IDENTIFYING COPELAND WINNERS IN DUELING BANDITS WITH INDIFFERENCES

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

^aInstitute of Informatics, University of Munich, Germany ^bMunich Center for Machine Learning, Germany ^cDepartment of Computer Science, Paderborn University

viktor.bengs@lmu.de, eyke@lmu.de, willem.waegeman@UGent.be

DUELING BANDITS WITH INDIFFERENCES

Setting

- Given: Different arms (options) $a_1, \ldots, a_n \iff 1, \ldots, n \iff \mathcal{A}$
- Action at time t: Choose a pair of arms $i_t \in \mathcal{A}$ and $j_t \in \mathcal{A} \setminus \{i_t\}$
- Observation at time *t*:

either $i_t \succ j_t$, i.e., arm i_t is strictly preferred over arm j_t

- or $i_t \prec j_t$, i.e., arm j_t is strictly preferred over arm i_t
- or $i_t \cong j_t$, i.e., neither i_t is strictly preferred over j_t nor the opposite (indifference between i_t and j_t)
- Stochastic feedback assumption: Each possible explicit observations is determined by one of the following matrices $P^{\succ}, P^{\prec}, P^{\cong} \in [0, 1]^{n \times n}$:

$$P_{i_t,j_t}^{\succ} = \mathbb{P}(i_t \succ j_t) \qquad P_{i_t,j_t}^{\prec} = \mathbb{P}(i_t \prec j_t) \qquad P_{i_t,j_t}^{\cong} = \mathbb{P}(i_t \cong j_t)$$

 \sim A problem instance is characterized by $\mathbf{P} = ((P_{i,j}^{\succ}, P_{i,j}^{\cong}, P_{i,j}^{\prec}))_{i < j}$

Goal

(i) Finding a Copeland winner (COWI), i.e., an element of

$$\mathcal{C}(\mathbf{P}) = \{ i \in \mathcal{A} \mid \operatorname{CP}(\mathbf{P}, i) = \max_{j} \operatorname{CP}(\mathbf{P}, j) \},\$$

where

$CP(\mathbf{P}, i) = \sum_{i \neq i} \mathbb{1}_{[\![P_{i,j}^{\succ} > \max\{P_{i,j}^{\prec}, P_{i,j}^{\cong}\}]\!]} + \frac{1}{2} \sum_{i \neq i} \mathbb{1}_{[\![P_{i,j}^{\cong} > \max\{P_{i,j}^{\succ}, P_{i,j}^{\prec}\}]\!]},$

is the Copeland score of arm $i \in \mathcal{A}$

(ii) Conducting as few as possible duels (low sample complexity)

Formal Goal: For a given error	ϵ bound $\delta \in (0, \infty)$	(1) design algorithm A which
• uses $ au^{A}(\mathbf{P})$ duels in total	such that	$\mathbb{E}[au^{\mathrm{A}}(\mathbf{P})]$ is small
• returns $\hat{i} \in \mathcal{A}$	such that	$\mathbb{P}(\hat{i} \notin \mathcal{C}(\mathbf{P})) \leq \delta$

for any problem instance \mathbf{P} .

REFERENCES

- l] Róbert Busa-Fekete, Balázs Szörényi, Paul Weng, Weiwei Cheng, and Eyke Hüllermeier. Top-kselection based on adaptive sampling of noisy preferences. In Proceedings of the International Conference on Machine Learning (ICML), pages 1094–1102, 2013.
- 2] Shubham Anand Jain, Rohan Shah, Sanit Gupta, Denil Mehta, Inderjeet J Nair, Jian Vora, Sushil Khyalia, Sourav Das, Vinay J Ribeiro, and Shivaram Kalvanakrishnan. PAC mode estimation using PPR martingale confidence sequences. In International Conference on Artificial Intelligence and Statistics (AISTATS), pages 5815–5852. PMLR, 2022.

[3] Tanguy Urvoy, Fabrice Clerot, Raphael Féraud, and Sami Naamane. Generic exploration and k-armed voting bandits. In Proceedings of International Conference on Machine Learning *(ICML)*, pages 91–99, 2013.

Idea of POtential COpeland WInner STays Algorithm (POCOWISTA): 1. Duel arm i_t having highest potentially Copeland score with arm j_t having highest current Copeland score 2. Conduct duel via efficient PPR-1V1 routine [2] to find mode of $(P_{i_t, j_t}^{\succ}, P_{i_t, j_t}^{\cong}, P_{i_t, j_t}^{\prec})$ hm POCOWISTA Algorithm SCORES-UPDATE **put:** Set of arms \mathcal{A} , error prob. $\delta \in (0, 1)$

-	
Alg	gorit
1:	Inp
2:	Init
	D(i)
	$\widehat{CP}($
	$\overline{CP}($
3:	whi
1.	;

1: Input: Arms i, j, ternary decision $k \in \{1, 2, 3\}$ ialization: $e \leftarrow 1$ and for each $i \in \mathcal{A}$ set 2: if k = 1 then (set of already compared arms) $\widehat{CP}(i) \leftarrow \widehat{CP}(i) + 1$ (current Copeland score) $i) \leftarrow 0$ 4: else if k = 2 then (potential Copeland score) $i) \leftarrow n-1$ 5: $\widehat{CP}(i) \leftarrow \widehat{CP}(i) + \frac{1}{2}, \ \widehat{CP}(j) \leftarrow \widehat{CP}(j) + \frac{1}{2}$ le $\nexists i$ s.t. $\widehat{CP}(i) \ge \overline{CP}(j) \forall j \in \mathcal{A} \setminus \{i\}$ do 6: else $i_e = \operatorname{argmax}_{i \in \mathcal{A}} \overline{CP}(i)$ 7: $\widehat{CP}(j) \leftarrow \widehat{CP}(j) + 1$ $= \operatorname{argmax}_{j \in \mathcal{A} \setminus D(i_c)} \widehat{CP}(j)$ 8: end if $k \leftarrow \text{PPR-1v1}(i_c, j_c, \delta/\binom{n}{2})$ 9: $D(i) \leftarrow D(i) \cup \{j\}, D(j) \leftarrow D(j) \cup \{i\}$ Scores-Update (i_e, j_e, k) 10: $\overline{CP}(i) \leftarrow n - |D(i)| + \widehat{CP}(i)$ $e \leftarrow e + 1$ 11: $\overline{CP}(j) \leftarrow n - |D(j)| + \widehat{CP}(j)$ end while 10: return $\operatorname{argmax}_{i \in \mathcal{A}} \widehat{CP}(i)$

TRA-POCOWISTA

- Algori 1: Int 2: Ini WL 3: w]

Viktor Bengs^{a,b}, Björn Haddenhorst^c, Eyke Hüllermeier^{a,b}

TL;DR

Extension of Copeland winner identification in dueling bandits for indifference feedback with novel lower bounds and a worst-case nearly optimal learning algorithm

LEARNING ALGORITHM

POCOWISTA

What if the problem instance \mathbf{P} is transitive?

Definition. P is *transitive* if for each distinct $i, j, k \in \mathcal{A}$ holds:

1. Transitivity of strict preference.

If $P_{i,i}^{\succ} > \max(P_{i,i}^{\prec}, P_{i,i}^{\cong})$ and $P_{i,k}^{\succ} > \max(P_{i,k}^{\prec}, P_{i,k}^{\cong})$, then $P_{i,k}^{\succ} > \max(P_{i,k}^{\prec}, P_{i,k}^{\cong})$. 2. IP-transitivity.

If $P_{i,j}^{\cong} > \max(P_{i,j}^{\prec}, P_{i,j}^{\succ})$ and $P_{j,k}^{\succ} > \max(P_{j,k}^{\prec}, P_{j,k}^{\cong})$, then $P_{i,k}^{\succ} > \max(P_{i,k}^{\prec}, P_{i,k}^{\cong})$. 3. PI-transitivity.

If $P_{i,j}^{\succ} > \max\left(P_{i,j}^{\prec}, P_{i,j}^{\cong}\right)$ and $P_{j,k}^{\cong} > \max\left(P_{j,k}^{\prec}, P_{j,k}^{\succ}\right)$, then $P_{i,k}^{\succ} > \max\left(P_{i,k}^{\prec}, P_{i,k}^{\cong}\right)$. 4. Transitivity of indifference.

If $P_{i,j}^{\cong} > \max(P_{i,j}^{\prec}, P_{i,j}^{\succ})$ and $P_{i,k}^{\cong} > \max(P_{i,k}^{\prec}, P_{i,k}^{\succ})$, then $P_{i,k}^{\cong} > \max(P_{i,k}^{\prec}, P_{i,k}^{\succ})$.

 \Rightarrow Updates can be made more efficient

Algorithm TRA-POCO	WISTA	Algori	\mathbf{thm}	TRANSITIVE-SCORE-UPDATE
1: Input: Set of arms \mathcal{A} , error prob. $\delta \in (0, 1)$		1: Input: Arms $i, j, k \in \{1, 2, 3\}$		
2: Initialization: $e \leftarrow 1$ and for each $i \in \mathcal{A}$		2: if $k = 1$ then		
$D(i) \leftarrow \{i\}, \widehat{CP}(i) \leftarrow 0, \overline{CP}(i) \leftarrow n-1$		3: $\widehat{CP}(i) \leftarrow \widehat{CP}(i) + W(j) \cup I(j) + 1$		
$W(i) \leftarrow \emptyset$	(set of defeated arms)	4: V	$V(i) \leftarrow$	$-W(i)\cup W(j)\cup I(j)\cup \{j\}$
$I(i) \leftarrow \emptyset$	(set of indifferent arms)	5: <i>1</i>	$D(i) \leftarrow$	$D(i) \cup W(j) \cup I(j) \cup \{j\}$
$L(i) \leftarrow \emptyset$	(set of superior arms)	6: <i>1</i>	$L(j) \leftarrow$	$L(j) \cup L(i) \cup I(i) \cup \{i\}$
3: while $\nexists i$ s.t. $\widehat{CP}(i) \ge \overline{C}$	$\overline{P}(i) \forall i \in \mathcal{A} \setminus \{i\}$ do	7: 1	$D(j) \leftarrow$	$-D(j)\cup L(i)\cup I(i)\cup \{i\}$
4: $i_e = \operatorname{argmax}_{i \in \mathcal{A}} \overline{\overline{CP}}(i)$		8: els	e if k	= 2 then
5: $j_e = \operatorname{argmax}_{j \in \mathcal{A} \setminus D(i_e)} \widehat{CP}(j)$ 6: $k \leftarrow \operatorname{PPR-1v1}(i_e, j_e, \delta/n)$ 7: TRANSITIVE-SCORE-UPDATE (i_e, j_e, k)		9: C	$\overline{CP}(i)$	$\leftarrow \widehat{CP}(i) + W(j) + 1/2(1 + I(j))$
		10: 0	$\widehat{CP}(j)$	$\leftarrow \widehat{CP}(j) + W(i) + 1/2(1 + I(i))$
				$-W(i) \cup W(j), W(j) \leftarrow W(i)$
8: $e \leftarrow e+1$		12: 1	$L(i) \leftarrow$	$L(i) \cup L(j), L(j) \leftarrow L(i)$
9: end while		13: <i>1</i>	$(i) \leftarrow$	$I(i) \cup I(j) \cup \{j\}, I(j) \leftarrow I(i) \cup I(j) \cup \{i\}$
10: return $\operatorname{argmax}_{i \in \mathcal{A}} \widehat{CP}(i)$		14: 1	$D(i) \leftarrow$	$D(i) \cup D(j), D(j) \leftarrow D(i)$
In rotari againer(eA or (i)	15: else			
		16: S	Same a	s for $k = 1$ with <i>i</i> and <i>j</i> reversed
		17: end if		
		18: Same steps as line 10 and 11 in SCORE-UPDATE		

Lower bounds

where
$$P_{i,j}^{(1)}, P_{i,j}^{(2)}, P_{i,j}^{(3)}$$

Informal Version: For **P** with $\min_{i < j} |P_{i,j}^{(1)} - P_{i,j}^{(2)}| > \Delta$ the lower bounds are $\Omega(n^2/\Delta^2 \ln 1/\delta),$ are the order statistics of $P_{i,j}^{\succ}$, $P_{i,j}^{\cong}$ and $P_{i,j}^{\prec}$. **Formal Version:** If A correctly identifies the COWI with confidence $1 - \delta$, then $\mathbb{E}[\tau^{\mathcal{A}}(\mathbf{P})] \ge \ln \frac{1}{2.4\delta} \sum_{j \in \mathcal{A} \setminus \{i^*\}} C_j \min_{k \in L(j) \cup I(j)} \frac{1}{D_{j,k}(\mathbf{P})},$ where $\mathcal{C}(\mathbf{P}) = \{i^*\}$ and in the case with indifferences $D_{j,k}(\mathbf{P}) \coloneqq \max\{\mathrm{KL}_{j,k}^{(1)}, \mathrm{KL}_{j,k}^{(2)}\}$ $\mathrm{KL}_{j,k}^{(1)} = \mathrm{KL}((P_{j,k}^{\succ}, P_{j,k}^{\cong}, P_{j,k}^{\prec}), (P_{j,k}^{\cong}, P_{j,k}^{\succ}, P_{j,k}^{\prec})),$ $\mathrm{KL}_{j,k}^{(2)} = \mathrm{KL}((P_{j,k}^{\succ}, P_{j,k}^{\cong}, P_{j,k}^{\prec}), (P_{j,k}^{\prec}, P_{j,k}^{\cong}, P_{j,k}^{\succ})),$ $C_{j} = \max_{(i,l)\in\Psi(j)} \frac{\binom{|I(j)|}{i}\binom{|L(j)|}{i}}{\binom{|I(j)|-1}{l}\binom{|L(j)|}{l}1_{[i\geq1]} + \binom{|I(j)|}{i}\binom{|L(j)|-1}{l-1}1_{[l\geq1]}},$ $(l) \in \{0, \dots, |I(j)|\} \times \{0, \dots, |L(j)|\} | i + 2l \ge 2d_j + 1\}$ $_{j,k}\min\{P_{j,k}^{\succ}, P_{j,k}^{\cong}, P_{j,k}^{\prec}\} > 0.$

$$\Psi(j) \coloneqq \left\{ (i, l) \in \Psi \right\}$$

or any **P** with \min_j

Upper bounds

*if \mathbf{P} is transitive ** if there are no indifferences

Formal Version: Fo
$i, j \in \mathcal{A}$ with $i \neq j$
(i) for $A := POCO$
\mathbb{P}
where $t(\mathbf{P}, \delta) \leq \sum_{i}$
t_0
$p_{(1)} \ge p_{(2)} \ge p_{(3)}$ is t

or any $\mathbf{P} = ((P_{i,j}^{\succ}, P_{i,j}^{\cong}, P_{i,j}^{\prec}))_{i < j}$, such that there exists no pair and $P_{i,j}^{\succ} = P_{j,i}^{\succ} = 1/3$, it holds OWISTA that $\hat{i}_{A} \in \mathcal{C}(\mathbf{P}) \text{ and } \tau^{A}(\mathbf{P}) \leq t(\mathbf{P}, \delta) \geq 1 - \delta,$ $_{i < j} t_0 \left((P_{i,j}^{\succ}, P_{i,j}^{\cong}, P_{i,j}^{\prec}), \delta / \binom{n}{2} \right),$ $t_0((p_1, p_2, p_3), \delta) = \frac{c_1 p_{(1)}}{(p_{(1)} - p_{(2)})^2} \ln\left(\frac{\sqrt{2c_2}p_{(1)}}{\sqrt{\delta(p_{(1)} - p_{(2)})}}\right),$ (1)the order statistic of $p_1, p_2, p_3, c_1 = 194.07$, and $c_2 = 79.86$. $\mathbb{P}(\hat{i}_{A} \in \mathcal{C}(\mathbf{P}) \text{ and } \tau^{A}(\mathbf{P}) \leq \tilde{t}(\mathbf{P}, \delta)) \geq 1 - \delta,$

(ii) for A := TRA-POCOWISTA if **P** transitive that where $\tilde{t}(\mathbf{P}, \delta) = \sum_{e=1}^{E} t_0 \left((P_{i_e, j_e}^{\succ}, P_{i_e, j_e}^{\cong}, P_{i_e, j_e}^{\prec}), \delta/n \right), t_0 \text{ is as in } (1) \text{ and } E \leq n.$

THEORETICAL RESULTS

Informal Version: Worst-case sample complexities have the order POCOWISTA TRA-POCOWISTA^{*} SAVAGE^{**} [3] PBR-CCSO^{**} [1] $\frac{n^2}{\Delta_{i,i}^2} \ln\left(\frac{n}{\sqrt{\delta}} \cdot \frac{1}{\Delta_{i,i}}\right) \qquad \frac{n}{\Delta_{i,i}^2} \ln\left(\frac{n}{\sqrt{\delta}} \cdot \frac{1}{\Delta_{i,i}}\right) \qquad \frac{n^2}{\Delta_{i,i}^2} \ln\left(\frac{n}{\delta} \cdot \frac{1}{\Delta_{i,i}}\right) \qquad \frac{n^2}{\Delta_{i,i}^2} \ln\left(\frac{n^2}{\delta} \cdot \frac{1}{\Delta_{i,i}}\right)$