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Abstract

Ordinal variables appear in many field of statistical research. Since
working with simulated data is an accepted technique to improve models
or test results there is a need for providing correlated ordinal random
values with certain properties like marginal distribution and correlation
structure. The present paper describes two methods for generating such
values: binary conversion and a mean mapping approach. The algorithms
of the two methods are described and some examples of the outcomes are
shown.

Keywords: correlated ordinal values, marginal probabilities, correlation struc-
ture.

1 Introduction

A common method for testing a statistical model is the use of artificial data. A
desired set of properties will be embedded in the dataset and then fitted mod-
els will be checked for the presence of these effects or how they behave under
different experimental conditions. The generation of arbitrary multivariate nor-
mal random numbers is straightforward: draw values from the standard normal
distribution, multiply with an appropriate root of the desired covariance ma-
trix, and add the mean. Other distributions mostly call for more complicated
solutions, because linear combinations in most cases do not preserve the type of
distribution. Sampling count variables with a given correlation is described in
Erhardt and Czado [2010]. For correlated binary data numerous methods have
been proposed. For example Leisch et al. [1998] convert the desired covariance
matrix for the binary data into a correlation matrix for normally distributed
data. Therefrom normally distributed random numbers are drawn and bina-
rised afterwards. For ordinal values only few suggestions can be found. Gange
[1995] uses an iterative proportional fitting algorithm with pre specified proba-
bility structure of the marginals and pairwise and higher associations. Because
of these higher order associations it becomes unpractical for large number of
categories or variables. The method by Yu and Yuan [2004] works only for or-
dinal longitudinal data and needs an underlying regression model. Even more
restrictions like independent and identical distribution among the variables are
necessary for the method of Biswas [2004]. A more general solution can be found
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in Demirtas [2006]. His method relies on simulated binary variates as an inter-
mediate step. Ordinal values are collapsed into binary ones, then correspond-
ing binary correlations are computed in a way that ensures that reconversion
delivers the original distribution properties. The first techniques (called binary
conversion) proposed in the following is similar to the Demirtas [2006] approach,
but has fewer restrictions on the kind of correlations used. Also an alternative
approach will be presented which outperforms the binary conversion in many
situations and is suitable in more situations.

In Section 2 we give an introduction to the generation of correlated multi-
variate binary variates following Leisch et al. [1998]. In Section 3 two techniques
for generating multivariate ordinal variates are proposed. Section 4 shows some
examples and compares the performanceces of the methods, and Section 5 ends
the paper with some concluding remarks.

2 Generation of Correlated Binary Random Vari-
ates

In this section we deal with variables which take only binary values, typically
encoded by {0, 1}, and denoted by A,B, . . . or A1, A2, . . ., respectively. Real-
izations of these random variables will be denoted by corresponding lower case
letters. The distribution of a single variable A is fully determined by the value
pA := P(A = 1), which is also the expectation of A, i.e., EA = pA. The variance
is given by Var(A) = pA(1− pA).

Consider two binary random variables A and B which are not necessarily
independent. Then the joint distribution of A and B is fully determined by pA,
pB and either pAB , pA|B or pB|A where

pAB := P(A = 1, B = 1)
pA|B := P(A = 1|B = 1)
pB|A := P(B = 1|A = 1)

The remaining probabilities can easily be derived from Bayes Theorem.
This bivariate binary distribution can easily be generalized to the multivari-

ate case, where A = (A1, . . . , Ad)′ ∈ {0, 1}d is a vector with (possibly dependent)
binary components. For a full description of an unrestricted distribution of A
we need 2d − 1 parameters, e.g., the probabilities of all 2d possible values of A
(the last probability is determined by the condition that the sum equals 1).

A computationally fast method for generating samples from a binary vector
A = (A1, . . . , Ad) is the following: Let X = (X1, . . . , Xd) be a d-dimensional
normally distributed vector with mean µ and covariance matrix Σ. Normally
distributed random variates can easily be transformed to binary values by com-
ponentwise thresholding: ai = 1⇐⇒ xi > 0. Due to the construction

pAi = P(Ai = 1) = P(Xi > 0)

and
pAiAj

= P(Ai = 1, Aj = 1) = P(Xi > 0, Xj > 0),
where P(Xi > 0) depends, for fixed variances, only on µi whereas P(Xi >
0, Xj > 0) depends on µi, µj and on the correlation between Xi and Xj .
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Let Yi be a 1-dimensional normally distributed random variable with mean
µi and unit variance. Hence,

P(Yi > 0) = P((Yi − µi) > −µi) = P((Yi − µi) ≤ µi)

where the second equality holds, because (Yi − µi) is normally distributed with
zero mean. If we choose µi to be the pAi

-quantile of the standard normal distri-
bution and restrict all variances to 1, then P(Yi > 0) = pAi

. The mean vector
µ is determined by the desired marginal probabilities pAi

for the components of
A.

What is still missing is a relation between the covariance matrix Σb of the
binary variables and the covariance matrix Σ of the normal distribution. By
specifying a covariance matrix only pairwise relations between the components
of the d-dimensional sample can be specified. In the following we will restrict
ourself to the bivariate case for ease of notation.

The correlation coefficient rAB of two binary random variables A and B can
be written as

rAB = pAB − pApB√
pA(1− pA)pB(1− pB)

(1)

such that
pAB = rAB

√
pA(1− pA)pB(1− pB) + pApB . (2)

If A and B are converted from two normal random variables X and Y as
described above, then pAB can be related to the normal distribution by

pAB = P(X > 0, Y > 0) = P(X̄ > −µX , Ȳ > −µY ) = L(−µX ,−µY , ρ),

where X̄ := X − µX and Ȳ := Y − µY have a standard bivariate normal
distribution with correlation coefficient ρ = ρXY ; and

L(h, k, ρ) := P(X̄ ≥ h, Ȳ ≥ k) =
∫ ∞

h

∫ ∞

k

φ(x, y; ρ)dydx

with

φ(x, y; ρ) = 1
2π
√

1− ρ2
exp

(
−x

2 − 2ρxy + y2

2(1− ρ2)

)

being the density function of (X̄, Ȳ ).
The values of L(h, k, ρ) are tabulated [see the references in Patel and Read,

1982, p. 293f] or can be obtained by numerical integration or Monte Carlo sim-
ulation [Leisch et al., 2009]. The complete algorithm is summarized in Table 2.

Note that not every positive definite matrix is a valid covariance matrix for
binary data. So some conditions on the common probabilities and therefore on
the correlation matrix should be checked before the algorithm draws random
numbers. The conditions, besides 0 ≤ pAi

≤ 1, are

max(pAi
+ pAj

− 1, 0) ≤ pAiAj
≤ min(pAi

, pAj
) i 6= j

and

pAi + pAj + pAk
− pAiAj − pAiAk

− pAjAk
≤ 1 , i 6= j, i 6= k, j 6= k.

These conditions are necessary but not sufficient for d ≤ 3.
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3 Generation of Correlated Ordinal Random Vari-
ates

Without loss of generality we want to generate ordinal variables A taking integer
values {1, 2, . . . , k}. The corresponding distribution is defined by probability
vector

pA =




P(A = 1)
P(A = 2)

...
P(A = k)


 =




p1
p2
...
pk


 ,

for notational reasons we also need the distribution function

fA(a) =





p1 , a = 1
p2 , a = 2
... ,

...
pk , a = k

.

When generating random numbers for d ordinal variables A1, . . . , Ad the user
needs to specify the marginal probabilities pAi

, i = 1, . . . , d and a positive semi-
definite correlation matrix

C =




Cor(A1, A1) Cor(A1, A2) . . . Cor(A1, Ad)
Cor(A2, A1) Cor(A2, A2) . . . Cor(A2, Ad)

...
...

. . .
...

Cor(Ad, A1) Cor(Ad, A2) . . . Cor(Ad, Ad)


 .

Higher order interactions will not be taken into account. Note that because
we use {1, 2, . . . , k} as possible values, observed values correspond to ranks and
Pearson and Spearman correlation are identical (only the latter makes sense for
ordinal data in general).

In the case of binary random variates the region were two variables simultane-
ously equal one determines the correlation between them. There is a direct link
between their common probabilities and their correlation. With more than two
categories this region is not that clear cut. The correlation now rather depends
on other regions i.e. the common probabilities P(A = a,B = b) a = 1, ..., kA

b = 1, ..., kB as well. Considering this, two randomization methods that allow
specification of means and correlations will be presented in this section.

3.1 The Binary Conversion Method

Demirtas [2006] used a simple splitting rule to convert the ordinal variables
into binary variables. The lower half of the categories is represented by the
binary 0 and the upper half by binary 1. A simulation study is carried out
every time new random variables are drawn to identify the binary correlations.
In the following we show a closed form solution for a very similar algorithm.
The main idea is to draw binary random variables with the correct correlation
structure, and conditional on the outcome of the binary variable convert an
independent uniform random to an ordinal variable with the desired marginals
and correlations.
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Let Ã := A− 1
k − 1 denote a linear transformation of A to new outcome values

0, 1
k , . . . ,

k−1
k . The expectation is given by

E(Ã) =
k∑

a=1

a− 1
k − 1pa (3)

We also define a new binary variable Ab with distribution

f(Ab) :=
{

1− E(Ã) , Ab = 0
E(Ã) , Ab = 1

such that E(Ã) = E(Ab). In addition we get

E(ÃB̃) =
kÃ∑

a=1

kB̃∑

b=1

a− 1
kÃ − 1

b− 1
kB̃ − 1P(Ã = a− 1

kÃ − 1 , B̃ = b− 1
kB̃ − 1)

=
kA∑

a=1

kB∑

b=1

a− 1
kA − 1

b− 1
kB − 1P(A = a,B = b)

= P(Ab = 1, Bb = 1) = E(AbBb)

and therefore

Cov(Ã, B̃) = E(ÃB̃)− E(Ã)E(B̃) = E(AbBb)− E(Ab)E(Bb)
= Cov(Ab, Bb). (4)

Using Var(Ab) = E(Ã)(1− E(Ã)) we get

Var(Ã) =
k∑

a=1
(a− 1
k − 1 − E(Ã))2pa

and analogously for Var(B̃). Due to the linearity of the conversion Cor(Ã, B̃) =
Cor(A,B). The function that maps the desired correlation Cor(A,B) on the
binarised correlation Cor(Ab, Bb) is a straight line passing through the origin
and with slope m that depends only on the probability vectors pA and pB :

Cor(Ã, B̃) = Cor(A,B) = mCor(Ab, Bb) (5)

For four examples of probability vectors for two variables this is shown in Fig-
ure 1.

Combining (5) and (4) gives

m−1 = Cor(Ab, Bb)
Cor(Ã, B̃)

=

Cov(Ab, Bb)√
Var(Ab)Var(Bb)

Cov(Ã, B̃)√
Var(Ã)Var(B̃)

=

√
Var(Ã)Var(B̃)

Var(Ab)Var(Bb)

= √
mAmB ,
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Figure 1: Linear transformation functions. The m-factors to translate ordinal
correlation specifications to binary correlations.

with mA = Var(Ã)/Var(Ab) and mB = Var(B̃)/Var(Bb).
Using

kA∑

a=1
( a− 1
kA − 1 − E(Ã))2E(Ã) = E(Ã)(1− E(Ã)) +

kA∑

a=1
( a− 1
kA − 1)2E(Ã)− E(Ã)

=
kA∑

a=1
( a− 1
kA − 1)2E(Ã)− 2E(Ã)2 + E(Ã)2

= −E(Ã)2 +
kA∑

a=1
( a− 1
kA − 1)2E(Ã)

we get
Var(Ã) = Var(Ab) + E(Ã2)− E(Ab).
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The conditional distribution of A given Ab is

f(A|Ab) =
{
f(A|Ab = 0) =: f0(A)
f(A|Ab = 1) =: f1(A)

For Ab = 1 the conditional distribution f1(A) is simply

f1(A) =

a− 1
k − 1pa

E(Ã)
= (a− 1)pa∑k

l=2(l − 1)pl

,

for Ab = 0 we can use

P(Ab = 0) = 1− E(Ã)

= 1−
k∑

a=1

a− 1
k − 1pa = 1− 1

k − 1(E(A)− 1)

= k − E(A)
k − 1 =

∑k
a=1 kpa −

∑k
a=1 apa

k − 1 =

=
k∑

a=1

k − a
k − 1pa =

k−1∑

a=1

k − a
k − 1pa,

to obtain

f0(A) =

k − a
k − 1pa

1− E(Ã)
= (k − a)pa∑k−1

l=1 (k − l)pl

.

The resulting cumulative distribution functions are therefore

F0(A) =

∑a
l=1

k − l
k − 1pl

1− E(Ã)

and

F1(A) =

∑a
l=2

l − 1
k − 1pl

E(Ã)
.

The final algorithm is to draw binary variables Ab with a certain correlation
structure. In addition we independently draw from the uniform distribution
U(0, 1) and use the inversion method with F1(A) and F0(A) to obtain ordinal
values. The binary variables Ab shift the distribution of A to the left or right to
get correlations, the particular choice of Ab guarantees that the overall marginal
probabilities are still correct. The whole algorithm is summarized in Table 3

Figure 1 shows that not all correlations can be calculated because the binary
correlations are restricted to [−1, 1]. Hence, the correlation range of the algo-
rithm is smaller than that of the method in Demirtas [2006]. But while they
use simulation runs we have an analytical solution for the transformation which
leads to far shorter run times. Since range may be more important than speed,
the next section gives an alternative approach with broader range.
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3.2 The Mean Mapping Method

Our mean mapping method to generate ordinal random numbers with a given
correlation structure generalizes the concepts of Leisch et al. [1998] from the
binary to the ordinal case. Let X again be a random variable with standard
normal distribution N(0, 1). To get an ordinal variable with cumulative distri-
bution F we cut X at the F (a)-quantiles q of the standard normal distribution:

P(A = a) = P(qFA(a−1) < X < qFA(a)) a = 1, . . . , kA X ∼ N(0, 1), (6)

Figure 2 shows an example for k = 4 categories.

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

x

f(
x)

N(0,1)

q_0.15

q_0.4

q_0.75

1 2 3 4

Figure 2: Thresholding the normal distribution.
pA = (0.15 0.25 0.35 0.25)T ⇒ qA ≈ (−1.04 − 0.25 0.67 +∞)T

Let A and B be two ordinal variables obtained by cutting X and Y , respec-
tively. The joint probabilities can then be written as

P(A = a,B = b) (7)

= FAB(a, b)− FAB(a− 1, b)− FAB(a, b− 1) + FAB(a− 1, b− 1)
= ΦXY (qFA(a), qFB(b), ρXY )− ΦXY (qFA(a−1), qFB(b), ρXY ) (8)

−ΦXY (qFA(a), qFB(b−1), ρXY ) + ΦXY (qFA(a−1), qFB(b−1), ρXY )

with q being a quantile of the univariate standard normal distribution and
P(X < h, Y < k) = ΦXY (h, k, ρXY ) the bivariate standard normal distribu-
tion function with correlation coefficient ρXY . Equation (9) links probabilities
P(A = a,B = b) to ρXY . For the binary case P(A = 1, B = 1) = E(AB) defines
the whole distribution. Hence, the natural generalization for the ordinal case
would be to evaluate the relationsship between E(AB) and ρXY on a regular
grid and interpolate the results. For this we would need to specify the complete
joint distribution of FAB . By rearranging terms we can find a scalar (called τ
below) which only depends on the marginal distribution of A and B and the
desired correlation Cor(A,B).
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The expectaion of AB is defined as

E(AB) =
kA∑

a=1

kB∑

b=1
ab P(A = a,B = b)

=
kA∑

a=1

kB∑

b=1
ab
(
FAB(a, b)− FAB(a− 1, b)

−FAB(a, b− 1) + FAB(a− 1, b− 1)
)

=
kA∑

a=1

kB∑

b=1
mabFAB(a, b). (9)

By simple algebra we get the multiplicities mab as

mab = ab− a(b+ 1)− (a+ 1)b+ (a+ 1)(b+ 1) = 1, a < kA b < kB

mab = a[b− (b+ 1)] = −a = −kA, a = kA b < kB

mab = b[a− (a+ 1)] = −b = −kB , a < kA b = kB

mab = ab = kAkB , a = kA b = kB

(10)
Combining Equations (9) and (10) gives

E(AB) =
kA−1∑

a=1

kB−1∑

b=1
FAB(a, b)− kB

kA−1∑

a=1
FA(a)

−kA

kB−1∑

b=1
FB(b) + kAkB .

We use the first term of this equation as proxy τ which will be linked to ρXY .
Rearranging terms in the usual definition of the correlation gives

τAB =
kA−1∑

a=1

kB−1∑

b=1
FAB(a, b)

= Cor(A,B)
√

Var(A)Var(B) + E(A)E(B)

−kAkB + kA

kB−1∑

b=1
FB(b) + kB

kA−1∑

a=1
FA(a),

which depends only on the marginal distribution of A and B and correlation
Cor(A,B). We now evaluate the relationship between ρXY and τAB on a regular
grid and interpolate results. Inverting this relationsship gives the necassary ρXY

for given τAB . Drawing random numbers now amounts to drawing bivariate nor-
mal variates with zero mean, unit variance and correlation ρXY . These are then
cut at quantiles defined by the marginal distributions of A and B, respectively.
Generalization to more than two ordinal variates is again straightforward. The
complete algorithm for the mean mapping method can be found in Table 4.

4 Simulation and Comparison

For comparison of the two methods we generated random ordinal values from
both methods and compared the results with respect to runtime and precision.
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As the restrictions on the correlation matrix are stronger for the binary con-
version method than for the mean mapping method, matrices are chosen which
are feasible for both methods. As dimensions d and number of categories k we
used 3, 6 and 9 in both cases. One million random values were drawn for each
algorithm with each of the 9 setups.

4.1 Performance

The runtime of the algorithms is depicted in Figure 3. It can be seen that the
runtime of the binary conversion method is very low even for the case with 9
variables and 9 categories. The runtime of the mean mapping method depends
on both, the numbers of categories and the number of variables.
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binary conversion
mean mapping
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Figure 3: Runtime of binary and mean mapping method.

4.2 Accuracy

Figures 4, 5 and 6 give information about how exact the methods generate
random numbers. For this purpose the following quantities were calculated:
Average absolute distance of correlation matrix entries:

µC = 1
q2

q∑

i=1

q∑

j=1
|C[i,j] − Ĉ[i,j]|

Maximum absolute distance of correlation matrix entries:

mC = max
i,j

(|C[i,j] − Ĉ[i,j]|)
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Average absolute distance of probability vector entries:

µP =
q∑

i=1

kAi∑

ai=1
|P[i,ai] − P̂[i,ai]|

with Ĉ the empirical correlation matrix computed from the observed random
numbers and P̂ relative frequencies of the cases computed from the observed
random numbers.
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Figure 4: Average absolute differences of sample and input correlations.

Figure 4 shows that all values for µC do not exceed 0.003 with the largest
average distance being at µC = 0.002967 which is a good result. One can also
note that the mean mapping method is the numerically most stable. A similar
result is indicated by figure 5 which presents themC values. Again both methods
are similar, but the mean mapping method is better.

Figure 6 shows that both methods have similar low values for µP , which
had to be expected because all methods use a categorization of the normal
distribution which is analytically exact. One can also see that for more categories
µP does slightly shrink, which is what we can expect due to the increased number
of observations P̂[i,ai] that enter the formula. Summarizing the results, µC , mC

and µP show that both methods have sufficient precision for most practical
applications.

4.3 Comparison with Demirtas

In Demirtas [2006] different setups were use to show the flexibility of the algo-
rithm. In this section we show that the mean mapping approach can cover all
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Figure 5: Maximum absolute differences of sample and input correlations.
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Cor Mat 1 Cor Mat 1 Cor Mat 3
A1 A2 A3 A1 A2 A3 A1 A2 A3

A1 1 0.4 0.3 1 0.5 0.25 1 0.7 0.7 A1
A2 0.4 1 0.4 0.5 1 0.5 0.7 1 0.7 A2
A3 0.3 0.4 1 0.25 0.5 1 0.7 0.7 1 A3

Table 1: Three example correlation matrices

these setups and can also extend these setups to higher correlations. Table 1
contains two examples of correlation matrices which were used by Demirtas
[2006] and a third matrix which is not feasible for his method. As marginal
probabilities we used

PA1 =




0.05
0.25
0.55
0.15


 , pA2 =



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0.10
0.10
0.70


 , pA3 =




0.20
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0.25
0.40
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Figure 7: Boxplot of frequency of 100 simulation runs with Correlation matrix
1. Red circles show input probabilities.

Figure 7 shows the frequencies of 100 simulation runs were 100 random
ordinal variates were drawn. The red circles represent the desired values, which
are close to the median of the observed values in each case. Figure 8 shows the
three values of the upper triangle of the observed correlation matrices with the
red circles again representing the desired correlation. It can be seen, that the
algorithm works quite good in all three scenarios.
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Figure 8: Boxplot of correlations of 100 simulation runs. Red circles show input
correlations.

5 Conclusions

In the paper we presented two new methods for generating ordinal values with
given correlation structure. The binary method is very fast but has the disad-
vantage that the set of feasible correlation matrices is limited by the algorithm.
The mean mapping method overcomes this problem and is as accurate as the
binary solution at the price of longer runtime. With more and more statistical
models working on samples of ordinal values were normality cannot be assumed,
the presented method are valuable tools for simulation studies. A freely avail-
able open source implementation for the statistical computing environment R
[R Development Core Team, 2010] is described in the appendix.
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Step Expression

1 Calculate the probabilities

ht1
t2,t3 :=

∫∞
h

∫∞
k
φX1X2(gt2 , gt3 ,Σt1)dxdy

with (X1, X2) ∼ N(0,Σt1) and covariance matrix

Σt1 =
(

1 gt1

gt1 1

)

where gt1 = t1
20 and t1 = −20,−19, . . . , 20,

gt2 = t2
20 and t2 = 0, 1, . . . , 20 and

gt3 = t3
20 and t3 = 0, 1, . . . , 20 receiving grid g1,2,3.

2 Fit a function fh|gt2 ,gt3
(h) : h→ gt1 to grid g1,2,3.

3 Set

h∗ = Cor(A1, A2)
√

Var(A1)Var(A2) + E(A1)E(A2)

and calculate the correlation coefficient

fh|gt2 ,gt3
(h∗) = Cor(X1, X2).

4 Repeat step 3 for all combinations (i, j) of variables, receiving

Cbin =




Cor(X1, X1) Cor(X1, X2) . . . Cor(X1, Xd)
Cor(X2, X1) Cor(X2, X2) . . . Cor(X2, Xd)

...
...

. . .
...

Cor(Xd, X1) Cor(Xd, X2) . . . Cor(Xd, Xd)


,

which is the multivariate normal correlation matrix.
5 Sample n times from the d-dimensional normal distribution with

covariance matrix Cbin and mean vector

µbin =




−qp(A1)
−qp(A2)

...
−qp(Ad)




receiving the n× d sample matrix Sbin.
6 Reconvert Sbin to the ordinal sample matrix S using

S[ei] =
{

1 , 0 ≤ Sbin
[ei]

0 , 0 > Sbin
[ei]

Table 2: Generation of multivariate binary random numbers via Leisch et al.
[1998]
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Step Statement

1 Calculate the weighted mean µ1 := E(Ab
1) =

∑k1
a=1

a− 1
k1 − 1pa.

2 Calculate the binarised variance Var(Ab
1) = E(Ã)(1− E(Ã)).

3 Calculate the ordinal variance Var(Ã1) =
∑k1

a=1( a− 1
k1 − 1 − E(Ã))2pa.

4 Calculate the slope m1 := Var(Ã1)/Var(Ab
1).

5 Do steps 1-4 for each of the d variables receiving

µb =




µ1
µ2
µ3
...
µd




and m =




m1
m2
m3
...
md




.

6 Calculate the new binary correlation matrix via

Cor(Ab
i , A

b
j) =

{
Cor(Ai, Aj)/√mimj , i 6= j

1 , i = j
getting

Cb =




Cor(Ab
1, A

b
1) Cor(Ab

1, A
b
2) . . . Cor(Ab

1, A
b
d)

Cor(Ab
2, A

b
1) Cor(Ab

2, A
b
2) . . . Cor(Ab

2, A
b
d)

...
...

. . .
...

Cor(Ab
d, A

b
1) Cor(Ab

d, A
b
2) . . . Cor(Ab

d, A
b
d)




7 Sample n times from d-dimensional binary distribution with
correlation matrix of the binary distribution Cb and mean vector µb

getting the n× d binary sample matrix Sb

8 Draw from U(0, 1) md times receiving m× d matrix U .
9 Reconvert Sb for each variable with originally more than two

categories to the ordinal sample matrix S using the
samples from 7 and 8 and the assignment

S[ei] = k :
{

F0(k − 1) < U[ei] < F0(k) , if Sb
[ei] = 0

F1(k − 1) < U[ei] < F1(k) , if Sb
[ei] = 1

for k ∈ {1, 2, . . . , ki} with cumulative distribution functions

F0(A) =

∑a
l=1

k − l
k − 1pl

1− E(Ã)
and

F1(A) =

∑a
l=2

l − 1
k − 1pl

E(Ã)
.

for each entry S[ei] independently.

Table 3: Generating multivariate ordinal random numbers via binary conversion
method
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Step Expression

1 Calculate the probability

ht
1,2 :=

∑k1−1
a1=1

∑k2−1
a2=1 ΦX1X2(qFA1 (a1), qFA2 (a2))

with (X1, X2) ∼ N(0,Σ1,2
t ) and covariance matrix

Σ1,2
t =

(
1 gt

gt 1

)

where gt = t

100 and t = −100, . . . , 100, receiving grid g1,2.

2 Fit a function f1,2(h) : h→ g to grid g1,2.
3 Set

h∗ = Cor(A1, A2)
√

Var(A1)Var(A2) + E(A1)E(A2)
−k1k2 + k1

∑k2−1
a2=1 FA2(a2) + k2

∑k1−1
a1=1 FA1(a1)

and calculate the correlation coefficient

f1,2(h∗) = Cor(X1, X2).
4 Repeat steps 1-3 for all combinations (i, j) of variables, receiving

Ca =




Cor(X1, X1) Cor(X1, X2) . . . Cor(X1, Xd)
Cor(X2, X1) Cor(X2, X2) . . . Cor(X2, Xd)

...
...

. . .
...

Cor(Xd, X1) Cor(Xd, X2) . . . Cor(Xd, Xd)


,

which is the multivariate normal correlation matrix.
5 Sample n times from the d-dimensional normal distribution with

covariance matrix Ca and mean vector µa = 0 receiving
the n× d sample matrix Sa.

6 Reconvert Sa to the ordinal sample matrix S using

S[ei] = k : {FAi
(k − 1) < Φ(Sa

[ei]) < FAi
(k)}

for k ∈ {1, 2, . . . , ki} and Φ being the univariate standard normal
distribution function.

Table 4: Generation of multivariate ordinal random numbers via the mean map-
ping method.
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Appendix

We provide an implementation of all the methods used in this paper as add on
package orddata [Kaiser and Leisch, 2010] for R [R Development Core Team,
2010]. It extends package bindata [Leisch et al., 2009] which contains the method
of Leisch et al. [1998] for drawing correlated binary data, and will eventually
replace it. In this appendix we give a small manual how to use the methods for
the simulation study used in this paper.

The package can be downloaded from R-Forge and loaded into R using

> install.packages("orddata", repos = "http://R-Forge.R-project.org")

> library("ordata")

The main function of the package is rmvord(), which returns n observations
with given marginal probabilities probs and correlation structure Cor using the
mean mapping algorithm. probs is a list of probabilities for the variables where
length of list equals number of variables and the length of the probabilities
equals the number of items. The probs list for the example in section 4.3 looks
like this

> probs1 <- list(c(5, 25, 55, 15)/100, c(10, 10, 10, 70)/100,

+ c(20, 15, 25, 40)/100)

The first correlation matrix of Table 1 can be specified by

> Cor1 <- matrix(c(1, 0.4, 0.3, 0.4, 1, 0.4, 0.3, 0.4,

+ 1), 3, 3)

To draw n =100 observation one then has to call

> rmvord(n = 100, probs = probs1, Cor = Cor1)

If a faster production of correlated ordinal values is needed and the restrictions
to the correlation matrix do not apply the function

> rmvord_b(, n = 100, probs = probs1, Cor = Cor1)

does the same using the faster binary conversion method described in section 3.
For further details and examples, please see the package manual.
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