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Abstract

This paper investigates systemic risk measures for stochastic financial networks of explicitly modelled
bilateral liabilities. We extend the notion of systemic risk measures from Biagini, Fouque, Fritelli and
Meyer-Brandis (2019) to graph structured data. In particular, we focus on an aggregation function that
is derived from a market clearing algorithm proposed by Eisenberg and Noe (2001). In this setting, we
show the existence of an optimal random allocation that distributes the overall minimal bailout capital
and secures the network.
We study numerical methods for the approximation of systemic risk and optimal random allocations.
We propose to use permutation equivariant architectures of neural networks like graph neural networks
(GNNs) and a class that we name (extended) permutation equivariant neural networks ((X)PENNs). We
compare their performance to several benchmark allocations. The main feature of GNNs and (X)PENNs
is that they are permutation equivariant with respect to the underlying graph data. In numerical exper-
iments we find evidence that these permutation equivariant methods are superior to other approaches.
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1 Introduction

Risk measures are fundamental tools in financial mathematics, providing a way to quantify and manage
the risk associated with financial positions or portfolios. The development of these measures has evolved
significantly over time, driven by both theoretical advancements and practical needs in the financial industry.
The early developments in risk measures can be traced back to Harry Markowitz’s seminal work “Portfolio
Selection” in 1952 [52], introducing the mean-variance framework. In the 1990s the Value at Risk (VaR), most
notably developed by JP Morgan, became widely used in risk management and regulatory frameworks due to
its simplicity and intuitive appeal. However, its limitations led to a line of literature developing theoretically
sound concepts of risk measures, e.g. coherent, convex or monetary risk measures, see for example [6], [29],
[31], [32].
As the financial system became more interconnected and complex, in particular in the aftermath of the
financial crisis 2007–2008, the focus was widened towards understanding and measuring systemic risk, i.e.
the risk that the failure of one part of the financial system can cause a collapse of the entire system, see for
example [1], [2], [55],[60].
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Many of these systemic risk measures can be described as the application of a univariate risk measure
η : L0 → R to the systemic risk factor Λ(X), where X = (X1, ..., XN ) ∈ L0(RN ) represents random risk
factors of a system of N institutions and Λ : RN → R is a function that aggregates the individual risk factors
X1, ..., XN to a systemic risk factor based on some aggregation rule Λ, i.e. the systemic risk is given by

ρ(X) = η(Λ(X)). (1)

If η is cash-invariant (see, e.g. [32]), the obtained number can often be interpreted as the amount of cash
that is needed to secure the position in terms of risk measure η. If A is the corresponding acceptance set
then the systemic risk measure can be reformulated as

ρ(X) = inf{m ∈ R|Λ(X) +m ∈ A}. (2)

In [14] an axiomatic approach for such systemic risk measures and conditions on when they can be decom-
posed into aggregation function and univariate risk measure is provided. This setting is further investigated
for example in [42], [48].
The formulation in (2) highlights that the amount of cash m ∈ R is added to the aggregated position Λ(X). In
contrast to this setting where the system is secured after aggregation, an alternative approach investigates the
setting where capital is allocated before aggregation. This is motivated, for example, by aggregation functions
that capture financial contagion between the institutions. In this case it can be significantly cheaper to at
least partially prevent contagion by allocating capital before aggregation as opposed to securing the system
after aggregation when the contagion already took place. This idea yields systemic risk measures of the form

ρ(X) = inf

{
N∑

i=1

mi

∣∣∣∣∣m = (m1, ...,mN ) ∈ R
N ,Λ(X +m) ∈ A

}
. (3)

Systemic risk measures based on allocating capital before aggregation have been investigated in the context
of set valued risk measures and deterministic allocations in [26]. In this approach each acceptable vector
m = (m1, ...,mN ) could be interpreted as a possible choice of capital requirements for the institutions
(X1, ..., XN ) such that the resulting financial system is safe after aggregation, i.e. Λ(X + m) ∈ A. A recent
other approach that we want to focus on in this article was developed in [7] and [8]. Here, the deterministic
capital allocation m = (m1, ...,mN ) ∈ RN is replaced by random capital allocations Y ∈ L0(RN ). Then the
systemic risk measure is defined as

ρ(X) = inf
Y ∈C

{
N∑

i=1

Yi

∣∣∣∣∣Λ(X + Y ) ∈ A

}
, (4)

where the set of available allocations C ⊆ CR is a subset of those random allocations which sum to a constant
almost surely 1

CR =

{
Y ∈ L0(RN )

∣∣∣∣∣

N∑

i=1

Yi ∈ R

}
.

Since R ⊆ CR, this definition includes the setting of deterministic capital requirements. In general, this
notion of systemic risk measures reflects the point of view of a lender of last resort, who would like to reserve
some fixed amount of bailout capital to secure the system in the future. However, instead of committing

1We want to stress that for all Y ∈ CR the sum of the stochastic components is deterministic, i.e. for all Y ∈ CR, there exists
M ∈ R such that for all ω ∈ Ω it holds

∑
N

i=1
Yi(ω) = M. We express this fact by simply writing

∑
N

i=1
Yi ∈ R.
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to a fixed allocation today that secures the system under all possible scenarios, the lender can wait which
scenario is realised and then distribute the bailout capital. Allowing scenario dependent allocations can
reduce the total capital that needs to be reserved compared to deterministic allocations, which need to cover
all eventualities.
Regarding the aggregation function Λ, in the current literature one can conceptually differentiate between
two paradigms. One, where the random variable X represents the risk factors after contagious interaction of
the institutions. Then the aggregation function is a rather simple function of the risk factors, e.g. a sum, the
sum of losses only, a sum of losses where profit is either considered up to some threshold or only a fraction
of it, or other similar variations. Examples for such risk measures include [2], [12], [44], [50], [55], [59] .
On the other hand, there is the approach whereX represents the risk factors before any contagious interaction
took place. Then the aggregation function is designed to incorporate complex interaction mechanisms, that
might for example include contagion channels like interbank liabilities or illiquidity cascades [3], [22], [30],
[33], [34], [38], [45], [49], [57], asset fire sales [11], [13], [15], [17], [18], [24], [25], or cross-holdings [23], [63].
For complex contagion channels the aggregation function would require additional inputs such as an interbank
liability matrix, an asset-bank exposure matrix, or a bank-bank cross-holdings matrix. This is where we
extend the literature with our first contribution. In the setting of random allocations from [7], [8], we
consider an aggregation function that allows for a vector-valued and a matrix-valued input

Λ : RN × R
N×N → R (5)

and define systemic risk measures accordingly. This allows us to consider aggregation functions that explicitly
model contagious interactions in networks of financial institutions. We focus on the Eisenberg-Noe model
[22], which is the prototype of network-based contagion models.
More in detail, instead of considering vector valued random risk factors X ∈ L0(RN ), we consider random
assets of financial institutions A ∈ L0(RN

+ ) together with their explicit interbank lending network given by a

random interbank liability matrix L ∈ L0(RN×N
+ ). Then, for an Eisenberg-Noe type aggregation mechanism

Λ : RN × RN×N → R we define systemic risk measures as the smallest amount of bailout capital such that
random allocations thereof secure the future system,

ρ(A,L) = inf
Y ∈C

{
N∑

i=1

Yi

∣∣∣∣∣Λ(A+ Y, L) ∈ A

}
, (6)

where C ⊆ CR. For a specific choice of Λ in the contagion model of Eisenberg and Noe [22], we show that this
systemic risk measure is well-defined and that there exists a convex set of random allocations Y ∈ C that se-
cure the system, i.e. Λ(A+Y, L) ∈ A, while satisfying

∑N

i=1 Yi = ρ(A,L). We further reformulate the systemic
risk measure in a form that allows to derive an iterative optimisation algorithm for its approximation.
In general, the random allocations make such systemic risk measures in (4) challenging to compute numer-
ically. Already for deterministic allocations, there exist only few approaches to compute the systemic risk
measure. In [26] an algorithm is proposed that approximates the efficient frontier of the set-valued risk
measure. In [5] a mixed-integer programming approach is presented to calculate the set-valued risk measure
for more general aggregation functions beyond the Eisenberg-Noe model. There is even fewer literature
concerned with random allocations. In [28], systemic risk measures of the form in (4) are approximated
by utilising feedforward neural networks (FNNs) in order to approximate the scenario dependent random
allocation as functions f(X) of the risk factors X . In [21] they tackle a similar problem (see [9]) utilising a
comparable approach.
Here, we investigate to which extent neural networks could be applied to approximate systemic risk measures
in our extended setting (6). Compared to [28], the situation is more complex, since we must rely on neural
networks that are able to effectively process the liability matrix as an input. In numerical experiments,
it turns out that, despite their universality property, feedforward neural networks are not able to handle
this input efficiently. However, the structural properties of the problem naturally lead us to consider neural
networks that respect permutation equivariance of the underlying graph data. This motivates to utilise
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graph neural networks (GNNs), an alternative class of neural network architectures that have recently been
successfully applied to a wider range of problems within and beyond financial mathematics. For an overview
we refer to the survey papers [62] and [65]. Additionally, similarly to [41] we derive a structural character-
isation of so called permutation equivariant node labeling functions. Motivated by this result, we define a
permutation equivariant neural network architecture that exhibits appealing theoretical properties and, in
numerical experiments, performs even better than GNNs. We call this architecture (extended) permutation
equivariant neural networks ((X)PENNs).
Before outlining the structure of this article, we summarise our contributions.

• We formulate an extension of systemic risk measures with random allocations as in (4) that incorporates
more general aggregation functions that allow for random assets and a random interbank liability
matrix as inputs, see (6). In this more realistic setting of random interbank liabilities we can consider
aggregation functions that explicitly model contagion which is based on a network structure of the
institutions. Due to the explicitly modelled contagion, there are more possibilities of detecting financial
contagion and hence this setting emphasises the importance of preventing contagion, instead of paying
for its losses afterwards. Additionally, the possibility of random liability matrices opens the door for
network reconstruction techniques, especially those that do not provide only one estimator of the true
network, but many possible ones that fulfill some boundary conditions, see for example [16], [35], [36],
[39], or [54]. For an overview of network reconstruction techniques see for example [4].

• In the contagion model of Eisenberg and Noe [22] we show for a specific aggregation function that
the systemic risk measure is well-defined. In particular we show existence of “optimal” bailout capital
allocating random variables and investigate their properties from a theoretical point of view. We
further derive a reformulation of the systemic risk measure that allows us to construct an iterative
algorithm for its numerical approximation.

• In the same setting, we show that there exists a measurable target function Hc : RN × RN×N → RN

such that Hc(A,L) is an optimal allocation of the fixed bailout capital c ∈ R. Due to its measurability,
this allows for approximation via neural networks.

• Furthermore, we characterise what we call permutation equivariant node labeling functions and, mo-
tivated by this result, propose the neural network architecture of (X)PENNs. We further prove that
(X)PENNs are able to approximate any permutation equivariant node labeling functions, in particular
Hc, in probability.

• Finally, in various numerical experiments we compare the performance of FNNs, GNNs and (X)PENNs
and other benchmark approaches in solving different problems related to the approximation of systemic
risk measures.

This article continues as follows. In Section 2 we introduce the domain of graphs that is relevant when
interpreting financial networks as graphs. Furthermore, we present the contagion model of Eisenberg and
Noe [22] and the aggregation function that we consider in this framework. In Section 3 we introduce our
systemic risk measures of random financial networks. Section 4 provides a reformulation of systemic risk
measures that yields an iterative optimisation algorithm for their computation. In Section 5 we discuss FNNs
and GNNs and characterise permutation equivariant node labeling functions. Motivated by this result we
introduce the novel (X)PENN neural network architecture and discuss their theoretical properties. Section 6
contains numerical experiments where we compare the performance of FNNs, GNNs, (X)PENNs and other
benchmark approaches. In the first experiments we investigate a toy example where the minimal amount
of bailout capital and its allocation is known. The next experiment investigates the situation where we
try to allocate a fixed amount of bailout capital optimally. Finally, the third experiment considers the
approximation of the systemic risk measure, i.e. finding the minimal amount of bailout capital that secures
the future network when distributed optimally.
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2 Preliminaries

2.1 Notation

Let Lp(RN ) = Lp(Ω,F ,P;RN) denote the space of RN -valued random variables with finite p−norm defined
on the probability space (Ω,F ,P).
We extend “≤,≥” in the following way to vectors and (vector-valued) random variables. For two vectors
a, b ∈ RN we interpret the inequality component-wise

a ≤ b ⇐⇒ ∀i ∈ {1, ..., N} : ai ≤ bi.

For real or vector valued random variables X,Y ∈ Lp(RN ) we say that X ≤ Y if every component of X is
less or equal to Y almost surely,

X ≤ Y ⇐⇒ ∀i ∈ {1, ..., N} : Xi ≤ Yi P-a.s.

Furthermore, in this paper the sum of the components of vector valued random variables plays an important
role. For real vectors and vector valued random variables a ∈ RN or X ∈ Lp(RN ) respectively, we define

|a|p :=

(
N∑

i=1

|ai|
p

) 1

p

, |X |p :=

(
N∑

i=1

|Xi|
p

) 1

p

.

Similarly, for real matrices and matrix valued random variables ℓ ∈ RN×N ′

or L ∈ Lp(RN×N ′

) respectively,
we define

|ℓ|p :=




N∑

i=1

N ′∑

j=1

|ℓij |
p




1

p

, |X |p :=




N∑

i=1

N ′∑

j=1

|Lij |
p




1

p

.

In particular | · |p does not involve taking any expectation for random variables. Without the index | · |
describes merely taking the absolute value component-wise. Furthermore, to shorten notation we define
[N ] := {1, ..., N} for any N ∈ N.

2.2 The domain of graphs

The financial networks that we consider below can be naturally described as a graph g containing nodes
1, ..., N with node features a1, ..., aN ∈ R and directed, weighted edges ℓij ∈ R between nodes i, j ∈ [N ].
Motivated by this, we define the domain of graphs that are directed, weighted and contain node and edge
features as follows.

Definition 2.1. Let D = RN×d × RN×N×d′

be the domain of directed, weighted and featured graphs with
N ∈ N nodes and with node and edge feature dimension d and d′, respectively. For g = (a, ℓ) ∈ D we call a
the node features and ℓ the edge features.

For d = d′ = 1 this domain D accommodates financial networks that we will investigate later, see Definition
2.6, if we choose the assets as node-feature and the liability sizes as edge-features.

Remark 1. Let g = (a, ℓ) ∈ D. For i, j ∈ [N ] we interpret edges with ℓij = (0, ..., 0) ∈ Rd′

as no edge.
For applications where differentiation between a zero-edge and no edges is necessary, it would be possible
to extend the domain of edge features with some no-edge argument (a, ℓ) ∈ RN×d × (R ∪ {NE})N×N×d′

.
Similarly we interpret nodes without any edges and with ai = (0, ..., 0) as no nodes and hence also account
for graphs with less than N nodes. However, if necessary also for nodes a no-node argument NA could
be introduced. Obviously such changes would require all functions operating on the graph domain to be
extended accordingly.
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We are interested in functions on the domain of graphs that assign some value to each node of the network.

Definition 2.2. We define a node labeling function τ : D → RN×l, (a, ℓ) 7→ (τ1, ..., τN ) as a function where
each component τn ∈ Rl corresponds to a label assigned to node n ∈ [N ].

For example, a function that maps each node in a financial network to some node-specific capital requirement
would be one example of such a node labeling function.
As we will see later, an important property of graphs is that - in general - the nodes in a graph do not have
any natural order. Imagine we have a financial network with two nodes where one node’s assets equal 1 and
the other’s amount to 2 units of capital. From the node with assets 1, there is a liability of 12 units towards
the node with assets 2. We can represent this financial network by

a =

(
1
2

)
, ℓ =

(
0 12
0 0

)
, (7)

where we choose that the node with assets 1 is the first node and the node with assets 2 is the second node.
However, an equally valid representation of this financial network is

a =

(
2
1

)
, ℓ =

(
0 0
12 0

)
, (8)

where we altered the node order.
This example showcases that there exist multiple reasonable representations for the same underlying data
when dealing whit graph-structured data. Mathematically, we describe this property by introducing permu-
tations.
Given any permutation σ ∈ SN , i.e. a bijection from [N ] to itself, we denote for any network g = (a, ℓ) ∈ D
the permutation of the network σ(g) and define it component-wise as the permutation of its node features
σ(a) and edge features σ(ℓ). The permutations of a ∈ RN×d and ℓ ∈ RN×N×d′

are defined as

σ(a)i,k = aσ−1(i),k (9)

for i ∈ [N ], k ∈ [d] and

σ(ℓ)i,j,k = ℓσ−1(i),σ−1(j),k, (10)

for i, j ∈ [N ], k ∈ [d′].
An often desirable property of node labeling function is that the value assigned to each node should not
depend on the chosen graph representation, but only on the underlying graph.

Definition 2.3. For any l ∈ N we call a node labeling function τ : D → RN×l permutation equivariant if
any permutation σ ∈ SN of the initial numbering of nodes causes a corresponding permutation of the output,

τ(σ(g)) = σ(τ(g)).

Similar to permutation equivariance, another important concept is permutation invariance.

Definition 2.4. Let m,m′, d,N ∈ N. We call a function f : (Rm × Rd)
N

→ Rm′

permutation invariant if
for any permutation σ ∈ SN of the inputs 2 the result is invariant, i.e.

f(σ(x)) = f(x).

2We identify (Rm × Rd)
N

with RN×m·d and use the definition of permutations of node-features from (9).
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Permutation invariant functions arise, for example, when we want to map a subset of nodes and edges (a
subgraph) to some value that only depends on the set, but not the order of inputs.
A specific subset of nodes, that plays an important role for graph neural networks, is the so called neighbor-
hood of a node. The neighborhood of a node i ∈ [N ] is defined as the set of all other nodes j ∈ [N ] which
have an edge towards i in the underlying graph g ∈ D.

Definition 2.5. The neighborhood of a node i ∈ [N ] in a graph g = (a, ℓ) ∈ D is defined as

Ng(i) = {j ∈ [N ] \ {i}|ℓji 6= 0}.

If the referenced graph g is clear in the context, we may simply write N(i) instead of Ng(i).

2.3 Eisenberg-Noe Aggregation

One approach to design systemic risk measures utilises an aggregation function that aggregates the system
to some univariate value such that the riskiness of the system can then be evaluated by applying some
univariate risk to this value, see (1). Now we specify an aggregation function for financial networks based
on the market clearing mechanism introduced in the seminal work of Eisenberg and Noe [22].

Definition 2.6 (Financial network). We model a financial network of N institutions and their interbank
liabilities as follows:

(i) The institutions assets a = (a1, ..., aN ) ∈ RN
+

(ii) The interbank liability matrix ℓ ∈ R
N×N
+ , where ℓij > 0 indicates a liability of size ℓij from bank i

towards bank j. We do not allow self loops, hence diag(ℓ) = (ℓ11, ..., ℓNN ) = (0, ..., 0).

In a network of financial institutions connected by bilateral liabilities it can occur that assets and incoming
cash-flows of one participant are not sufficient to meet the full amount of the outgoing liabilities. This
could lead to a situation where other participants can not meet their liabilities due to the lack of incoming
cash-flows, triggering a chain reaction of defaults being propagated through the network. To calculate how
much value will be actually available for paying off debt at every node in an equilibrium, where everybody
pays off as much debt as possible from their incoming cash-flows, we can calculate a so called clearing
vector introduced by Eisenberg and Noe [22]. The utilised market clearing algorithm follows three basic
principles: limited liability, which means that an institution can never pay back more than it has funds
available, proportionality, which requires that in case of a default all creditors are paid back proportionally,
and absolute priority, which means that any institution will use all available capital in case its liabilities
cannot be fully met.
To describe this clearing vector mathematically, we introduce the following quantities. For a financial network
of N ∈ N institutions (a, ℓ) ∈ RN

+ ×R
N×N
+ , we define the total liability vector ℓ̄ ∈ RN

+ containing the sum of
outwards liabilities of each node by

ℓ̄i :=

N∑

j=1

ℓij . (11)

Denoting the set of all relative liability matrices by

ΠN :=



π ∈ [0, 1]N×N

∣∣∣∣∣∣
∀i ∈ [N ] : πii = 0,

N∑

j=1

πij ∈ {0, 1}



 ,

we define the relative liability matrix π ∈ ΠN by

πij :=

{
ℓij/ℓ̄i if ℓ̄i > 0,

0 otherwise.
(12)

7



Remark 2. Note that we can always obtain ℓ from the pair (π, ℓ̄) and vice versa. Therefore, for every function
f : RN

+ × R
N×N
+ → RN there exists always a corresponding function f̄ : RN

+ ×ΠN × RN
+ → RN such that

f(a, ℓ) = f̄(a, π, ℓ̄).

We define the function Φ : RN
+ × RN

+ ×ΠN × RN
+ → RN by

Φ(p, a, π, ℓ̄) :=
(
πT p+ a

)
∧ ℓ̄. (13)

This function calculates how much debt could be paid back by each node i = 1, ..., N under the assumption
that the other nodes use capital pj , j = 1, ..., N, j 6= i to pay off their debt.
In [22] it is shown that the function Φ is positive, monotone increasing, concave (component-wise, since we
map into RN ) and non-expansive (Lipschitz continuous with Lipschitz constant K = 1) in its arguments a
and ℓ̄.

Definition 2.7. For given a ∈ RN
+ , π ∈ ΠN , ℓ̄ ∈ RN

+ , a fixed point of the function Φ(·, a, π, ℓ̄) is called a
clearing vector.

We can interpret such a clearing vector as a state in which the system is in equilibrium: If each institution
uses capital according to the clearing vector to pay back its debts, the fact that a clearing vector is a fixed
point of Φ will ensure that indeed each institution has available capital according to the clearing vector.
The properties of Φ mentioned above allow Eisenberg and Noe [22] to obtain results regarding the existence
of fixed points of this function. In particular, there exist a least and greatest element in the set of fixed
points. A clearing vector can be obtained by applying the function iteratively or by solving a finite number of
linear equations, see [22]. Furthermore, they find sufficient conditions for uniqueness of the clearing vector,
e.g. a > 0. This is an easy way to ensure unique clearing vectors, hence from now on we will demand that
assets are strictly positive, i.e. a > 0. We write a ∈ R

N
++.

The following proposition provides some insights how a clearing vector depends on the financial network
(a, π, ℓ̄).

Proposition 2.8. Let [RN
+ → RN

+ ] denote the space of functions from RN
+ to RN

+ and let P(RN ) denote the
power set of RN . Let further FIX : [RN

+ → R
N
+ ] → P(RN ) be the map returning the set of fixed points FIX(h)

of a function h ∈ [RN
+ → RN

+ ]. Then the following hold.

(i) For any π ∈ ΠN , ℓ̄ ∈ RN
+ the function f1 : RN

++ → RN

f1(a) = FIX(Φ(·, a, π, ℓ̄))

is well-defined, positive, monotone increasing, concave and non-expansive.

(ii) For any a ∈ R
N
++, π ∈ ΠN the function f2 : RN

+ → R
N

f2(ℓ̄) = FIX(Φ(·, a, π, ℓ̄))

is well-defined, positive, monotone increasing, concave and non-expansive.

(iii) For any a ∈ RN
++, ℓ̄ ∈ RN

+ the function f3 : ΠN → RN

f3(π) = FIX(Φ(·, a, π, ℓ̄))

is well-defined and continuous.

Proof. Since for a ∈ RN
++ the fixed point of Φ is unique, the well-definedness is clear for all cases. The cases

(i) and (ii) follow from Lemma 5 in [22]. Case (iii) follows from Proposition 2.1 in [27] with the only variation
that we define ΠN slightly differently, but since the set ΠN is closed the same reasoning holds true.
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In the following we investigate the function that maps a financial network to its unique clearing vector.

Definition 2.9. We define the clearing vector functions CV : RN
++ × R

N×N
+ → R

N and CV : RN
++ ×ΠN ×

RN
+ → RN as

CV(a, ℓ) = CV(a, π, ℓ̄) = FIX(Φ(·, a, π, ℓ̄)).

From Proposition 2.8 it is clear that CV is continuous with respect to all its components and it is also obvious
that CV is continuous with respect to the assets a.

Remark 3. Recall that we chose the relative liability matrix π ∈ ΠN such that for any i ∈ [N ] the i-th row
πi· ∈ RN

+ equals 0 or sums to 1, depending on whether ℓ̄i is 0 or not. However, from the definition of Φ in
(13) it is clear that in the case ℓ̄i = 0, every fixed point p ∈ RN

+ of Φ(·, a, π, ℓ̄) must satisfy pi = 0 for any
choice of πi· ≥ 0. Subsequently CV(a, π, ℓ̄) is the same for any choice of πi· ≥ 0 if ℓ̄i = 0. This observation
will help us prove the following proposition where we show that CV is continuous with respect to the liability
matrix ℓ.

Proposition 2.10. The clearing vector function CV : RN
++ × R

N×N
+ → RN

(a, ℓ) 7→ CV(a, ℓ)

is continuous with respect to ℓ.

Proof. Let (a, ℓ) ∈ RN
++ × R

N×N
+ be given. We show continuity in one arbitrary entry ℓkl, k, l ∈ [N ] of the

liability matrix. To this end, fix k, l ∈ [N ].
Let h : RN×N

+ → ΠN ×RN
+ be the auxiliary function that maps ℓ to the couple (π, ℓ̄) according to equations

(11) and (12). This function is continuous in the entry ℓkl if ℓ̄k > 0. Hence, in the case ℓ̄k > 0 we have that

CV(a, ℓ) = CV(a, h(ℓ)) = CV(a, π, ℓ̄), (14)

which is continuous in ℓkl as a composition of continuous functions.
In the case ℓ̄k = 0 it must hold ℓk· = (0, ..., 0), since the entries of ℓ are non-negative. At this ℓ the function
h is not continuous in ℓkj , since any increase of entry ℓkl would cause a jump in π from πkl = 0 to πkl = 1.
However, in this case we make use of Remark 3, where we established that we can change the k-th row of
the relative liability matrix without changing the result of the clearing vector function if ℓ̄k = 0. Hence,
let π′ ∈ ΠN be the relative liability matrix where we only changed the entry at index k, l from 0 to 1, i.e.
π′
kl = 1 and π′

ij = πij , i, j ∈ [N ], i 6= k, j 6= l. Define h′ as h′(ℓ) = (π′, ℓ̄). Then for ℓ̄k = 0 the function h′ is
continuous in ℓkl and we get that

CV(a, ℓ) = CV(a, π, ℓ̄) = CV(a, π′, ℓ̄) = CV(a, h′(ℓ)),

which is continuous in ℓkl as a composition of continuous functions.

Beyond continuity, one can prove further properties of the clearing vector function in its first component.

Proposition 2.11. The clearing vector function CV : RN
++ × R

N×N
+ → R

N

(a, ℓ) 7→ CV(a, ℓ)

is positive, monotone increasing, concave and non-expansive in its first component a.

Proof. This is shown in Lemma 5 of [22].

To conclude this section, we introduce the aggregation or loss function that we will consider, in order to
obtain a univariate value associated to a financial network (a, ℓ). The idea is to first calculate the clearing
vector CV(a, ℓ) of the network and subtract it from the total liability vector ℓ̄. This non-negative vector
represents in each component the amount of liabilities towards other nodes that can not be provided by the
corresponding node. If we sum up these values, we obtain a notion of shortfall of the network that we call
Λ(a, ℓ).
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Definition 2.12. Let CV : RN
++ × R

N×N
+ −→ RN be the function returning the clearing vector. Then the

aggregation function Λ : RN
++ × R

N×N
+ −→ R is defined as

Λ(a, ℓ) =
N∑

i=1

ℓ̄i − CVi(a, ℓ),

where ℓ̄ ∈ RN is the total liability vector associated to ℓ ∈ R
N×N
+ , see (11).

3 Systemic risk of random financial networks

In this section we introduce the notion of systemic risk that we want to investigate. Therefore, we connect the
results about the Eisenberg-Noe market clearing from Section 2.3 with systemic risk measures by considering
random variables whose realisations are financial networks of the form in Definition 2.6.

Definition 3.1. We model a random network of N financial institutions as

(i) the institutions’ assets A = (A1, ..., AN ) ∈ L0(RN
++) and

(ii) the interbank liability matrix L ∈ L0(RN×N
+ ), where Lij denotes the size of the liability from bank i to

bank j. We do not allow self loops, hence diag(L) = (L11, ..., LNN) = (0, ..., 0).

Modifying systemic risk measures as in (4), we define systemic risk measures of random financial networks
as follows.

Definition 3.2. Let A ⊆ L0(R) be some acceptance set of R-valued random variables and Λ : RN
++×R

N×N
+ →

R be some aggregation function. Then the systemic risk measure ρ : G 7→ ρ(G) ∈ R ∪ {±∞} of random
financial networks G = (A,L) as in Definition 3.1 is defined as

ρ(G) := inf
Y ∈C

{
N∑

i=1

Yi

∣∣∣∣∣Λ(A+ Y, L) ∈ A

}
, (15)

where C ⊆ CR is some admissible subset of measurable random variables that sum to a constant value.

Now we will make specific choices regarding A, Λ, and C in order to derive relevant properties of the systemic
risk measure. For the remainder of the paper we make the following assumption.

Assumption 3.3.

(i) Let η : L1(Ω,F ,P;RN ) → R be a univariate risk measure that is

• monotone increasing: for X > Y : η(X) > η(Y )

• convex: for λ ∈ [0, 1] : η(λX + (1 − λ)Y ) ≤ λη(X) + (1 − λ)η(Y )

• normalised: η(0) = 0

• continuous in L1: ∀ε > 0 ∃δ > 0 : ‖X − Y ‖1 < δ =⇒ |η(X) − η(Y )| < ε.

We define the acceptance set as

A = {Z ∈ L1(Ω,F ,P;R)|η(Z) ≤ b}, (16)

for some acceptable risk threshold b > 0.
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(ii) The liability matrix is integrable, L ∈ L1(RN×N
+ ). We denote the set of all random financial networks

with integrable liability matrix by

G := {(A,L)|A ∈ L0(RN
++), L ∈ L1(RN×N

+ ), diag(L) = 0}, (17)

and the random vector of total liabilities (L̄1, ..., L̄N)T component-wise for i ∈ [N ] as

L̄i :=

N∑

j=1

Lij .

(iii) The aggregation function Λ is chosen as in Definition 2.12.

(iv) The set of admissible allocations C consists of all non-negative allocations Y whose stochastic compo-
nents sum to some fixed value almost surely,

C =

{
Y ∈ L0(RN

+ )

∣∣∣∣∣

N∑

n=1

Y n ∈ R

}
⊆ CR.

Remark 4. For the systemic risk to be well-defined we can only consider non-negative random variables
in C due to the choice of the aggregation function. Furthermore, there is a trade-off between choosing
b ∈ R+, L ∈ L∞ and b > 0, L ∈ L1. If the liability matrix is bounded, Lemma 3.6 shows that we can find
a finite amount of bailout capital such that the network is secured by a corresponding allocation Y ∈ C.
However, if the liability matrix is not bounded, we can only secure the network for b > 0, but not necessarily
for b = 0. In this work we decide to continue with the choice b > 0 and L ∈ L1. Finally, it is worth noting
that the continuity property in (i) of the risk measure η could be dropped if η is a monotone increasing,
convex, normalised and cash-invariant risk measure defined on L∞ and if the liability matrix lies in L∞

instead of L1. This is because for two random variables X,Y ∈ L∞ we immediately obtain

|η(X) − η(Y )| ≤ |η(Y + ‖X − Y ‖∞) − ρ(Y )| = ‖X − Y ‖∞, (18)

which would be sufficient to recover all following results in this section.

Under Assumption 3.3 we can reformulate our definition of systemic risk. To indicate the dependence on
the acceptable risk threshold b we write ρb(G). Let b > 0 and Λ be the aggregation function from Definition
2.12. Then we can rewrite the systemic risk of a network G ∈ G as

ρb(G) = inf
Y ∈C

{
N∑

n=1

Yn

∣∣∣∣∣ η (Λ(A+ Y, L)) ≤ b

}
, (19)

where

C =

{
Y ∈ L0(RN

+ )

∣∣∣∣∣

N∑

n=1

Yn ∈ R

}
. (20)

For a deterministic liability matrix L ∈ R
N×N
+ this aligns well with existing definitions of systemic risk

measures for vector valued risk factors, see for example (4). In particular, following [7], the systemic risk
measure ρb : A 7→ ρb((A,L)) is a convex systemic risk measure.

Proposition 3.4. For a deterministic liability matrix L ∈ R
N×N
+ the systemic risk measure

ρ : L0(RN
++) → R+

ρ(A) = ρb((A,L))

is a convex systemic risk measure. This means ρ is monotone and convex on {ρ(A) < +∞}.

11



It may seem restrictive, that the previous result only holds on {ρ(X) < +∞}, but in fact Proposition 3.7
shows that ρb((A,L)) < +∞ for all (A,L) ∈ G.
For the proof of Proposition 3.4 the following observation comes in handy.

Lemma 3.5. The aggregation function Λ from Definition 2.12 is convex, non-expansive and monotone
decreasing in its first component.

Proof. For (a, ℓ) ∈ R
N
++ × R

N×N
+ the loss Λ is defined as

Λ(a, ℓ) =
N∑

i=1

ℓ̄i − CVi(a, ℓ),

where CV is the clearing vector function from Definition 2.9. Since CV is concave, non-expansive and
monotone increasing in its first component (see Proposition 2.8) the proposition follows directly.

Proof of Proposition 3.4. We can apply Lemma 3.3 from [7] and only need to show the following two prop-
erties.

(P1) For all Y ∈ C and the set

AY = {A|A ∈ L0(RN
+ ), η (Λ(A+ Y, L)) ≤ b}

it holds: A2 ≥ A1 ∈ AY =⇒ A2 ∈ AY .

(P2) For all Y1, Y2 ∈ C, all A1, A2 ∈ L0(RN
+ ) with η (Λ(Ai + Yi, L)) ≤ b, i = 1, 2 and all λ ∈ [0, 1] there exists

Y ∈ C such that |Y |1 ≤ λ|Y1|1 + (1 − λ)|Y2|1 and η (Λ(λA1 + (1 − λ)A2 + λY1 + (1 − λ)Y2, L)) ≤ b.

Since Λ is monotone decreasing for A1 ≤ A2, it follows immediately η (Λ(A2 + Y, L)) ≤ η (Λ(A1 + Y, L)),
which shows (P1). For (P2) we choose Y = λY1 + (1 − λ)Y2. Then, since Λ is convex and η is monotone
increasing and convex, we get

η (Λ(λA1 + (1 − λ)A2 + λY1 + (1 − λ)Y2, L))

≤ η (Λ(λ(A1 + Y1) + (1 − λ)(A2 + Y2), L))

≤ λη (Λ(A1 + Y1, L)) + (1 − λ)η (Λ(A2 + Y2, L)) ≤ b,

which shows (P2).

Let us now return to the setting where the liability matrix is random. For G ∈ G we can show that the
systemic risk ρb(G) is well-defined in the sense that it does not take the values ±∞, see Proposition 3.7 below.
For the proof we will make use of the fact that for every G there exists some finite allocation Y <∞, which
renders η (Λ(A+ Y, L)) arbitrarily small. We will show this by facilitating the following result regarding the
case L ∈ L∞.

Lemma 3.6. Let (A,L) = G ∈ G. If every component of the liability matrix L is bounded by some value
U > 0, i.e. L ≤ U , then for

Y =




(N − 1)U
...

(N − 1)U




it holds that

Λ(A+ Y, L) = 0.
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Proof. Let A,L and Y be defined as described above. To see that we can completely secure the network,
i.e. prevent all losses by injecting the amount (N − 1)U into each of the N nodes, remember that CV yields
for every realisation (a + y, ℓ) = (A(ω) + Y (ω), L(ω)) ∈ RN

++ × R
N×N
+ the value of the unique fixed point

FIX(Φ(·, a+ y, π, ℓ̄) of the map

Φ(p, a+ y, π, ℓ̄) =
(
πT p+ a+ y

)
∧ ℓ̄,

where ℓ̄i =
∑N

j=1 ℓij ≤ (N − 1)U . However, for any non-negative vector p ∈ RN and for our choice of y from
above this function is constant,

Φ(p, a+ y, ℓ) =
(
πT p+ a+ y

)
∧ ℓ̄

=
(
πT p︸︷︷︸
≥0

+ a︸︷︷︸
>0

+
(
y − ℓ̄
︸ ︷︷ ︸

≥0

)
+ ℓ̄
)
∧ ℓ̄

= ℓ̄.

Consequently, the only possible fixed point and hence value of CV is CV(a+ y, ℓ) = ℓ̄, and we get

Λ(a+ y, ℓ) =
N∑

i=1

ℓ̄i − CVi(a+ y, ℓ) = 0.

Hence Λ(A+ Y, L) = 0, which finishes the proof.

Proposition 3.7. Let G ∈ G and b > 0. Then 0 ≤ ρb(G) < +∞.

Proof. By definition it is clear that ρb(G) ≥ 0 > −∞. We show that ρb(G) < +∞.
It is clear that

L1{L�M} = L− L1{L≤M}
M→∞
−−−−→ 0 P-a.s.

Since L ∈ L1(RN×N
+ ), we can apply dominated convergence to |L|1 − |L|11{L≤M} ≤ 2|L|1 ∈ L1(R) and get

‖L1{L�M}‖1 = ‖L− L1{L≤M}‖1
M→∞
−−−−→ 0.

By continuity of η we find an M > 0 such that η
(
|L|11{L�M}

)
< b, and choose Y ∈ L0(RN

+ ) as

Y =




(N − 1)M
...

(N − 1)M


 .

Then we get that

η (Λ(A+ Y, L)) = η
(

Λ(A+ Y, L)1{L�M} + Λ(A+ Y, L)1{L≤M}

)

= η

((
N∑

i=1

L̄i − CVi(A+ Y, L)

)
1{L�M} + 0

)

≤ η

(
1{L�M}

N∑

i=1

L̄i

)
= η

(
|L|11{L�M}

)
< b,

where Lemma 3.6 was used to argue that network can be completely secured in the bounded, i.e. L ≤ M ,
case.
This means that Y secures the network and in particular

ρb(G) ≤ |Y |1 = N(N − 1)M < +∞.
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The following corollary shows that in order compute the systemic risk we can restrict the set of available
allocations to those bounded by some value U > 0 if U is large enough.

Corollary 3.8. Let G = (A,L) ∈ G, b > 0 and let ρb(G) < U < +∞. Then

ρb(G) : = inf

{
N∑

n=1

Yn

∣∣∣∣∣Y ∈ C, η (Λ(A+ Y, L)) ≤ b

}

= inf

{
N∑

n=1

Yn

∣∣∣∣∣Y ∈ C, Y ≤ U, η (Λ(A+ Y, L)) ≤ b

}
.

Proof. It is clear that

inf

{
N∑

n=1

Yn

∣∣∣∣∣Y ∈ C, η (Λ(A+ Y, L)) ≤ b

}

≤ inf

{
N∑

n=1

Yn

∣∣∣∣∣Y ∈ C, Y ≤ U, η (Λ(A+ Y, L)) ≤ b

}
.

To see the reverse inequality, let (Y (k))k∈N ⊆ C be such that for all k ∈ N, η
(
Λ(A+ Y (k), L)

)
≤ b and

|Y (k)|1
k→∞
−−−−→ ρb(G).

Without loss of generality we can impose that |Y (k)|1 actually converges monotonously from above. Then
there exists some k∗ ∈ N such that |Y (k)|1 ≤ U for all k ≥ k∗. Define

Ỹ (k) =

{
Y (k), k ≥ k∗

Y (k∗), k < k∗.

The sequence (Ỹ (k))k∈N is bounded by U , because a vector of non-negative entries summing up to any value
U is trivially bounded by U in every component. Furthermore, (|Ỹ (k)|1)k∈N converges to ρb(G) as well and
hence

inf

{
N∑

n=1

Yn

∣∣∣∣∣Y ∈ C, η (Λ(A+ Y, L)) ≤ b

}

≥ inf

{
N∑

n=1

Yn

∣∣∣∣∣Y ∈ C, Y ≤ U, η (Λ(A+ Y, L)) ≤ b

}
,

which concludes the proof.

Now we want to discuss some further properties of the systemic risk measure as defined in (19). In particular
we will prove existence of an optimal random allocation for the systemic risk ρb(G), therefore the infimum
is actually a minimum. To this end we define optimal allocations as follows.

Definition 3.9. We call an allocation Y optimal for the systemic risk measure defined in (19) if and only
if Y ∈ C, |Y |1 = ρb(G) and η (Λ(A+ Y, L)) ≤ b.

Furthermore, while it is not necessary that an optimal allocation should be unique, we can show that the
set of optimal allocations is convex and that the risk of loss equals exactly b for an optimal allocation. The
following proposition summarises these results.

Proposition 3.10. Let G ∈ G, b > 0 and ρb(G) from (19). The following holds.

(i) There exists an optimal Y ∗ where the infimum ρb(G) is attained, i.e. it is a minimum.
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(ii) For each optimal Y ∗ ∈ C the risk of loss equals exactly b,

η (Λ(A+ Y ∗, L)) = b.

(iii) The set of all optimal allocations is a convex set.

Proof. Let G = (A,L) ∈ G, b > 0, and Y (k) ⊂ C be a sequence such that ∀k ∈ N : η
(
Λ(A+ Y (k), L)

)
≤ b,

and |Y |
(k)
1 −−−−→

k→∞
ρb(G).

Without loss of generality we choose the sequence such that |Y |
(k)
1 is monotonously decreasing towards ρb(G).

By Corollary 3.8 we can choose these allocations uniformly bounded by some U ∈ R, U > ρb(G). Then, since
0 ≤ Y (k) ≤ U is bounded, from Komlós’ Theorem A.1 we obtain a new sequence

Ỹ (k) ∈ conv{Y (k), Y (k+1), . . .} (21)

that converges almost surely to some limit random variable Ỹ ∗.
Since C is convex we know that ∀k : Ỹ (k) ∈ C. Furthermore, since CV(A+ Y, L) is concave in Y we get that
for nk ∈ N, j ∈ {1, ..., nk}, kj ∈ {k, k + 1, . . .}, akj

≥ 0,
∑nk

j=1 akj
= 1 such that,

Ỹ (k) =

nk∑

j=1

akj
Y (kj)

it holds that

η
(

Λ(A+ Ỹ (k), L)
)

= η

(
N∑

i=1

L̄i − CVi(A+ Ỹ (k), L)

)

= η




N∑

i=1

L̄i − CVi


A+

nk∑

j=1

akj
Y (kj), L






≤ η




N∑

i=1

L̄i −

nk∑

j=1

akj
CVi

(
A+ Y (kj), L

)



≤

nk∑

j=1

akj
η
(

Λ(A+ Ỹ (kj), L)
)
≤ b,

and since we choose (Y (k))k such that
∑N

i=1 Y
(k)
i is decreasing

N∑

i=1

Ỹ
(k)
i =

N∑

i=1

nk∑

j=1

akj
Y

(kj)
i =

nk∑

j=1

akj

N∑

i=1

Y
(kj)
i

≤

N∑

i=1

Y
(k)
i −−−−→

k→∞
ρb(G).

Hence the sequence of Ỹ (k) fulfills the same requirements as Y (k) and for the rest of the proof we will only
consider the converging sequence of Ỹ (k) with limit Ỹ ∗, but to ease up the notation we write Y (k) and Y ∗

instead of Ỹ (k) and Ỹ ∗.

(i) Firstly, it is clear that Y ∗ ∈ C, because we know that 0 ≤ Y k ≤ U and hence U ≥ Y ∗ ∈ L∞(RN ).
Further, by construction the components of Y ∗ sum to the constant value of ρb(G),

|Y ∗|1 =

N∑

i=1

Y∞
i =

N∑

i=1

lim
k→∞

Y
(k)
i = lim

k→∞

N∑

i=1

Y
(k)
i = ρb(G).
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Next we show that Y ∗ actually fulfills the risk constraint η (Λ(A+ Y ∗, L)) ≤ b.We assume η (Λ(A+ Y ∗, L)) =
b+ ε for some ε > 0 and lead this into a contradiction.

For any k ∈ N we have

η (Λ(A+ Y ∗, L)) − η
(

Λ(A+ Y (k), L)
)
≥ ε.

Furthermore, since Y (k) k→∞
−−−−→ Y ∗ and since Λ is continuous it also holds

Λ(A+ Y (k), L)
k→∞
−−−−→ Λ(A+ Y ∗, L).

We use dominated convergence on Λ(·, L) ≤ |L|1 to obtain

‖Λ(A+ Y (k), L) − Λ(A+ Y ∗, L)‖1
k→∞
−−−−→ 0.

But by the continuity of η this would mean that

η
(

Λ(A+ Y (k), L)
)

k→∞
−−−−→ η (Λ(A+ Y ∗, L))

which is a contradiction to

∀k ∈ N : η (Λ(A+ Y ∗, L)) − η
(

Λ(A+ Y (k), L)
)
≥ ε.

Therefore it must hold that η (Λ(A+ Y ∗, L)) ≤ b.

This concludes the first part of the proof where we showed that the infimum is actually a minimum.

(ii) Now we continue and show that the risk actually equals b. We already showed “≤”. In order to show
“≥”, assume η (Λ(A+ Y ∗, L)) = b − ε. By continuity of η we know for ε > 0 there exists a δ > 0 such that

for any Ỹ ∈ C

∥∥∥Λ(A+ Y ∗, L) − Λ(A+ Ỹ , L)
∥∥∥
1
< δ =⇒

∣∣∣η (Λ(A+ Y ∗, L)) − η(Λ(A + Ỹ , L))
∣∣∣ < ε.

If we define

Ỹ = Y ∗ −




δ/2
0
...
0


 = −

δ

2
e1,

then since Λ is non-expansive (Lemma 3.5) it holds

∣∣∣Λ(A+ Y ∗, L) − Λ(A+ Ỹ , L)
∣∣∣
1
≤
∣∣∣Y ∗ − Ỹ

∣∣∣
1

= δ/2.

Therefore, by continuity and monotonicity of η it holds that

η
(

Λ(A+ Ỹ , L)
)
≤ ρb(G) − ε/2 ≤ b.

However, this means that Ỹ is a cheaper bailout strategy than Y ∗ (it sums to ρb(G)− δ/2 instead of ρb(G))
that makes the system acceptable. But then ρb(G) can not be the infimum, which is a contradiction. Hence
it must be true that η (Λ(A+ Y ∗, L)) ≥ b.

This shows that η (Λ(A+ Y ∗, L)) = b.
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(iii) In the last part of the proof we show that the set of points where the minimum is attained forms a
convex set. Let Y (1), Y (2) be two optimal bailout strategies with respect to the systemic risk ρb(G) for some

stochastic financial network G ∈ G and b > 0. Let λ ∈ (0, 1) and Ỹ = λY (1) + (1 − λ)Y (2). Thus we get

η
(

Λ(A+ Ỹ , L)
)

= η
(

Λ
(
λ(A+ Y (1)) + (1 − λ)(A + Y (2)), L

))

≤ η
(
λΛ
(
A+ Y (1), L

)
+ (1 − λ)Λ

(
A+ Y (2), L

))

≤ λη
(

Λ(A+ Y (1), L)
)

+ (1 − λ)η
(

Λ(A+ Y (2), L)
)

= b.

With the same arguments as before it also holds “≥”: Otherwise, we could subtract some ε > 0 and make
the financial network acceptable with costs strictly less than ρb(G). Hence Ỹ is an optimal bailout strategy
and the set of optimal solutions must be convex.

Remark 5. There is indeed no reason to assume an optimal solution should be unique. Let η(·) = E [·]
and imagine a deterministic financial network (A,L) where two nodes 1,2 owe exactly 1 unit of capital to a
third node 3. There are no other obligations and all external assets are 0. Without any bailout capital the
expected loss of this network is 2. Assume we want to find bailout strategies that reduce the loss to 1. It can
be easily recognised that all bailout strategies that serve this purpose are e1, e2 and convex combinations of
them. For any λ ∈ (0, 1),

E [Λ(A+ λe1 + (1 − λ)e2, L)] (22)

= Λ(A+ λe1 + (1 − λ)e2, L) = 1 − λ+ 1 − (1 − λ) = 1. (23)

4 Computation of Systemic Risk Measures

4.1 Reformulation of Systemic Risk Measures

In order to formulate an algorithm for the computation of the systemic risk measures defined in Section 3,
we introduce an equivalent formulation that will be useful for the numerical computation.

Definition 4.1. Let G ∈ G be some stochastic financial network and c ∈ R+. We define the inner risk
ρIc(G) as the infimum aggregated risk that can be obtained by all capital allocations Y that fulfill the capital

constraint
∑N

n=1 Yn = c, that is,

ρIc(G) = inf
Y ∈Cc

{η (Λ(A+ Y, L))} , (24)

where

Cc :=

{
Y ∈ L0(RN

+ )

∣∣∣∣∣

N∑

n=1

Yn = c

}
.

Definition 4.2. With the notion of inner risk from Definition 4.1 we call a bailout capital allocation Y c ∈ Cc

optimal for capital level c ∈ R+ if and only if

η(Λ(A + Y c, L)) = ρIc(G). (25)

Definition 4.3. Let b > 0, we define the outer risk as

ρOb (G) = inf
{
c ∈ R+|ρ

I
c(G) ≤ b

}
. (26)
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Lemma 4.4. The infimum in (24) is attained, hence it is indeed a minimum.

Proof. Let (Y (k))k∈N ⊆ Cc be a sequence of allocations such that

η
(

Λ(A+ Y (k), L)
)

k→∞
−−−−→ ρIc(G).

Since the Y (k) are non-negative and sum to c they are also bounded by c. Hence, we can use Komlós’
Theorem (see Theorem A.1 in the appendix) in the same manner as in (21) to obtain a sequence (Ỹ (k))k∈N
that lies in Cc as well, because

Ỹ (k) ∈ conv({Y (k), Y (k+1), . . .}),

and that converges almost surely to some Ỹ∞ ∈ Cc. Then also Λ(A + Ỹ (k), L) converges almost surely to

Λ(A+ Ỹ∞, L). By dominated convergence it also converges in L1, and we can use continuity of η to obtain

η
(

Λ(A+ Ỹ∞, L)
)

= η

(
Λ(A+ lim

k→∞
Ỹ (k), L)

)

= η

(
lim
k→∞

Λ(A+ Ỹ (k), L)

)
= lim

k→∞
η
(

Λ(A+ Ỹ (k), L)
)

= ρIc(G).

Hence the infimum is attained by Ỹ∞.

Proposition 4.5. For the outer risk ρOb (G) and the systemic risk ρb(G) it holds

ρb(G) = ρOb (G).

Proof. Let (c(k))k∈N ⊆ R+ be a sequence of real numbers such that ρIc(G) ≤ b and c(k) −→ ρOb (G).
With Lemma 4.4 we get for every c(k) an allocation Y (k) ∈ Ca such that

η
(

Λ(A+ Y (k), L)
)
≤ b.

Trivially, this sequence fulfills Y (k) ∈ C and hence those allocations are admissible for bounding the systemic
risk ρb(G) from above. We conclude that ρb(G) ≤ ρOb (G).
To show the other direction, consider any Y ∗ ∈ C that is optimal for ρb(G). This means

|Y ∗|1 = ρb(G),

and by Proposition 3.10

η (Λ(A+ Y ∗, L)) = b.

Then it holds that

ρb(G) ∈
{
c ∈ R+|ρ

I
c(G) ≤ b

}
.

Subsequently it must always be true that

ρOb (G) ≤ ρb(G),

which concludes the proof.

Corollary 4.6. The infimum in (26) is attained.
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Proof. Since ρb(G) is attained (Proposition 3.10) and ρb(G) = ρOb (G) (Proposition 4.5) it follows

ρOb (G) ∈ {c ∈ R+|ρ
I
c(G) ≤ b}.

Proposition 4.5 and Corollary 4.6 show that in order to calculate the systemic risk ρb(G) we can first find
all capital levels c ∈ R+ for which the inner risk ρIc(G) is still lower or equal than b and then choose the
minimum of those values. This procedure will be utilised by the algorithm when approximating the systemic
risk of a network.
We next turn to the task of finding, for each capital level c ∈ R+, a “good” approximation of a bailout
capital allocation Y c ∈ Cc that is optimal. As a first step, we show that there exist measurable functions
Hc : RN

++ ×R
N×N
+ → RN

+ such that Hc(A,L) is optimal for capital level c ∈ R+. This result is useful, since
later we will prove that we can approximate measurable functions arbitrarily close by neural networks.

Proposition 4.7. There exist measurable functions Hc : RN
++ × R

N×N
+ → RN

+ such that

Hc(A,L) ∈ Cc (27)

is an optimal bailout capital allocation at level c ∈ R+.

Proof. Let hc : RN
++ × R

N×N
+ → P(RN

+ ) be the set valued argmin function

hc(a, ℓ) = argmin
{

Λ(a+ y, ℓ)
∣∣y ∈ R

N
+ , |y| = c

}
. (28)

The min and the argmin of the set on the right hands side of (28) are well defined since Λ(a + ·, ℓ) is a
continuous function and we minimise it over a compact set.
Then, according to Theorem 14.37 in [56], the argmin of a continuous function is measurable and we can
even find a measurable selection s : P(RN

+ ) → RN
+ . This means that the function Hc : RN

++ × R
N×N
+ → RN

+

defined as

Hc(a, ℓ) := s(hc(a, ℓ))

is measurable.
It follows that Hc(A,L) ∈ Cc and by the definition of ρIc(G) it is clear that ρIc(G) ≤ η(Λ(A+Hc(A,L), L)).
However, by the definition of Hc and the monotonicity of Λ and η it holds that

η(Λ(A+Hc(A,L), L)) ≤ ρIc(G).

Therefore, Hc(A,L) is optimal for capital level c ∈ R+.

4.2 Iterative Optimisation Algorithm

Computing systemic risk is not straight forward due to the scenario dependent allocation. However, the
results from Proposition 4.5 allow to formulate an iterative optimisation algorithm.
The general idea is the following. Starting from some initial bailout capital cinit ∈ R+, an outer numerical
optimisation will first evaluate the systemic risk at the current capital level ccurr, using the optimal allocation
obtained from an inner optimisation procedure. Then it will update the current capital level to a new capital
level cnew for the next iteration.
By Proposition 4.7, for any capital level c ∈ R+ there exists a measurable function Hc : RN

++×R
N×N
+ → RN

+

such that Hc(A,L) is an optimal bailout allocation.
Since c = 0 indicates that there is no capital to be allocated we focus on the case c > 0 and consider the
normalised function

ϕc =
Hc

c
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which we aim to approximate by a parameterised function φθ. Here θ ∈ Rm, for some m ∈ N, is a collection
of parameters.
More in detail, we propose to approximate ϕc by neural networks φθ. For the initial capital level cinit ∈ R+

the parameters θ will be initialised randomly. At the end of each optimisation step for capital level c ∈ R+,
we obtain parameters θcopt associated with the optimal bailout capital allocation for capital level c. Then
at the beginning of the next optimisation round for level cnew ∈ R+ we will use the parameters θcopt of the
previous step as the starting point for the inner optimisation.
The objective for the training of φθ for some fixed capital level c ∈ R+ is to minimise

JI(θ) = Λ(A+ cφθ(A,L), L). (29)

Recalling the notion of inner risk (4.1) and optimality for some risk level (4.2), it is clear that if JI is minimal
for c ∈ R+, then due to the monotonicity of η also η(Λ(A+cφθ(A,L), L)) is minimal and hence the allocation
cφθ is optimal for c ∈ R+.
With the inner training procedure which finds a parameter vector θc for any c ∈ R+ at hand, the training
objective of the outer optimisation is to minimise

JO(c) = µ1

(
η(Λ(A+ cφθ

c

(A,L), L)) − b
)+

+ µ2c (30)

where µ1 ≥ µ2 > 0 are hyper-parameters.3 The first term penalises configurations where the risk constraint
is not fulfilled while the second term provides an incentive for the capital level to be as small as possible.
The objective function reaches a minimum at the smallest capital level c ∈ R+ at which the risk is lower or
equal to b > 0. This is exactly the outer risk defined in Definition 4.3 which is equal to the systemic risk
according to Proposition 4.5.
In order to calculate the objective functions we draw i.i.d. samples according to the distribution of (A,L)
under P

(A,L) = {(Aωi , Lωi)|ωi ∈ Ω, i = 1, ..., NMC},

and approximate JI , JO by their empirical estimations. The optimisation of the parameters θ and c is con-
ducted by computing gradients of the respective objective function and applying a gradient decent method.
The described algorithm outputs an approximation of the systemic risk and a corresponding bailout capital
allocation cφθ. A summary can be found in Algorithm 1. In addition, a simple variation of the algorithm
that provides an approximation of the optimal bailout capital allocation for a fixed capital level c ∈ R+ is
summarised in Algorithm 2.
If the approximation of the optimal bailout allocations works sufficiently well for every capital level c ∈ R+,
the approximated systemic risk obtained in the optimisation will be close to the actual systemic risk ρb(G).
Furthermore, even if the optimal allocations are not solved accurately, in any case the lowest capital level
c ∈ R+ that we find is an upper bound for ρb(G). Additionally, cφθ provides a bailout strategy where the
system is secured. Hence, even rather “naive” allocations cφθ can yield some valuable information. They
provide a value c ∈ R+ that suffices to secure the system and provide instructions on how to allocate the
capital in each scenario.

Remark 6. It is worth pointing out that also the traditional approach (3) of a deterministic allocation of
bailout capital (m1, ...,mN ) ∈ RN , i.e. an allocation that does not depend on scenario ω ∈ Ω, is covered
by this case. Then φθ would not parameterise a function that maps (a, ℓ) ∈ RN

++ × R
N×N
+ to an optimal

distribution, but instead directly represents the scenario agnostic distribution

φθ(a, ℓ) = φθ = (θ1, ..., θN )T

that maps every scenario (a, ℓ) to the same constant bailout distribution that minimises the systemic risk of
G.

In the next section we discuss several types of neural networks that we use as φθ in our algorithms for the
computation of systemic risk measures.

3In the numerical experiments in Section 6.3 we chose µ1 = 1, µ2 = 0.001.
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Algorithm 1 Algorithm to approximate minimal bailout capital and its optimal allocation

Input: Epochs NO, NI , data (A,L), initial capital level c, neural network φθ, risk threshold b.
for j = 1, ..., NO do

for k = 1, ..., NI do
compute empirical estimation ĴI of

JI(θ) = Λ(A+ cφθ(A,L), L)

compute gradient of ∇θĴI
update θ

end for
compute empirical estimation ĴO of

JO(c) = µ1

(
η(Λ(A+ cφθ

c

(A,L), L)) − b
)+

+ µ2c

compute gradient ∇aĴO
update c

end for
Output: c, φθ

Algorithm 2 Algorithm to approximate optimal allocation of fixed bailout capital c ∈ R+

Input: Epochs NI , data (A,L), capital level c, neural network φθ .
for k = 1, ..., NI do

compute empirical estimation ĴI of

JI(θ) = Λ(A+ cφθ(A,L), L)

compute gradient of ∇θĴI
update θ

end for
Output: φθ

5 Approximation via neural networks

In this section, we introduce three different neural network architectures that we use to approximate the
function that maps a financial network to an optimal bailout allocation as in Proposition 4.7. More pre-
cisely, in addition to classical feedforward neural networks (FNNs) and graph neural networks (GNNs) we
present the class of permutation equivariant neural networks (PENNs), which were first described in [41].
We extend this architecture by a modification that we call extended permutation euqivariant neural net-
work (XPENN). These XPENNs unite favourable properties of GNNs and PENNs and perform well in the
numerical experiments of Section 6, where we compare all these neural network architectures.

5.1 Feedforward neural networks

Feedforward neural networks (FNNs) are the original and simplest type of neural networks. They have been
successfully applied to a wide range of problems and are typically defined as follows.

Definition 5.1. Let L ∈ N be a number of layers and d0, ..., dL ∈ N corresponding layer dimensions. Let
further σ : R → R be some Borel measurable function and Wl : Rdl−1 → Rdl be an affine function for all

21



l ∈ [L]. Then a feedforward neural network F : Rd0 → RdL is defined by

F (x) = WL ◦ FL−1 ◦ · · · ◦ F1

where for l = 1, ..., L− 1 : Fl = σ ◦Wl and the activation function σ is applied component-wise.

Motivated by their success in applications, also theoretical properties have been extensively studied. An
important starting point are universal approximation theorems for learning unknown functions, see [19, 43,
51]. For example, it is a well known result that neural networks are universal approximators for measurable
functions, see for example the following result from [51], as formulated in [10], that fits well to our setting.

Proposition 5.2 (Theorem B.1, [10]). Assume the activation function σ to be bounded and non-constant.
Let f : (Rd,B(Rd)) → (Rm,B(Rm)) be a measurable function and µ be a probability measure on (Rd,B(Rd)).
Then for any ε, ε̄ > 0 there exists a neural network g such that

µ({x ∈ R
d : |f(x) − g(x)|p ≥ ε̄}) ≤ ε.

Proof. See [10].

This shows that theoretically, feedforward neural networks can approximate any measurable function in prob-
ability. However, as we will see later, they do not perform very well in our experiment on the approximation
of functions Hc based on graph data as in Proposition 4.7.

5.2 Graph neural networks

Graph neural networks (GNNs) are a family of neural networks that are specifically designed to operate on
graph-structured data. We are interested in particular in spatial graph neural networks, where information
is gathered locally by message passing, i.e. the process of passing information between the nodes of a graph.
Their origins lie in [20], [58], while more current literature includes [37] and the references therein, as well
as [40], [46], [53], [61] and [64]. The basic idea in these GNNs is that each node in the graph is associated
with a representation vector (often also called feature- or hidden-state vector), and at each iteration of
message passing, the representation vector of a node is updated by aggregating the representations of its
neighboring nodes and then combining them with the old representation of the node to derive an updated
node representation vector.

Definition 5.3. A function

f :
⋃

k∈N

(Rmh × R
me)k → R

m′

h ,

that maps any number k ∈ N of node and edge features (h1, e1), ..., (hk, ek) ∈ Rmh × Rme of dimension
mh ∈ N and me ∈ N, respectively, to some aggregated representation vector in Rm′

h of dimension m′
h ∈ N

and is permutation invariant in the sense of Definition 2.4, is called an aggregation function.

In GNNs such aggregation functions are used to aggregate the features of neighboring nodes and their edges
between them to an aggregated feature (or representation vector) of the neighborhood.
Recalling that D denotes the domain of graphs D = RN×d×RN×N×d′

from Definition 2.1, a GNN is defined
as follows.

Definition 5.4. Let L ∈ N be the number of iterations, m1, ...,mL ∈ N the dimensions of the corresponding
node representations and m′

1, ...,m
′
L ∈ N the dimensions of the neighborhood representations in the respective

iteration. Recall further that d, d′ ∈ N are the dimensions of the initial node and edge representations and
N ∈ N the graph size of graphs in D. Choose m0 = d and let

f (l)
ag :

⋃

k∈N

(
R

ml−1 × R
d′

)k
→ R

m′

l
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be aggregation functions that map any set of node and edge representations to some aggregated neighborhood
representation in every iteration l = 1, ..., L. Similarly, let

f (l)
com : Rml−1 × R

m′

l → R
ml

be functions that map a node representation and a neighborhood representation to an updated node represen-
tation.
For every node i = 1, ..., N , let h

(l)
i its node representation in iteration l ∈ [L]. The node features ai serve as

the initial node representations

h
(0)
i = ai,

and the edge representations, which are not updated in this type of GNN, are given by the edge features for
any nodes i, j = 1, ..., N

eij = ℓij .

Then, at every iteration step l = 1, ..., L− 1, the new node representation h
(l)
i is calculated as

h
(l)
i = fact(f

(l)
com(h

(l−1)
i , f (l)

ag ({(h
(l−1)
j , eji)|j ∈ N(i)}))),

where fact : R → R is some non linear activation function applied component wise. In the last step the
activation is not applied, such that

h
(L)
i = f (L)

com(h
(L−1)
i , f (L)

ag ({(h
(L−1)
j , eji)|j ∈ N(i)})). (31)

A function f : D → RN×mL defined as

f(a, ℓ) =




h
(L)
1
...

h
(L)
N




is called a graph neural network with L rounds of message passing.

Remark 7. In comparison to feedforward neural networks (Definition 5.1) it is not obvious from the above
definition why such a function is called a graph neural network. The reason for this name is that the functions

f
(l)
ag and f

(l)
com will usually be chosen as feedforward neural networks with trainable parameters. One example

is the architecture we choose for our numerical experiments which is presented in Definition 5.5.

The specific GNN architecture that we consider is called SAGEConv (with mean aggregation) and was
introduced in [40].

Definition 5.5. With the notation from Definition 5.4, we call a GNN layer SAGEConv layer if the aggre-
gation function is given by

fag({(hj , eji)|j ∈ N(i)}) :=
1

|N(i)|

∑

j∈N(i)

ejihj , (32)

and denoting

hN(i) = fag({(hj , eji)|j ∈ N(i)}), (33)

the combination function is

fcomb(hi, hN(i)) := W · concat(hi, hN(i)), (34)

where W is the representing matrix of some linear function of appropriate dimension. As activation function
we utilise the sigmoid activation

fact(x) :=
1

1 + e−x
. (35)
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There exists a plethora of other possible choices regarding GNN layers. One important aspect motivating us
to use GNNs as in Definition 5.5 is that the message passing also accounts for edge weights, besides the node
features which serve as initial node representation h(0). Other popular GNN layers that could be relevant
include the GIN layer from [64] or NNConv layer from [37]. However, comparing multiple GNN architectures
would exceed the scope of this work.
The most important reason why GNNs promise to be a suitable design to approximate the target function
Hc from (4.7) is the following. Clearly, if y ∈ RN is an optimal bailout capital allocation for a financial
network (a, ℓ) ∈ D, then σ(y) is optimal for σ(a, ℓ), for any permutation σ ∈ S(N). Hence Hc is permuta-
tion equivariant, see Definition 2.3. Since GNNs calculate the message that reaches a node i based on its
neighborhood N(i), the ordering of the nodes does not matter as long as the network topology is not altered.
This means that the output that is calculated for each node during multiple steps of message passing is by
design permutation equivariant: For σ ∈ SN the GNN f : D → R

N×l automatically computes results that
respect

f(σ(g)) = σ(f(g)).

The situation is very different for feedforward neural networks. Let for example f : RN×m → Rm′

be a
neural network 4 and σ ∈ SN any permutation. Then in general for some a ∈ RN×m it holds

f(σ(a)) 6= σ(f(a)).

Since a feedforward neural network is not permutation equivariant by design it may need to learn this
property during training when approximating Hc.

5.3 Permutation equivariant neural networks

Motivated by the fact that permutation equivariance seems to be a crucial advantage of GNNs over FNNs
in the approximation of our target function Hc, we present a neural network architecture that lies at the
border between FNNs and GNNs. We will call this neural network architecture permutation equivariant
neural network (PENN). Such PENNs do not utilise iterated message passing, however, they process the
information given by a graph in a permutation equivariant manner and “provide a summary of the entire
graph,” as stated in [41] where this architecture was first studied. Further, we are able to recover universality,
which is not available for GNNs.
Before we introduce PENNs, we investigate permutation equivariant functions in more detail. As outlined
in Remark 22, for a graph there exists multiple possible representations g1, g2, ... ∈ D that are equally valid.
Each of these representations implies the choice of some node-order in the sense that we chose a1 to be the
feature of the “first node” and aN to be the feature of the “N -th node”. We can incorporate this (or any
other) choice of numbering in the node feature by considering extended node features ã, where

ã =



a1, 1

...
aN , N


 . (36)

Adding a node ID as a feature seems not very restrictive since it only highlights an arbitrary choice that
was already made earlier by ordering the nodes. This motivates the following definition of the domain of
ID-augmented graphs.

Definition 5.6. Let σ̄ = (σ(1), ..., σ(N))T be the vector that we get by evaluating some permutation σ ∈ S(N)

on the numbers 1, ..., N . The ID-augmented graph domain D̃ contains any element of D whose node features
a were augmented with the given ordering σ̄:

D̃ := {(ã, ℓ) |ã = (a, σ̄), σ ∈ S(N), (a, ℓ) ∈ D} .

4We identify RN×m with RN·m to be in the setting of Definition 5.1.
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Remark 8. Since the augmented node-ID could simply be interpreted as one additional node-feature, the
ID-augmented graphs D̃ with node feature size (before augmentation) d ∈ N are a subset of graphs with
node-feature size d+1. Therefore, the definition of permutation equivariant functions (Definition 2.3) extends

naturally to D̃.

The following result is a modified version of Theorem 1 in [41]. We rigorously prove that any permutation
invariant function on the domain of directed, weighted and featured graphs whose node features are aug-
mented with node IDs exhibits a certain structure. Derived from this structure, later we will choose an
architecture for permutation equivariant neural networks consisting of feedforward neural networks.

Proposition 5.7. A function τ̃ : D̃ → RN is permutation equivariant as in Definition 2.3 if and only if there
exist dimensions V ≤ N2d′,W ≤ N(d + 1) + N2d′ and functions ϕ : R2(d+1)+d′

→ RV , α : Rd+1+V → RW

and ρ : Rd+1+W → R such that for all (ã, ℓ) ∈ D̃ and for all k = 1, . . . , N :

τ̃ (ã, ℓ)k = ρ


ãk,

N∑

i=1

α


ãi,

∑

j 6=i

ϕ (ãi, ℓi,j , ãj)




 . (37)

Proof. First, we show that any τ̃ satisfying the R.H.S of (59) is permutation equivariant. Let ϕ, α and ρ be
given and γ ∈ S(N) be any permutation of [N ]. Then we need to show that

τ̃ (γ (ã, ℓ))k = γ (τ̃ (ã, ℓ))k .

It holds by definition that

τ̃ (γ (ã, ℓ))k = τ̃ (γ(ã), γ(ℓ))k (38)

= ρ


γ(ã)k,

N∑

i=1

α


γ(ã)i,

∑

j 6=i

ϕ (γ(ã)i, γ(ℓ)ij , γ(ã)j)




 . (39)

Further, since γ(ã)k = ãγ−1(k) and γ(ℓ)ij = ℓγ−1(i),γ−1(j) it holds

ρ


γ(ã)k,

N∑

i=1

α


γ(ã)i,

∑

j 6=i

ϕ (γ(ã)i, γ(ℓ)ij , γ(ã)j)




 (40)

= ρ



ãγ−1(k),

N∑

i=1

α



ãγ−1(i),
∑

j 6=i

ϕ
(
ãγ−1(i), ℓγ−1(i),γ−1(j), ãγ−1(j)

)






 (41)

= ρ



ãγ−1(k),

N∑

i=1

α



ãi,
∑

j 6=i

ϕ (ãi, ℓij , ãj)







 (42)

= τ̃(ã, ℓ)γ−1(k), (43)

where we recall that {1, ..., N} = {γ(1), ..., γ(N)}. This shows that a function defined by the right hand

side in (59) is indeed permutation equivariant on D̃ for any ϕ, α and ρ. Next, we prove that any given
permutation equivariant function function τ̃ can be expressed by carefully chosen ϕ, α and ρ in (59). The
key idea is to construct ϕ, α such that the second argument of ρ contains all the information about the graph
(ã, ℓ). Then, the function ρ corresponds to an application of τ̃ to this representation. To simplify notation,
we assume node and edge features to be scalar (d = d′ = 1). The extension to vectors is simple, but involves
more indexing.
Let (ã, ℓ) = ((a, σ̄), ℓ) ∈ D̃. We define ϕ to return a N ×N zero matrix with only one entry that is allowed
to be non-zero, which is ℓij at index (σ̄i, σ̄j) = (σ(i), σ(j)),

ϕ(ãi, ℓij , ãj) = ϕ((ai, σ(i)), ℓij , (aj , σ(j))) = 1
N×N
σ(i),σ(j) · ℓij . (44)
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This means that the function ϕ stores the information about the edge from node i to j in position (σ(i), σ(j)).
After summing over all j 6= i, the resulting matrix

M i
ϕ =

∑

j 6=i

ϕ(ãi, ℓij , ãj) (45)

contains all information about the outgoing edges of any fixed node i.
Next we define the function α to augment this matrix with an N × 2 matrix that contains ai, σ(i) in row
σ(i) and contains zeros at all other indices.

α(ãi,M
i
ϕ) = α((ai, σ(i)),M i

ϕ) =
(
1
N×2
σ(i),: · (ai, σ(i)),Mϕ

)
. (46)

The resulting couple generated by α contains the node feature of node i, its node ID σ(i) and all information
about its outgoing edges. Summing all terms generated by α yields

N∑

i=1

α(ãi,M
i
ϕ) = (σ(ã), σ(ℓ)) = σ(ã, ℓ).

In a last step we apply τ̃ to σ(ã, ℓ). For node k we want to return the k-th component of τ̃ (ã, ℓ) which
corresponds to the σ(k)-th component of σ(τ̃ (ã, ℓ)) by permutation invariance. Hence we choose ρ such that

ρ (ãk, σ(ã, ℓ))) = ρ ((ak, σ(k)), σ(ã, ℓ)) = τ̃ (σ(ã, ℓ))σ(k) = τ̃ (ã, ℓ)k. (47)

This concludes the proof.

These theoretical results motivate us to introduce a certain architecture of neural networks that was already
described in [41] and is defined as follows.

Definition 5.8. Let ρ̂, α̂, ϕ̂ be feedforward neural networks with dimensionality ϕ̂ : R2d+d′

→ Rd1 , α̂ :
R

d+d1 → R
d2 , ρ̂ : Rd+d2 → R, for dimensions d1, d2 ∈ N. The function f : RN×d × R

N×N×d′

→ R
N defined

component-wise for any k ∈ [N ] as

f(a, ℓ)k = ρ̂



ak,
N∑

i=1

α̂



ai,
∑

j 6=i

ϕ̂ (ai, ℓij , aj)









is called permutation equivariant neural network (PENN).

The next proposition provides a universality result for PENNs introduced in Definition 5.8. We show that by
approximating ρ, α, ϕ with neural networks ρ̂, α̂, ϕ̂ we can approximate the composition of ρ, α, ϕ arbitrarily
close in probability by the composition of ρ̂, α̂, ϕ̂, given a probability measure on D̃. The result we show is
even more general, it holds for functions and probability measures on RN×(d+1) × RN×N×d′

⊃ D̃.

Proposition 5.9. Let ρ, α, ϕ be Borel measurable functions ϕ : R2d1+d2 → Rd3 , α : Rd1+d3 → Rd4 , and
ρ : Rd1+d4 → R, for arbitrary dimensions d1, ..., d4 ∈ N. Let further for some g : RN×d1 × R

N×N×d2 → R
N

and all k ∈ [N ],

g(x, y)k = ρ



xk,
N∑

i=1

α(xi,

N∑

j 6=i

ϕ(xi, yij , xj))



 . (48)

Then for any probability measure µ on (RN×d1 ×RN×N×d2 ,B(RN×d1 ×RN×N×d2)), any p ∈ [1,∞], and any
ε, ε̄ > 0 there exist feedforward neural networks ρ̂, α̂, ϕ̂ such that for the function ĝ : RN×d1×RN×N×d2 → RN ,
which is for k ∈ [N ] defined by

ĝ(x, y)k = ρ̂


xk,

N∑

i=1

α̂(xi,
N∑

j 6=i

ϕ̂(xi, yij , xj))


 , (49)
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it holds

µ
(
{(x, y) ∈ R

N×d1 × R
N×N×d2 : |g(x, y) − ĝ(x, y)|p > ε̄}

)
< ε. (50)

Proof. Let ε, ε̄ > 0. Choose ρ̂ such that for all k ∈ [N ]

µ({|ρ(xk,

N∑

i=1

α(xi,
∑

j 6=i

ϕ(xi, yij , xj))) − ρ̂(xk,

N∑

i=1

α(xi,
∑

j 6=i

ϕ(xi, yij , xj)))|p ≥
ε̄

3N
}) ≤

ε

3N
.

Note that ρ̂ is Lipschitz continuous with some constant Kρ̂ > 0. Then choose α̂ such that for all i ∈ [N ]

µ({|α(xi,
∑

j 6=i

ϕ(xi, yij , xj)) − α̂(xi,
∑

j 6=i

ϕ(xi, yij , xj))|p ≥
ε̄

3N2Kρ̂

}) ≤
ε

3N
.

Finally, also α̂ is Lipschitz continuous with Kα̂ > 0 and we can choose ϕ̂ such that for all i, j ∈ [N ]

µ({|ϕ(xi, yij , xj) − ϕ̂(xi, yij , xj)|p ≥
ε̄

3N2(N − 1)Kρ̂Kα̂

}) ≤
ε

3N(N − 1)
.

All these choices are valid due to Proposition 5.2.
Next we establish some inclusion that will help us to bound the probability.

{|g(x) − ĝ(x)|p ≥ ε̄} =





∣∣∣∣∣∣∣∣∣∣∣∣

ρ(x1,
∑N

i=1 α(xi,
∑

j 6=i ϕ(xi, yij , xj)))

− ρ̂(x1,
∑N

i=1 α̂(xi,
∑

j 6=i ϕ̂(xi, yij , xj)))
...

ρ(xn,
∑N

i=1 α(xi,
∑

j 6=i ϕ(xi, yij , xj)))

− ρ̂(xn,
∑N

i=1 α̂(xi,
∑

j 6=i ϕ̂(xi, yij , xj)))

∣∣∣∣∣∣∣∣∣∣∣∣
p

≥ ε̄





⊆
⋃

k∈[N ]

{|ρ(xk,

n∑

i=1

α(xi,
∑

j 6=i

ϕ(xi, yij , xj))) − ρ̂(xk,

n∑

i=1

α̂(xi,
∑

j 6=i

ϕ̂(xi, yij , xj)))|p ≥
ε̄

n
}

⊆
⋃

k∈[N ]

(
{|ρ(xk,

N∑

i=1

α(xi,
∑

j 6=i

ϕ(xi, yij , xj))) − ρ̂(xk,

N∑

i=1

α(xi,
∑

j 6=i

ϕ(xi, yij , xj)))|p ≥
ε̄

3N
}

∪ {|ρ̂(xk,

N∑

i=1

α(xi,
∑

j 6=i

ϕ(xi, yij , xj))) − ρ̂(xk,

N∑

i=1

α̂(xi,
∑

j 6=i

ϕ(xi, yij , xj)))|p ≥
ε̄

3N
}

∪ {|ρ̂(xk,

N∑

i=1

α̂(xi,
∑

j 6=i

ϕ(xi, yij , xj))) − ρ̂(xk,

N∑

i=1

α̂(xi,
∑

j 6=i

ϕ̂(xi, yij , xj)))|p ≥
ε̄

3N
}

)
.

The first set in this expression is controllable. For the second term we can write

{|ρ̂(xk,

N∑

i=1

α(xi,
∑

j 6=i

ϕ(xi, yij , xj))) − ρ̂(xk,

N∑

i=1

α̂(xi,
∑

j 6=i

ϕ(xi, yij , xj)))|p ≥
ε̄

3N
}

⊆ {|

N∑

i=1

α(xi,
∑

j 6=i

ϕ(xi, yij , xj)) −

N∑

i=1

α̂(xi,
∑

j 6=i

ϕ(xi, yij , xj))|p ≥
ε̄

3NKρ̂

}

⊆
⋃

i∈[N ]

{|α(xi,
∑

j 6=i

ϕ(xi, yij , xj)) − α̂(xi,
∑

j 6=i

ϕ(xi, yij , xj))|p ≥
ε̄

3N2Kρ̂

}.
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Note that this last expression does not depend on k anymore, so there is no need to include it in the union
over all k ∈ [N ]. Similarly, for the third term we find

{|ρ̂(xk,
N∑

i=1

α̂(xi,
∑

j 6=i

ϕ(xi, yij , xj))) − ρ̂(xk,
N∑

i=1

α̂(xi,
∑

j 6=i

ϕ̂(xi, yij , xj)))|p ≥
ε̄

3N
}

⊆ {|

N∑

i=1

α̂(xi,
∑

j 6=i

ϕ(xi, yij , xj)) −

N∑

i=1

α̂(xi,
∑

j 6=i

ϕ̂(xi, yij , xj))|p ≥
ε̄

3NKρ̂

}

⊆

( ⋃

i∈[N ]

{|α̂(xi,
∑

j 6=i

ϕ(xi, yij , xj)) − α̂(xi,
∑

j 6=i

ϕ̂(xi, yij , xj))|p ≥
ε̄

3N2Kρ̂

}

)

⊆

( ⋃

i∈[N ]

{|
∑

j 6=i

ϕ(xi, yij , xj)) −
∑

j 6=i

ϕ̂(xi, yij , xj))|p ≥
ε̄

3N2Kρ̂Kα̂

}

)

⊆

( ⋃

i∈[N ]

⋃

j 6=i

{|ϕ(xi, yij , xj)) − ϕ̂(xi, yij , xj))|p ≥
ε̄

3N2(N − 1)Kρ̂Kα̂

}

)
.

From this we can conclude that

µ({|g(x) − ĝ(x)|p ≥ ε̄}) ≤ N
ε

3N
+N

ε

3N
+N(N − 1)

ε

3N(N − 1)
= ε.

Due to Proposition 5.7 and Proposition 5.9, we know that PENNs can approximate any permutation-
equivariant node labeling function on D̃ arbitrarily close in probability.
Furthermore, if we can approximate such functions on D̃ then we can also approximate permutation-
equivariant functions on D, as we will show next.
Clearly any function τ : D → RN can be extended to a function τ̃ : D̃ → RN by

τ̃ (ã, ℓ) = τ̃ ((a, σ̄), ℓ) := τ(a, ℓ). (51)

Moreover the following Lemma holds.

Lemma 5.10. If τ is permutation equivariant then τ̃ is also permutation equivariant.

Proof. For any two permutations γ, σ ∈ SN and any (ã, ℓ) = ((a, σ̄), ℓ) ∈ D̃ it holds

τ̃ (γ(ã, ℓ)) = τ̃(γ(ã), γ(ℓ)) = τ̃ ((γ(a), γ(σ̄)), γ(ℓ)) = τ(γ(a), γ(ℓ)) (52)

= γ(τ(a, ℓ)) = γ(τ̃ ((a, σ̄), ℓ)) = γ(τ̃ (ã, ℓ)). (53)

Then, from Proposition 5.7 it immediately follows that we can also find a similar representation for any
permutation equivariant function τ on D:

Corollary 5.11. Let τ : D → R
N be a permutation equivariant node labeling function and τ̃ : D̃ → R

N

its extension to D̃. Further, for any permutation σ ∈ S(N) let fσ : RN×d → RN×(d+1) be the function that
equips node features a with the order σ̄,

fσ(a) =



a1, σ̄1

...
aN , σ̄N


 . (54)
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Then there exist dimensions V,W ∈ N and functions ϕ : R2(d+1)+d′

→ RV , α : Rd+1+V → RW and ρ :
Rd+1+W → R, such that for any σ ∈ SN ,

τ(a, ℓ)k = ρ



fσ(a)k,

N∑

i=1

α



fσ(a)i,
∑

j 6=i

ϕ (fσ(a)i, ℓi,j , fσ(a)j)







 . (55)

In particular we can choose the functions ρ, α, ϕ from Proposition 5.7 whose composition represents τ̃ .

Proof. Choose ρ, α, ϕ from Proposition 5.7 such that they represent the extension τ̃ of τ to D.

The above results imply the following procedure to approximate a node-labeling function τ : D → RN on
graph-data {g1, g2, ...} ⊆ D.

1. Augment the data with random node-IDs.

2. Learn τ̃ with the augmented data by approximating ρ, α and ϕ from Proposition 5.7.

3. Use the approximation of τ̃ to obtain an approximation of τ according to Corollary 5.11.

Remark 9. In the proof of Proposition 5.7 we need unique node IDs to identify and differentiate between
the different nodes based solely on their features. Without unique node-IDs there is no guarantee that
a representation as described in Proposition 5.7 can be found. In some situations it can even be proved
that applying PENNs to data without node-IDs can not work. As an example we refer to the numerical
experiment in Section 6.1. However, in other situations, see for example the numerical experiments in
sections 6.2 and 6.3, PENNs work equally well without node IDs. This can have two reasons. Firstly, if the
node features already allow to differentiate between the nodes well enough, augmenting the unique node-IDs
can be redundant. Secondly, it is possible that a simpler representation of the node-labeling function exists,
compared to the one guaranteed by Proposition 5.7. If this simpler representation exists and does not require
node-IDs, then PENNs can work well without augmenting the nodes with IDs.

5.4 Extended permutation equivariant neural networks

As we will see in the numerical experiments in the following section, it can happen that important information
about one node k = 1, ..., N aggregated via

α̂(ak,
∑

j 6=k

ϕ̂(ak, ℓkj , aj))

gets lost in the summation

N∑

i=1

α̂(ai,
∑

j 6=i

ϕ̂ (ai, ℓij , aj)).

Without node numbering this information might be impossible to recover and even with node numbering can
be hard to recover. For this reason we propose an extended architecture of PENNs called extended PENN
(XPENN) that also contains a third component, which aggregates a node specific signal for each node based
on its connections from and to all other nodes. Hence XPENNs maintain all the favourable properties of
PENNs and are additionally able to mimic one iteration of message passing. This architecture is even more
expressive, since the aggregation is not only across the neighbors, but all other nodes and it considers both
incoming and outgoing edges. In theory, this additional component does not exhibit new information about
the graph, but it solves the problem that certain information can get lost in the sum and is hard to recover.
In practice it improves the performance in all numerical experiments that we consider, see Section 6.
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Definition 5.12. With ϕ̂ and α̂ as in Definition 5.8 as well as feedforward neural networks ψ̂ : R2d+2d′

→
Rd3 and ρ̂ : Rd+d2+d3 → R for some d3 ∈ N, we call the function f : RN×d × RN×N×d′

→ RN that is
component wise defined for k ∈ [N ] as

f(a, ℓ)k = ρ̂



ak,
N∑

i=1

α̂



ai,
∑

j 6=i

ϕ̂ (ai, ℓij , aj)



 ,
∑

j 6=k

ψ̂(ak, ℓkj , ℓjk, aj)





an extended permutation equivariant neural network (XPENN).

The following lemma underlines that indeed XPENNs are an extension of PENNs and include all PENNs.

Lemma 5.13. For every PENN f : RN×d ×RN×N×d′

→ RN we find a corresponding XPENN f∗ : RN×d ×
RN×N×d′

→ RN with the same output, i.e. for all (a, ℓ) ∈ D,

f∗(a, ℓ) = f(a, ℓ).

Proof. Let f : RN×d ×RN×N×d′

→ RN be a PENN consisting of feedforward neural networks ρ̂, α̂, ϕ̂. Define
ψ̂ ≡ 0 and ρ̂∗ : Rd+d2+d3 → R for all x1 ∈ R

d, x2 ∈ R
d2 , x3 ∈ R

d3 as

ρ̂∗(x1, x2, x3) = ρ̂(x1, x2). (56)

Then the for the XPENN f∗ : RN×d × RN×N×d′

→ RN given by

f∗(a, ℓ)k = ρ̂∗


ak,

N∑

i=1

α̂


ai,

∑

j 6=i

ϕ̂ (ai, ℓij , aj)


 ,
∑

j 6=k

ψ̂(ak, ℓkj , ℓjk, aj)


 (57)

it holds for all (a, ℓ) ∈ D

f∗(a, ℓ) = f(a, ℓ). (58)

From Lemma 5.13, it follows immediately that XPENNs have the same favourable theoretical properties as
PENNs. For example, we can find a corresponding representation of permutation equivariant node-labeling
functions.

Corollary 5.14. A function τ̃ : D̃ → RN is permutation equivariant as in Definition 2.3 if and only if
there exist dimensions V ≤ N2d′,W ≤ N(d + 1) + N2d′,W ′ ∈ N and functions ϕ : R2(d+1)+d′

→ R
V , α :

R
d+1+V → R

W , ψ : R2(d+1)+2d′

→ R
W ′

and ρ : Rd+1+W+W ′

→ R such that for all (ã, ℓ) ∈ D̃ and for all
k = 1, . . . , N :

τ̃(ã, ℓ)k = ρ


ãk,

N∑

i=1

α


ãi,

∑

j 6=i

ϕ (ãi, ℓi,j, ãj)


 ,
∑

j 6=k

ψ̂(ãk, ℓkj , ℓjk, ãj)


 . (59)

Proof. Follows from Lemma 5.13 and Proposition 5.7.

Similarly, we can also recover universality for XPENNs.

Corollary 5.15. Let ρ, α, ϕ, ψ be Borel measurable functions ϕ : R2d1+d2 → Rd3 , α : Rd1+d3 → Rd4 , ψ :
R2d1+2d2 → Rd5 and ρ : Rd1+d4+d5 → R, for arbitrary dimensions d1, ..., d5 ∈ N. Let further for some
g : RN×d1 × RN×N×d2 → RN and all k ∈ [N ],

g(x, y)k = ρ


xk,

N∑

i=1

α(xi,
∑

j 6=i

ϕ(xi, yij , xj)),
∑

j 6=k

ψ(xk, ykj , yjk, xj)


 . (60)
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Then for any probability measure µ on (RN×d1 × RN×N×d2,B(RN×d1 × RN×N×d2)) and any ε, ε̄ > 0 there

exist feedforward neural networks ρ̂, α̂, ϕ̂, ψ̂ such that for the function ĝ : RN×d1 ×RN×N×d2 → RN which is
for k ∈ [N ] defined by

ĝ(x, y)k = ρ̂


xk,

N∑

i=1

α̂(xi,
∑

j 6=i

ϕ̂(xi, yij , xj)),
∑

j 6=k

ψ̂(xk, ykj , yjk, xj)


 (61)

it holds

µ
(
{(x, y) ∈ R

N×d1 × R
N×N×d2 : |g(x, y) − ĝ(x, y)|p > ε̄}

)
< ε. (62)

6 Numerical Experiments

In this section we conduct three numerical experiments. In a first experiment we consider carefully con-
structed financial networks where the optimal amount of bailout capital and the optimal allocation is known.
We show that GNNs and XPENNs are able to solve the inner problem, i.e. find the optimal allocation of
the bailout capital. Additionally we point out some limitations which we observe for FNNs and PENNs. In
our second experiment we investigate how GNNs, (X)PENNs, FNNs, and benchmark approaches perform in
computing the inner risk, i.e. minimising the risk of loss at some fixed level of bailout capital on more com-
plex synthetic data, for which the optimal allocation is not known. In our third experiment we approximate
the systemic risk by searching for the minimal amount of bailout capital needed to secure the system and
compare the performance of GNNs, (X)PENNs, FNNs, and benchmark approaches.

6.1 Default cascade networks and star shaped networks

In this first experiment, we design stylised networks to demonstrate how useful GNNs and XPENNs can be
for problems such as learning effective bailout strategies.

Data We carefully construct four data sets containing realisations of stochastic networks G10, G20, G50 and
G100 ∈ G of increasing size. Each respective data set contains realisations with N ∈ {10, 20, 50, 100} nodes.
Specifically, for every i ∈ 1, ..., N each data set contains two distinct realisations of the network GN : In both
cases all nodes have external assets equal to 0. However, one realisation is a default cascade. This means
that every node j 6= i − 1 has a liability of N − 1 units towards the next node j + 1. Node N will have a
liability towards node 1, since there is no node N +1. The only link that is skipped is the liability from node
i− 1 towards i. Therefore, the network is in fact a cascade of liabilities starting in i and ending in i− 1. The
second realisation that we construct looks very different. Here each node j 6= i has a liability of 1 towards
i, hence forming a star shaped network with i in the center. Figure 1 illustrates both network types.
For each N ∈ {10, 20, 50, 100} these 2N realisations - two for every i ∈ 1, ..., N - create a data set, that
shares one critical feature. We know that it can be fully secured, i.e. there are no defaults, with N − 1 units
of bailout capital. In order to secure a cascade type network, we need to inject all capital into the starting
point of the cascade. On the other hand, to rescue a star shaped network, we must distribute the bailout
capital equally, i.e. 1 towards each node, among the nodes with a liability towards the center node.

Problem The problem that we try to solve is to find the inner risk

ρaI (GN ) = min
Y ∈Ca

{
η
(
Λ
(
(A+ Y, L)

))}
,

with allocations in

Ca =

{
Y ∈ L∞(RN

+ )

∣∣∣∣∣

N∑

n=1

Yn = a

}
,
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Figure 1: Both network types for N = 100, i = 1. On the left the default cascade starting in i = 1. On the
right the star shaped network with center i = 1.

for a = N − 1 and η a univariate risk measure as in Assumption 3.3. For the sake of simplicity we choose
η = E [·] to be the expectation, but note that due to the monotonicity of the risk measure η any choice would
ultimately lead to a path-wise minimisation of

min
Y ∈Ca

{
Λ
(
(A+ Y, L)

)}
.

We know that for each N the theoretical minimal loss is equal to zero if we distribute the bailout a = N − 1
optimally as explained above. To learn the optimal bailout strategy we consider the following neural network
architectures and train them as described in Section 4.2.

Models

• GNN: The first model is a GNN consisting of two SAGEConv layers (5.5) of width 10 and sigmoid
activation in between. The initial node features are equal to zero. This means all nodes start with identical
representations and learning effective message passing is the only possibility for the model to get information
about the network.

• FNN(L): The second model is a vanilla feedforward neural network with two fully connected layers of
width N with sigmoid activation in between. Of course the assets are not informative, so to make it a fair
comparison between the GNN and a feedforward neural network we provide the complete liability matrix as
input (hence FNN(L)). This neural network theoretically has all information available to perfectly distribute
the bailout capital.

• XPENN: We also consider the XPENN architecture from the previous section. In fact, this toy experiment
showcases well which problems can occur for the standard PENN from Definition 5.8 and why they can be
solved using the XPENN from Definition 5.12. We discuss the standard PENN at the end of this section.
For comparison with GNN and FNN(L) we utilise the XPENN without node IDs and choose single layer

feedforward neural networks of width 10 for ρ̂, α̂, ϕ̂ and a two layer neural network of width 10 for ψ̂ with
sigmoid activation.

Task 1 - Overfitting We perform train runs on all four data sets and investigate if we can teach the
models which perfect bailout strategy corresponds to which network structure. If the models are able to
learn, this indicates that their complexity is large enough. We optimise the models with suitable learning
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N Model Epoch Inner Risk Bailout Runtime
10 None - 45.00 9.00 -
10 GNN 1000 0.00 9.00 2 min
10 XPENN 1000 0.00 9.00 2 min
10 FNN(L) 1000 2.37 9.00 2 min
20 None - 190.00 19.00 -
20 GNN 1000 0.00 19.00 3 min
20 XPENN 1000 0.00 19.00 4 min
20 FNN(L) 1000 10.61 19.00 4 min
50 None - 1225.00 49.00 -
50 GNN 1000 0.00 49.00 6 min
50 XPENN 1000 0.00 49.00 14 min
50 FNN(L) 1000 58.56 49.00 30 min
100 None - 4950.00 99.00 -
100 GNN 1000 0.00 99.00 15 min
100 XPENN 1000 0.00 99.00 47 min
100 FNN(L) 1000 1532.64 99.00 146 min

Table 1: Best inner risk of GNN, PENN and FNN(L) model on the stylised data set.

rates5 making use of the ADAM optimiser which is a sophisticated version of stochastic gradient descent and
train for 1000 epochs. It is worth pointing out that the first layer of the FNN(L) network connects N +N2

neurons on one side to N neurons on the other side. Hence, the numbers of parameters we are training (over
N3) is massively higher than the number of data points in the training set (2N). One has to expect that
achieving overfitting will not be an issue whereas the number of parameters and the time it takes to train
them will grow dramatically. Meanwhile the GNNs number of parameters is independent from the graph
size and instead is driven by the weight matrices of constant size (in our case 20 × 10) that map current
state and neighborhood state of each node to its new node state in every step of message passing. As the
size of the financial networks increases, more calculations will be involved in each step of massage passing.
Hence the computation time will increase as well, but not as dramatically, especially since our networks are
sparse. The XPENN architecture is also independent from the size of the network. However, it calculates a
signal for every node pair, even if there is no edge between them. Therefore it can not benefit from the fact
that the networks are sparse and computation time will increase quadratically.
For N = 10 (see Table 1) without any bailout capital the average loss of the data set equals 45. The GNN
and XPENN are both able to learn the perfect bailout capital allocation within 1000 epochs (actually already
earlier) which takes about two minutes on our machine.6 In 1000 epochs (2 min), the FNN(L) model learns
a strategy that leads to a loss of 2.37 or roughly 5% of the loss without bailout. Doubling the network size
to N = 20 the loss without intervention amounts to 190. GNN and XPENN learn perfect bailout in 1000
epochs (around 3 min) and the FNN(L) arrives at a loss of 10.61 (∼ 5%) after 1000 epochs (4 min). At
N = 50 we observe that the run times start to diverge drastically. In 6 minutes the GNN learns perfect
bailout, the XPENN needs 14 minutes, and the FNN(L) takes 30 minutes to decrease the loss from 1225
without intervention to 58.56 (∼ 5%). Finally when N = 100 the parameter space of the FNN(L) is so high
dimensional that the learning rate for training has to be very small to wiggle the parameters in the right
direction. After 4 hours of training the loss is still very high (1,532) compared to no intervention (4,950)
with no signs of convergence. The GNN handles this case better and reaches perfect bailout in under 15
minutes. The XPENN also reaches perfect bailout, however, the 1000 epochs take 47 minutes.
From the results of this small experiment we conclude that relatively good bailout obtained from a feedfor-

5In the experiments of Sections 6.1, 6.2 and 6.3 we considered for all models learning rates in
{10−1, 10−2, 10−3, 10−4, 10−5, 10−6} and the best results were selected by grid search.

6The authors gratefully acknowledge the Leibniz Supercomputing Centre for funding this project by providing computing
time on its Linux-Cluster.
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ward neural network that takes in the liability matrix of a network might be possible, however, the required
computing time in order to train the model becomes unfeasibly large quickly. GNN and XPENN on the
other hand seem to be promising architectures. The difference in computation time between GNN and
XPENN is due to the sparseness of the data. While GNNs scale with the actual edges in the network
(Lij > 0, i, j ∈ [N ]), the XPENN scales with the number of all possible N(N − 1) edges. Later we will see
that for data that is not sparse they are actually quite similar.

N Model Epoch Train Risk Test Risk Bailout Total Runtime
10 None - 47.40 37.80 00.00 -
10 GNN 10 0.25 0.29 9.00 7 min
10 GNN 680 0.00 0.00 9.00 7 min
10 XPENN 10 21.47 16.27 9.00 6 min
10 XPENN 350 0.00 0.00 9.00 6 min
10 FNN(L) 10 21.20 19.12 9.00 11 min
10 FNN(L) 1000 3.91 26.78 9.00 11 min
10 FNN(L) 10000 3.62 29.35 9.00 11 min
20 None - 190.00 190.00 00.00 -
20 GNN 10 0.63 0.63 19.00 8 min
20 GNN 690 0.00 0.00 19.00 8 min
20 XPENN 10 84.05 84.05 19.00 13 min
20 XPENN 280 0.00 0.00 19.00 13 min
20 FNN(L) 10 89.10 96.58 19.00 20 min
20 FNN(L) 1000 26.82 104.59 19.00 20 min
20 FNN(L) 5000 26.64 103.92 19.00 20 min
50 None - 1240.68 1177.96 00.00 -
50 GNN 10 0.42 0.44 49.00 11 min
50 GNN 380 0.00 0.00 49.00 11 min
50 XPENN 10 157.01 148.75 49.00 21 min
50 XPENN 170 0.00 0.00 49.00 21 min
50 FNN(L) 10 89.10 96.58 49.00 47 min
50 FNN(L) 1000 144.79 626.50 49.00 47 min
50 FNN(L) 2000 144.60 458.35 49.00 47 min
100 None - 4950.00 4950.00 00.00 -
100 GNN 10 0.01 0.01 99.00 28 min
100 GNN 20 0.00 0.00 99.00 28 min
100 XPENN 10 66.11 66.11 99.00 61 min
100 XPENN 120 0.00 0.00 99.00 61 min
100 FNN(L) 10 2438.97 2488.43 99.00 240 min
100 FNN(L) 1000 1064.72 2617.05 99.00 240 min
100 FNN(L) 2000 670.28 2595.52 99.00 240 min

Table 2: Best inner risk of GNN, XPENN and FNN(L) model on the train and test set of the stylised network
data. GNN and XPENN achieve better results compared to a FNN(L).

Task 2 - Generalisation Next we repeat the experiment in a similar manner, because we want to know
whether the models that we train generalise to unseen data. We randomly split the data set of 2N networks
into two partitions. A training set containing 75% of the networks and a test set with the remaining 25%.
We optimise the models over {10000, 5000, 2000, 2000} epochs, depending on the network sizes, utilising the
ADAM optimiser. We obtain the following results (Table 2).
For all network sizes, the performance gain of the FNN(L) on the training set after epoch 1000 is negligible
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except for the case N = 100 were there is still room for improvement. However, the success on the training
set can not be translated into good bailout capital allocation on the test set. In general the results do not
exhibit any surprises regarding performance or run time compared to what we saw in the previous experiment.
However, it is noticeable that GNN and XPENN are able to translate perfect bailout on the train set (which
is found every time) into perfect bailout on the test set. The reason for this is, that reordering the nodes does
not change the messages that GNN and XPENN receive from the other nodes. This invariance is a major
advantage compared to the FNN(L). Based on this experiment, GNN and XPENN seem to be promising
candidates for problems of this type.

Discussion of PENN types During our experiments we observed that, unlike the extended PENN
(XPENN) which yields promising results, the normal PENN does not seem to work well even though in
theory it should be able to find perfect bailout. In this paragraph we want to indicate what the problems
might be on this specific data set and how the XPENN can overcome them.
Since all assets equal zero, the nodes have identical node features. Hence it is clear from the definition that
the standard PENN without node IDs will not be able to assign different bailout capital to the different
nodes.
But even with node IDs, the PENN fails to predict good bailout already in the simplest case N = 10. We
argue that this has two main reasons. On one hand, the PENN aggregates the wrong information in the
inner sum

∑
ϕ(...). On the other hand, this information is lost in the outer sum over all nodes

∑N
i=1 α(...)

and can not be recovered properly by ρ.
What we mean by aggregating the wrong information is the following. For any node i the PENN calculates
signals based on Lij – the outgoing edges of i – while it would be more useful to gather information about
the incoming edges of i. Indeed the optimal bailout allocation in this data set is such that a node never gets
capital if it has incoming liabilities. Information about the outgoing liabilities alone, on the other hand, is
not enough to deduce the allocated capital. This motivates why we consider both directions (incoming and
outgoing) in the XPENN architecture, see Definition 5.12.
To show that aggregating the “wrong” data is not the only problem, we also tested PENNs that consider
incoming instead of outgoing liabilities. However, even then, we saw that the standard PENN is not able to
predict good bailout. And this despite the fact that in order to predict perfect bailout it would be enough
to recover the sum of incoming liabilities for each node. Since it is easy to obtain the sum of incoming
liabilities of each node from the liability matrix (it is just the column sum of the respective columns), the
problem must be obtaining the liability matrix from the outer sum

∑
α(...). Additional experiments suggest

that these difficulties might arise due to the inhomogeneity of the financial networks, in particular the edge
weights. To solve this problem we designed the XPENN architecture such that it also consists of a node
specific component. As a consequence, graph-wide information given by the outer sum and node-specific
information can complement each other, but it is not necessarily required anymore, to reconstruct node
specific information from the outer sum.
We conclude that indeed the data that we generated in this experiment can not be handled well by the
standard PENN, due to the uninformative node features and the inhomogeneity of the financial networks.
The XPENN architecture that we propose manages to overcome these problems by on the one hand, always
considering in- and outgoing edges, and on the other hand, considering a node specific component in which
each node can aggregate information about all its connections (or rather all possible connections), both
incoming and outgoing. The next experiments show that on other types of data the standard PENN yields
very good results as well.

6.2 Allocation of Fixed Bailout Capital

Problem In this section we again approximate the inner risk

ρaI (GN ) = min
Y ∈Ca

{
η
(
Λ
(
(A+ Y, L)

))}
,
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with allocations in

Ca =

{
Y ∈ L∞(RN

+ )

∣∣∣∣∣

N∑

n=1

Yn = a

}
,

for a ∈ R+ and choosing η to be the expectation. However, the stochastic networks we investigate are more
complex than before. Therefore, it is not clear which minimal loss could be achieved with the fixed bailout
capital that we choose to be at level a = 50.

Data In three case studies we investigate three different stochastic financial networks that are chosen in a
way such that they all contain default cascades that we are seeking to stop. Hence the networks could be
interpreted as former healthy financial networks where some kind of shock already happened.

• Erdős-Rényi (ER): This homogeneous network contains N = 100 nodes of the same type. Their assets
follow independent Beta(2,5)-distributions scaled with a factor of 10. The edges of fixed liability size 1
between any two nodes are drawn independently with probability p = 0.4.

• Core-Periphery (CP): This inhomogeneous financial network is an adapted version of networks proposed
in Feinstein et al. [26]. The network consists of a total of N = 100 banks split in two different groups.
T1 ⊂ {1, ..., 100}, |T1| = 10, contains 10 large banks and T2 the remaining 90 small banks. A link of a bank
in group i towards a bank in group j, 1 ≤ i, j ≤ 2 is sampled with a probability of pij . We set p1,1 = 0.7,
p1,2 = p2,1 = 0.3, p2,2 = 0.1. If there are links, large banks owe each other 10, small banks 1. Connections
between large and small banks are of size 2, if present. The assets have one-dimensional margins following
Beta(2, 5) distributions that are correlated via a Gaussian copula with a correlation of 0.5 between any two
banks. Larger bank’s assets are scaled with a factor of 50, smaller bank’s with a factor of 10.

• Core-Periphery-fixed (CPf): This network model is essentially the same as a Core-Periphery model.
However, instead of sampling the liabilities new for every realisation of the network, we only sample the
liability matrix once and all realisation share this structure. As a result we only vary the assets while the
network structure is fixed.

Models We utilise various neural network models to learn a distribution ϕθ of the fixed bailout capital
(see Section 4.2) and compare their performance to non-parametric benchmarks, i.e. models without the
necessity to train parameters. All models generate a score for each node. We use softmax activation to
transform these scores into a distribution.

• GNN: A graph neural network with five SAGEConv layers of message passing. The 10 dimensional initial
state of each node consists of assets, incoming liabilities, outgoing liabilities and 7 zeros. We use the sigmoid
activation function between layers. The hidden states are of dimension 10 and the output layer yields a
single score for each node.

• PENN: We apply a PENN with single layer neural networks ϕ̂, α̂ that produce 10 dimensional repre-
sentations and a three layer neural network ρ̂ with hidden states of dimension 10 producing a score. For
each node the initial node features consist of assets, incoming liabilities and outgoing liabilities. For the
performance it did not matter whether we include node IDs or not.

• XPENN: This model is the extended version of the PENN. We used the same neural networks for ϕ̂, α̂, ρ̂.
Additionally ψ̂ is a two layer neural network of width 10 that provides a neighborhood signal for each node.

• FNN: This model is a feedforward neural network with three fully connected layers of width 100 and
sigmoid activation function. As input it takes a concatenated vector of assets, incoming and outgoing
liabilities of all 100 nodes and as output we obtain a score vector of the 100 nodes.

This approach is inspired by Feng et al. [28]. They model a financial network as a random vector X ∈ L(RN )
and obtain optimal bailout from a neural network ϕ : X 7→ ϕ(X). However, in their setting there is no
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explicitly modelled interaction between the components of X . Rather the random variable X represents the
network after interaction, which they incorporate by allowing correlation between the components of X . In
this setting it makes sense to use the realisation of this random variable as representation of the systems
state. Applied to our setting one might think that the realisation of the assets A comes closest to the system
state vector X . However, this is not entirely true, because A represents some value before the interaction.
This interaction depends on the realisation of the liability matrix, which is not captured by the FNN at
all. Therefore, this approach can only work well if the dependence of the optimal bailout allocation on the
liability matrix is negligible - which is not true in general. To increase the chances of this approach we
provide assets, incoming liabilities and outgoing liabilities of each node, instead of only the assets.

• FNN(L): This model is similar to the FNN model, but as input it takes not only assets, incoming and
outgoing liabilities of all 100 nodes, but additionally the liability matrix as one long vector. It can be
considered a naive extension of the approach in [28] to our setting of stochastic liability matrices. We
consider two fully connected layers with width 100.

• Linear: In this approach we fit a linear model that predicts every nodes score one at a time based on the
node’s assets, nominal incoming and outgoing liabilities as well as a bias term.

• Constant: Furthermore, we are interested in how much performance we gain by making the allocation
random, i.e. scenario dependent. Therefore, for comparison, we include a benchmark that learns a constant
bailout allocation.

• Uniform: This is a non-parametric benchmark where every node gets the same share of bailout capital.

• Default: This is a non-parametric benchmark where every node that defaults without additional bailout
capital receives the same amount.

• Level-1: This is a non-parametric benchmark where every node whose nominal balance is negative (Ai −
Lout,i + Lin,i < 0) gets the same share of bailout capital. These nodes are the “first round defaults” and
theoretically, there can not be additional defaults if all “first round” defaults are prevented.

Results The results of all models can be found in Tables 3, 4 and 5 for the ER, CP and CPf network
respectively. The training algorithm employed is the one presented in Section 4.2, see Algorithm 2.
In the homogeneous ER network (see Table 3) it seems the best model is the XPENN. It performs slightly
better than GNN and PENN, which basically reach the same risk level. The Constant bailout strategy and
the FNN do not work well and can not provide bailout allocations that are superior to allocating all capital
uniformly. The FNN(L) seems to learn something on the training set, but it is the only model that does not
translate learned success to unseen data, a pattern that we also observed in the previous toy experiment. The
Linear model performs better than the Default method and is not far off the Level-1 method. Surprisingly
the Level-1 method performs strong considering it does not need any learning and is indeed the fourth best
model with a similar performance as GNN and PENN.
In the CP network (see Table 4) the picture is similar. GNN and PENN are the second best models only
outperformed by the XPENN. The Constant model again fails to provide significantly better bailout than
Uniform bailout. Level-1 bailout comes fourth, however, this time with a bigger distance to GNN and PENN
as before and closely followed by the Linear model, which is again better than the Defaut method. This time
both FNN and FNN(L) learn something on the train set, but fail to generalise to new data.
Finally, in the CPf network (see Table 5) we observe a change of order. Basically all more complex ML models
(GNN, PENN, XPENN, FNN, FNN(L)) obtain similar results, with GNN being the best and FNN(L) slightly
weaker than the rest. Constant bailout is not far off the ML models, finally better than Uniform bailout,
and is even better than Linear and Level-1 bailout, which are very similar to another.
The difference between Linear model and GNN, PENN, or XPENN indicates that in all three network
types there is structural information that is needed in order to provide the best bailout. The fact that the
FNN(L) does not work in the ER and CP network, i.e. the cases where there is structural information in the
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liability matrix, hints that such structural information can not easily be learned by feeding the matrix into
a feedforward neural network. Moreover, the difference between Constant bailout and the best model shows
how much performance can be gained in the ER and CP case by making allocation random.
The good performance of the FNN and FNN(L) in the CPf network shows that these approaches can work
if the dependence of the system on the liability matrix is small, in the sense that the influence is constant
and hence learnable. This aligns well with the results in [28].
Since in the CPf network the liability matrix is constant, this means not only that the interaction between
the banks is fixed, it also means that - unlike in the CP network - all banks are always in the same position.
This might be the reason why the Constant model actually works to some extent in this network, while it
performs as poor as Uniform bailout in the other networks.

Model Train Risk Val. Risk Test Risk Capital
None 261.88 262.61 261.05 50.00

Uniform 221.42 222.31 220.74 50.00
Default 186.61 187.57 185.94 50.00
Level-1 174.52 175.38 173.81 50.00
GNN 173.87 174.82 173.22 50.00

PENN 173.92 174.85 173.28 50.00
XPENN 171.79 172.68 171.15 50.00

FNN 221.35 222.37 220.81 50.00
FNN(L) 205.89 217.82 216.24 50.00
Linear 178.87 179.94 178.12 50.00

Constant 221.37 222.39 220.87 50.00

Table 3: Approximated inner risk on train, validation and test set obtained from the bailout allocations
learned by the different models on data sampled from the ER network type.

Model Train Risk Val. Risk Test Risk Capital
None 235.26 239.48 239.22 50.00

Uniform 201.23 204.41 204.45 50.00
Default 166.35 169.34 169.73 50.00
Level-1 157.82 160.71 160.99 50.00
GNN 152.80 155.80 155.97 50.00

PENN 152.84 155.86 155.99 50.00
XPENN 149.28 152.23 152.32 50.00

FNN 179.47 202.26 201.90 50.00
FNN(L) 165.90 196.52 196.36 50.00
Linear 159.64 162.72 162.48 50.00

Constant 201.17 204.49 204.56 50.00

Table 4: Approximated inner risk on train, validation and test set obtained from the bailout allocations
learned by the different models on data sampled from the CP network type.

6.3 Computation of Systemic Risk Measures

Problem In this section instead of fixing an arbitrary amount of available bailout capital, we fix some level
of risk that we consider as acceptable (b = 100) and search for the systemic risk

ρb(G) = min
Y ∈C

{
N∑

n=1

Yn

∣∣∣∣∣ η (Λ(A+ Y, L)) ≤ b

}
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Model Train Risk Val. Risk Test Risk Capital
None 296.15 301.09 297.41 50.00

Uniform 253.85 257.87 254.87 50.00
Default 218.07 222.05 219.16 50.00
Level-1 208.42 212.27 209.77 50.00
GNN 199.28 203.21 200.43 50.00
PENN 199.88 203.84 201.08 50.00

XPENN 199.83 203.82 201.07 50.00
FNN 199.86 203.81 201.21 50.00

FNN(L) 200.27 204.20 201.56 50.00
Linear 208.81 212.86 210.01 50.00

Constant 204.08 207.95 205.57 50.00

Table 5: Approximated inner risk on train, validation and test set obtained from the bailout allocations
learned by the different models on data sampled from the CPf network type.

where

C =

{
Y ∈ L∞(RN

+ )

∣∣∣∣∣

N∑

n=1

Y n ∈ R

}
.

We study the same Data and Models as before. The only difference in the training algorithm is the following.
We start with some initial amount of bailout capital and after each epoch of learning how to allocate the
current amount of bailout capital we increase or decrease the amount of bailout capital depending on whether
the current inner risk is above or below the risk threshold of acceptability, see Algorithm 1 in Section 4.2.

Results The results that we find during the search of the minimal bailout capital in the ER, CP and CPf
network can be found in Tables 6, 7 and 8. The results are in line with the results in the previous experiment
where we allocate a fixed amount of capital.
In the ER network (see Table 6) the XPENN is the best model as it needs the least bailout capital to reduce
the inner risk on the train, validation and test set to an acceptable level. GNN and PENN reach similar
risk with slightly more capital. Level-1, Linear and Default model already need significantly more capital to
reach acceptable risk. FNN(L) obtains a small risk on the train set by allocating a huge amount of bailout
capital, but like in the previous experiments, does not generalise to validation or test set. FNN, Constant
and Uniform need much more capital to render the risk acceptable compared to the other approaches.
In the CP network (Table 7) XPENN is the strongest model closely followed by GNN and PENN. With a
slightly larger gap the next best models are Level-1, Linear and Default model. Constant and Uniform need
too much capital to compete with the other models, while FNN and FNN(L) can not be assessed reasonably
since they both fail to generalise to validation and test data.
Comparing Level-1 or Linear versus the Constant model in both, the ER and CP network, we see that a lot
of bailout capital can be saved by allowing for scenario dependent allocations as opposed to committing to
a constant capital allocation. The difference between XPENN, PENN or GNN on one side and the Linear
or Level-1 models on the other side shows, how much bailout capital can be saved by choosing an approach
that can process the liability matrix effectively. The results of FNN and FNN(L) clearly show that these
approaches are not applicable to networks with stochastic liability matrix.
Finally in the CPf network (Table 8) we see that XPENN, GNN and PENN provide the best result but also
FNN, FNN(L) and even Constant work well and outperform Linear, Level-1, Default and Uniform. The
results underline again that in the case of a fixed network structure it is not necessary to utilise models that
process the liability matrix effectively. Since the effect is always the same it can also be learned implicitly
without being given as input to the model. It is interesting that XPENN, GNN and PENN still provide the
best result. Apparently it does not harm their performance to receive the liability matrix as input anyway.
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One explanation why GNN, PENN and XPENN appear to be slightly stronger than FNN and FNN(L) might
be that they obtain good bailout quicker than FNN(L) and FNN which makes them more suitable to the
training procedure that alternates between updating the bailout capital and learning how to allocate it. This
explanation is partially backed by the observation in the toy experiment, where GNN and XPENN reached
good bailout much quicker than the FNN(L).
The small difference between Constant bailout and the best models in the CPf network suggests, that in
networks with fixed liability matrix the benefit of stochastic allocations is smaller that in stochastic networks.
This makes sense since it seems easier to predict whether an institution will need capital or not if there is
no uncertainty about its connections from and to other institutions in the network.
The poor performance of Linear and Level-1 in the CPf network is surprising, after their good performance in
the ER and CP networks. This suggests that the optimal bailout of the CPf network with its randomly fixed
liability matrix seems not to be driven by a linear combination of assets, incoming and outgoing liabilities
or the “first round” defaults. Apparently there are more complex interactions at work that can be learned
by the other trainable models.

Model Train Risk Val. Risk Test Risk Capital
None 261.88 262.61 261.05 0.00

Uniform 100.61 100.94 100.28 299.90
Default 100.30 100.77 99.83 146.47
Level-1 100.22 100.81 99.55 107.86
GNN 100.22 101.24 99.64 95.46

PENN 100.22 101.24 99.64 95.47
XPENN 99.63 100.60 99.11 94.73

FNN 100.61 101.07 100.42 299.67
FNN(L) 95.03 111.99 111.20 241.63
Linear 100.23 101.37 99.49 113.13

Constant 100.61 101.07 100.42 299.68

Table 6: The “Capital” column shows for each model the best approximation of the systemic risk, i.e. the
smallest amount of required bailout capital, for the ER network. The other columns show the reached inner
risk on train, validation and test set.

Model Train Risk Val. Risk Test Risk Capital
None 235.26 239.48 239.22 0.00

Uniform 100.75 101.89 102.93 297.67
Default 100.26 102.50 103.21 132.37
Level-1 100.21 102.50 102.88 106.07
GNN 100.18 102.55 102.97 86.04

PENN 100.20 102.55 102.99 86.12
XPENN 100.21 102.43 102.85 84.82

FNN 98.32 137.35 137.52 167.31
FNN(L) 99.51 156.26 156.19 104.67
Linear 100.23 103.01 103.46 110.88

Constant 100.64 101.89 102.96 297.83

Table 7: The “Capital” column shows for each model the best approximation of the systemic risk, i.e. the
smallest amount of required bailout capital, for the CP network. The other columns show the reached inner
risk on train, validation and test set.
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Model Train Risk Val. Risk Test Risk Capital
None 296.15 301.09 297.41 0.00

Uniform 101.24 102.35 101.14 441.05
Default 100.44 102.45 100.81 219.72
Level-1 100.33 102.23 101.22 165.00
GNN 99.39 102.21 100.29 114.67
PENN 100.57 103.41 101.51 114.51

XPENN 100.45 103.28 101.41 114.23
FNN 100.31 103.00 101.15 117.15

FNN(L) 100.09 102.89 100.99 116.78
Linear 100.22 102.66 101.02 138.92

Constant 100.25 103.07 101.37 120.96

Table 8: The “Capital” column shows for each model the best approximation of the systemic risk, i.e. the
smallest amount of required bailout capital, for the CPf network. The other columns show the reached inner
risk on train, validation and test set.

7 Conclusion

In this work we extend the notion of systemic risk measures with random allocation under the “first allocate
then aggregate” paradigm from vector valued stochastic financial networks to networks that are represented
by a stochastic asset vector and a stochastic liability matrix. Choosing an aggregation function in the market
clearing mechanism of Eisenberg and Noe [22] and under some further reasonable assumptions, we investigate
the theoretical properties of this systemic risk measure. We show existence and provide a reformulation of
the systemic risk that allows to derive an iterative optimisation algorithm.
Furthermore, we connect the domain of financial networks to the domain of weighted, directed graphs and,
motivated by this connection, investigate neural network architectures that are permutation equivariant. We
study permutation equivariant neural networks (PENNs) [41] and introduce extended permutation equivariant
neural networks (XPENNs) that are permutation equivariant. For both architectures we prove universal
approximation results, in the sense that they can approximate any permutation equivariant node labeling
function arbitrarily well in probability.
In numerical experiments with synthetic financial networks we show that in order to compute systemic risk
measures of networks with stochastic liability matrix it seems that permutation equivariance is a crucial
property of the employed neural network model. Our results highlight that potentially a lot of bailout
capital can be saved by utilising models that allow for scenario dependent allocations and can effectively
process the liability matrix by leveraging permutation equivariance.
For further work it would be interesting to investigate if similar theoretical properties can be established for
contagion models with additional default mechanisms like fire-sales. Besides theoretical challenges due to
the non-convexity, this would require to extend the domain of stochastic financial networks to directed het-
erogeneous graphs with different node and edge types. Subsequently, different neural network architectures
would potentially need to be utilised for the computation of such systemic risk measures.

A Supplementary Theory

Theorem A.1 (Komlós Theorem, see Komlós [47] or Lemma 1.70 in Föllmer and Schied [32]). Given a
sequence (ξn) in L0

(
Ω,F0,P;Rd

)
such that supn |ξn| < ∞ P-almost surely. Then there exists a sequence of

convex combinations

ηn ∈ conv {ξn, ξn+1, . . .}

which converges P-almost surely to some η ∈ L0
(
Ω,F0,P;Rd

)
.
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