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Abstract: This paper is concerned with the controller synthesis problem for discrete-time
unknown systems against safety specifications via control barrier certificates. Typically, control
barrier certificates provide sufficient conditions for the satisfaction of safety specifications
by separating the safe and unsafe regions of the system. By synthesizing these certificates
in conjunction with control policies, one is able to keep the system safe. In our work,
we parameterize the control barrier certificates and corresponding control policies as neural
networks and learn them simultaneously by utilizing finitely many data samples obtained from
the unknown system. We derive a so-called validity condition to formally verify the obtained
certificates and integrate this condition within the training framework to achieve provably
correct guarantees at the end of training time. In particular, we exploit Lipschitz continuity
properties of the neural networks and utilize robust training techniques to ensure that the
trained networks not only satisfy the required control barrier certificate conditions across the
finitely many training data samples but over the entire state set. We then demonstrate the
effectiveness of our approach with the help of a case study.
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1. INTRODUCTION

Formal verification and synthesis of complex systems
against safety specifications is of utmost importance in the
field of control theory, especially due to the emergence of
safety-critical applications such as autonomous vehicles,
drones, robots, medical devices, etc. Methods utilizing
control barrier certificates (CBCs) (Prajna and Jadbabaie,
2004; Ames et al., 2019) provide an effective mechanism
to formally synthesize controllers enforcing the satisfac-
tion of safety specifications. In particular, control barrier
certificates are real-valued functions defined over the state
set of the system. They act as a barrier between the safe
and unsafe regions, providing sufficient conditions such
that the barrier is never crossed by the closed-loop system
trajectories. Therefore, by successfully synthesizing a CBC
in conjunction with a suitable controller, one can provide
formal guarantees for safety satisfaction. However, a major
caveat of the aforementioned approach is that it requires
mathematical knowledge about the system in the form
of a model. Since precise mathematical models are not
always available due to large complexity of the systems,
one needs to consider alternative model-free approaches.
Another drawback of the approach is the difficulty in
searching for suitable CBCs. In general, one requires to
fix the template of the CBC and controller beforehand
(e.g. polynomial functions of a specific degree) and com-
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pute the parameters (e.g. coefficients of the polynomials)
by utilizing numerical techniques such as sum-of-squares
(SOS) optimization (Parrilo, 2003) or satisfiability modulo
theory (SMT) solvers (De Moura and Bjørner, 2011). Un-
fortunately, in many cases, one fails to synthesize functions
with such fixed templates due to the complexity of system
dynamics (e.g. non-polynomial systems) or computational
complexity.

Neural network-based safety certificate synthesis has
gained considerable attention recently (Dawson et al.,
2023) since it has great potential to alleviate the issues con-
cerning model-based one. First, neural network training
is completely data-driven. Therefore, by parameterizing
CBCs and control policies as neural networks, one avoids
the requirement of a mathematical model. Second, neural
networks are capable of approximating any continuous
function (Barron, 1994). As a result, they evade the lim-
itations caused by utilizing certificates of fixed templates
as in the case of model-based approaches. However, cer-
tificates based on neural networks lack formal guarantees
and cannot be applied to safety-critical systems without
further verification. This is due to the fact that neural
networks are trained on a finite number of samples from
the state set, and as a result, the trained networks are not
guaranteed to satisfy the required CBC conditions over the
entire state set (i.e. unseen samples from the state set).
Therefore, one is required to formally verify the trained
certificates post facto to ensure safety.
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In this context, our work proposes a training framework
to synthesize provably correct CBCs and control policies
parameterized as neural networks for unknown discrete-
time systems without any need for post facto verification.
To do this, we first derive a so-called validity condition
by formulating a scenario convex problem (SCP) under
Lipschitz continuity assumptions on the system dynamics
as well as neural networks to verify the correctness of data-
driven CBCs and corresponding control policies obtained
from some training process. Then, we incorporate the ob-
tained validity condition within the training framework by
enforcing smaller Lipschitz bounds on the neural networks.
This ensures robust training of the networks such that
they not only satisfy the required CBC conditions over
the finitely many training samples obtained from the state
set, but also for all the unseen points over the state set.
This way, the synthesized neural network-based CBCs and
control policies are formally guaranteed to ensure that the
closed-loop trajectories of the system are safe, i.e., they
do not cross the barrier and hence, visit unsafe regions.
Finally, we demonstrate the applicability of our approach
with the help of suitable case studies.

Related Work. Barrier certificates were first introduced
by (Prajna and Jadbabaie, 2004; Prajna, 2006) in the con-
text of safety verification for nonlinear and hybrid dynam-
ical systems. It was later extended to safety verification for
stochastic (hybrid) systems by (Prajna et al., 2007; Wis-
niewski and Bujorianu, 2018). Control barrier certificates
were then proposed for synthesizing controllers for safety
specifications of control affine systems (Ames et al., 2019;
Wieland and Allgöwer, 2007) as well as stochastic control
systems (Jagtap et al., 2020; Clark, 2021). All the afore-
mentioned works require knowledge of the mathematical
model in order to construct the certificates and control
policies. More recently, data-driven approaches to synthe-
size (control) barrier certificates have gained significant
attentions. In this context, safety verification via scenario
convex program for unknown continuous-time nonlinear
systems was proposed by (Lavaei et al., 2021). Controller
synthesis under rank conditions via control barrier certifi-
cates for unknown continuous time nonlinear polynomial
systems were proposed by (Nejati et al., 2022). While
these works are applicable when the system models are
unknown, the certificates are limited by their templates
(function space), and hence, hard to find.

On the other hand, neural network-based certificate syn-
thesis was developed in the context of safety verification
for continuous-time nonlinear systems by (Zhao et al.,
2020; Peruffo et al., 2021), for hybrid systems by (Zhao
et al., 2021b), and for stochastic systems by (Mathiesen
et al., 2023). It was later extended to address the con-
troller synthesis problem by (Jin et al., 2020; Zhao et al.,
2021a; Dawson et al., 2023). Most of the aforementioned
works utilize posteriori verification techniques to formally
guarantee whether the certificates obtained are valid. For
example, the results in (Zhao et al., 2020, 2021a) encode
the CBC constraints into an SMT problem to verify the
validity of trained CBCs. The results in (Zhao et al.,
2021b) transform the CBC conditions to mixed-integer
linear programming (MILP) to verify its correctness. The
results in (Mathiesen et al., 2023) check the validity of the
trained CBCs by approximating them as linear functions

by leveraging bound propagation techniques. However,
these approaches consider verifying the trained CBCs a
posteriori which is costly. Moreover, they also require the
knowledge of the system model.

The results in (Jin et al., 2020) train neural network
barrier certificates for continuous-time systems and verify
their correctness a posteriori by utilizing Lipschitz continu-
ity of the trained certificates as well as the system dynam-
ics. In contrast, our work aims to integrate the training and
verification process to synthesize provably correct CBCs at
one go. Note also that the results in (Peruffo et al., 2021)
synthesize formally verified neural barrier certificates via
an SMT based counter-example guided synthesis (CEGIS)
approach. However, they work in the continuous-time set-
ting and require the knowledge of the system dynamics.
Moreover, they only consider the safety verification prob-
lem, i.e., they do not synthesize controllers for closed-
loop control systems that enforce safety specifications. On
the other hand, our work is capable of handling systems
with unknown dynamics under some Lipschitz continuity
assumptions. Moreover, we simultaneously synthesize con-
trol policies along with CBCs to provide provable guaran-
tees over safety specifications.

2. PRELIMINARIES

2.1 Notations

We denote the set of real, positive and non-negative num-
bers by R,R>0 and R≥0, respectively, while Rn denotes
a real space of dimension n. Notations N and N>0 are
utilized to denote the set of non-negative and positive
integers, respectively. Given N vectors xi ∈ Rni , the cor-
responding column vector of dimension

∑
i ni is denoted

by x = [x1; . . . ;xN ]. For a vector x ∈ Rn, Euclidean norm
of x is denoted by ∥x∥. For a set S, we define the indicator
function of S, denoted by 1S(x), by 1S(x) = 1 when x ∈ S
and 0 otherwise. The complement of a set S within a set S
is denoted by S\S. For a matrix A ∈ Rm×n, the inequality
A ≥ 0 is element-wise, whereas the inequality A ⪰ 0 means
that A is positive semi-definite. Moreover, AT denotes its
transpose. Finally, the set of diagonal matrices of dimen-
sion n is denoted by Dn, and Dn

≥0 is the set of diagonal
matrices with non-negative elements.

2.2 Problem Definition

Definition 1. (System). A discrete-time control system
(dt-CS) is a tuple S = (X,U, f), where X ⊆ Rn is the
state set of the system, U ⊆ Rm is the input set of the
system, and f : X × U → X describes the state evolution
of the system via the following difference equation:

x(t+ 1) = f(x(t), u(t)), ∀t ∈ N, (1)

where x(t) ∈ X and u(t) ∈ U , ∀t ∈ N, denote the state
and input of the system, respectively.

We consider a feedback controller g : X → U for the dt-CS
S, such that at any time instant t ∈ N, the control input is
given as u(t) = g(x(t)). For a given initial state x(0) = x0

and a controller g, we denote by xx0 = (x0, x(1), x(2), . . .)
the infinite state sequence generated by applying inputs
g(x(t)) at each time step t. The focus of this paper is
on unknown systems, i.e., the function f in (1) unknown.
However, we assume to have access to a black-box model of
the system, i.e., given finitely many samples {x1, . . . , xN}
from the state set X and {u1, . . . , uN} from the input set
U , we have {f(x1, u1), . . . , f(xN , uN )}. Note that in the
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remainder of the paper, we refer to an unknown dt-CS
as simply dt-CS for ease of presentation. The aim of this
paper is to synthesize a suitable controller g such that the
dt-CS S satisfies some safety specification by preventing
S from visiting some unsafe regions of the state set.

Problem 2. Given a dt-CS S as in Definition 1, a set of
initial states X0 and a set of unsafe states Xu, compute
a feedback controller g : X → U such that the state
sequences xx0

of S starting from x0 ∈ X0 under the policy
g do not visit any states in Xu for all time t ∈ N, by using
a finite number of samples collected from the system.

2.3 Control Barrier Certificates

In this section, we introduce the notion of control barrier
certificates (CBC) (Prajna and Jadbabaie, 2004), which
provide sufficient conditions together with controllers for
the satisfaction of safety specifications. Control barrier
certificates are formally defined as follows:

Definition 3. We say that a function B : X → R is
a control barrier certificate (CBC) for a dt-CS S with
respect to the initial set X0 ⊆ X and unsafe set Xu ⊆ X if
there exists a controller g : X → U such that the following
conditions hold:

B(x) ≤ 0, ∀x ∈ X0, (2)

B(x) > 0, ∀x ∈ Xu, (3)

B(f(x, g(x)))− B(x) ≤ 0, ∀x ∈ X. (4)

The following lemma allows us to synthesize controllers for
dt-CS S ensuring the satisfaction of safety properties.

Lemma 4. For a dt-CS S, initial set X0 ⊆ X, and unsafe
set Xu ⊆ X, the existence of a CBC B under a controller
g implies that the state sequences xx0

of S starting from
x0 ∈ X0 under g do not reach any unsafe states in Xu.

It is straightforward to see how the existence of CBC
implies safety. The zero-level set of the CBC B(x) = 0
separates the unsafe regions from the safe ones. When the
system starts from an initial state x0, B(x0) ≤ 0 due to
condition (2). Due to condition (4), which requires B(x)
to remain non-increasing for all x, the level set cannot
be crossed, and as a result, the unsafe regions cannot
be reached. In order to ensure that a system is safe,
it therefore suffices to compute suitable control barrier
certificates with the corresponding control policies. Usu-
ally, for a known dt-CS S, one may compute CBC and
corresponding controller by first selecting their respective
templates (e.g. polynomial functions) and utilizing ap-
propriate search techniques such as sum-of-squares opti-
mization (Parrilo, 2003) and satisfiability modulo theo-
ries (De Moura and Bjørner, 2011).

However, there are two main challenges that prevent
us from utilizing the aforementioned approaches in our
setting. First, since we work with dt-CS S where f
is unknown, it is not possible to compute CBC and
the corresponding controller via condition (4). Second,
fixing the template of CBCs and control policies may
be restrictive, and as a result, it may not always be
possible to find a suitable CBC ensuring safety of the
system. In this paper, we find a solution to overcome both
challenges by parameterizing CBCs and control policies
as neural networks and training the neural networks in a
data-driven fashion with no requirement on the knowledge

of the system or the templates. However, since data-
driven CBCs and control policies computed in this way
are not formally verified to satisfy conditions (2)-(4) over
the entire state set, we derive a validity condition for
verification in Section 3 and employ this condition within
the training process in Section 4 to generate formally
verified CBCs with their corresponding control policies.

3. CORRECTNESS OF CONTROL BARRIER
CERTIFICATES

In this work, we represent the CBC and controller as neu-
ral networks and train them via finitely many data samples
whilst providing formal guarantees on their correctness
over the entire state set with the help of a so-called validity
condition. This section focuses on the derivation of this
validity condition that is utilized later in our proposed
training framework (cf. Section 4). However, to do so, we
first need to assume that the neural network candidates
corresponding to CBC and controller are already given
to us. In particular, we consider CBC B and controller g
introduced in Definition 3 to be neural networks, denoted
by Bθ,b and gθ̄,b̄, respectively, that are parameterized by

their weights θ, θ̄ and biases b, b̄, respectively (refer to
Section 4 for more details on the neural network param-
eterization). Having this, we then utilize scenario-based
verification techniques (Salamati and Zamani, 2022) to
obtain the validity condition that determines whether the
CBC and controller satisfy conditions (2)-(4). To do this,
we first reformulate the aforementioned conditions as a
robust convex problem (RCP):

RCP:




min
η

η

s.t. max(qk(x)) ≤ 0, k ∈ {1, 2, 3},
∀x ∈ X, η ∈ R,

(5)

where

q1(x) =(Bθ,b(x)− η)1X0
, (6)

q2(x) =(−Bθ,b(x) + ε− η)1Xu
, (7)

q3(x) =Bθ,b(f(x, gθ̄,b̄(x)))− Bθ,b(x)− η, (8)

where ε is a small positive value to ensure the strict
inequality in (3). Let the optimal solution of the RCP
be η∗RCP. Then, if η∗RCP ≤ 0, then the satisfaction of
conditions (6)-(8) implies the satisfaction of conditions (2)-
(4), and the neural network-based CBC Bθ,b and controller
gθ̄,b̄ are valid for the dt-CS S. However, finding a solution
to the RCP is not possible due to function f in (8) being
unknown. To circumvent this, one can take a sampling-
based approach by appropriately selecting N data samples
from the state set X, and then reformulating the RCP
in (5) into a scenario convex problem (SCP). We obtain the
data as follows. First, cover sets are constructed for X,X0

and Xu, respectively. Cover of a set X (resp. X0, Xu) is a
set consisting of subsets of X (resp. X0, Xu) whose union
equals X (resp. X0, Xu). The cover sets are constructed
such that they consist of hyper-rectangles

Hi(x, ϵi) := {x ∈ X | −ϵi ≤ x− xi ≤ ϵi}, (9)

centered at grid points xi ∈ X, i ∈ {1, . . . , N}, with
ϵi ∈ Rn. Now, consider ϵ̂ = maxi ∥ϵi∥. Then, for any x ∈ X
(resp. X0, Xu), there exists xi, i ∈ {1, . . . , N}, such that
∥x−xi∥ ≤ ϵ̂. The data sets I,U and E corresponding to the
initial set X0, unsafe set Xu, and state set X, respectively,
are then obtained by considering the representative points
xi, for all i ∈ {1, . . . , N}, as

In this context, our work proposes a training framework
to synthesize provably correct CBCs and control policies
parameterized as neural networks for unknown discrete-
time systems without any need for post facto verification.
To do this, we first derive a so-called validity condition
by formulating a scenario convex problem (SCP) under
Lipschitz continuity assumptions on the system dynamics
as well as neural networks to verify the correctness of data-
driven CBCs and corresponding control policies obtained
from some training process. Then, we incorporate the ob-
tained validity condition within the training framework by
enforcing smaller Lipschitz bounds on the neural networks.
This ensures robust training of the networks such that
they not only satisfy the required CBC conditions over
the finitely many training samples obtained from the state
set, but also for all the unseen points over the state set.
This way, the synthesized neural network-based CBCs and
control policies are formally guaranteed to ensure that the
closed-loop trajectories of the system are safe, i.e., they
do not cross the barrier and hence, visit unsafe regions.
Finally, we demonstrate the applicability of our approach
with the help of suitable case studies.

Related Work. Barrier certificates were first introduced
by (Prajna and Jadbabaie, 2004; Prajna, 2006) in the con-
text of safety verification for nonlinear and hybrid dynam-
ical systems. It was later extended to safety verification for
stochastic (hybrid) systems by (Prajna et al., 2007; Wis-
niewski and Bujorianu, 2018). Control barrier certificates
were then proposed for synthesizing controllers for safety
specifications of control affine systems (Ames et al., 2019;
Wieland and Allgöwer, 2007) as well as stochastic control
systems (Jagtap et al., 2020; Clark, 2021). All the afore-
mentioned works require knowledge of the mathematical
model in order to construct the certificates and control
policies. More recently, data-driven approaches to synthe-
size (control) barrier certificates have gained significant
attentions. In this context, safety verification via scenario
convex program for unknown continuous-time nonlinear
systems was proposed by (Lavaei et al., 2021). Controller
synthesis under rank conditions via control barrier certifi-
cates for unknown continuous time nonlinear polynomial
systems were proposed by (Nejati et al., 2022). While
these works are applicable when the system models are
unknown, the certificates are limited by their templates
(function space), and hence, hard to find.

On the other hand, neural network-based certificate syn-
thesis was developed in the context of safety verification
for continuous-time nonlinear systems by (Zhao et al.,
2020; Peruffo et al., 2021), for hybrid systems by (Zhao
et al., 2021b), and for stochastic systems by (Mathiesen
et al., 2023). It was later extended to address the con-
troller synthesis problem by (Jin et al., 2020; Zhao et al.,
2021a; Dawson et al., 2023). Most of the aforementioned
works utilize posteriori verification techniques to formally
guarantee whether the certificates obtained are valid. For
example, the results in (Zhao et al., 2020, 2021a) encode
the CBC constraints into an SMT problem to verify the
validity of trained CBCs. The results in (Zhao et al.,
2021b) transform the CBC conditions to mixed-integer
linear programming (MILP) to verify its correctness. The
results in (Mathiesen et al., 2023) check the validity of the
trained CBCs by approximating them as linear functions

by leveraging bound propagation techniques. However,
these approaches consider verifying the trained CBCs a
posteriori which is costly. Moreover, they also require the
knowledge of the system model.

The results in (Jin et al., 2020) train neural network
barrier certificates for continuous-time systems and verify
their correctness a posteriori by utilizing Lipschitz continu-
ity of the trained certificates as well as the system dynam-
ics. In contrast, our work aims to integrate the training and
verification process to synthesize provably correct CBCs at
one go. Note also that the results in (Peruffo et al., 2021)
synthesize formally verified neural barrier certificates via
an SMT based counter-example guided synthesis (CEGIS)
approach. However, they work in the continuous-time set-
ting and require the knowledge of the system dynamics.
Moreover, they only consider the safety verification prob-
lem, i.e., they do not synthesize controllers for closed-
loop control systems that enforce safety specifications. On
the other hand, our work is capable of handling systems
with unknown dynamics under some Lipschitz continuity
assumptions. Moreover, we simultaneously synthesize con-
trol policies along with CBCs to provide provable guaran-
tees over safety specifications.

2. PRELIMINARIES

2.1 Notations

We denote the set of real, positive and non-negative num-
bers by R,R>0 and R≥0, respectively, while Rn denotes
a real space of dimension n. Notations N and N>0 are
utilized to denote the set of non-negative and positive
integers, respectively. Given N vectors xi ∈ Rni , the cor-
responding column vector of dimension

∑
i ni is denoted

by x = [x1; . . . ;xN ]. For a vector x ∈ Rn, Euclidean norm
of x is denoted by ∥x∥. For a set S, we define the indicator
function of S, denoted by 1S(x), by 1S(x) = 1 when x ∈ S
and 0 otherwise. The complement of a set S within a set S
is denoted by S\S. For a matrix A ∈ Rm×n, the inequality
A ≥ 0 is element-wise, whereas the inequality A ⪰ 0 means
that A is positive semi-definite. Moreover, AT denotes its
transpose. Finally, the set of diagonal matrices of dimen-
sion n is denoted by Dn, and Dn

≥0 is the set of diagonal
matrices with non-negative elements.

2.2 Problem Definition

Definition 1. (System). A discrete-time control system
(dt-CS) is a tuple S = (X,U, f), where X ⊆ Rn is the
state set of the system, U ⊆ Rm is the input set of the
system, and f : X × U → X describes the state evolution
of the system via the following difference equation:

x(t+ 1) = f(x(t), u(t)), ∀t ∈ N, (1)

where x(t) ∈ X and u(t) ∈ U , ∀t ∈ N, denote the state
and input of the system, respectively.

We consider a feedback controller g : X → U for the dt-CS
S, such that at any time instant t ∈ N, the control input is
given as u(t) = g(x(t)). For a given initial state x(0) = x0

and a controller g, we denote by xx0 = (x0, x(1), x(2), . . .)
the infinite state sequence generated by applying inputs
g(x(t)) at each time step t. The focus of this paper is
on unknown systems, i.e., the function f in (1) unknown.
However, we assume to have access to a black-box model of
the system, i.e., given finitely many samples {x1, . . . , xN}
from the state set X and {u1, . . . , uN} from the input set
U , we have {f(x1, u1), . . . , f(xN , uN )}. Note that in the
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I =

xi | xi ∈ X0, ∀i ∈ {1, . . . , N}


, (10)

U =

xi | xi ∈ Xu, ∀i ∈ {1, . . . , N}


, and (11)

E =

(xi, f(xi, gθ̄,b̄(xi))), ∀i ∈ {1, . . . , N}


. (12)

Utilizing these sets, we construct a scenario convex prob-
lem (SCP), defined as follows:

SCP:




min
η

η

s.t. q1(xi) ≤ 0, ∀xi ∈ I,
q2(xi) ≤ 0, ∀xi ∈ U ,
q3(xi) ≤ 0, ∀(xi, f(xi, gθ̄,b̄(xi))) ∈ E ,
η ∈ R, i ∈ {1, . . . , N},

(13)

where qk(x), k ∈ {1, 2, 3} are defined as in (6)-(8). Since
there are finitely many data samples xi, and SCP is a
linear program with respect to the decision variable η,
finding a solution to the SCP is tractable. Let the optimal
solution of the SCP be η∗. Now we want to prove that η∗

is also a feasible solution to the original RCP (5). To do
so, one must utilize a Lipschitz continuity assumption on
the system as well as conditions (6)-(8).

Assumption 5. The function f in (1) is Lipschitz contin-
uous in variables x and u over the state set X and input
set U with Lipschitz constants Lx, and Lu, respectively.
Moreover, functions qk, k ∈ {1, 2, 3}, are also Lipschitz
continuous in x with Lipschitz constants Lqk , respectively.
The maximum of constants Lqk is denoted by Lmax.

Remark 6. Note that Lipschitz continuity of conditions qk,
k ∈ {1, 2, 3}, can be guaranteed by Lipschitz continuity of
the neural network CBC Bθ,b, corresponding controller gθ̄,b̄
and map f (cf. Section 4.2).

We now state the following theorem that connects the
solution of the SCP to that of the RCP based on the data
samples collected from the system and Assumption 5.

Theorem 7. Consider a dt-CS S, and initial and unsafe
sets X0 ⊆ X and Xu ⊆ X, respectively. Moreover, let Bθ,b

and gθ̄,b̄ be the neural network-based CBC and controller
obtained for S, respectively. For the SCP (13) constructed
by utilizing N samples as given in equations (10)-(12), let
η∗ be the optimal value. Then under Assumption 5, if the
following condition holds:

Lmaxϵ̂+ η∗ ≤ 0, (14)

then Bθ,b and gθ̄,b̄ are valid for S, i.e., they satisfy
conditions (2)-(4).

4. TRAINING PROVABLY CORRECT NEURAL
NETWORK CONTROL BARRIER CERTIFICATES

In Section 3, we derived the validity condition (14) that
guarantees the correctness of neural network-based con-
trol barrier certificates and corresponding controllers. In
this section, we utilize the obtained validity condition
and propose a training framework to synthesize provably
correct CBCs and corresponding controllers parameterized
as neural networks. In particular, we train the CBC and
controller simultaneously to achieve formal guarantees on
their validity without requiring post facto verification by
constructing suitable loss functions incorporating the sat-
isfaction of conditions (6)-(8) as well as condition (14).

4.1 Neural Network Structure

Given a dt-CS S, consider Bθ,b and gθ̄,b̄ as neural networks
representing the control barrier certificate and controller,

respectively. Bθ,b, the neural network parameterized by
weights θ and biases b, consists of an input layer with
n (i.e., system dimension) neurons, and an output layer
with one neuron (due to the scalar value of the CBC).
Moreover, the number of hidden layers (depth) is arbitrary
and is denoted by lb. Similarly, for every hidden layer
1 ≤ i ≤ lb, the number of neurons in that layer is
arbitrary and is denoted by hi

b. The activation function
in all the layers except the output layer is chosen to be
ReLU function (i.e., ReLU(s) = max(0, s), s ∈ R). The
activation function of the output layer is considered to
be identity, and the resulting neural network function is
obtained by recursively applying the activation functions
at every layer, i.e.,


x0 = x ∈ Rn,

xi+1 = ReLU(θixi + bi) for i ∈ {0, . . . , lb − 1},
Bθ,b(x) = θlbxlb + blb .

(15)

where ReLU(·) is applied element-wise. Notations for the
controller gθ̄,b̄ follow similarly. In this case, the input layer
and output layer are of dimension n and m respectively,
and the depth and width of the neural network are lg and
hi
g, 1 ≤ i ≤ lg, respectively. While the activation function

of the hidden layers is ReLU function and is formulated
similar to (15), the activation function of the output layer
is considered to be HardTanh function to accommodate
the boundedness of the input set U (Zhao et al., 2021a).
In particular, an inner-approximation of U is obtained to
construct the hyper-rectangle Û = {u ∈ U | umin ≤ u ≤
umax}. Then, HardTanh function is applied to the output
layer as

gθ̄,b̄(x) =



umin, θ̄lgxlg + b̄lg ≤ umin,

umax, θ̄lgxlg + b̄lg ≥ umax,

θ̄lgxlg + b̄lg , otherwise.

(16)

4.2 Training with Formal Guarantees
In this section, we discuss the procedure to train the
CBC Bθ,b and corresponding controller gθ̄,b̄ for the dt-CS
S while ensuring the satisfaction of the validity condi-
tion (14) such that the trained CBC and controller satisfy
conditions (2)-(4) over the entire state set X. To do this,
one requires Lipschitz continuity of Bθ,b and gθ̄,b̄ due to
Assumption 5. Note that Bθ,b and gθ̄,b̄ already satisfy this
assumption since they consist of ReLU activation layers.
First, observe that Bθ,b is Lipschitz continuous with a
bound Lb if:

∥Bθ,b(x)− Bθ,b(y)∥ ≤ Lb∥x− y∥, ∀x, y ∈ Rn.

The definition for the controller gθ̄,b̄ follows accordingly
and the Lipschitz bound in this case is denoted by Lg.
Then, the Lipschitz constant of Bθ,b is bounded by Lb if
the following matrix inequality holds (Pauli et al., 2022a):


L2
bIn −θ0

T
Λ1 0 · · · 0

−Λ1θ
0 2Λ1

. . .
. . .

...

0
. . .

. . . −θlb−1TΛlb 0
...

. . . −Λlbθ
lb−1 2Λlb −WT

l
0 · · · 0 −Wl Ihb

lb




  
:=M(θ,Λ)

⪰ 0, (17)

where Λ = (Λ1, . . . ,Λlb), Λi ∈ Dhi
b

≥0, i ∈ {1, . . . , lb}. We

refer the readers to (Fazlyab et al., 2019; Pauli et al.,
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2022b) for more details on obtaining inequality (17).
Lipschitz bound of Lg for gθ̄,b̄(x) is ensured similarly by

checking for equivalent inequality denoted byM(θ̄, Λ̄) ⪰ 0.

We now describe the construction of suitable loss functions
for the training of Bθ,b and gθ̄,b̄ such that its minimization
leads to the satisfaction of conditions required by the
SCP according to (13) over the training data sets (10)-
(12), while also allowing the satisfaction of the validity
condition (14). Consider the following sub-loss functions
characterizing conditions (6)-(8):

L0(κ, η) =
∑
x∈I

ReLU(Bθ,b(x)− η), (18)

L1(κ, η) =
∑
x∈U

ReLU(−Bθ,b(x) + ε− η), (19)

L2(κ, η) =
∑

(x,f(x,gθ̄,b̄(x)))∈E

ReLU(Bθ,b(f(x), gθ̄,b̄(x))− Bθ,b(x)− η), (20)

where κ = [θ, b, θ̄, b̄] and η are trainable parameters. Now,
consider the loss function as a weighted sum of sub-loss
functions L0, L1 and L2, respectively, as

L(x) = c0L0(κ, η) + c1L1(κ, η) + c2L2(κ, η), (21)

where c0, c1 and c2 are positive coefficients denoting the
weights of the sub-loss functions. Furthermore, consider
two additional loss functions characterizing the satisfac-
tion of condition (14) as

LM (κ,Λ, Λ̄) =− cl1log det(M(θ,Λ))−cl2log det(M(θ̄, Λ̄)),
(22)

Lv(η) = ReLU(Lmaxϵ̂+ η), (23)

where Λ and Λ̄ are trainable parameters and Lb and Lg

that appear in M(θ,Λ) and M(θ̄, Λ̄), respectively, are used
to compute Lmax required in (23) (see Assumption 5).
These parameters, along with ϵ̂, are hyper-parameters that
are chosen a priori. Moreover, cl1 and cl2 are positive
weight coefficients for the sub-loss functions in (22).

We now present the following theorem that provides formal
guarantees of safety for the dt-CS S by utilizing the
trained neural networks corresponding to control barrier
certificate Bθ,b and controller gθ̄,b̄, respectively.

Theorem 8. Consider a dt-CS S with X0, Xu ⊆ X as
initial and unsafe sets, respectively. Suppose Bθ,b and gθ̄,b̄
are trained neural networks representing the CBC and the
corresponding feedback controller, respectively, such that
the loss functions L,Lv = 0, and LM ≤ 0 over the training
data sets I,U and E as obtained in (10)-(12). Then, S is
guaranteed to be safe under controller gθ̄,b̄, i.e., the state
sequences xx0 starting from x0 ∈ X0 under gθ̄,b̄ do not
reach the unsafe states in Xu.

The training process can be explained as follows. We first
fix all the hyper-parameters required for the training,
including ϵ̂,Lb,Lc, c = [c0, cu, cb, cl1 , cl2 ], and the maxi-
mum number of epochs considered nep. Note that at every
epoch, we perform the training over several batches de-
noted by nbat, which is also fixed a priori. This means that
the training data sets I,U and E are randomly shuffled into
several batches, and the loss is calculated for each batch
at a time. Then the trainable parameters κ,Λ, Λ̄ and η
maybe updated by utilizing Adam or stochastic gradient
descent (SGD) optimization algorithm with a specified
learning rate lr (Ruder, 2016). Note that different learning

rates may be chosen for different training parameters.
When the cumulative loss (i.e. epoch loss) across all the
batches is minimized according to Theorem 8, the training
process concludes with success and we obtain the CBC
Bθ,b and corresponding controller gθ̄,b̄. If the algorithm
does not converge, one cannot judge the safety of dt-CS S
with the specified hyper-parameters and considered initial
parameters of κ, η,Λ and Λ̄. It must be noted that the
initial feasibility of inequality (17) is essential for training
convergence due to the way that the loss LM is formulated
in (22). This can be ensured by choosing sufficiently small
initial weights and biases for Bθ,b and gθ̄,b̄ (Pauli et al.,
2022a). In practice, one may also utilize the pre-training
and fine-tuning approach by (Zhao et al., 2021a) for better
convergence of the algorithm.

Remark 9. In some cases, especially when the training
data set contains an equilibrium point of the closed-loop
system, it might be impossible for one to achieve the
satisfaction of condition (8) with η < 0, and as a result,
the training algorithm may never converge. In order to
circumvent this issue, without any loss of generality one
can remove a small neighborhood of the equilibrium point
from the training data set.

5. CASE STUDY
For our case study, we consider the discrete-time dynamics
of an inverted pendulum given by

S :

[
x1(k + 1)
x2(k + 1)

]
=

[
x1(k) + τ(x2(k))

x2(k) + τ(
g

l
(sin(x1(k)) +

1

ml2
u)

]
,

where x1, x2 are the angular position and velocity of the
pendulum, respectively, and the constantsm = 1 and l = 1
are the mass and length of the pendulum, respectively.
Moreover, g = 9.8 is the gravitational acceleration, and
τ = 0.01 is the sampling time. The domain is given as
X = [−π

4 ,
π
4 ]

2, the initial set is X0 = [− π
15 ,

π
15 ]

2, the safe

set is Xs = [−π
6 ,

π
6 ]

2, and the unsafe set Xu is derived by
taking the complement of the safe set as Xu = X \ Xs.
Moreover, the input is considered to be bounded within
set U = [−10, 10]. We assume that the model is unknown.
However, we assume that Lipschitz constants of S are
known to us as Lx = 1.1 and Lu = 0.01. Note that if
Lf and Lu are not available, one can estimate their values
by generating data from S and utilizing reverse Weibull
distribution (Wood and Zhang, 1996).

The goal is to synthesize a feedback controller gθ̄,b̄ as
a neural network in order to keep the pendulum within
the safe regions by utilizing the control barrier certificate
Bθ,b, also parameterized as a neural network. To do this,
we first fix the training hyper-parameters ϵ̂ = 0.00016,
Lb = 2, and Lg = 22. Then, we compute Lmax = max(Lb,
Lb(Lx + LgLu + 1)) = 4.2. Then, we fix the structure of
Bθ,b as lb = 1 and hb = 20, whereas that of gθ̄,b̄ is fixed
as lg = 1 and hg = 5. By considering the training data
obtained according to (10)-(12), we perform the training
to simultaneously minimize the loss functions L,LM , and
Lv. The training algorithm then converges to obtain the
CBC Bθ,b and gθ̄,b̄ along with η = −0.0007637. By utilizing
Theorem 8, we can then confirm that the obtained CBC
Bθ,b and controller gθ̄,b̄ are valid and safety is ensured.
The obtained Bθ,b and its level set Bθ,b = 0 is illustrated
in Figures 1 and 2, respectively. The successful runs of the
algorithm have an average convergence time of 15 minutes,

I =

xi | xi ∈ X0, ∀i ∈ {1, . . . , N}


, (10)

U =

xi | xi ∈ Xu, ∀i ∈ {1, . . . , N}


, and (11)

E =

(xi, f(xi, gθ̄,b̄(xi))), ∀i ∈ {1, . . . , N}


. (12)

Utilizing these sets, we construct a scenario convex prob-
lem (SCP), defined as follows:

SCP:




min
η

η

s.t. q1(xi) ≤ 0, ∀xi ∈ I,
q2(xi) ≤ 0, ∀xi ∈ U ,
q3(xi) ≤ 0, ∀(xi, f(xi, gθ̄,b̄(xi))) ∈ E ,
η ∈ R, i ∈ {1, . . . , N},

(13)

where qk(x), k ∈ {1, 2, 3} are defined as in (6)-(8). Since
there are finitely many data samples xi, and SCP is a
linear program with respect to the decision variable η,
finding a solution to the SCP is tractable. Let the optimal
solution of the SCP be η∗. Now we want to prove that η∗

is also a feasible solution to the original RCP (5). To do
so, one must utilize a Lipschitz continuity assumption on
the system as well as conditions (6)-(8).

Assumption 5. The function f in (1) is Lipschitz contin-
uous in variables x and u over the state set X and input
set U with Lipschitz constants Lx, and Lu, respectively.
Moreover, functions qk, k ∈ {1, 2, 3}, are also Lipschitz
continuous in x with Lipschitz constants Lqk , respectively.
The maximum of constants Lqk is denoted by Lmax.

Remark 6. Note that Lipschitz continuity of conditions qk,
k ∈ {1, 2, 3}, can be guaranteed by Lipschitz continuity of
the neural network CBC Bθ,b, corresponding controller gθ̄,b̄
and map f (cf. Section 4.2).

We now state the following theorem that connects the
solution of the SCP to that of the RCP based on the data
samples collected from the system and Assumption 5.

Theorem 7. Consider a dt-CS S, and initial and unsafe
sets X0 ⊆ X and Xu ⊆ X, respectively. Moreover, let Bθ,b

and gθ̄,b̄ be the neural network-based CBC and controller
obtained for S, respectively. For the SCP (13) constructed
by utilizing N samples as given in equations (10)-(12), let
η∗ be the optimal value. Then under Assumption 5, if the
following condition holds:

Lmaxϵ̂+ η∗ ≤ 0, (14)

then Bθ,b and gθ̄,b̄ are valid for S, i.e., they satisfy
conditions (2)-(4).

4. TRAINING PROVABLY CORRECT NEURAL
NETWORK CONTROL BARRIER CERTIFICATES

In Section 3, we derived the validity condition (14) that
guarantees the correctness of neural network-based con-
trol barrier certificates and corresponding controllers. In
this section, we utilize the obtained validity condition
and propose a training framework to synthesize provably
correct CBCs and corresponding controllers parameterized
as neural networks. In particular, we train the CBC and
controller simultaneously to achieve formal guarantees on
their validity without requiring post facto verification by
constructing suitable loss functions incorporating the sat-
isfaction of conditions (6)-(8) as well as condition (14).

4.1 Neural Network Structure

Given a dt-CS S, consider Bθ,b and gθ̄,b̄ as neural networks
representing the control barrier certificate and controller,

respectively. Bθ,b, the neural network parameterized by
weights θ and biases b, consists of an input layer with
n (i.e., system dimension) neurons, and an output layer
with one neuron (due to the scalar value of the CBC).
Moreover, the number of hidden layers (depth) is arbitrary
and is denoted by lb. Similarly, for every hidden layer
1 ≤ i ≤ lb, the number of neurons in that layer is
arbitrary and is denoted by hi

b. The activation function
in all the layers except the output layer is chosen to be
ReLU function (i.e., ReLU(s) = max(0, s), s ∈ R). The
activation function of the output layer is considered to
be identity, and the resulting neural network function is
obtained by recursively applying the activation functions
at every layer, i.e.,


x0 = x ∈ Rn,

xi+1 = ReLU(θixi + bi) for i ∈ {0, . . . , lb − 1},
Bθ,b(x) = θlbxlb + blb .

(15)

where ReLU(·) is applied element-wise. Notations for the
controller gθ̄,b̄ follow similarly. In this case, the input layer
and output layer are of dimension n and m respectively,
and the depth and width of the neural network are lg and
hi
g, 1 ≤ i ≤ lg, respectively. While the activation function

of the hidden layers is ReLU function and is formulated
similar to (15), the activation function of the output layer
is considered to be HardTanh function to accommodate
the boundedness of the input set U (Zhao et al., 2021a).
In particular, an inner-approximation of U is obtained to
construct the hyper-rectangle Û = {u ∈ U | umin ≤ u ≤
umax}. Then, HardTanh function is applied to the output
layer as

gθ̄,b̄(x) =



umin, θ̄lgxlg + b̄lg ≤ umin,

umax, θ̄lgxlg + b̄lg ≥ umax,

θ̄lgxlg + b̄lg , otherwise.

(16)

4.2 Training with Formal Guarantees
In this section, we discuss the procedure to train the
CBC Bθ,b and corresponding controller gθ̄,b̄ for the dt-CS
S while ensuring the satisfaction of the validity condi-
tion (14) such that the trained CBC and controller satisfy
conditions (2)-(4) over the entire state set X. To do this,
one requires Lipschitz continuity of Bθ,b and gθ̄,b̄ due to
Assumption 5. Note that Bθ,b and gθ̄,b̄ already satisfy this
assumption since they consist of ReLU activation layers.
First, observe that Bθ,b is Lipschitz continuous with a
bound Lb if:

∥Bθ,b(x)− Bθ,b(y)∥ ≤ Lb∥x− y∥, ∀x, y ∈ Rn.

The definition for the controller gθ̄,b̄ follows accordingly
and the Lipschitz bound in this case is denoted by Lg.
Then, the Lipschitz constant of Bθ,b is bounded by Lb if
the following matrix inequality holds (Pauli et al., 2022a):


L2
bIn −θ0

T
Λ1 0 · · · 0

−Λ1θ
0 2Λ1

. . .
. . .

...

0
. . .

. . . −θlb−1TΛlb 0
...

. . . −Λlbθ
lb−1 2Λlb −WT

l
0 · · · 0 −Wl Ihb

lb




  
:=M(θ,Λ)

⪰ 0, (17)

where Λ = (Λ1, . . . ,Λlb), Λi ∈ Dhi
b

≥0, i ∈ {1, . . . , lb}. We

refer the readers to (Fazlyab et al., 2019; Pauli et al.,
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Fig. 1. Plot of Bθ,b over X.

Fig. 2. The level set Bθ,b = 0 dividing the unsafe regions
Xu (in red) from the safe ones.

and the training data generation takes an additional time
of 7 seconds. The computations were performed using
PyTorch in Python 3.9 by modifying the nncontroller
tool developed by (Zhao et al., 2020) on a machine with
Linux Ubuntu (Intel i7-8665U CPU, with 32 GB of RAM).
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