.25% 63.25%
hierarchical P -14 381.38 -7 164.60 -7 216.78 88.92% 70.33%
hierarchical T -14 590.46 -6 914.71 -7 675.75 88.67% 63.33%
latent model-based P+A -10 090.157 -1 852.977 -8 237.187 82.60% 76.20%

Legend:

1. A-clustering: T - thresholds, P - probabilities, P+A - probabilities and the ARS measure.

2. Sum of the O-cluster and A-cluster log-likelihoods.

3. O-cluster log-likelihood.

4. A-cluster log-likelihood.

5. O-cluster classification rate.

6. A-cluster classification rate.

7. For latent model-based clustering different definitions of log-likelihood are used.

Table 4.20: Performance of various variants of O- and A- clustering.
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Chapter 5

Real data example

This chapter presents an application of the methods presented in the thesis to
real data. Due to a significant computational expense of the latent model-based
clustering and the fact that the number of O-clusters is unknown, I present
here only methods that are based on clustering expected values of latent vari-
ables, described in Section 2.2.2. For both types of clustering, I use hierarchical
clustering.

5.1 Data

In my analysis I use the data on various attributes of fast food chains collected
by Dolnicar et al. (2010). Respondents were asked to express their level of
association between five fast food brands and ten attributes. The attributes
are presented in Table 5.1. From the dataset described in (Dolnicar et al.,
2010) I use seven-point scale responses only, which reduces the dataset to 715
respondents. For the purpose of the analysis, the data were recoded so that 7
means the strongest association, 1 the strongest dissociation and 4 is a neutral
answer. In my analysis I limit O-clustering to two brands only: McDonald’s and
Subway. Using all brands could result in a large number of O-clusters, which
would make the interpretation of the results difficult. The choice of the two

No. Attribute

1 yummy
2 fattening
3 greasy
4 fast
5 cheap
6 tasty
7 healthy
8 disgusting
9 convenient
10 spicy

Table 5.1: Attributes examined in the survey.

57
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brands mentioned above is motivated by the fact that they are likely to evoke
very different associations as they target different fast food market segments.
However, in A-clustering I use all the five brands to utilise the whole available
information about the response styles.

Figure 5.1 presents distributions of answers for all examined attributes for
both of the analysed brands. We see that McDonald’s is usually associated
with most of the attributes. The three exceptions are “healthy”, “disgusting”
and “spicy” which recall slightly negative association or no association at all.
Subway is associated with the half of examined attributes, two attributes do not
recall neither positive nor negative association and three attributes: “fattening”,
“greasy” and “disgusting”, first two of which are particularly characteristic,
are strongly dissociated with this brand. Despite these differences, marginal
distributions of categorical answers within both brands are very similar and do
not deviate from the distribution that was computed using all brands, which we
can see in Figure 5.2. This figure also shows that positive categories are more
often chosen than negative ones. This is to be expected given the information
from Figure 5.1 and is probably the result of the questions’ content rather than
of the response style. However, the method presented in this thesis does not
allow answering this question. Instead, it allows to identify clusters with respect
to deviation from this “standard” response behaviour.

Figure 5.1: Distributions of categorical answers for McDonald’s and Subway
within examined attributes.

5.2 Analysis

It was a priori not clear how many O- and A- clusters there were to be ex-
pected in the analysed dataset. One way to determine the number of clusters
is to apply hierarchical clustering and to use information from the dendrogram.
However, analyses using simulated data suggest that in Algorithm 1 the struc-
ture of the dendrogram might be strongly influenced by the number of clusters
chosen in the previous iteration. To avoid possible bias caused by this effect, I
examined every potential combination of O- and A- clusters in a separate run.
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Figure 5.2: Marginal distributions of categorical answers in the whole dataset
as well as in McDonald’s and Subway subsets.

An initial exploratory analysis suggested that there were three O-clusters and
no more than ten A-clusters. Thus, I ran twenty iterations of Algorithm 1 for
every fixed combination of two to five O-clusters and two to ten A-clusters.
In every combination, I used induced probabilities with the ARS measure for
A-clustering. This gave thirty-six possible combinations.

To choose the optimal number of clusters various criteria were examined.
Maximal log-likelihoods achieved for every of the thirty-six combinations are
presented in Figure 5.3. It is little surprise that almost all of the log-likelihoods
increase with the increasing number of both O- and A- clusters. Because of
that I adapt to the proposed method classical model selection criteria AIC and
BIC. Contrary to usual models, in the analysed method there are two sorts of
log-likelihoods, separately for O- and A- clusters. To account for both of them,
I use their sum instead of the standard 2 ln(L) term. This leads to the following
formulae:

pAIC = − ln(LOA) + 2× npar , (5.1)

pBIC = − ln(LOA) + ln(N)× npar , (5.2)

where ln(LOA) is the sum of O- and A- log-likelihoods and npar equals 2× J ×
O + (K − 1) × A. It is important keep in mind that in this example J equals
50 and not 20. Although only 20 variables are used for O-clustering, means and
variances must be estimated for all 50, because we need them for estimating
optimal thresholds. Since the above formulae differ from the original AIC and
BIC definitions I refer to them as pseudo- AIC/BIC and denote pAIC and pBIC
respectively.

Figure 5.4 presents the values of the both criteria for all estimated models.
They both suggest a model with five O-clusters and nine A-clusters. However,
it is likely that further increase of the number of clusters would lead to even
lower values of these criteria. Unfortunately, the solutions with many clusters
are difficult to interpret and do not seem to be useful in understanding differ-
ences between respondents, so I look for solutions with fewer clusters. Also an
examination of the dendrograms did not give a clear answer how many clus-
ters to choose. In this situation I decided to choose the combination which is
best interpretable. In my opinion, the combination of three O-clusters and six
A-clusters produces the most meaningful clusters, and this one I choose as final.
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Figure 5.3: Maximal log-likelihoods achieved for every examined combination
of O- and A- clusters.

Figure 5.5 shows distributions of the expected values of the latent variables
in three estimated O-clusters. All the three clusters allow a good interpretation.
The O-cluster O1 consists of average fast food customers. They share typical,
moderately intense associations connected with both brands, which very closely
resemble marginals shown in Figure 5.1. The O-cluster O2 contains Subway
fans. In general they hold similar associations to the members of O-cluster
O1, but their associations regarding Subway are more extreme. They clearly
associate Subway with good taste (“yummy”, “tasty”) and healthy food (not
“greasy”, not “fattening”, “healthy”). The answers for McDonald’s in this clus-
ter are much the same like those in the cluster O1, but also here we can see
some signs of positive attitude toward fast food: rather positive answers for
“yummy” and “tasty”, a lack of negative association with “healthy”. To con-
clude, this O-cluster may be summarised as grouping people with non-negative
attitude toward fast food in general and particularly positive opinion about
Subway. The O-cluster O3 exhibits the clearest pattern of the three O-clusters.
Whereas the respondents in this cluster do not differ substantially from the
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Figure 5.4: Pseudo- AIC and BIC values for examined combinations of O- and
A- clusters.

population average with respect to their opinion about Subway, they are great
McDonald’s antagonists. They represent a very strong and homogeneous view
that McDonald’s is unhealthy (“greasy”, “fattening”, not “healthy”) and does
not taste good (not “yummy”, not “tasty”). The strength of these negative
associations is underlined by positive associations with “disgusting” (the only
such case in all O-clusters).

Figure 5.6 presents the six estimated A-clusters. To describe them, I use
the response styles listed by Baumgartner and Steenkamp (2001, Table 1). The
A-cluster A3 resembles quite exactly the marginal distribution of answers in
the whole dataset shown in Figure 5.2 and reflects the most typical response
pattern for the whole population. I will use this A-cluster as a reference for
comparisons with other A-clusters. Compared to the cluster A3, the clusters
A2 and A4 represent narrow response range (RR). Both distributions exhibit a
clear unimodal pattern where the middle categories are much more frequently
chosen than the extreme ones. The difference between these clusters lies in
acquiescence. Whereas in the cluster A4 mode of the distribution lies in the
middle of the scale, in the cluster A2 it is shifted by one and lies at category 5.
If the scale was balanced, it would mean that the cluster A2 exhibits acquies-
cence. However, in this case I only conclude that the respondents in the cluster
A2 exhibit stronger acquiescence than those in the cluster A4. Even stronger
concentration around the mode represent respondents in the cluster A5. This
an example of midpoint responding (MPR). This response style in this survey
is often result of the lack of knowledge of some of the rated brands. In such sit-
uations the respondents often choose middle categories for all attributes which
results in the pattern presented in Figure 5.6. The two remaining A-clusters:
A2 and A6 are examples of extreme response style (ERS). They both contain
respondents who exhibit stronger than average tendency to use extreme cat-
egories. The barplots show that these are the only clusters where modes lie
(also) at extreme categories. The difference between these two clusters is much
the same as between the clusters A1 and A4, i.e. in the level of acquiescence.
Whereas in the cluster A2 the distribution of answers is quite symmetrical, in
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the A6 positive categories are clearly more often chosen than the negative ones.
The closer look at the distribution of responses in the cluster A6 reveals that
it resembles quite exactly the distribution in the A-cluster A3 with the only
difference that the extreme categories are about twice as likely to be chosen.
So, similarly as in case of the clusters A1 and A4 we have here two clusters, of
which one is symmetric and the other left skewed.

Figure 5.7 shows the thresholds’ estimates for all the A-clusters. A relatively
symmetric distribution around 0 of most of those thresholds might suggest that
the skewed distributions in Figure 5.6 are result of true respondents’ opinions
rather than of acquiescence. However, by the interpretation of the thresholds
one must keep in mind how scale and location of the latent variables are fixed in
the initialisation step (see description of the initialisation step in Section 2.2.1
for details). Initial mapping of the categories to the intervals defined by the
quantiles of the standard normal distribution causes that always a distribution
close to the population marginal will result in thresholds similar to the quantiles.
This phenomenon is clearly visible in the Figure 5.8, where the most similar to
the global marginals A-cluster A3 is compared to the standard normal quantiles.
Because of that, unless any additional measures are used (see e.g. Baumgartner
and Steenkamp, 2001, for proposals), any inference about acquiescence and
response range in the estimated A-clusters should be relative to the population’s
marginal.

A-clusters

O-clusters A1 A2 A3 A4 A5 A6 Σ

O1 87 77 97 47 17 41 366
O2 60 58 68 48 16 33 283
O3 7 21 12 5 2 19 66

Σ 154 156 177 100 35 93 715

Table 5.2: Cross-tabulation of estimated O- and A- clusters.

Finally, I examine the bivariate distribution of respondents between the es-
timated O- and A- clusters to check whether the O-clusters do not contain
information about response styles or the A-clusters do not contain information
about opinions. If that was the case, the both sorts of clusters should be highly
dependent and form groups where certain O-clusters coincide only with certain
A-clusters. This bivariate distribution is presented in Table 5.2. As we can
see this distribution does not reveal any visible dependence. Every A-cluster
is represented in every O-cluster. Although the χ2 and the Fisher’s tests of
independence suggest rejecting the null hypothesis with p-values respectively
0.0016 and 0.00441, this dependence does not seem to threaten the validity of
the results in a considerable manner. Consequently, I conclude that neither the
O-clusters are distorted substantially by the response styles nor the A-clusters
by the market segments.

1simulated p-value based on 105 replicates
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Figure 5.5: Three final O-clusters.
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Figure 5.6: Six final A-clusters.
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Figure 5.7: Thresholds’ estimates for the final A-clusters.
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Figure 5.8: Comparison of thresholds’ estimates for A-cluster A3 and quantiles
of standard normal distribution.



Chapter 6

Discussion

In my thesis I deal with the problem of scale usage heterogeneity. Despite the
vast existing literature describing this problem from psychological perspective
there are only a few articles approaching this problem from statistical point of
view and suggesting methods capable of accounting for heterogeneity in using
rating scales. Instead of correcting for scale usage heterogeneity at an individual
level, as it is commonly proposed, the method presented in the thesis consists
in clustering respondents with respect to their response styles and use the clus-
ters’ estimates for accounting for the response style. The rationale for such an
approach is an assumption that there is no need to treat the respondents’ re-
sponse styles individually. I assume that there are only several typical response
styles which are exhibited by most of the respondents and cluster them trying
to identify those styles. This allows, on the one hand, to reduce greatly number
of parameters to estimate, on the other hand, to still have fixed, interpretable
descriptions of the response styles (contrary to the random effects approach
proposed by some authors) and to obtain a segmentation of respondents with
respect to their response styles. I found in the literature only one article also
proposing clustering with respect to response styles (Van Rosmalen et al., 2010).
However, in this article the authors use the item response approach, contrary
to the underlying latent variables approach used here.

To account for categorical character of data I use two different approaches.
The first one - latent model-based clustering - seems to be a natural approach.
Theoretically, it allows to estimate parameters of underlying latent multivari-
ate mixture distribution without the need of estimating individual values of the
underlying latent variables. However, both computation of the probabilities of
hyperrectangular cut-offs of the multivariate normal distribution and the EM al-
gorithm for estimating parameters of mixture distributions are computationally
intensive and combination of both in the latent model-based clustering makes a
computational burden connected with this method practically prohibitive, even
with application of modern estimation methods, such as the “Underlying Bivari-
ate Normal” approach. To overcome these computational problems I propose a
second approach, which is based on computing and clustering expected values
of the latent variables. This approach offers relatively easy to compute methods
at the cost of some simplifying assumptions.

Another problem to solve was to find a method to cluster respondents with
respect to their response style. Within the proposed framework, a natural way
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to do this seems to be estimating thresholds for every respondent, and then,
clustering them using any of the standard clustering techniques. However, this
method proved to be very sensitive to usage of extreme categories, or strictly
speaking, the lack of thereof. This practically dominated any other response
patterns present in data. To solve this problem, following the suggestion of pro-
fessor Leisch, I tried using probabilities induced by applying estimated thresh-
olds to the standard normal distribution. This method solved the problem of
sensitivity against using extreme categories. However, it still had problems with
identifying acquiescence and often resulted in A-clusters that were difficult to
interpret. To address also this problem, I explicitly included an ARS measure in
A-clustering. The simulation results show that this improves greatly quality of
estimated A-clusters and also results in A-clusters which are easier to interpret.
Also real data application shows that this approach gives reasonable results.

The methods based on expected values of latent variables presented in the
thesis gave reasonable results applied both to simulated and to real data. Nev-
ertheless, there is still some potential for improvement and further research.
Firstly, except for its computational requirements, latent model-based cluster-
ing is still a very interesting approach to O-clustering. Improvements in esti-
mation methods for this approach could make it feasible. Two potential areas
for improvement are developing faster estimation methods or finding an alter-
native distribution for the multivariate normal, which would have a closed-form
integral. Another direction for further work is the reduction of simplifying as-
sumptions used in expected values approach. The most important of them
seems to be ignoring of correlations between latent variables. Finally, it is still
not obvious what is the optimal way of clustering individuals with respect of
response styles. Using induced probabilities with the ARS measure gives good
results, but there still may be better approaches.



Appendix A

Explanation of the notation
used in the thesis

Symbol Explanation

a Variable indexing A-clusters.
o Variable indexing O-clusters.
i Variable indexing individuals in the analyzed dataset.
j Variable indexing questions in the analyzed dataset.

k(j) the j-th element of the vector k.
r Variable indexing all possible response patterns (vectors k). A

“response pattern” is defined as a vector of categorical answers to
all questions in the questionnaire.

naor Number of response patterns r given by the members of the A-
cluster a and the O-cluster o in the analyzed dataset.

no Number of the members of the O-cluster o in the analyzed dataset.
pa|o A fraction of members of the A-cluster a in the O-cluster o.
pr|ao A fraction of answers r in the intersection of the A-cluster a and

the O-cluster o.
ṗa|o A fraction of probabilities γio of the members of the A-cluster a

in the O-cluster o.
ṗr|ao A fraction of probabilities γio with responses r in the intersection

of the A-cluster a and the O-cluster o.
xij Categorical answer of the individual i to the question j.
zij Latent continuous variable representing the “real” attitude of the

individual i to the question j.
k A vector of integers representing categorical answers to all ques-

tions in the questionnaire.
xi A vector of categorical answers of the individual i to all questions

in the questionnaire.
zi A vector of the values of the latent attitudes of the individual i

to all questions in the questionnaire.
A Number of A-clusters.

Table A.1: Notation summary.
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Symbol Explanation

O Number of O-clusters or a set of all O-clusters’ indexes (depending
on context).

J Number of questions in the questionnaire.
K Number of categorical answers.
N Number of cases in the analyzed dataset.
µoj Expected value of the latent attitude to the question j in the

O-cluster o.
σ2
oj Variance of the the latent attitude to the question j in the O-

cluster o.
ρjl Correlation between variables j and l.
τa,k A threshold between the categories k and k+1 in the A-cluster a.
γio Probability that the person i belongs to the O-cluster o (in latent

model-based O-clustering).
λo Proportion of the O-cluster o in the mixture density.

π
(j)
k|ao Probability of choosing category k in the question j by a person

belonging to the A-cluster a and the O-cluster o.

π
(jl)
k,m|ao Probability of choosing category k in the question j and category

m in the question l by a person belonging to the A-cluster a and
the O-cluster o.

πr|ao Probability of choosing the response pattern r by a person be-
longing to the A-cluster a and the O-cluster o.

µo A vector of expected values of the latent attitudes to all questions
in the questionnaire in the O-cluster o.

Γ A matrix of γio values.
Σo Covariance matrix of the latent attitudes to all questions in the

questionnaire in the O-cluster o.
τ a A vector of thresholds in the A-cluster a.
τ i A vector of individual thresholds for the individual i.
I() A set of respondents for which condition in brackets is true.
I(a) A set of respondents belonging to the A-cluster a.∫

dN(µ,Σ) An integral over the density function of the (possibly multivariate)
normal distribution with parameters µ and Σ.

Table A.1: Notation summary.
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