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ABSTRACT
We present a model-agnostic framework for jointly optimizing
the predictive performance and interpretability of supervised ma-
chine learning models for tabular data. Interpretability is quantified
via three measures: feature sparsity, interaction sparsity of fea-
tures, and sparsity of non-monotone feature effects. By treating
hyperparameter optimization of a machine learning algorithm as
a multi-objective optimization problem, our framework allows for
generating diverse models that trade off high performance and
ease of interpretability in a single optimization run. Efficient opti-
mization is achieved via augmentation of the search space of the
learning algorithm by incorporating feature selection, interaction
and monotonicity constraints into the hyperparameter search space.
We demonstrate that the optimization problem effectively trans-
lates to finding the Pareto optimal set of groups of selected features
that are allowed to interact in a model, along with finding their
optimal monotonicity constraints and optimal hyperparameters of
the learning algorithm itself. We then introduce a novel evolution-
ary algorithm that can operate efficiently on this augmented search
space. In benchmark experiments, we show that our framework is
capable of finding diverse models that are highly competitive or out-
perform state-of-the-art XGBoost or Explainable Boosting Machine
models, both with respect to performance and interpretability.
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1 INTRODUCTION
Tabular data are highly relevant for numerous application areas
such as finance, bio-informatics, andmedical diagnosis. State-of-the-
art learning algorithms for tabular data include tree-based methods,
e.g., gradient boosted trees (with larger depth) [20] such as XGBoost
[8] and LightGBM [33], or random forests [6], which often still out-
perform deep neural networks [25], although the performance gap
has recently shrunk considerably [23, 25, 31, 50]. To achieve peak
predictive performance, AutoML tools such as AutoGluon-Tabular
[15] or AutoSklearn [19] often make further use of ensembling
and stacking multiple models. Moreover, careful hyperparameter
optimization of learning algorithms is typically required to yield
well performing models [47, 52].

While good predictive performance is generally of central im-
portance, many applications desire or even require models to fulfill
additional criteria, such as interpretability or sparseness. For exam-
ple a model used for medical diagnosis that achieves high accuracy
but lacks interpretability, such as black box models like gradient
boosted trees or deep neural networks, may encounter difficul-
ties in gaining trust and adoption. In contrast, a model that can
provide insights into its reasoning, even if it has slightly lower
performance, is more likely to be trusted and used in real-world
scenarios. In the field of Interpretable Machine Learning [41], two
different approaches for achieving interpretability of models have
broadly emerged: (i) to only consider learning algorithms that in-
duce “interpretable” models due to their simple intrinsic nature
(e.g., logistic regression, decision trees, rule-based systems or gener-
alized additive models) or (ii) to use post-hoc methods – which can
either be model-agnostic, such as partial dependence plots (PDP)
[20] or accumulated local effects (ALE) [1], or model-specific – to
gain insight into the inner workings of a model.

When working with tabular data in real-world situations, finding
the “right” model can be cumbersome and involves time-consuming
manual trial and error. Often, various learning algorithms are tried
to produce different models, which are then inspected to select
a final model based on concrete user preferences at hand. While
this process may be feasible if the goal is to “simply” find a good-
performing model, it becomes inefficient if additional criteria such
as feature sparseness, few interactions of features, or monotonicity
of feature effects are also to be considered. In particular, monotonic-
ity can be highly relevant in practice, as frequently only a model
consistent with domain knowledge is acceptable to domain experts.
For example, in credit loan approval, models are often required to
be monotone with respect to the decision variables involved [53].
Our framework allows automatic generation of a set of models that
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balance performance and interpretability. Formally, this requires
two things: (i) a way to measure the interpretability of models on a
global scale, and (ii) an efficient approach for solving the arising
multi-objective optimization problem.

Our Contributions. We introduce a general, model-agnostic
framework for jointly optimizing the predictive performance and
interpretability of supervised machine learning models for tabular
data. To achieve this, we propose a quantification of the inter-
pretability of models on a global scale based on three measures:
feature sparsity, interaction sparsity of features, and sparsity of
non-monotone feature effects. We then formulate a multi-objective
optimization problem of performance and interpretability over the
hyperparameter search space of a learning algorithm, which is aug-
mented by incorporating feature selection as well as interaction and
monotonicity constraints into the hyperparameter search space.
As a solution to the optimization problem, we present a novel hy-
perparameter optimization algorithm that can operate efficiently
on this augmented search space, making use of the principles of
evolutionary computation by treating feature selection as well as
the specification of interaction and monotonicity constraints of
features as a grouping problem.

2 RELATEDWORK
When choosing a learning algorithm that induces interpretable
models – e.g., logistic regression models, Elastic-Nets [58], or gener-
alized additive models (GAMs) [28] – one typically loses predictive
performance compared to black box models obtained via, e.g., tree
based ensembles [10]. However, the downside of these black box
models is that their interpretability is hindered by potentially plenty
of interaction effects of features and non-linear or non-monotone
feature effects. The Explainable Boosting Machine (EBM) [39, 40]
positions itself between comparably poor-performing but intelligi-
ble models and well-performing but unintelligible models. EBM is
a tree-based, cyclic gradient boosting GAM using automatic inter-
action detection based on FAST [40] to include a given number of
second-order interactions in the model. EBM often yields good pre-
dictive performance [45] while being more intelligible than black
box models. Nevertheless, EBM has some drawbacks: (i) EBM is
comparably slow to train, as it relies on a large number of boosting
steps with a small learning rate to cycle through all features1, (ii)
EBM naturally cannot induce a sparse model, as all features are
included in a round robin fashion, and the contribution of each
feature to a final prediction is therefore non-zero, (iii) as a result of
the large number of boosting steps, EBM often fits highly non-linear
and non-monotone shape functions (resulting in rather complex
relationships of features and target), and, relatedly, (iv) EBM can-
not handle monotonicity constraints during training – i.e., if it is
known (or even required) that a feature should have a monotone
increasing effect on the target variable, EBM can neither make use
of this information nor guarantee such an effect.

A popular approach for constructing sparser models is given
by feature selection, which is also related to the complexity and
intelligibility of a model [2, 5, 26]. While feature selection can also
be performed in the context of unsupervised learning [27], we fo-
cus on the supervised learning context. Here, the goal of feature

1Which we also observed in our benchmark experiments.

selection is to select only a subset of relevant features while still
constructing a model with good predictive performance. There are
two model-agnostic approaches to feature selection [26]: feature
filters and feature wrappers. Feature filters use proxy measures that
are cheap to compute to rank features by their potential explanatory
power independent of the concrete learning algorithm being used.
Popular examples include measures based on information theory,
correlation, distance, or consistency [11]. In contrast to feature
filters, feature wrappers directly optimize predictive performance
over the space of feature subsets [35]. As every feature subset evalu-
ation requires one or multiple model fits, making exhaustive search
infeasible, a discrete black box optimization search strategy (such as
a greedy search or an evolutionary algorithm [55]) is necessary. On
the one hand, feature selection is often considered a single-objective
optimization problem, and the feature selection step is only used
to optimize performance [35]. On the other hand, feature selection
can also be framed as a multi-objective optimization problem, maxi-
mizing predictive performance and feature sparsity simultaneously
[2, 54]. Finally, recent work also explored the idea of identifying
sets of features without predefined grouping [29].

Looking at measures for interpretability of models on a global
scale, Molnar and colleagues [42] were among the first to explicitly
propose model-agnostic measures of model complexity. They quan-
tify model complexity by decomposing the prediction function of
any model into a sum of components with increasing dimension-
ality, based on which they derive three measures: the number of
features used by a model, the interaction strength of features, and
the main effect complexity of features.

3 THEORETICAL BACKGROUND
Consider the supervised learning problem of inferring a model
from labeled data D with 𝑛 observations where each observation
(x(𝑖 ) , 𝑦 (𝑖 ) ) consists of a 𝑝-dimensional feature vector x(𝑖 ) . We as-
sume that D has been sampled i.i.d. from an underlying, unknown
distribution, D ∼ (P𝑥𝑦)𝑛 . A learning algorithm or inducer I con-
figured by hyperparameters 𝝀 ∈ 𝚲 maps a data set D to a model 𝑓 ,
i.e.,I : D×𝚲 → H , (D,𝝀) ↦→ 𝑓D,𝝀 , whereD :=

⋃
𝑛∈N (X×Y)𝑛 is

the set of all data sets, 𝚲 is the search space of hyperparameters, and
H is the hypothesis space of models. In general, one is interested in
constructing a model 𝑓D,𝝀 = I(D,𝝀) that minimizes the general-
ization error2, GE(𝑓D,𝝀) = E(x,𝑦)∼P𝑥𝑦

[
𝐿(𝑓D,𝝀 (x), 𝑦)]

]
, where 𝐿

is a loss functionmeasuring discrepancy between the prediction and
true label. However, the generalization error can only be estimated
using in-sample data, ĜE(I𝝀,D), through a resampling technique
such as cross-validation. For more details, see, e.g., [3, 18].

3.1 Multi-Objective Hyperparameter
Optimization

Let 𝑐1 : 𝚲 → R, . . . , 𝑐𝑚 : 𝚲 → R,𝑚 ∈ N denote 𝑚 evalu-
ation criteria of machine learning models. Note that evaluation
criteria usually also depend on the data set and resampling tech-
nique at hand (which we omit here for clarity). Define 𝑐 : 𝚲 →

2With a slight abuse of notation, we will write I𝝀 to denote that a certain hyperpa-
rameter configuration 𝝀 is fixed, i.e., I𝝀 (D) = I(D,𝝀) with 𝝀 fixed.
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R𝑚 to assign an 𝑚-dimensional cost vector to a hyperparame-
ter configuration 𝝀 ∈ 𝚲. The general multi-objective hyperpa-
rameter optimization problem is then defined as min𝝀∈𝚲 𝑐 (𝝀) =

min𝝀∈𝚲 (𝑐1 (𝝀), 𝑐2 (𝝀), . . . , 𝑐𝑚 (𝝀)). Generally, there is no single hy-
perparameter configuration that minimizes all criteria, as these
criteria typically compete with one another. Therefore, focus is
given to the concept of Pareto optimality and the set of Pareto
optimal configurations: A hyperparameter configuration 𝝀 ∈ 𝚲

(Pareto-)dominates another configuration 𝝀′ ∈ 𝚲, written as 𝝀 ≺ 𝝀′,
if and only if

∀𝑖 ∈ {1, . . .𝑚} : 𝑐𝑖 (𝝀) ≤ 𝑐𝑖
(
𝝀′
)
∧

∃ 𝑗 ∈ {1, . . .𝑚} : 𝑐 𝑗 (𝝀) < 𝑐 𝑗
(
𝝀′
)
.

The set of Pareto optimal solutions is therefore defined as P :={
𝝀 ∈ 𝚲 | � 𝝀′ ∈ 𝚲 s.t. 𝝀′ ≺ 𝝀

}
. The image of P under 𝑐 , 𝑐 (P), is

called the Pareto front. The goal of multi-objective optimization
is to find a set of configurations P̂ so that 𝑐 (P̂) approximates the
true Pareto front well.

A popular quality indicator of multi-objective optimization is
given by the dominated Hypervolume [57]. The Hypervolume of an
approximation of the Pareto front 𝑐 (P̂) is defined as the combined
volume of the dominated hypercubes of all solution points with
respect to a reference point 𝒓 ∈ R𝑚 . For more details on multi-
objective hyperparameter optimization in general as well as an
overview of recent applications, we refer to [32, 43].

3.2 Quantifying Interpretability
We propose a quantification of interpretability that is conceptually
similar to [42], but our measures and their operationalization differ.
As measures for the interpretability of a model on a global scale,
we propose to use feature sparsity, interaction sparsity of features,
and sparsity of non-monotone features. All our measures are based
on the prediction function 𝑓 : X → R𝑔 of a model3.

To define whether feature 𝑗 is used by the model, we can deter-
mine whether the prediction function changes if the value of 𝑥 𝑗
changes, i.e., 𝑓 (𝑥1, . . . , 𝑥 ′𝑗 , . . . 𝑥𝑝 ) ≠ 𝑓 (𝑥1, . . . , 𝑥 𝑗 , . . . 𝑥𝑝 ) whenever
𝑥 ′
𝑗
≠ 𝑥 𝑗 . The (relative) number of features used by a model, 𝑁𝐹 ,

can then be defined as

𝑁𝐹 (𝑓 ) B |{ 𝑗 ∈ {1, . . . , 𝑝} : ∃𝑥 𝑗 , 𝑥 ′𝑗 ∈ X𝑗 , 𝑥
′
𝑗 ≠ 𝑥 𝑗 s.t.

𝑓 (𝑥1, . . . , 𝑥 ′𝑗 , . . . 𝑥𝑝 ) ≠ 𝑓 (𝑥1, . . . , 𝑥 𝑗 , . . . 𝑥𝑝 )}|/𝑝.
(1)

Similarly, wewant to definewhether two features 𝑗 and𝑘 interact.
A prediction function 𝑓 of a model exhibits an interaction between
two features 𝑗 and 𝑘 if the difference in the value of 𝑓 (x) as a result
of changing the value of 𝑥 𝑗 depends on the concrete value of 𝑥𝑘 [21].
Consequently, given no interaction of features 𝑗 and 𝑘 , 𝑓 can be
decomposed into 𝑓 (x) = 𝑓− 𝑗 (x− 𝑗 ) + 𝑓−𝑘 (x−𝑘 ) where x− 𝑗 and x−𝑘
are feature vectors excluding 𝑥 𝑗 and respectively 𝑥𝑘 . The (relative)
number of interactions in a model, 𝑁𝐼 , can then be defined as

𝑁𝐼 (𝑓 ) B |{{ 𝑗, 𝑘}, 𝑗, 𝑘 ∈ {1, . . . , 𝑝}, 𝑘 > 𝑗 : �𝑓− 𝑗 , 𝑓−𝑘 s.t.

𝑓 (x) = 𝑓− 𝑗 (x− 𝑗 ) + 𝑓−𝑘 (x−𝑘 )}|/((𝑝 (𝑝 − 1))/2) .
(2)

3For regression, 𝑔 is 1, while in classification the output usually represents the 𝑔
decision scores or posterior probabilities of the 𝑔 candidate classes. Without loss of
generalization, we will assume 𝑔 = 1 in the following.

If the hypothesis space of an inducer is restricted to only contain
models including main effects and second-order interaction effects
of features, 𝑁𝐼 is a direct measure of the violation of interaction
sparsity of a model. However, if the hypothesis space contains
models that include higher order interaction effects,𝑁𝐼 falls short in
penalizing such higher order interactions. To penalize the inclusion
of many pairwise interactions and higher order interactions, we
assume transitivity with respect to the interaction of features, i.e.,
if feature 𝑗 and 𝑘 and 𝑘 and 𝑙 interact, we also count an interaction
of feature 𝑗 and 𝑙 .

Finally, we define feature 𝑗 to have a monotone increasing effect
if it holds that whenever𝑥 𝑗 ≤ 𝑥 ′

𝑗
, one has that 𝑓 (𝑥1, . . . , 𝑥 𝑗 , . . . 𝑥𝑝 ) ≤

𝑓 (𝑥1, . . . , 𝑥 ′𝑗 , . . . 𝑥𝑝 ). Analogously, we define feature 𝑗 to have a
monotone decreasing effect. The (relative) number of non-monotone
features in a model, 𝑁𝑁𝑀 , is then given by

𝑁𝑁𝑀 (𝑓 ) B |{ 𝑗 ∈ {1, . . . , 𝑝} : (∃𝑥 𝑗 , 𝑥 ′𝑗 ∈ X𝑗 , 𝑥 𝑗 ≤ 𝑥 ′𝑗 s.t.

𝑓 (𝑥1, . . . , 𝑥 𝑗 , . . . 𝑥𝑝 ) > 𝑓 (𝑥1, . . . , 𝑥 ′𝑗 , . . . 𝑥𝑝 )) ∧
(∃𝑥 𝑗 , 𝑥 ′𝑗 ∈ X𝑗 , 𝑥 𝑗 ≤ 𝑥 ′𝑗 s.t.

𝑓 (𝑥1, . . . , 𝑥 𝑗 , . . . 𝑥𝑝 ) < 𝑓 (𝑥1, . . . , 𝑥 ′𝑗 , . . . 𝑥𝑝 ))}|/𝑝.
(3)

Based on these formal definitions, 𝑁𝐹 , 𝑁𝐼 , and 𝑁𝑁𝑀 can be
operationalized in different ways. For example, 𝑁𝐹 can be estimated
via a sampling procedure, as described in [42]. Similarly, 𝑁𝐼 could
in principle be estimated based on the partial dependence function
[21] or by calculating H-statistics [21] or Greenwell’s interaction
index [24] for all pairs of features. Depending on the concrete learn-
ing algorithm at hand, 𝑁𝐹 and 𝑁𝐼 can often also be determined in
a straightforward manner by, e.g., looking at features used in splits
in a decision tree. In the following, we will exactly determine 𝑁𝐹

and 𝑁𝐼 by directly inspecting the resulting model whenever possi-
ble. Finally, looking at monotonicity, estimating 𝑁𝑁𝑀 is arguably
difficult. In principle, one could try to test whether a feature has
a monotone effect via verification-based testing [49] or adaptive
random testing [9]. However, such procedures are always at risk
of error, and as monotonicity is typically a hard4 requirement of
a model [46, 53], we opt to determine 𝑁𝑁𝑀 based on the config-
uration of the inducer. This requires the inducer to allow for the
specification of monotonicity constraints of features, which is easily
achievable for, e.g., tree-based methods or GAMs.

We want to note that a model that has low values with respect
to 𝑁𝐹 , 𝑁𝐼 and 𝑁𝑁𝑀 still can be complex and must not necessarily
result in being intrinsically interpretable. Nevertheless, we believe
that such a model is much more easier to interpret, e.g., based on a
post-hoc ALE analysis, compared to a model with high values in
𝑁𝐹 , 𝑁𝐼 , or 𝑁𝑁𝑀 . For instance, if a model uses only few features
that have monotone increasing effects and do not interact with each
other, the prediction function of the model can be easily summa-
rized. For example, increasing the value of any individual feature
would result in an increase in the predicted outcome, regardless
of the values of other features. Such a simple and consistent rela-
tionship between features and the predicted outcome makes the
model more interpretable. This direct connection between model
4In practice, a feature is typically expected to exhibit a monotone effect, or not, without
any in-between or probabilistic formulation.
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complexity and ease of interpretability is also the reason why we
deem it appropriate to speak of multi-objective optimization of
performance and interpretability.

3.3 Multi-Objective Optimization of
Performance and Interpretability

We formulate the hyperparameter optimization problem of a learn-
ing algorithm as a multi-objective optimization problem with the
goal of minimizing the estimated generalization error, 𝑁𝐹 , 𝑁𝐼 and
𝑁𝑁𝑀 . To allow for efficient optimization, we extend the search
space of the learning algorithm and include hyperparameters for
the selection of features, interaction constraints, and monotonicity
constraints of features to be part of the search space. Therefore, we
require the learning algorithm to allow for the specification of fea-
ture selection as well as interaction and monotonicity constraints
of features.

In the following, we denote by �̌� the extended search space.
A hyperparameter configuration �̌� ∈ �̌� is given by the tuple
(𝝀, 𝒔, 𝑰𝒔 ,𝒎𝑰𝒔 ). Here, 𝝀 ∈ 𝚲 is the usual hyperparameter config-
uration of a learning algorithm, 𝒔 is a binary vector of length 𝑝 ,
indicating selection of features, 𝑰𝒔 is a symmetric matrix of dimen-
sion 𝑝 × 𝑝 with (𝑰𝒔 ) 𝑗𝑘 = 1 indicating that features 𝑗 and 𝑘 are
allowed to interact in a model and 0 indicating otherwise, and 𝒎𝑰𝒔
is an integer vector of length 𝑝 indicating monotonicity constraints
of features (−1 for monotone decreasing, 1 for monotone increasing,
and 0 for unconstrained5).

In principle, we could proceed to try solving the multi-objective
optimization problem as given in Equation 4:

min
�̌�∈�̌�

(
ĜE

(
I�̌�,D

)
, 𝑁 𝐹

(
𝑓D,�̌�

)
, 𝑁 𝐼

(
𝑓D,�̌�

)
, 𝑁𝑁𝑀

(
𝑓D,�̌�

))
(4)

Although this formulation of the optimization problem is quite nat-
ural, it has several drawbacks: First, note that the extended search
space has become complex, including a binary vector, a quadratic
matrix, and an integer vector that scale linearly or quadratic in
the number of features 𝑝 . Second, note that 𝑰𝒔 depends on 𝒔, as
only features that have been selected can be allowed to interact.
Similarly, 𝒎𝑰𝒔 depends on both 𝑰 and 𝒔. For example, if feature 𝑗 is
required to have a monotone increasing effect but is also allowed to
interact with another feature 𝑘 , then the monotonicity of feature 𝑗

may not be guaranteed if feature 𝑘 does not also have a monotone
increasing effect. This is because the interaction between feature
𝑗 and 𝑘 can potentially alter the overall effect of feature 𝑗 , and
without the monotonicity constraint on feature 𝑘 , the monotonicity
of feature 𝑗 may be compromised. Therefore, in the general model-
agnostic case, it is most straightforward to require both features
𝑗 and 𝑘 to have monotone increasing effects to ensure that the
monotonicity of feature 𝑗 is maintained in the presence of their
potential interaction effect.

We will now derive a reformulation of the search space of the
optimization problem stated in Equation 4 that is much easier to
handle. To do so, recall the definition of an endorelation and the
properties reflexive, symmetric, and transitive. Note that a reflexive,
symmetric, and transitive endorelation – also called an equivalence

5Wewill later argue that it suffices to only consider {0, 1} as monotonicity constraints.

relation – imposes a group structure on a set, i.e., it partitions the
set by means of its equivalence classes.

To arrive at an easier formulation of the search space of the
optimization problem in Equation 4, we define interactions of fea-
tures as an endorelation. Let 𝐶 = {1, . . . , 𝑝} denote the index set
of features and 𝐶𝑠 ⊆ 𝐶 the index set of features selected for inclu-
sion in a model and define an endorelation 𝑅 on 𝐶𝑠 , 𝑅 ⊆ 𝐶𝑠 ×𝐶𝑠 .
We say feature 𝑗 and feature 𝑘 are allowed to interact if the model
in principle allows for the inclusion of an (interaction) effect of
the two, and write 𝑗𝑅𝑘 . It follows that 𝑅 is naturally reflexive and
symmetric – i.e., if feature 𝑗 is allowed to interact with feature 𝑘 ,
then the reverse also holds, as the interaction of features is non-
directional. However, note that the interaction of features must
in fact not be transitive – i.e., even if feature 𝑗 and 𝑘 and 𝑘 and
𝑙 interact in a model, it must not follow that feature 𝑗 and 𝑙 also
interact. Nevertheless, from a modeling perspective, it is reasonable
to allow for features 𝑗 and 𝑙 to also interact, partially also due to the
potential presence of a three-way interaction, which (in the most
general scenario) can only be included in a model if 𝑅 is closed
under transitivity (and the same argument can be made for higher-
order interactions)6. It is therefore natural to always consider the
transitive closure of 𝑅, resulting in an equivalence relation. This
implies that the equivalence classes induced by 𝑅 partition the index
set of selected features and naturally call for working with a group
structure. Regarding monotonicity constraints of features, we want
to note that monotonicity constraints must simply be defined as
attributes of the equivalence classes (for the same reason illustrated
earlier: if features are allowed to interact, they should share the
same monotonicity constraint).

We can now introduce the group structure space G. Each group
structure 𝑮 ∈ G consists of a 𝑔-tuple of sets of feature indices
with the first set, i.e., group, representing the features that were
not selected (𝐶 \𝐶𝑠 ) and all remaining sets resembling the 𝑘 equiv-
alence classes under the equivalence relation 𝑅 ⊆ 𝐶𝑠 ×𝐶𝑠 of fea-
tures being allowed to interact with each equivalence class also
being equipped with a monotonicity attribute. Any group struc-
ture can therefore be encoded as follows: 𝑮 = (𝐺1 = 𝐶 \𝐶𝑠 ,𝐺2 =
(𝐸1, 𝑀𝐸1 ), . . . ,𝐺𝑔 = (𝐸𝑘 , 𝑀𝐸𝑘 )). Here, 𝐸𝑘 ⊆ 𝐶𝑠 is an index set con-
taining the indices of features part of the 𝑘-th equivalence class
under 𝑅, and𝑀𝐸𝑘 ∈ {−1, 0, 1} is the monotonicity attribute of the
𝑘-th equivalence class. We can now reformulate Equation 4 and in-
troduce the augmented search space �̃� = 𝚲 × G by considering the
group structure 𝑮 ∈ G instead of 𝒔, 𝑰𝒔 , and 𝒎𝑰𝒔 . The reformulated
search space now consists of the Cartesian product of the search
space of the learning algorithm, 𝚲, and the group structure space
G and each configuration, �̃� of the search space is given by a tuple
(𝝀, 𝑮), which we argue is much easier to optimize. We visualize the
components involved in the optimization problem in Figure 1.

4 METHOD
For optimizing the multi-objective optimization problem, we in-
troduce an optimizer consisting of an evolutionary algorithm (EA)
for the original search space of the learning algorithm 𝚲 and a
so-called grouping genetic algorithm (GGA) [16] for the group
structure space G. We therefore dub our optimizer EAGGA.

6This is also directly related to the principle of marginality; see, e.g., [44].
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D ∈ D

I𝝀 ∈ 𝚲 𝑓D,𝝀,𝑮

Interaction
Constr.

Sel.
Features

Monotonicity
Constr.

𝑮 ∈ G

Figure 1: Overview of the components involved in the hy-
perparameter optimization problem. The inducer is required
to allow for the specification of feature selection, as well as
interaction and monotonicity constraints of features, which
are derived based on the group structure 𝑮 ∈ G.

4.1 EAGGA
The combination of using an EA and GGA allows us to jointly op-
erate on the augmented search space �̃� = 𝚲 × G. EAGGA’s main
routine is heavily inspired by NSGA-II [12]. NSGA-II is an evolu-
tionary multi-objective algorithm making use of the concepts of
non-dominated sorting and crowding distance to select individuals
for survival close to the Pareto front that also cover a wide spread
along the Pareto front. In each generation, NSGA-II iterates through
reproduction, crossover, mutation, and survival steps that generate
the population of the next generation. In EAGGA, we perform par-
ent selection via a binary tournament selection and simply apply
suitable crossover and mutation operators to hyperparameters of
the original search space (𝝀 ∈ 𝚲) and group structures (𝑮 ∈ G)
next to each other to produce offspring.

4.1.1 EA Operators. For the original hyperparameters of the learn-
ing algorithm (𝝀 ∈ 𝚲), we use the Cartesian product of operators
that operate in different ways on the different parameter types [37].
We use a global crossover probability of 𝑝 = 0.7 and a global muta-
tion probability of 𝑝 = 0.3. All hyperparameters undergo uniform
crossover (𝑝 = 0.5) for recombination. Numeric and integer hyper-
parameters undergo Gaussian mutation (𝑝 = 0.2, 𝜎 = 0.1; values
min-max scaled to [0, 1] prior to mutation and re-transformed after-
wards; values rounded to the closest integer in the case of integer
hyperparameters), while categorical hyperparameters undergo uni-
form mutation (𝑝 = 0.2). The choice of operators and probabilities
of crossover and mutation were mostly inspired by [2].

4.1.2 GGA Operators. Group structures (𝑮 ∈ G) undergo muta-
tion and crossover operators inspired by the original work of Falke-
nauer [16, 17].We again use a global crossover probability of 𝑝 = 0.7
and a global mutation probability of 𝑝 = 0.3. Recall that a group
structure is encoded as 𝑮 = (𝐺1 = 𝐶 \𝐶𝑠 ,𝐺2 = (𝐸1, 𝑀𝐸1 ), . . . ,𝐺𝑔 =

(𝐸𝑘 , 𝑀𝐸𝑘 )) where 𝐺1 = 𝐶 \ 𝐶𝑠 is an index set of features not se-
lected and each 𝐸𝑘 ⊆ 𝐶𝑠 is an index set of features part of the
𝑘-th equivalence class under the equivalence relation 𝑅 of features
being allowed to interact, and𝑀𝐸𝑘 ∈ {−1, 0, 1} is the monotonicity
attribute of the 𝑘-th equivalence class. The basic idea of a GGA is to
apply operators directly on the group structure. For crossover, we
select two crossing sites, delimiting the crossing section, in each of
the two parents (e.g., 𝐺1𝐺2 |𝐺3 |𝐺4 and 𝐻1 |𝐻2𝐻3 |𝐻4𝐻5; 𝐺 used for

the first parent and 𝐻 for the second parent). We then inject the
contents (groups together with their monotonicity attributes) of the
crossing section of the first parent at the first crossing site of the
second parent (e.g., inserting 𝐺3 into the second parent, resulting
in 𝐻1𝐺3𝐻2𝐻3𝐻4𝐻5). Finally, we remove all items (feature indices)
from the old groups now occurring twice in the second parent. For
example, assume 𝐻3 = ({1, 2, 3}, 0) and 𝐺3 = ({3}, 1), then after
inserting 𝐺3 into the second parent, 𝐻3 is given by ({1, 2}, 0). In
the case of the first group, i.e., the index set of features not selected,
being injected, we simply add these indices to the first group of
the parent. To create the second offspring, we swap the roles of
the parents. For more details on the GGA crossover, see [17]. For
mutation, we simply assign each feature index a new group mem-
bership with probability 𝑝 = 0.2 and sample a new monotonicity
attribute for each group with probability 𝑝 = 0.2. To allow for
more precise handling of the group structure, we incorporate a
feedback loop into EAGGA: After evaluating an offspring, we can
determine the actual features and interactions (closed under transi-
tivity) as included in the model7 and update the group structure 𝑮
of each offspring. In Section 5.3 and the supplementary material,
we present results of an ablation study investigating the effect of
turning off either crossover or mutation of group structures or both,
where we observed that in general both of them are needed for
good performance.

4.2 Initializing the Group Structures
As hyperparameter optimization is costly, we strive tomake EAGGA
more sample-efficient. We use three detectors (feature, interaction,
and monotonicity) to find better initial population group struc-
tures. An ablation study in Section 5.3 shows that these detectors
substantially improve EAGGA’s (anytime) performance.

4.2.1 Feature Detector. The goal of a feature detector is to quantify
the importance of features so that the probability of selecting an
important feature 𝑗 (i.e., 𝑗 ∈ 𝐶𝑠 ) can be increased. Formally, a feature
detector maps a data setD to a 𝑝-dimensional vector of real valued
scores with the 𝑗-th element corresponding to the score of the 𝑗-th
feature. In EAGGA, we use feature filters. A feature filter measures
feature importance using a fast proxy, such as the entropy-based
information gain filter [36], which calculates the difference between
the target variable’s entropy and the joint entropy conditioned on
the feature. Based on the filter score for each feature, we can then
weight the probability of selecting a feature. To determine the
number of selected features 𝑆 of a member of the initial population,
we sample a random integer between 1 and 𝑝 from a truncated
geometric distribution similarly as in [2]. The features that are
actually selected are then determined by sampling from all binary
vectors 𝒔 of length 𝑝 that sum to 𝑆 with weighted probabilities
according to the feature filter scores.

4.2.2 Interaction Detector. The idea of a (pairwise) interaction de-
tector is to quantify the importance of interactions of features so
that the probability of those features being in the same group (i.e.,
the same equivalence class under the equivalence relation 𝑅 allowed
to interact) can be increased. Formally, an interaction detector maps

7The group structure only imposes an upper constraint, meaning that the resulting
model may use all or some of the selected features, and the same applies to interactions.
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a data set D to a symmetric, real valued 𝑝 × 𝑝 matrix with the ele-
ment at the 𝑗-th row and 𝑘-th column corresponding to the score of
the 𝑗-th and 𝑘-th feature8. Recall that in EAGGA, the first group𝐺1
of a group structure 𝑮 is always given by the indices of features that
are not selected. To initialize the remaining groups, we make use of
the FAST algorithm [40]. FAST allows for efficient quantification of
the importance of all pairwise interactions of features based on the
residual sums of squares when extending a main effects model to
include an interaction effect. To determine the number of included
interactions 𝐼 of a member of the initial population, we sample
a random integer between 1 and (𝑝 (1 − 𝑝))/2 from a truncated
geometric distribution. The actual groups are then determined by
considering the 𝐼 most important pairwise interactions according
to FAST, constructing an equivalence relation 𝑅 allowed to interact,
and deriving the equivalence classes under 𝑅.

4.2.3 Monotonicity Detector. Using a monotonicity detector is help-
ful due to two reasons: First, recall that the monotonicity attribute
of a group can in principle either be -1 (monotone decreasing),
1 (monotone increasing), or 0 (unconstrained). This is somewhat
redundant, as a monotone decreasing feature effect (without loss of
generalization, we assume purely numeric features) can always be
realized by enforcing a monotone increasing effect and swapping
the sign of the feature itself. Therefore, by detecting whether a
monotone feature effect should be increasing or decreasing we can
encode monotonicity constraints more efficiently. Second, by quan-
tifying the mismatch in model fit between enforcing monotonicity
and no constraint, the monotonicity detector can bias the probabil-
ity of the monotonicity attribute being unconstrained. Formally, a
monotonicity detector maps a data set D to a 𝑝-dimensional vector
of real valued scores with the 𝑗-th element corresponding to the
score of the 𝑗-th feature where the sign of the score indicates the
direction of monotonicity and the magnitude of the score reflects
the strength of the monotone relationship between the feature and
the target variable. In EAGGA, we use the following monotonicity
detector: For each feature, we fit a decision tree on sub-sampled
data and obtain the predictions. We then calculate Spearman’s 𝜌
between the feature values and the target predictions. Finally, we
repeat this process 10 times and calculate the average Spearman’s
𝜌 , which we scale9 to [0.2, 0.8]. For each group of features of a
member of the initial population, we take the average over the
individual scores and use this average as a probability to sample
the monotonicity attribute of the group.

5 BENCHMARK EXPERIMENTS
To our best knowledge, EAGGA is the first model-agnostic approach
to perform efficient multi-objective optimization of performance
and interpretability of machine learning models by incorporat-
ing feature selection as well as interaction and monotonicity con-
straints into the hyperparameter search space. In our experiments,
we combine EAGGA with XGBoost (EAGGAXGBoost) or XGBoost
with a maximum depth fixed to 2 (EAGGAXGBoostmd2 , resulting in
second-order interactions being the most complex higher-order
interactions that can be picked up by the model). We configure
EAGGA to use a population size of 𝜇 = 100 and an offspring size
8Note that the diagonal is of no interest and can be set to, e.g., 0.
9This is done to allow for some non-determinism during sampling.

of 𝜈 = 10, with the comparably large population size being in-
spired by [2, 54]. One naïve approach to generate a benchmark
baseline is to simply use a collection of competitors that all ex-
cel at different objectives which EAGGA tries to optimize jointly
and compare EAGGAXGBoost to the union of the competitors. An-
other approach is to compare EAGGAXGBoost to standard multi-
objective optimization of XGBoost (without augmentation of the
search space). Code and supplementary material are released via
https://github.com/slds-lmu/paper_2023_eagga.

5.1 EAGGA vs. A Collection of Competitors
We construct a collection of competitors by considering an EBM,
Elastic-Net, (untuned) random forest, and XGBoost. An EBM offers
good performance with few interactions, an Elastic-Net provides
sparse, monotone solutions, while a random forest and XGBoost
usually deliver strong results using many features, interactions,
and non-monotone effects. We tune the hyperparameters of the
EBM, Elastic-Net, and XGBoost via Bayesian Optimization10 and
optimize for predictive performance. For the search spaces of the
learning algorithms, see our supplementary material. All learning
algorithms are given a budget of 8 hours of sequential runtime on
a single CPU (note that this is a disadvantage for EAGGA, as each
competitor is given the same computational budget and therefore
the union of competitors uses substantially more compute budget
than EAGGA). As a performance metric, we choose the area under
the receiver operating characteristic curve (AUC)11. Performance
estimation is conducted via nested resampling: As an outer resam-
pling, we use a holdout with a ratio of 2/3, i.e., test performance is
evaluated on 1/3 of the data. Hyperparameter optimization is then
performed using 5-fold cross-validation on the remaining 2/3 of the
data. For EAGGAXGBoost and EAGGAXGBoostmd2 , the Pareto optimal
configurations found during optimization are re-evaluated on the
test-set. For the EBM, Elastic-Net, random forest, and XGBoost,
we re-evaluate the single best-performing configuration (found
during optimization) on the test-set. For XGBoost models, 𝑁𝐹 and
𝑁𝐼 are determined by actually checking the model and all splits in
all trees, whereas 𝑁𝑁𝑀 is determined based on the monotonicity
constraints of features used in the model (only applicable when
optimized via EAGGA; for the standard XGBoost, we assume 𝑁𝑁𝑀

to be the same as 𝑁𝐹 as we consider monotonicity of features to
be a hard requirement as explained in Section 3.2). For the EBM,
𝑁𝐹 is always 1, as EBM cycles through all available features in a
round robin fashion, whereas 𝑁𝐼 is directly given by the value of
the hyperparameter interactions and we assume 𝑁𝑁𝑀 to be the
same as 𝑁𝐹 , as EBM does not allow for the specification of mono-
tonicity constraints and cannot guarantee monotone feature effects.
For the Elastic-Net, 𝑁𝐹 is determined by looking at the relative
number of non-zero coefficients, whereas 𝑁𝐼 and 𝑁𝑁𝑀 are always
0 (no interaction effects are included in the standard Elastic-Net
and feature effects are always monotone). Finally, for the random
forest, 𝑁𝐹 and 𝑁𝐼 are again determined by actually checking the
model and all splits in all trees, whereas 𝑁𝑁𝑀 is again the same as
𝑁𝐹 (for the same reason as for the standard XGBoost).
10We employ a Bayesian Optimization variant similarly configured as SMAC [38],
i.e., using a random forest as surrogate model and Expected Improvement [30] as
acquisition function.
11We minimize the negative AUC.
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All methods are compared on twenty binary classification tasks
taken from OpenML CC-18 [4] and the AutoML benchmark [22].
We perform 10 replications of each optimization run on each task
with different random seeds to allow for statistical analysis. Cri-
teria for selecting the tasks were fewer than 100000 observations,
the number of features being fewer than 1000 as well as numeric
features, i.e., we focus on small- to medium-sized tabular data sets.
We only consider binary classification tasks, as the EBM until now
does not support the inclusion of interaction effects of features in
the case of multi-class classification. More details on the data sets
can be found in our supplementary material.

As we are comparing a multi-objective optimization framework
(EAGGA) to a collection of models, we perform the following anal-
ysis: For every run on each task, we calculate the dominated Hy-
pervolume of the (test-set) Pareto front of EAGGAXGBoost and
EAGGAXGBoostmd2 with respect to the reference point 𝒓 = (0, 1, 1, 1)⊤
and compare this with the dominated Hypervolume obtained by
considering the non-dominated set of the EBM, Elastic-Net, ran-
dom forest, and XGBoost solutions (evaluated on the test-set). To
allow for a fair comparison, we always include a featureless learner
that simply predicts the majority class without relying on any fea-
tures when calculating the dominated Hypervolume12. Results are
given in Figure 2. Note that the number in parentheses after a task
name indicates the number of features of the task. Using EAGGA
results in substantially larger dominated Hypervolume (Wilcoxon
signed-ranks test [13] on the mean dominated Hypervolume over
replications: 𝑇 = 0, 𝑝 < 0.001 for EAGGAXGBoost vs. competitors
and 𝑇 = 0, 𝑝 < 0.001 for EAGGAXGBoostmd2 vs. competitors).
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Figure 2: Mean dominated Hypervolume of EAGGAXGBoost,
EAGGAXGBoostmd2 , and the union of competitors averaged
over 10 replications. Bars represent standard errors.

We further determine for each task the fraction of replications
where each competitor yields a solution that is Pareto-dominated
by the solutions of EAGGAXGBoost or EAGGAXGBoostmd2 . Table 1a
shows this fraction averaged over all tasks for EAGGAXGBoost – i.e.,
on average, roughly 46% of the EBM solutions are Pareto-dominated
12As the resulting point (−0.5, 0, 0, 0)⊤ will have a large contribution to the dominated
Hypervolume, but only EAGGA might be able to consistently find a hyperparameter
configuration resulting in such a model.

by the solutions found by EAGGAXGBoost. Table 1b shows this frac-
tion averaged over all tasks for EAGGAXGBoostmd2 . We also compute
the counterpart – i.e., what is the fraction of replications where the
whole Pareto set of EAGGAXGBoost or EAGGAXGBoostmd2 is domi-
nated by the Pareto set of the union of the competitors. This was
never the case, neither for EAGGAXGBoost nor EAGGAXGBoostmd2 .
We want to note that in some runs, evaluating the initial design dur-
ing optimization of the EBM took longer than the whole compute
budget of 8 hours. In these cases, our fallback was to only evaluate
the default configuration suggested by the EBM authors.

In our supplementary material, we also provide an illustrative
example of the usage of EAGGA relying on the ozone-level-8hr task
and analyze an exemplary Pareto front. Additionally we analyze
the best performing models from each method in terms of AUC and
interpretability. Results show that the best models found by EAGGA
perform similarly to XGBoost models optimized for performance,
but use less features, interactions, and non-monotone features,
indicating improved interpretability.

Table 1: Mean fraction of runs over tasks and replications
where competitors yield a solution that is dominated by
EAGGAXGBoost or EAGGAXGBoostmd2 .

(a) EAGGAXGBoost

Competitor Mean SE

EBM 0.46 0.04
Elastic-Net 0.30 0.03
Random Forest 0.81 0.03
XGBoost 0.40 0.03

SE = standard error.

(b) EAGGAXGBoostmd2

Competitor Mean SE

EBM 0.36 0.03
Elastic-Net 0.28 0.03
Random Forest 0.74 0.03
XGBoost 0.31 0.03

SE = standard error.

5.2 EAGGA vs. Multi-Objective XGBoost
We also compare EAGGAXGBoost to multi-objective optimization of
XGBoost (without augmentation of the search space), which we will
refer to as XGBoostMO. As an optimizer, we employ ParEGO [34],
a scalarization-based multi-objective Bayesian Optimization algo-
rithm that we configure to use a random forest as surrogate model
and Expected Improvement as acquisition function. The search
space used within ParEGO is exactly the same as the search space
used within EAGGA – with the exception that we do not augment
the search space to include feature selection, interaction, and mono-
tonicity constraints, as standard multi-objective optimizers such as
ParEGO cannot naturally operate on such a search space. The ques-
tion we want to answer is whether it is sufficient to work on the
standard search space with a standard multi-objective optimizer to
optimize XGBoost for predictive performance and interpretability.
Benchmark tasks and the evaluation protocol are exactly the same
as in Section 5.1 – i.e., for EAGGAXGBoost, EAGGAXGBoostmd2 , and
XGBoostMO, the Pareto optimal configurations found during opti-
mization are re-evaluated on the test-set. For each run on each task,
we calculate the dominated Hypervolume of the (test-set) Pareto
front of EAGGAXGBoost, EAGGAXGBoostmd2 , and XGBoostMO, which
we visualize in Figure 3. Again, using EAGGA results in usually at
least the same and often substantially larger dominated Hypervol-
ume (Wilcoxon signed-ranks test on the mean dominated Hyper-
volume over replications: 𝑇 = 40, 𝑝 = 0.0076 for EAGGAXGBoost
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vs. XGBoostMO and 𝑇 = 50, 𝑝 = 0.02 for EAGGAXGBoostmd2 vs.
XGBoostMO). Notably, the only tasks where XGBoostMO outper-
forms EAGGA are tasks with few features. In our supplementary
material, we also analyze the anytime dominated Hypervolume
during optimization (i.e., calculated on the inner resampling).
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Figure 3: Mean dominated Hypervolume of EAGGAXGBoost,
EAGGAXGBoostmd2 , and XGBoostMO averaged over 10 replica-
tions. Bars represent standard errors.

5.3 An Ablation Study of EAGGA
Weperform an ablation study of the components of EAGGAwith the
goal to answer the following questions: (i) Does EAGGA improve
over a random search on the same search space? (ii)How important
are crossover and respectively mutation of group structures? (iii)
What is the benefit of using detectors to initialize the population?

To do so, we rerun all benchmark experiments with different
flavors of EAGGA and analyze the mean dominated Hypervolume
during optimization, i.e., calculated on the inner resampling. We
consider the following modifications or “flavors” of EAGGA: (i)
Simply performing a random search on �̃� after using EAGGA’s de-
tectors to initialize the population (Random Search). (ii) Switching
off either crossover or mutation of group structures (𝑮 ∈ G) or both
(No_Crossover, No_Mutation, No_Cross_Mut). (iii) Switching off
the detectors of EAGGA and initializing the population at random
(No_Detectors).

We observe that (i) performing a random search performs com-
parably poorly, (ii) crossover and mutation of group structures are
needed for good performance and (iii) using detectors can boost
the performance although this is mainly due to using detectors
strongly affecting the early performance of EAGGA. Conducting
a Friedman test [13] on the final mean dominated Hypervolume
during optimization indicates significant differences in ranks of
optimizers (𝜒2 (6) = 52.99, 𝑝 < 0.001). Figure 4 visualizes the corre-
sponding critical difference plot based on the follow up Nemenyi
test. For completeness, we also include XGBoostMO. For detailed
results and discussion, please see our supplementary material.

1 2 3 4 5 6

CD

EAGGA_XGBoost

No_Crossover

No_Mutation

No_Detectors

No_Cross_Mut

XGBoost_MO

Random Search

Figure 4: Critical difference plot of the ranks of optimizers
based on the final mean dominated Hypervolume during
optimization. Lower rank is better.

6 CONCLUSION
We have presented a general model-agnostic framework for jointly
optimizing the predictive performance and interpretability of su-
pervised machine learning models for tabular data. EAGGA is a
multi-objective optimizer making use of the principles of evolu-
tionary computation to jointly optimize the hyperparameters of
a learning algorithm as well as the group structure of features.
EAGGA allows for obtaining a set of diverse models in a single
optimization run and can outperform state-of-the-art competitors
both with respect to performance and interpretability.

In practice, users may have prior knowledge about which fea-
tures to include, which features should interact or even a require-
ment for a certain feature to have a monotone effect. Although
we studied EAGGA in the context of no prior knowledge, it can be
extended to incorporate such information by initializing the pop-
ulation accordingly and preventing crossover and mutation from
creating offspring incongruent with the prior.

EAGGA might be especially useful when using deep neural net-
works as learning algorithms, as Kadra and colleagues [31] demon-
strated that strong regularization of neural networks can be a key
component to achieving good performance on tabular data. Using
EAGGA in combination with neural networks would require the
design of a network architecture that allows for the specification of
interaction and monotonicity constraints of features. Notable work
in this direction has been undertaken by [7, 14, 48, 51, 56].

Finally, it must be noted that EAGGA cannot guarantee that the
resulting group structure of a model is sensible, and the structure
must be verified by domain experts (with respect to the selection of
features, as well as their interaction and monotonicity constraints).
Nevertheless, we believe that EAGGA can be of significant interest
for a wide variety of users.
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