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Abstract:  

 

The use of random forests is increasingly common in genetic association studies. The variable 

importance measure (VIM) that is automatically calculated as a by-product of the algorithm is 

often used to rank polymorphisms with respect to their association with the investigated 

phenotype. Here we investigate a characteristic of this methodology that may be considered as 

an important pitfall, namely that common variants are systematically favored by the widely 

used Gini VIM. As a consequence, researchers may overlook rare variants that contribute to 

the missing heritability. The goal of the present paper is three-fold: 1) to assess this effect 

quantitatively using simulation studies for different types of random forests (classical random 

forests and conditional inference forests, that employ unbiased variable selection criteria) as 

well as for different importance measures (Gini and permutation-based), 2) to explore the 

trees and to compare the behaviour of random forests and the standard logistic regression  

model in order to understand the statistical mechanisms behind the preference for common 

variants, and 3) to summarize our results and previously investigated properties of random 

forest VIMs in the context of association studies and to make practical recommendations 

regarding the methodological choice. 

The codes implementing our study are available from the companion website: 

http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/020_professuren/boulesteix/ginibias/ 
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Introduction 

Random forests, originally suggested by Breiman (2001) ten years ago, have evolved to a 

standard statistical analysis tool in genetics. They are increasingly used in many genetic 

studies to rank genetic variants with respect to their association with a disease or trait of 

interest via the so-called variable importance measures (VIMs), to identify gene-gene 

interactions, or to investigate the predictive power of genetic data taking into account possible 

complex non-linear patterns (cf., e.g., Briggs et al 2010, Bureau et al 2005, Cleynen et al 

2010, Heidema et al 2006, Liu et al 2011, Lunetta et al 2004, Roshan et al 2011, Weidinger et 

al 2005). Methodological developments of random forests and new implementations with 

focus on genetic applications have also been recently addressed in genetic analysis workshops 

(Schwarz et al 2007, Yang and Gu 2009) and published in genetics or bioinformatics journals  

including the European Journal of Human Genetics (de Lobel et al, 2010 ; Strobl et al 2008 ; 

Schwartz et al 2010).   

It is now widely known that the commonly used random forest VIMs are biased in favour of 

the categorical variables with more categories (Strobl et al, 2007). This is because variables 

with many categories are more likely to yield a good split “by chance”, even in the absence of 

association with the response. They are thus selected as splitting variables more often and/or 

earlier in the trees, which leads to higher VIMs than those of variables with fewer categories. 

This bias affects the variable selection in classical random forest algorithms as well as the so-

called “Gini VIM” in the case of non-informative predictors. Hothorn et al (2006) have 

suggested a random forest algorithm based on unbiased variable selection criteria. When these 

criteria – together with subsampling instead of bootstrap sampling – is used for computing a 

permutation VIM, this measure is unbiased as discussed in detail by Strobl et al (2007).  

In the context of genetic association studies, it has been argued that this kind of bias is 

irrelevant, since single nucleotide polymorphisms (SNPs) have, by definition, three categories 

(for example, “AA”, “AC” and “CC”). Based on resampling analyses, Calle and Urrea (2010) 

point out that the Gini VIM shows a better stability than the permutation VIM and 

consequently recommend its use. In a subsequent study on the stability of VIMs, Nicodemus 

(2011) suggests that the higher stability of Gini VIM compared to permutation VIM is 

attributable to a bias in favor of SNPs with large Minor Allele Frequency (MAF). In 

Nicodemus' resampling analyses, common variants receive high ranks consistently over the 

subsamples, while rare variants receive consistently low ranks, which induces the apparent 

stability.  



The aim of the present paper is to provide further results and a deeper understanding of the 

statistical mechanisms responsible for the observations of Calle and Urrea (2010) and 

Nicodemus (2011). A series of simulations is conducted in order to quantitatively compare the 

behavior of different types of random forests and different VIMs for SNPs with different 

MAFs independently of stability issues, and explore the statistical mechanisms behind their 

behavior. We then summarize our results and previously investigated properties of random 

forest VIMs in the context of association studies and make recommendations regarding the 

methodological approach to be used. 

 

Methods 

Random forests 

Random forests are a classification and regression method based on the aggregation of a large 

number of decision trees (Breiman 2001). In the most commonly used type of random forests, 

split selection is performed based on the so-called decrease of Gini impurity (DGI). This 

version of random forests is implemented in the package ‘randomForest’ (Breiman, Cutler, 

Liaw, & Wiener, 2010; Liaw & Wiener, 2002) available in the R system for statistical 

computing (R Development Core Team 2010), which we use in the simulations with all 

default parameters. In particular, the number of trees is set to ntree=500 and the number of 

candidate predictors considered at each split is set to the default value mtry=p
1/2

, where p is 

the number of predictors. In the rest of this paper, this type of random forests will simply be 

denoted as “randomForest”. 

Although this is by far the most widely applied version, the randomForest method has an 

important pitfall. In the split selection process, predictors may be favoured or disfavoured 

depending on their scale of measurement or, in the case of categorical predictors, on their 

number of categories. For example, it has been demonstrated that predictors with many 

categories are selected more often than predictors with few categories independently of their 

association with the response. See Strobl et al (2007) for more details. To address this issue, 

Hothorn et al (2006) developed an alternative class of random forests which are based on 

conditional hypothesis testing. These random forests use an unbiased splitting criterion and do 

not share the above pitfall. We also consider this type of random forest in this study taking 

advantage of the function ‘cforest’ from the R package ‘party’ (Hothorn et al, 2010). The 

number of trees is set to ntree=500 and the number of candidate predictors at each split is set 

to mtry= p
1/2

 again. Moreover, the p-value threshold acting as a stopping criterion is set to 



mincriterion=0. All other parameters are set to their default values. In the rest of this paper, 

this type of random forests will be denoted as “cforest”. 

For both randomForest and cforest, these settings yield large trees with small terminal nodes. 

Additionally, all analyses (for both randomForest and cforest) are also performed with one-

layer trees – also called “stumps”, i.e. small trees with only two terminal nodes. 

 

Variable importance measures 

For the randomForest method, we consider two types of variable importance measures: the 

mean decrease of Gini impurity (denoted as “Gini VIM”), and the unscaled permutation-based 

importance measure (“permutation VIM”) both implemented in the function 'importance' from 

the ‘randomForest’ package. See Strobl et al., 2007, for details on variable importance 

measures. For the cforest method, we consider the permutation VIM implemented in the 

function 'varimp' from the package ‘party’. 

 

Simulation design: data generation 

The simulated datasets include a binary phenotype Y and 200 genetically unlinked SNPs in 

Hardy-Weinberg Equilibrium: 50 SNPs with MAF=0.05 (SNPs 1 to 50), 50 SNPs with 

MAF=0.1 (SNPs 51 to 100), 50 SNPs with MAF=0.25 (SNPs 101 to 150), and 50 SNPs with 

MAF=0.4 (SNPs 151 to 200). For each simulation setting, 100 data sets are generated and 

subsequently analyzed. Y is generated from the additive model 
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, where SNPs are coded as 0,1,2 (2 represents the minor 

homozygous genotype) and ( )200β,,β=β ...1  stand for the regression coefficients. In the null 

case scenario, we examine non-informative predictors, i.e. 0...1 =β==β 200 , and 0β  is also 

set to 0. In the alternative scenario, the coefficients 15110151 β,β,β,β1  (corresponding to four 

SNPs with MAF = 0.05, 0.1, 0.25, 0.4 respectively) are fixed to log(3), yielding a large 

genotype odds ratio (OR) of 3, and the coefficients 15210252 β,β,β,β2  (again corresponding to 

four SNPs with MAF = 0.05, 0.1, 0.25, 0.4 respectively) are set to log(1.5), corresponding to 

a moderate OR of 1.5. In this setting 0β  is fixed to -3 so that the two groups Y=0 and Y=1 

are of approximately equal size. The remaining coefficients 

2001531501031005350 β,,β,β,,β,β,,β,β,,β ............3 are equal to zero. The considered total sample 

sizes are n=200 (small study), n=500, n=1000 (studies of moderate size), and n=10000 (large 

study). 



Results 

Bias in favour of large MAFs in the case of non-informative SNPs 

In the null case scenario, i.e. under the null-hypothesis that none of the SNPs in a simulated 

data set is informative ( 0...1 =β==β 200 ) the VIMs should be equally low for all SNPs. Any 

pattern that deviates from this indicates a systematic bias. 

In this null case setting, Part (A) of Table 1 shows the median (with 1
st
 and 3

rd
 quartiles in 

parentheses) of the VIM of SNPs with MAF=0.05, 0.1, 0.25, 0.4 for the Gini VIM in 

randomForest (left), the permutation VIM in randomForest (middle), and the permutation 

VIM in cforest (right) for the sample size n=500. In each setting, the results are aggregated 

from 100 simulated data sets. It is clear from Table 1 that the Gini VIM is strongly biased in 

favor of SNPs with large MAF, although all SNPs are non-informative. In contrast, the 

permutation VIM is unbiased in the case of non-informative predictors (the interquartile 

ranges displayed in Table 1 cover the value zero)  and the obtained VIM pattern does not 

depend substantially on the random forest type (randomForest or cforest). An interesting 

feature is that the permutation VIM has no bias but a higher variance for common genetic 

variants (large MAFs). This will be discussed later. As shown in Figure 1 representing 

boxplots of the Gini VIM with other sample sizes (n=200, n=1000 and n=10000), the bias 

does not disappear for large studies (n=10000). Moreover, the variability of the VIM 

decreases with an increasing sample size so that the differences in VIM between the MAFs 

appear noticeably more pronounced in the rightmost plot for n=10000 in Figure 1.  

These results clearly demonstrate that the Gini VIM is biased towards SNPs with large MAFs. 

This can have a non-negligible impact on the results of genetic association studies. The bias is 

substantial and cannot be explained by the previously observed bias (Strobl et al., 2007) in 

favor of variables with many categories since, at least for n=10000, all SNPs have three 

categories. So what is the mechanism behind this bias? We will try to answer this question in 

the next sections. 

 

Is the Gini criterion a biased criterion? 

In the intent to identify the source of the bias outlined in the above section, the perhaps most 

natural idea is that the applied splitting criteria employed by the random forests algorithms 

might be biased even if all SNPs have the same number of categories but different MAFs. 

From a theoretical perspective, we know from the literature (Grabmeier and Lambe, 2007) 

that, in the case of a binary response Y, the Gini criterion yields the same trees as a standard 

chi-square criterion. This equivalence can be checked by straightforward calculations (see 



additional file 1). This is an important result with respect to the bias investigated here. Indeed, 

the chi-square statistic asymptotically follows a chi-square distribution under the null 

hypothesis of no association between Y and the predictor - independently of the category 

frequencies. Thus, the Gini criterion is not expected to favor predictors with balanced 

categories in asymptotical settings. Asymptotic results may, however, not be valid under the 

investigated scenario, especially for small MAFs and in the deep layers of trees where nodes 

are typically very small. Thus, we will now investigate the effects in the first splits separately 

from those in the lower layers of the trees.  

 

What happens in the first split? 

Let us first consider the simple test situation that occurs in the first split of the trees by 

replacing standard trees by one-layer trees (stumps) in our random forests. Part (B) of Table 1 

has the same structure as Part (A), the only difference being that standard trees are replaced 

by stumps. From Table 1 it becomes clear that the absolute size of the VIM and the degree of 

the bias of the Gini VIM is diminished for the stumps, but the pattern in favor of large MAF is 

still present for n=500 (the interquartile ranges do not cover zero). Similarly, Figure 2 

represents the same boxplots as Figure 1 based on samples of sizes n=200 (left), n=1000 

(middle) and n=10000 (right), the only difference being that standard trees are replaced by 

stumps. It can be seen from Figure 2 that the Gini VIM in stumps is still noticeably biased for 

n=200 and n=1000. However, in contrast to the large trees considered previously, the Gini 

VIM is almost unbiased for n=10000 in stumps.  

In order to be able to distinguish between potential sources of bias attributed to the VIM and 

those attributed to the splitting criterion employed in the tree construction process, we also 

check whether SNPs with large MAF had a greater chance to get selected in the first split of 

the trees, indicating a selection effect rather than (or complementing) a VIM effect. The 

frequency of selection over the 500 trees of SNPs with MAF=0.05,0.1,0.25 and 0.4, 

respectively, are represented as boxplots in Additional Figure 1 (included in the additional 

file) for n=500 and n=10000, where each box represents the frequencies of selection obtained 

for 100 simulated data sets. Variable selection is strongly biased in the first split for n=500 in 

randomForest. In contrast, variable selection in cforest, which is based on p-values of 

conditional inference tests, is only slightly biased. Thus, conditional inference tests used in 

cforest seem to automatically correct for the bias in favour of large MAFs, at least partially. 

Note that the slight remaining bias can be removed by using permutation p-values of 

conditional inference tests in place of the default criterion based on asymptotic p-values. The 



permutation-based procedure, however, is extremely time consuming and cannot be applied to 

such large sets. For both randomForest and cforest, the bias is neglegible for n=10000.  

Up to here our results show that variable selection in the first split is biased in favour of large 

MAFs when n=500 for randomForest, but almost unbiased when n=10000. This is in 

agreement with the fact that the Gini VIM calculated from stumps, which is derived directly 

from the Gini criterion in the first split, is slightly biased when n=500, but almost unbiased 

when n=10000. We conclude that n=500 is too small for asymptotic results to hold. 

Otherwise, the bias in variable selection and Gini VIM in stumps would be similar for n=500 

and n=10000. For MAF=0.05, the minor homozygous genotype has probability 0.0025, thus 

yielding an expected frequency of 1.25 in studies of size n=500. It is not surprising that 

asymptotic properties do not hold in this context. The bias found in the selection frequencies 

for randomForest employing the Gini split selection criterion are in accordance with the 

results from the Gini VIM, whereas in the randomForest and to a less extent in the cforest 

permutation VIM the selection bias yields an increased variance for large MAF (similar 

effects were found by Strobl et al., 2007 in the case of variables with different numbers of 

categories).  

 

What happens at the bottom of the tree? 

In order to better understand the mechanisms of the bias in subsequent splittings, we further 

look at the frequency of selection of SNPs with different MAF in the splits of each individual 

randomForest tree. Figure 3 shows the relative frequency of selection of the SNPs with 

MAF=0.05 (black), MAF=0.1 (red), MAF=0.25 (green), and MAF=0.4 (blue) against the 

index of the layer (1 standing for the root node, 2 for its two child nodes, etc) for a simulated 

data set with n=10000 and non-informative SNPs with randomForest. The frequency of 

selection for a given MAF is computed as the number of selected SNPs with this MAF in the 

considered layer divided by the total number of selected SNPs in this layer. We display the 

results only up to layer 35 because after this there were so few trees left that the results depict 

merely random fluctuation. Roughly, three distinct regions can be observed in Figure 3. Near 

the root node (approximatively up to layer 3 at the left side of Figure 3; this area is termed 

region 1 in the following), the frequency of selection does not seem to depend on the MAF. 

All four MAFs have frequencies of selection of about 25%. This is in agreement with the fact 

that variable selection is unbiased in the first split for n=10000, as displayed in Additional 

Figure 1. For intermediate layers (approximatively between layers 4 and 25 in the middle of 

Figure 3; this area is termed region 2 in the following), the curves of the four MAFs are 



approximately parallel, and the frequency of selection substantially increases with the MAF. 

The difference between MAFs tends to slightly increase with the layer index. For deep layers 

(approximatively from layer 25 at the right side of Figure 3; this area is termed region 3 in the 

following), the bias increases noticeably. In the deepest layers, SNPs with MAF=0.05 or 0.1 

are almost never selected. In the rest of this section, we suggest explanations for this 

particular pattern with three distinct regions. 

A straightforward explanation for the difference between regions 1 and 2 is that the parent 

nodes to be split get smaller and smaller as partitioning goes on. Hence, asymptotic 

unbiasedness of the split selection criteria does not hold anymore for deep layers, even if the 

sample size available at the root node was large (n=10000). This indicates that asymptotics 

approximately hold in region 1 but not in region 2. 

A potential explanation for the sudden decrease of the frequency of selection of small MAFs 

in region 3 is that, as splitting goes on, more and more SNPs are not 3-categorical anymore. 

They may become 2-categorical and ultimately 1-categorical. A 2-categorical predictor has 

lower chance to be selected than a 3-categorical predictor (Strobl et al 2007) or, perhaps more 

importantly, a 1-categorical predictor has no chance at all to be selected. Since carriers of rare 

variants are rare for SNPs with small MAFs, these SNPs become 2-categorical and 1-

categorical earlier during the construction of the tree than SNPs with larger MAF, as depicted 

in Additional Figure 2 that represents the frequency at which variables with MAF=0.05, 0.1, 

0.25 and 0.4 are 1-,2-, and 3-categorical against the index of the layer (n=10000, non-

informative SNPs). It shows that, indeed, SNPs with small MAF loose categories earlier in 

the tree building process and will thus be affected by classical variable selection bias as 

described by (Strobl et al 2007) or, perhaps even more importantly, not be selected at all if 

they have only one category. This extra source of bias in deeper layers adds to the bias we 

have previously detected in the stumps, thus certainly explaining the acceleration of the 

decrease of the frequency of selection for small MAFs in region 3 at the right of Figure 3.  

 

Consequences on Gini VIM and permutation VIM 

Overall, SNPs with small MAF have a much lower chance to be selected, independently of 

their prediction relevance (up to now all SNPs were non-informative). Since the Gini VIM 

directly depends on the selection criterion, Gini VIM is strongly biased. Our results also show 

that this effect is aggravated with the depth of the trees. In contrast, permutation VIM is 

essentially unbiased. The reason for this is most likely that the permutation VIM is based on 

the decrease of accuracy resulting from permutation for out-of-bag observations, i.e. for 



independent data that was not used to construct the tree. Therefore, with the permutation 

importance an increased selection probability is not sufficient for producing a higher VIM. 

The higher frequency of selection of SNPs with large MAF, however, results in a higher 

variance of the permutation VIM. The reason for this is that SNPs that are selected in a tree 

lead to a non-zero decrease of accuracy for this tree. Thus, SNPs that are often selected have 

non-zero VIM for many trees. Moreover, SNPs that are selected earlier in the trees affect 

more observations. Both results in a more variable total VIM.  

 

The case of informative SNPs 

In the case of informative SNPs (Part (C) of Table 1, for n=500), SNPs with larger MAFs 

have in average substantially larger importance both with Gini VIM and permutation VIM, 

independently of the random forest type (randomForest or cforest). All patterns look similar 

as far as informative SNPs are concerned. Similar pictures may also be obtained with different 

sample sizes (data not shown).  

Does that mean that we should speak of a bias in the case of informative SNPs, too, as argued 

by Tang et al (2009)? There are two contradicting answers to this question. On one hand, we 

have seen in the case of non-informative predictors that variable selection is biased in favor of 

SNPs with large MAFs, especially in the deep layers of the trees. This bias in variable 

selection produces what can be considered as a bias in Gini VIM also in the case of 

informative predictors. Moreover, we find that for informative predictors SNPs with large 

MAFs are preferred over SNPs with smaller MAFs even if they have the same odds ratio. 

This effect is investigated below – and could also be considered as a bias.  

On the other hand, in the case of informative predictors a bias is hard to define. In the null 

case it was clear that all uninformative SNPs should receive the same VIM – and any 

deviation from this pattern could clearly be considered as a bias. With informative predictors, 

on the other hand, it is not clear how the VIM should behave. This is mostly because we are 

lacking a common definition of what exactly a VIM is supposed to measure, especially in 

cases where variables are no longer independent, like in Strobl et al. (2008), or here, where 

one might argue that SNPs with smaller MAFs can carry less information than those with 

larger MAFs. 

Even if we strictly speaking cannot consider the favoring of large MAFs as a “bias” because 

we are no longer in the null case scenario where the term “bias” is clearly defined, it is 

important to understand why this strong effect is observed. If a variable with small MAF is 

permuted, the number of observations that have a different value before and after permutation 



is limited per se because most observations are – and remain – in the biggest category. Thus, 

only few observations are susceptible to affect accuracy. The effects (in terms of regression 

coefficients in a generalized linear model) being equal, permutation of a SNP with large MAF 

thus leads to a larger average decrease of accuracy than permutation of a SNP with small 

MAF. This result is not only observed with trees as base learners, but also with simple logistic 

regression models. To illustrate this, we replace the single trees of the random forests by 

simple logistic regression models, and compute the permutation VIM exactly in the same 

way. The result is a pattern similar to the permutation VIM in randomForest (data not shown). 

Thus, the construction principle of the permutation VIM favors SNPs with large MAF. 

Whether this effect should be considered as a bias or not depends on the point of view – yet it 

is a characteristic many users of random forests may not be aware of. 

 

Effect of the bias on SNP ranking 

As outlined above, the notion of bias is not well-defined in the case of informative predictors, 

because there is no natural and universal ordering of the predictors. However, any sensible 

importance measure is expected to favor informative predictors (SNPs 

1,2,51,52,101,102,151,152 with a beta coefficient greater than zero in our simulation design) 

over non-informative predictors  (SNPs 3,…,50,53,…,100,103,…,150,153,…,200 with a beta 

coefficient of zero in our simulation design). Clearly, the Gini VIM does not fulfil this 

requirement, since it gives higher importance to non-informative SNPs with MAF=0.4 than to 

informative SNPs with small MAF=0.05 or 0.1 but OR=1.5 (where a multivariate OR of 1.5 

is already quite high for a typical genetic association study) or even OR=3. Figure 4 illustrates 

the ability of the three different variable importances to detect informative SNPs (i.e. SNPs 

with OR≠0) within the 200 candidate SNPs using ROC methodology for sample size n=500 

(top) and sample size n=10000 (bottom). The plotted curves aggregate the results obtained 

from the 100 simulated data sets. While in the first column all candidate SNPs are considered, 

the plots in the second column focus on SNPs with very large MAF =0.4 and very low 

MAF=0.05 only. From these ROC curves, it can be clearly seen that the permutation VIMs 

have noticeably better power to detect informative SNPs than the Gini VIM. This is especially 

striking in very large samples (n=10000, bottom-right part of the figure), where the Gini VIM 

ranks all SNPs with MAF=0.4  better than all SNPs with MAF=0.05 irrespectively of their 

OR, hence the rectangular form of the ROC curve. In this case, the two informative SNPs 

with OR=1.5 (one with MAF=0.4, one with MAF=0.05) are never correctly identified as top-

ranking by the Gini VIM, whereas the permutation VIM from randomForest identifies them 



correctly in most of the 100 simulated data sets, yielding an area under curve near 1. These 

results clearly show that the Gini VIM is likely to rank many informative SNPs worse than 

many non-informative SNPs. 

 

Discussion and concluding remarks 

In the case of non-informative SNPs, the widely used Gini VIM implemented in the standard 

randomForest method is biased in favour of SNPs with large MAF. The bias is substantial and 

can have important consequences in practical studies. Some of the numerous non-informative 

SNPs with large MAF might mask the effect of interesting SNPs with small MAF. This is a 

strong argument in favour of the permutation VIM, since in large-scale genetic association 

studies most of the SNPs are not related to the outcome, i.e. non-informative. The bias in the 

Gini VIM does not vanish with increasing sample size. That is because the bias originates 

mainly from the bottom of the trees, where splitting nodes are always small with standard 

settings, independently of the starting sample size in the root node.  

The Gini VIM is computed directly from the splitting criterion itself as the decrease in Gini 

impurity. We identified two sources of bias. First, the Gini criterion, though asymptotically 

unbiased, is biased in favour of large MAFs in samples where the least frequent category is 

very small. This bias, that affects both variable selection and VIM, decreases as sample size 

increases. In our simulations, the bias was strong in the root node for a sample size of n=500, 

but almost disappeared for sample size n=10000. The second source of bias is associated to 

the tree structure and affects the nodes at the bottom of the tree. As splitting goes on, nodes 

become smaller and smaller. The bias, that is moderate at the top of the tree, becomes 

dramatic at the bottom of the tree. Note that, as a consequence of splitting, SNPs become 2- or 

1-categorical at the bottom of the trees. Since SNPs with small MAF become more rapidly 1- 

or 2-categorical, they are more affected by this problem.  

Even though variable selection is biased in favour of large MAFs in small sample settings, 

permutation VIMs are unbiased in the case of non-informative predictors since they are based 

on the accuracy on out-of-sample, i.e. independent data. A non-informative SNP with large 

MAF might be selected more often than an informative SNP with small MAF. Nevertheless, it 

will have a permutation VIM of zero in average anyway, since it has no chance to achieve 

good prediction accuracy for the out-of-sample data.  

Thus, our recommendation is to use the permutation VIM and not the Gini VIM. To address 

the stability issue pointed out by Calle and Urrea (2010), it may be worth doing several 



permutations of the variables instead of only one (default value of the parameter nperm in 

randomForest and in the varimp function for cforest).  

Another sensible recommendation is to limit the depth of the trees. In our analyses, we have 

shown that stumps are much less affected by the bias than trees with many layers, 

irrespectively of the chosen algorithm and VIM type. This result is corroborated by the 

number of SNPs with 2 or 1 categories at the bottom of the trees, that obviously increases 

much faster for small than for large MAFs. In most applications, it is certainly not a good idea 

to build stumps instead of large trees, because stumps possibly do not appropriately account 

for the complexity in the data. It is impossible to make general recommendations here, since 

the optimal depth of the trees may depend on many parameters including the sample size, the 

number of SNPs, the proportion of informative SNPs, the supposed presence of interactions 

and of course the MAF of the considered SNPs. However, we claim that, in general, a 

compromise between unpruned trees of maximal depth (the default of the randomForest 

function) and stumps might be preferred with respect to the bias discussed in this paper. 

Another related factor that potentially influences the bias in lower layers of the trees is the 

minimal size of terminal nodes (parameter nodesize in randomForest, minbucket in cforest). 

Smaller values of the minimal node size tend to produce a higher bias. That is because rare 

variants might get selected based on the splitting criterion but eventually rejected just because 

the rare categories (say AC and CC) would form a too small terminal node. This source of 

bias is expected to affect equally both randomForest and cforest. Strictly speaking, depth and 

minimal node size should be considered as parameters that should be tuned, e.g., by means of 

cross- validation, as also indicated by the results of Lin and Jeon (2006). 

Our results for informative SNPs also support that even though the permutation importance 

also favors SNPs with larger MAF, the variable selection properties we have illustrated by 

means of ROC curves in Figure 4 strongly support the superiority of the permutation VIM 

over the Gini VIM.  

In our analyses representing a particular setting with SNP data, the permutation VIM of 

randomForest is found to have a similar unbiased behaviour as the permutation VIM of 

cforest. However, the variance of the permutation VIM increases with the MAF more strongly 

in randomForest than in cforest. This difference between randomForest and cforest is in 

agreement with the higher variable selection bias of randomForest depicted in additional 

Figure 1. It may explain the slightly better performance of cforest in terms of ROC curve in 

Figure 4. For these reasons, cforest should be preferred to randomForest for the analysis of 

SNPs, too. Besides the party package, the cforest methodology is now also implemented in 



the most recent version of the random jungle software (Schwartz et al, 2010) which is 

particularly designed to handle genome-wide data efficiently.  

The effects illustrated by Nicodemus (2011) and in this article – that SNPs with large MAF 

are systematically preferred over those with small MAF, to some extent even if they are less 

informative – will to some readers appear as a serious problem, to others only as a natural 

property of a VIM sensitive to group size. However, especially in the context of large genetic 

association studies, the interpretation of VIMs may be lead by the expectation that those SNPs 

ranked highly are actually those with the strongest association to the response – not those 

whose category frequencies provide the highest value of a VIM with potentially unexpected 

statistical properties. With this expectation in mind, the permutation VIM has clearly shown 

its superiority to the Gini VIM.  

 

Acknowledgements: ALB is supported by the LMU-innovativ Project BioMed-S: “Analysis 

and Modelling of Complex Systems in Biology and Medicine”. AB is supported by grant 

BO3139/2-1 from the German Research Foundation (Deutsche Forschungsgemeinschaft) 

headed by ALB: “Resampling methods for the statistical analysis of high-dimensional 

biological data”. CS is supported  by grant STR1142/1-1 (“Methods to Account for Subject-

Covariates in IRT-Models”) from the German Research Foundation (Deutsche 

Forschungsgemeinschaft).  

 

References 

Bureau A, Dupuy J, Falls K et al:  Identifying SNPs predictive of phenotype using random forests. 

Genetic Epidemiology 2005; 28:171-182.  

Breiman L: Random forests. Machine Learning 2001; 45:5-32. 

Breiman, L., Cutler, A., Liaw, A., & Wiener, M., 2010. randomForest: Breiman and Cutler’s random 

forests for classification and regression (R package version 4.6-2) URL: http://cran.r-

project.org/package=randomForest 

Briggs F, Ramsay PP, Madden E et al: Supervised machine learning and logistic regression identifies 

novel epistatic risk factors with PTPN22 for rheumatoid arthritis. Genes and Immunity 2010; 11:199-

208. 

Cleynen
 
I, Mahachie John JM, Henckaerts L et al: Molecular reclassification of Crohn's disease by 

cluster analysis of genetic variants. PLoS One 2010; 5:e12952. 

De Lobel L, Geurts P, Baele G et al: A screening methodology based on Random Forests to improve 

the detection of gene–gene interactions. European Journal of Human Genetics 2010; 18, 1127–1132. 

Heidema AG, Boer JMA, Nagelkerke N et al: The challenge for genetic epidemiologists: How to 

analyze large numbers of SNPs in relation to complex diseases. BMC Genetics 2006; 7:23. 



Hothorn, T., Hornik, K., & Zeileis, A. Unbiased recursive partitioning: A conditional inference 

framework. Journal of Computational and Graphical Statistics 2006; 15:651– 674. 

Hothorn, T., Hornik, K., Strobl, C., & Zeileis, A. (2010). party: A laboratory for recursive 

part(y)itioning (R package version 0.9-99991) URL: http://cran.r-project.org/package=party 

Lin, Y., & Jeon, Y. (2006). Random forests and adaptive nearest neighbors. Journal of the American 

Statistical Association, 101, 578 –590. 

Liu C, Ackermann HH, Carulli JP: A genome-wide screen of gene-gene interactions for rheumatoid 

arthritis susceptibility. Human Genetics 2011 (Epub ahead of print). 

Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18 –22. 

Lunetta KL, Hayward LB,. Segal J et al: Screening large-scale association study data: exploiting 

interactions using random forests. BMC Genetics 2004; 5:32.  

Nicodemus K: On the stability and ranking of random forest variable importance measures. Briefings 

in Bioinformatics 2011 (in press). 

R Development Core Team, 2010. R: A Language and Environment for Statistical Computing. R 

Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL  

http://www.R-project.org/. 

Roshan U,  Chikkagoudar S, Wei Z et al: Ranking causal variants and associated regions in genome 

wide association studies by the support vector machine and random forest. Nucleid Acids Research 

2011 (Epub ahead of print). 

Schwartz DF, Szymczak S, Ziegler A, König IR: Picking single-nucleotide polymorphisms in forests. 

BMC Proceedings 2007; 1:S59. 

Schwartz DF, König I, Ziegler A: On safari to Random Jungle: a fast implementation of Random 

Forests for high-dimensional data. Bioinformatics 2010; 26:1752-1758. 

Strobl C, Boulesteix AL, Zeileis A et al: Bias in random forest variable importance measures: 

Illustrations, sources, and a solution. BMC Bioinformatics 2007; 8:25. 

Strobl C, Boulesteix AL, Kneib T et al: Conditional variable importance for random forests. BMC 

Bioinformatics 2008; 9:307.  

Tang R, Sinnwell JP, Li J, Rider DN, de Andrade M, Biernacka JM: Identification of genes and 

haplotypes that predict rheumatoid arthritis using random forests. BMC Proceedings 2009; 3:S68. 

Yang W, Gu C : Selection of important variables by statistical learning in genome-wide association 

analysis. BMC Proceedings 2009; 3:S70. 

Weidinger S, Baurecht H, Wagenpfeil S et al: Analysis of the individual and aggregate genetic 

contributions of previously identified SPINK5 , KLK7 and FLG polymorphisms to eczema risk. 

Journal of Allergy and Clinical Immunology 2008; 122:560-568. 

 

 



 Gini randomForest Perm randomForest 

x 10
5 

Perm cforest 

x 10
5 

(A) Large trees – non-informative SNPs 

MAF=0.05 0.58 [0.52 – 0.67] -1.9 [-13 – 9.4]  -4.3 [-13 – 5.4] 

MAF=0.1 0.87 [0.78 – 0.97] -1.8 [-17 – 14] -4.3 [-17 – 9.8] 

MAF=0.25 1.5 [1.4 – 1.7] -3.4 [-26 – 21] -4.3 [-22 – 16] 

MAF=0.4 1.9 [1.7 – 2.0] -3.2 [-30 – 26] -6.5 [-25 – 15] 

(B) Stumps – non-informative SNPs 

MAF=0.05 0.01 [0 – 0.02] 0 [-2.1 – 0] -1.1 [-7.6 – 1.1] 

MAF=0.1 0.01 [0 – 0.03] 0 [-4.3 – 0] -2.2 [-9.8 – 2.2] 

MAF=0.25 0.02 [0.01 – 0.04] 0 [-9 – 1.2] -3.3 [-13 – 3.3] 

MAF=0.4 0.02 [0.01 – 0.05] 0 [-12 – 2.1] -4.3 [-15 – 3.3] 

(C) Large trees – informative SNPs 

MAF=0.05 OR=3 1.5 [1.1 – 2.0] 88 [40 – 188] 128 [56 – 258] 

MAF=0.1 OR=3 3.0 [2.1 – 3.9] 246 [116 – 433] 414 [210 – 578] 

MAF=0.25  OR=3 5.9 [5.1 – 6.8] 670 [509 – 819] 926 [689 – 1217] 

MAF=0.4  OR=3 7.7 [6.5 – 9.2] 909 [708 - 1200] 1303 [1011 – 1627] 

MAF=0.05 OR=1.5 0.63 [0.49 – 0.82] 2.2 [-9.5 – 16] 0.54 [-7.9 – 18] 

MAF=0.1 OR=1.5 0.95 [0.77 – 1.3] 9.3 [-9.9 – 40] 4.9 [-7.6 – 47] 

MAF=0.25 OR=1.5 1.8 [1.6 – 2.2] 36 [4.2 – 87] 42 [0.5 – 84] 

MAF=0.4 OR=1.5 2.2 [1.9 – 2.7] 47 [0.27 – 112] 42 [0.8 – 121] 

MAF=0.05 OR=0 0.51 [0.45 – 0.61] -4.7 [-11 – 5.6] -3.3 [-9.8 – 2.2] 

MAF=0.1 OR=0 0.76 [0.67 – 0.88] 0.71 [-16 – 12] 0 [-9.7 – 10] 

MAF=0.25 OR=0 1.3 [1.2 – 1.4] -3.0 [-26 – 16] -5 [-20 – 13] 

MAF=0.4 OR=0 1.6 [1.5 – 1.7] -2.0 [-33 – 19] -10 [-21 – 10] 

 

 

Table 1. (A): Median variable importance [1
st
 quartile – 3

rd
 quartile] in the null scenario with n=500 

and large trees. (B) Median variable importance [1
st
 quartile – 3

rd
 quartile] in the null scenario with 

two-node trees (stumps). (C) Median variable importance [1
st
 quartile – 3

rd
 quartile] in the informative 

scenario with large trees built with the standard settings of the functions randomForest and cforest. 

Note that the permuation importances (3
rd

 and 4
th
 columns) are multiplied by 10

5
 for the sake of 

clarity. 

 

 



 

 

 

 

 

Figure 1. Boxplot of VIMs in the null scenario for different sample sizes. 

Variable importance of SNPs with MAF=0.05,0.1,0.25,0.4 in the null scenario (non-

informative SNPs). Left: Gini VIM based on randomForest. Middle: Permutation VIM based 

on randomForest. Right: Permutation VIM based on cforest. Each box corresponds to 100 

(data sets) x 50 (SNPs) = 5000 values. 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 2. Boxplot of VIMs based on stumps in the null scenario for different sample sizes.  

Variable importance of SNPs with MAF=0.05,0.1,0.25,0.4 based on trees with two-nodes 

(“stumps”) in the null scenario (non-informative SNPs). Left: Gini VIM based on 

randomForest. Middle: Permutation VIM based on randomForest. Right: Permutation VIM 

based on cforest. Each box corresponds to 100 (data sets) x 50 (SNPs) = 5000 values. Zooms 

of the boxplots are displayed in the bottom row. 

 



 

 

Figure 3. Frequency of selection by MAF in the different layers of the tree. 

Frequency of selection (with randomForest) of SNPs with MAF=0.05 (black), 0.1 (red), 0.25 

(green), 0.4 (blue) against the index of the layer for a simulated data set (n=10000, non-

informative SNPs).  



 

 

Figure 4. ROC curves in the informative scenario. 

The x-axis “sensitivity” is the proportion of informative SNPs (with OR≠0) that are detected 

i.e. have a VIM above the considered threshold. The y-axis “1-specificity” is the proportion of 

non-informatives SNP (with OR=0) that are detected. Top: n=500. Bottom: n=10000. Left: 

all 200 SNPs. Right: only SNPs with very large (0.4) or very low (0.05) MAF. For n=10000 

cforest was not used for computational reasons. 

 

 


