Identifying Copeland Winners in Dueling Bandits with Indifferences

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

a Institute of Informatics, University of Munich, Germany b Munich Center for Machine Learning, Germany</sup> ^cDepartment of Computer Science, Paderborn University viktor.bengs@lmu.de, eyke@lmu.de, willem.waegeman@UGent.be

- Given: Different arms (options) $a_1, \ldots, a_n \Longleftrightarrow 1, \ldots, n \Longleftrightarrow A$
- Action at time t: Choose a pair of arms $i_t \in \mathcal{A}$ and $j_t \in \mathcal{A} \setminus \{i_t\}$
- Observation at time t:

either $i_t \succ j_t$, i.e., arm i_t is strictly preferred over arm j_t

- or $i_t \prec j_t$, i.e., arm j_t is strictly preferred over arm i_t
- or $i_t \cong j_t$, i.e., neither i_t is strictly preferred over j_t nor the opposite *(indifference* between i_t and j_t)
- Stochastic feedback assumption: Each possible explicit observations is determined by one of the following matrices $P^{\succ}, P^{\prec}, P^{\cong} \in [0, 1]^{n \times n}$:

TL;DR

Extension of Copeland winner identification in dueling bandits for indifference feedback with novel lower bounds and a worst-case nearly optimal learning algorithm

DUELING BANDITS WITH INDIFFERENCES

Setting

- 1] Róbert Busa-Fekete, Balázs Szörényi, Paul Weng, Weiwei Cheng, and Eyke Hüllermeier. Top-k selection based on adaptive sampling of noisy preferences. In Proceedings of the International Conference on Machine Learning (ICML), pages 1094–1102, 2013.
- [2] Shubham Anand Jain, Rohan Shah, Sanit Gupta, Denil Mehta, Inderjeet J Nair, Jian Vora, Sushil Khyalia, Sourav Das, Vinay J Ribeiro, and Shivaram Kalyanakrishnan. PAC mode estimation using PPR martingale confidence sequences. In International Conference on Artificial Intelligence and Statistics (AISTATS), pages 5815–5852. PMLR, 2022.

[3] Tanguy Urvoy, Fabrice Clerot, Raphael Féraud, and Sami Naamane. Generic exploration and k-armed voting bandits. In Proceedings of International Conference on Machine Learning (ICML), pages 91–99, 2013.

$$
P_{i_t,j_t}^{\succ} = \mathbb{P}(i_t \succ j_t) \qquad P_{i_t,j_t}^{\prec} = \mathbb{P}(i_t \prec j_t) \qquad P_{i_t,j_t}^{\approx} = \mathbb{P}(i_t \cong j_t)
$$

 \rightsquigarrow A problem instance is characterized by $\mathbf{P} = ((P_{i,j}^{\succ}, P_{i,j}^{\cong}, P_{i,j}^{\prec}))_{i < j}$

Idea of POtential COpeland WInner STays Algorithm (POCOWISTA): 1. Duel arm i_t having highest potentially Copeland score with arm j_t having highest current Copeland score \sum_{i_t,j_t}^{∞} , $P_{i_t}^{\cong}$ 2. Conduct duel via efficient PPR-1V1 routine [2] to find mode of (P_t) $\left(\begin{matrix} \lambda \\ i_t, j_t \end{matrix}\right)$ $p\widetilde{\equiv}_{i_t,j_t}, P\widetilde{\prec}_{i_t,j_t}$ Algorithm POCOWISTA **Algorithm SCORES-UPDATE** 1: Input: Set of arms A, error prob. $\delta \in (0,1)$ 1: Input: Arms i, j, ternary decision $k \in \{1,2,3\}$ 2: Initialization: $e \leftarrow 1$ and for each $i \in \mathcal{A}$ set 2: if $k=1$ then (set of already compared arms) $D(i) \leftarrow \{i\}$ $\widehat{CP}(i) \leftarrow \widehat{CP}(i) + 1$ $\overline{CP}(i) \leftarrow 0$ (current Copeland score) (potential Copeland score) 4: else if $k = 2$ then $\overline{CP}(i) \leftarrow n-1$ 5: $\widehat{CP}(i) \leftarrow \widehat{CP}(i) + \frac{1}{2}, \widehat{CP}(j) \leftarrow \widehat{CP}(j) + \frac{1}{2}$ 3: while $\sharp i$ s.t. $\widehat{CP}(i) \geq \overline{CP}(j) \,\forall j \in \mathcal{A} \setminus \{i\}$ do 6: else $i_e = \text{argmax}_{i \in \mathcal{A}} \overline{CP}(i)$ 7: $\widehat{CP}(j) \leftarrow \widehat{CP}(j) + 1$ $j_e = \text{argmax}_{j \in A \setminus D(i_e)} \widehat{CP}(j)$ 8: end if $k \leftarrow \text{PPR-1vl}(i_e, j_e, \delta / \binom{n}{2})$ 9: $D(i) \leftarrow D(i) \cup \{j\}, D(j) \leftarrow D(j) \cup \{i\}$ SCORES-UPDATE (i_e, j_e, k) 10: $\overline{CP}(i) \leftarrow n - |D(i)| + \widehat{CP}(i)$ $e \leftarrow e + 1$ 11: $\overline{CP}(j) \leftarrow n - |D(j)| + \widehat{CP}(j)$ end while

10: return $\text{argmax}_{i \in \mathcal{A}} \widehat{CP}(i)$

Goal

(i) Finding a Copeland winner (COWI), i.e., an element of

$$
\mathcal{C}(\mathbf{P}) = \{ i \in \mathcal{A} \, | \, \text{CP}(\mathbf{P}, i) = \max_j \text{CP}(\mathbf{P}, j) \},
$$

Definition. P is *transitive* if for each distinct $i, j, k \in \mathcal{A}$ holds: 1. Transitivity of strict preference.

where

 $\text{CP}(\mathbf{P}, i) = \sum$ $j\neq i$ $1_{\llbracket P_{i,j}^{\succ} > \max\{P_{i,j}^{\prec}, P_{i,j}^{\cong}\}\rrbracket} + \frac{1}{2}$ 2 \sum $j\neq i$ $1_{\llbracket P^{\cong}_{i,j} > \max\{P_{i,j}^\succ,P_{i,j}^\prec\}\rrbracket},$

is the Copeland score of arm $i \in \mathcal{A}$

If $P_{i,j}^{\succ} > \max(P_{i,j}^{\prec})$ $p_{i,j}^{\prec}, P_{i,j}^{\cong}$ $P_{i,j}^{\approx}$) and $P_{j,k}^{\succ} > \max(P_{j,k}^{\prec})$ $p_{j,k}^{\prec},P_{j,k}^{\cong}$ $p_{j,k}^{\approx}$, then $P_{i,k}^{\succ}$ > max $(P_{i,k}^{\prec})$ $p_{i,k}^{\prec},P_{i,k}^{\cong}$ $\binom{p\cong}{i,k}$. 2. IP-transitivity.

If $P_{i,j}^{\cong} > \max(P_{i,j}^{\prec})$ $\vec{p}_{i,j}$, $P_{i,j}$ $P_{i,j}^{\succ}$) and $P_{j,k}^{\succ} > \max(P_{j,k}^{\prec})$ $p_{j,k}^{\prec},P_{j,k}^{\cong}$ $P_{i,k}^{\approx}$, then $P_{i,k}^{\succ}$ > max $(P_{i,k}^{\prec})$ $p_{i,k}^{\prec},P_{i,k}^{\cong}$ $\binom{p\cong}{i,k}$. 3. PI-transitivity.

If $P_{i,j}^{\cong} > \max(P_{i,j}^{\prec})$ $\sum_{i,j} \nrightarrow P_{i,j}$ $P_{i,j}^{\succ}$) and $P_{j,k}^{\cong} > \max(P_{j,k}^{\prec})$ $p_{j,k}^{\prec}, P_{j,k}^{\succ}$ $P_{i,k}^{\succ}$, then $P_{i,k}^{\cong} > \max(P_{i,k}^{\prec})$ $p_{i,k}^{\prec}, P_{i,k}^{\succ}$ $\sum_{i,k}).$

(ii) Conducting as few as possible duels (low sample complexity)

If $P_{i,j}^{\succ} > \max\left(P_{i,j}^{\prec}\right)$ $p_{i,j}^{\prec}, P_{i,j}^{\cong}$ $P_{i,j}^{\cong}$ and $P_{j,k}^{\cong} > \max\left(P_{j,k}^{\prec}\right)$ $p_{j,k}^{\prec}, P_{j,k}^{\succ}$ $(P_{i,k}^{\succ})$, then $P_{i,k}^{\succ}$ > max $(P_{i,k}^{\prec})$ $p_{i,k}^{\prec},P_{i,k}^{\cong}$ $\stackrel{\sim}{i,k}\big).$ 4. Transitivity of indifference.

Algori

W

L

 $3:$ w

 $9:$ en

Viktor Bengs a,b , Björn Haddenhorst^c, Eyke Hüllermeier a,b

for any problem instance P .

REFERENCES

*if $\mathbf P$ is transitive ∗∗ if there are no indifferences

LEARNING ALGORITHM

POCOWISTA

TRA-POCOWISTA

What if the problem instance P is transitive?

⇒ Updates can be made more efficient

THEORETICAL RESULTS

Informal Version: Worst-case sample complexities have the order POCOWISTA TRA-POCOWISTA^{*} SAVAGE^{**} [3] PBR-CCSO^{**} [1] \overline{n} $\overline{\Delta_{i,j}^2}$ $\ln\left(\frac{n}{\sqrt{2}}\right)$ \overline{n} $\overline{\overline{\delta}}$. 1 $\Delta_{i,j}$ $\frac{n^2}{\Lambda^2}$ $\Delta_{i,j}^2$ $\ln\left(\frac{n}{\delta}\right)$ $\frac{\pi}{\delta}$. 1 $\Delta_{i,j}$ $\frac{n^2}{\Delta^2}$ $\Delta_{i,j}^2$ $\ln\left(\frac{n^2}{\delta}\right)$ $\frac{1}{\delta}$. 1 $\Delta_{i,j}$ $\big)$

Lower bounds

Informal Version: For **P** with $\min_{i < j} |P_{i,j}^{(1)} - P_{i,j}^{(2)}|$ $\left|\sum_{i,j}^{(2)}\right| > \Delta$ the lower bounds are $\Omega(n^2/\Delta^2 \ln 1/\delta),$ (1) i,j $, F$ (2) i,j $, F$ $\mathcal{L}^{(3)}_{i,j}$ are the order statistics of $P_{i,j}^{\succ}$ i,j $p_{i,j}^\succ, P_{i,j}^\cong$ $p_i \equiv \text{and } P_{i,j} \prec$ $\begin{array}{c} {\bf \small{a}}, \end{array}$ **Formal Version:** If A correctly identifies the COWI with confidence $1 - \delta$, then $\mathbb{E}[\tau^{\mathcal{A}}(\mathbf{P})] \geq \ln \frac{1}{2.4}$ 2.4δ \sum j ∈A\ $\{i^*\}$ C_j min $k∈L(j)∪I(j)$ 1 $\frac{1}{D_{j,k}(\mathbf{P})},$ where $\mathcal{C}(\mathbf{P}) = \{i\}$ and in the case with indifferences $D_{j,k}(\textbf{P}) \coloneqq \max\{\text{KL}^{(1)}_{j,k}$ $_{j,k}^{\left(1\right) },\mathrm{KL}_{j,k}^{\left(2\right) }$ $\sum_{j,k}$ KL (1) $j,k \atop j,k = \text{KL}((P^\succ_{j,k}))$ $p_{j,k}^{\succ},P_{j,k}^{\cong}$ $p_{j,k}^{\equiv},P_{j,k}^{\prec}$ $(p_{j,k}^{\simeq}), (P_{j,k}^{\cong})$ $\stackrel{\cong}{_{j,k}}, P^\succ_{j,k}$ $p_{j,k}^\succ,P_{j,k}^\prec$ $\binom{5}{j,k}),$ KL (2) $j,k \atop j,k = \text{KL}((P^\succ_{j,k}))$ $p_{j,k}^{\succ},P_{j,k}^{\cong}$ $p_{j,k}^{\equiv},P_{j,k}^{\prec}$ $(p\preccurlyeq_{j,k}), (P\preccurlyeq_{j,k})$ $p_{j,k}^{\prec},P_{j,k}^{\cong}$ $p_{j,k}^{\equiv},P_{j,k}^{\succ}$ $\binom{p}{j,k}),$ $C_j = \max_{i,j}$ $(i,l) \in \Psi(j)$ $\Big($ $|I(j)|$ $\binom{|j|}{i}\binom{|L(j)|}{l}$ $|L(j)|$ $\binom{|I(j)|-1}{i-1}\binom{|L(j)|}{l}1_{\llbracket i\geq 1\rrbracket}+\binom{|I(j)|}{i}\binom{|L(j)|-1}{l-1}1_{\llbracket l\geq 1\rrbracket}$, $\Psi(j) \coloneqq$ $\left\{ \right.$ $(i, l) \in \{0, \ldots, |I(j)|\} \times \{0, \ldots, |L(j)|\} | i + 2l \geq 2d_j + 1\}$ for any **P** with $\min_{j,k} \min\{P_{j,k}^{\succ}$ $p_{j,k}^\succ, P_{j,k}^\cong$ $p\breve{\equiv}_{j,k}, P\breve{\prec}_{j,k}$ $\{j,k\} > 0.$

where
$$
P_{i,j}^{(1)}, P_{i,j}^{(2)}, P_{i,j}^{(3)}
$$

where
$$
\mathcal{C}(\mathbf{P}) = \{i^*\}
$$

\nwhere $\mathcal{C}(\mathbf{P}) = \{i^*\}$
\n $D_{j,k}(\mathbf{P}) := \max_{\begin{aligned}\n& K L_{j,k}^{(1)} = K L((\\ & K L_{j,k}^{(2)} = K L((\\ & C_j = \max_{\begin{aligned}\n& (i,l) \in \mathbb{V} \\
& \mathbb{V}(j) := \{ (i, j) \in \mathbb{V} \\
& \end{aligned}\n\}.$

Upper bounds

Formal Version: For any $P = (P_{i,j}^{\succ})$ $p_{i,j}^\succ, P_{i,j}^\cong$ $p\widetilde{\equiv}_{i,j}, P\widetilde{\preccurlyeq}_{i,j}$ $\mathcal{P}(\vec{i},\vec{j})$)_{*i<j*}, such that there exists no pair $i, j \in \mathcal{A}$ with $i \neq j$ and $P_{i,j}^{\succ} = P_{j,i}^{\succ} = 1/3$, it holds (1) for $\sum_{i=1}^{N}$ and $\sum_{i=1}^{N}$ $(\hat{i}_A \in \mathcal{C}(\mathbf{P}) \text{ and } \tau^A(\mathbf{P}) \le t(\mathbf{P}, \delta)) \ge 1 - \delta,$ $_{i < j} t_0 \bigl((P_{i,j}^\succ$ $p_{i,j}^\succ, P_{i,j}^\cong$ $p\breve{=} \atop i,j, \, P \vec{ } \atop j,j$ $\delta/\!\binom{n}{2},\delta/\!\binom{n}{2}\bigr),$ $t_0\big((p_1,p_2,p_3),\delta\big)=\frac{c_1p_{(1)}}{(p_{(1)}-p_{(2)})}$ $\frac{c_1p_{(1)}}{(p_{(1)}-p_{(2)})^2} \ln$ $\int \frac{\sqrt{2c_2p_{(1)}}}{\sqrt{2c_2p_{(1)}}}$ $\frac{1}{\sqrt{\delta}(p_{(1)}-p_{(2)})}$ \setminus (1) the order statistic of $p_1, p_2, p_3, c_1 = 194.07$, and $c_2 = 79.86$. $-{\rm POCOWISTA}$ if ${\bf P}$ transitive that $\mathbb{P}(\hat{i}_{A} \in \mathcal{C}(\mathbf{P}) \text{ and } \tau^{A}(\mathbf{P}) \leq \tilde{t}(\mathbf{P}, \delta)) \geq 1 - \delta,$ where $\tilde{t}(\mathbf{P}, \delta) = \sum_{e=1}^{E} t_0 ((P_{i_e}^{\succ})$ $\hat{p}_{i_e,j_e}^{\succ},P_{i_e,j_e}^{\cong}$ \widetilde{p}_{i_e,j_e} , P_{i_e,j_e} $(\hat{c}_{i_e,j_e}), \delta/n$, t_0 is as in (1) and $E \leq n$.

