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Abstract
Beta coefficients for linear regression models represent the ideal form of an inter-
pretable feature effect. However, for non-linear models such as generalized linear
models, the estimated coefficients cannot be interpreted as a direct feature effect on
the predicted outcome. Hence, marginal effects are typically used as approximations
for feature effects, either as derivatives of the prediction function or forward dif-
ferences in prediction due to changes in feature values. While marginal effects are
commonly used in many scientific fields, they have not yet been adopted as a general
model-agnostic interpretation method for machine learning models. This may stem
from the ambiguity surrounding marginal effects and their inability to deal with the
non-linearities found in black box models. We introduce a unified definition of for-
ward marginal effects (FMEs) that includes univariate and multivariate, as well as
continuous, categorical, and mixed-type features. To account for the non-linearity of
prediction functions, we introduce a non-linearity measure for FMEs. Furthermore,
we argue against summarizing feature effects of a non-linear prediction function in
a single metric such as the average marginal effect. Instead, we propose to average
homogeneous FMEs within population subgroups, which serve as conditional feature
effect estimates.
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1 Introduction

The lack of interpretability ofmostmachine learning (ML)models has been considered
one of their major drawbacks (Breiman 2001b). As a consequence, researchers have
developed a variety of model-agnostic techniques to explain the behavior of MLmod-
els. These techniques are commonly referred to by the umbrella terms of interpretable
machine learning (IML) or explainable artificial intelligence. Model explanations take
different forms, e.g., feature attributions (FAs) such as a value indicating a feature’s
importance to the model or a curve indicating its effects on the prediction, model
internals such as beta coefficients for linear regression models, data points such as
counterfactual explanations (Wachter et al. 2018), or surrogate models (i.e., inter-
pretable approximations to the original model) (Molnar 2022). In the context of our
paper, we categorize an FA as an effect or importance:

• Feature effect: We define a feature effect as the direction and magnitude of a
change in predicted outcome due to a change in feature values (Casalicchio et al.
2019; Scholbeck et al. 2020).

• Feature importance: Importance is an indication of a feature’s relevance to the
model. Effect and importance are related, as a feature with a large effect on the
prediction can also be considered important. However, a feature’s relevance can
be measured in multiple ways; for instance, the permutation feature importance
(Fisher et al. 2019) shuffles feature values and evaluates changes in model per-
formance, while the functional analysis of variance (Saltelli et al. 2008; Hooker
2004b, 2007) evaluates contributions of terms within a high-dimensional model
representation to the model output variance.

In this paper, we focus on feature effects, which are relevant for many applica-
tions.We distinguish between local explanations on the observational level and global
ones for the entire feature space. For example, in medical research, we might want
to assess the increase in risk of contracting a disease due to a change in a patient’s
health characteristics such as age or body weight. Consider the interpretation of a
linear regression model (LM) without interaction terms where β j denotes the coef-
ficient of the j-th feature. Increasing a feature value x j by one unit causes a change
in predicted outcome of β j . LMs are therefore often interpreted by merely inspecting
the estimated coefficients. When the terms are non-linear, interactions are present, or
when the expected target is transformed such as in generalized linear models (GLMs),
interpretations are both inconvenient and unintuitive. For instance, in logistic regres-
sion, the expectation of the target variable is logit-transformed, and the predictor term
cannot be interpreted as a direct feature effect on the predicted risk. It follows that
even linear terms have a non-linear effect on the predicted target that varies across
the feature space and makes interpretations through the model parameters difficult to
impossible. A more convenient and intuitive interpretation corresponds to the deriva-
tive of the prediction function w.r.t. the feature or inspecting the change in prediction
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Marginal effects for non-linear prediction functions 2999

due to an intervention in the data. These two approaches are commonly referred to as
marginal effects (MEs) in statistical literature (Bartus 2005).MEs are often aggregated
to an average marginal effect (AME), which represents an estimate of the expected
ME. Furthermore, marginal effects at means (MEM) and marginal effects at repre-
sentative values (MER) correspond to MEs where all features are set to the sample
mean or where some feature values are set tomanually chosen values (Williams 2012).
These can be used to answer common research questions, e.g., what the average effect
of age or body weight is on the risk of contracting the disease (AME), what the effect
is for a patient with average age and body weight (MEM), and what the effect is for a
patient with pre-specified age and body weight values (MER). An increasing amount
of scientific disciplines now rely on the predictive power of black box ML models
instead of using intrinsically interpretable models such as GLMs, e.g., econometrics
(Athey 2017) or psychology (Stachl et al. 2017). This creates an incentive to review
and refine the theory of MEs for the application to non-linear models.
For one, there is much confusion regarding the definition of MEs, evidenced by two
variants for continuous features (based on either derivatives or forward differences) and
furthermore by categorical MEs (which are computed as finite differences resulting
from switching categories in various ways). In their current form, MEs are not an
ideal tool to interpret many statistical models such as GLMs, and their shortcomings
are exacerbated when applied to black box models such as the ones created by many
ML algorithms. For non-linear prediction functions,MEs based on derivatives provide
misleading feature effect interpretations: Given the tangent to the prediction function
at a point x , we evaluate the tangent’s rise at a point x + h. A unit increase for h is
typically used as an interpretable standardmeasure. For non-linear prediction functions
however, this change in feature values results in a different prediction than implied by
the derivative ME, thereby rendering this interpretation misleading. The alternative
and often overlooked definition based on forward differences is much better suited
for effect interpretations but also suffers from a loss in information about the shape of
the prediction function (see Sect. 3). For linear models, the ME is identical across the
entire feature space. For non-linear models, one typically estimates the global feature
effect by computing the AME (Bartus 2005; Onukwugha et al. 2015). However, a
global average does not accurately represent the nuances of a non-linear predictive
model. A more informative summary of the prediction function corresponds to the
conditional feature effect on a feature subspace, e.g., patients with an entire range of
health characteristics might be associated with homogeneous feature effects. Instead
of global interpretations on the entire feature space, one should instead aim for semi-
aggregated (regional or semi-global) interpretations. More specifically, one should
work towards computing multiple, regional conditional AMEs (cAMEs) instead of a
single, global AME.
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Contributions: This paper introduces forward marginal effects (FMEs) as a model-
agnostic interpretation method for arbitrary prediction functions1. We first provide a
unified definition of FMEs for both univariate and multivariate, as well as continuous,
categorical, and mixed-type features. Then, we define a non-linearity measure (NLM)
for FMEs based on the similarity between the prediction function and the intersecting
linear secant. Furthermore, for amore nuanced interpretation,we introduce conditional
AMEs (cAMEs) for population subgroups as a regional (semi-global) feature effect
measure that more accurately describes feature effects across the feature space. We
propose one option to find subgroups for cAMEs by recursively partitioning the feature
space with a regression tree on FMEs. Furthermore, we provide proofs on additive
recovery for the univariate and multivariate FME and a proof on the relation between
the individual conditional expectation (ICE) / partial dependence (PD) and the FME
/ forward AME.
Structure of the paper: In Sect. 2, we introduce our notation. In Sect. 3, we make
sense of the ambiguous usage of MEs. In Sect. 4, we introduce a unified definition
of FMEs, the NLM, and the cAME. Section5 provides an overview on related work,
demonstrates the relation between FMEs and the ICE / PD, and compares FMEs to
the competing approach LIME. In Sect. 6, we run multiple simulations showcasing
FMEs and the NLM. In Sect. 7, we present a structured application workflow and
an applied example on real data. The Appendix contains background information on
additive decompositions of prediction functions, on model extrapolations, on MEs for
tree-based functions, as well as the above-mentioned mathematical proofs.

2 Notation

We consider a p-dimensional feature spaceX = X1 × · · · × Xp and a target space
Y . The random variables on the feature space are denoted by X = (X1, . . . , X p).2

The random variable on the target space is denoted by Y . A generic subspace of all
features is denoted byX[ ] ⊆ X . Correspondingly, X with a restricted sample space
is denoted by X [ ]. A realization of X and Y is denoted by x = (x1, . . . , xp) and y. The
probability distributionP is definedon the sample spaceX ×Y .A learning algorithm
trains a predictive model ̂f : R

p �→ R on data drawn from P , where ̂f (x) denotes
the model prediction based on the p-dimensional feature vector x. To simplify our
notation, we only consider one-dimensional predictions. However, the results on MEs
can be generalized tomulti-dimensional predictions, e.g., formulti-class classification.
We denote the value of the j-th feature in x by x j . A set of features is denoted by
S ⊆ {1, . . . , p}. The values of the feature set are denoted by xS .3 All complementary
features are indexedby− j or−S, so that x− j = x{1, ... , p} \ { j}, or x−S = x{1, ... , p} \ S .
An instance x can be partitioned so that x = (x j , x− j ), or x = (xS, x−S). With
slight abuse of notation, we may denote the vector xS by (x1, . . . , xs) regardless

1 During the peer review process, we began to implement the theory presented in this manuscript in the R
package fmeffects (Löwe et al. 2023)
2 Vectors are denoted in bold letters.
3 As xS is the generalization of x j to vectors, we denote it in bold letters. However, it can in fact be a
scalar. The same holds for x−S and x− j .
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Fig. 1 The surface represents an
exemplary prediction function
dependent on two features. The
FD can be considered a
movement on the prediction
function. We travel from point
(0, −9) to point (0, −2) (Color
figure online)

of the elements of S, or the vector (x j , x− j ) by (x1, . . . , x j , . . . , xp) although j ∈
{1, . . . , p}. The i-th observed feature vector is denoted by x(i) and corresponds to the
target value y(i). We evaluate the prediction function with a set of training or test data
D = {

x(i)
}n
i=1.

A finite difference (FD) of the prediction ̂f (x) w.r.t. x j is defined as:

FD j,x,a,b = ̂f (x1, . . . , x j + a, . . . , xp) − ̂f (x1, . . . , x j + b, . . . , xp)

The FD can be considered a movement on the prediction function (see Fig. 1). There
are three common variants of FDs: forward (a = h, b = 0), backward (a = 0,
b = −h), and central differences (a = h, b = −h). In the following, we only consider
forward differences with b = 0 where the FD is denoted without b. Dividing the FD
by (a − b) corresponds to the difference quotient:

FD j,x,a,b

a − b
= ̂f (x1, . . . , x j + a, . . . , xp) − ̂f (x1, . . . , x j + b, . . . , xp)

a − b

The derivative is defined as the limit of the forward difference quotient when a = h
approaches zero:

∂ ̂f (X)

∂X j
∣

∣ X=x
= lim

h→0

̂f (x1, . . . , x j + h, . . . , xp) − ̂f (x)

h

We can numerically approximate the derivative with small values of h. For instance,
we can use forward, backward, or symmetric FD quotients, which have varying error
characteristics. As an example, consider a central FD quotient which is often used for
derivative-based MEs (Leeper 2018):
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∂ ̂f (X)

∂X j
∣

∣ X=x
≈ ̂f (x1, . . . , x j + h, . . . , xp) − ̂f (x1, . . . , x j − h, . . . , xp)

2h
, h > 0

3 Making sense of marginal effects

There is much ambiguity and confusion surrounding MEs. They are either defined in
terms of derivatives or forward differences, and there is further confusion regarding
the definition of categorical MEs.

3.1 Marginal effects for categorical features

MEs for categorical features are often computed as the change in prediction when the
feature value changes from a reference category to another category (Williams 2012).
In other words, for each observation, the observed categorical feature value is set to the
reference category, and we record the change in prediction when changing it to every
other category. Given k categories, this results in k − 1 MEs for each observation.
Consider a categorical feature indexed by j with categories C = {c1, . . . , ck}. We
select a reference category cr ∈ C . The categorical ME for an observation x and a
single category cl ∈ C\{cr } corresponds to:

ME j,x,cr ,cl = ̂f (cl , x− j ) − ̂f (cr , x− j )

3.2 Marginal effects for continuous features

3.2.1 Definition as derivative

The most commonly used definition of MEs for continuous features corresponds to
the derivative of the prediction function w.r.t. a feature. We will refer to this definition
as the derivative ME (DME). In case of a linear prediction function, the interpretation
of DMEs is simple: if the feature value increases by one unit, the prediction will
increase by the DME estimate. Note that even the prediction function of a linear
regressionmodel can be non-linear if exponents of order≥ 2 are included in the feature
term. Similarly, in GLMs, the linear predictor is transformed (e.g., log-transformed in
Poisson regression or logit-transformed in logistic regression).

3.2.2 Definition as forward difference

A distinct and often overlooked definition of MEs corresponds to the change in pre-
diction with adjusted feature values, also referred to as discrete change (Mize et al.
2019) or difference in adjusted predictions (APs) (Williams 2012). This definition
of MEs is based on a forward difference instead of a symmetric difference and does
not require dividing the FD by the interval width. For this reason—and to establish a
unified definition of MEs—we refer to this variant as the forward ME (FME):
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FMEx,hS = ̂f (x1 + h1, . . . , xs + hs, x−S) − ̂f (x1, . . . , xs, x−S)

= ̂f (xS + hS, x−S) − ̂f (x) (1)

A univariate FME for h = 1 is illustrated in Fig. 2. It corresponds to the change in
prediction along the secant (orange, dotdashed) through the point of interest (prediction
at x = 0.5) and the prediction at the feature value we receive after the feature change
(x = 1.5).
Note that FMEs—as any other model-agnostic method—may result in model extrap-
olations if based on predictions in areas where the model was not trained with a
sufficient amount of data. In Appendix A.2 , we discuss model extrapolations and how
they relate to the computation of FMEs.
A technique that is subject to the additive recovery property only recovers terms
of the prediction function that depend on the feature(s) of interest xS or consist of
interactions between the feature(s) of interest and other features, i.e., the method
recovers no terms that exclusively depend on the remaining features x−S (Apley and
Zhu 2020). In Appendix B. 1, we derive the additive recovery property for FMEs.

3.2.3 Forward difference versus derivative

Note that we refer to using MEs to obtain feature effect interpretations (see Sect. 1),
meaning changes in predicted outcome due to changes in feature values (locally and
globally). In case of non-linear prediction functions, using DMEs for effect interpre-
tations can lead to substantial misinterpretations (see Fig. 2). The slope of the tangent
(green, dashed) at the point of interest (prediction at x = 0.5) corresponds to the DME.
The default way to obtain a feature effect using the DME is to evaluate the tangent
at the feature value we receive after changing feature values (in this case, we make
a unit change, resulting in x = 1.5). This leads to substantial misinterpretations for
non-linear prediction functions. In this case, there is an error (purple) almost as large
as the actual change in prediction (the FME, blue). Although the computation of the
DME does not require a step size, its interpretation does and is therefore error-prone.
In contrast, the FME always indicates an exact change in prediction for any prediction
function and is thereforemuchmore interpretable. Only for linear prediction functions,
the interpretation of both variants is equivalent.
There is a further advantage of FMEs over DMEs: derivatives are not suited to inter-
pret piecewise constant prediction functions such as the ones created by tree-based
algorithms. We discuss this point in more detail in Appendix A.3.

3.3 Variants and aggregations of marginal effects

There are three established variants or aggregations of MEs: The AME, MEM, and
MER (Williams 2012), which can be computed for both DMEs and FMEs. In the
following, we will use the notation of FMEs. Although we technically refer to the
FAME, FMEM, and FMER, we omit the “forward” prefix in this case for reasons of
simplicity:
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(i) Averagemarginal effect (AME):TheAMErepresents an estimate of the expected
FMEw.r.t. the distributionof X .Weestimate it viaMonte-Carlo integration, i.e.,we
average the FMEs that were computed for each (randomly sampled) observation:

EX
[

FMEX,hS

] = EX
[

̂f (X S + hS, X−S) − ̂f (X)
]

AMED ,hS = 1

n

n
∑

i=1

[

̂f
(

xS(i) + hS, x
(i)
−S

)

− ̂f
(

x(i)
)]

(ii) Marginal effect at means (MEM): The MEM can be considered the reverse of
the AME, i.e., it is the FME evaluated at the expectation of X . We estimate the
MEM by replacing all feature values with their sample distribution means:

FMEEX [X],hS = ̂f
(

EX S [X S] + hS, EX−S

[

X−S
])− ̂f (EX [X])

MEMD ,hS = ̂f

((

1

n

n
∑

i=1

x(i)
S

)

+ hS,
1

n

n
∑

i=1

x(i)
−S

)

− ̂f

(

1

n

n
∑

i=1

x(i)

)

Note that averagingvalues is only sensible for continuous features.Williams (2012)
defines a categorical MEM where all remaining features are set to their sample
means (conditional on being continuous) and the feature of interest changes from
a reference category to every other category.

(iii) Marginal effect at representative values (MER): Furthermore, we can replace
specific feature values for all observations with manually specified values x∗. It
follows that the MEM is a special case of the MER where the specified values
correspond to the sample means. MERs can be considered conditional FMEs, i.e.,
we compute FMEs while conditioning on certain feature values. The MER for a
single observation with modified feature values x∗ corresponds to:

MERx∗,hS = ̂f
(

x∗
S + hS, x∗−S

)− ̂f
(

x∗)

The AME, MEM, and MER are mainly targeted at continuous features. In Sect. 4, we
discuss computations for unified FMEs.

4 Model-agnostic forwardmarginal effects for arbitrary prediction
functions

4.1 Unified definition of forwardmarginal effects

Note that both categorical MEs and FMEs are based on forward differences. We
propose a unified definition of FMEs for continuous, categorical, and mixed-type
features in S. Recall that the definition of FMEs for continuous features is given by
Eq. (1):

FMEx,hS = ̂f (xS + hS, x−S) − ̂f (x) for continuous features xS

We suggest an observation-specific categorical FME, where we first select a single
category c j and predict once with the observed value x j and once where x j has been
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replaced by c j :

FMEx,c j = ̂f (c j , x− j ) − ̂f (x) for categorical x j

This definition of categorical FMEs is congruent with the definition of FMEs for
continuous features, as we receive a single FME for a single observation with the
observed feature value as the reference point. In other words, the reference category
c j for a categorical FME is conceptually identical to the step size h j for a continuous
FME. This implies that for observations where x j = c j , the categorical FME is zero.
Continuous and categorical FMEs can be combined for mixed-data FMEs. Consider
a set S = { j, l} and the vector hS = (h j , cl) with step size h j for the j-th feature
(which is continuous) and a category cl for the l-th feature (which is categorical). A
mixed-type FME is given by:

FMEx,hS = ̂f (x j + h j , cl , x−S) − ̂f (x) for continuous x j and categorical xl

We therefore remove any ambiguity fromMEs through a unified definition and termi-
nology based on forward differences for all feature types.
Categorical FMEs and the computation of MEMs and MERs: Categorical FMEs
are also suited for computing a categorical AME. Note that we generally have less
than n categorical FMEs different from zero, depending on the observed marginal
distribution of {x (i)

j }ni=1, which may affect the variance of the mean. Although the
computation of MERs for categorical FMEs is possible, the MER obfuscates their
interpretation by destroying the empirical distribution.

4.2 Non-linearity measure for continuous features

Although an FME represents the exact change in prediction and always accurately
describes the movement on the prediction function, we lose information about the
function’s shape along the forward difference. It follows that when interpreting FMEs,
we are at risk of misjudging the shape of the prediction function as a piecewise linear
function. However, prediction functions created by ML algorithms are not only non-
linear but also differ considerably in shape across the feature space. We suggest to
augment the change in prediction with an NLM that quantifies the deviation between
the prediction function and a linear reference function. First, the FME tells us the
change in prediction for pre-specified changes in feature values. Then, the NLM tells
us how accurately a linear effect resembles the change in prediction. The NLM thus
represents a measure of confidence whether interpolations regarding the FME along
the step are possible. For instance, assume the associated increase in a patient’s diabetes
risk is 5% for an increase in age by 10 years. The NLM tells us how confident we can
be that aging the patient by 5 years will result in a 2.5% increase in risk.

4.2.1 Computation and interpretation

Linear reference function: A natural choice for the linear reference function is the
secant intersecting both points of the forward difference (see Fig. 2). The secant for a
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Fig. 2 Illustration of a univariate FME for h = 1 and a comparison to the corresponding DME. Left: The
prediction function is black-colored. The DME is given by the slope of the tangent (green, dashed) at the
point of interest (x = 0.5). The interpretation of the DME corresponds to the evaluation of the tangent value
at x = 1.5, which is subject to an error (purple) almost as large as the actual change in prediction. The FME
(blue) equals the change in prediction along the secant (orange, dotdashed) through the prediction at x =
0.5 and at x = 1.5. Right: The deviation between the prediction function (black) and linear secant (orange,
dotdashed) can be quantified via the purple area. For the NLM, we put this integral in relation to the integral
of the area between the prediction function and the mean prediction (Color figure online)

multivariate FME corresponds to:

gx,hS (t) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1 + t · h1
...

xs + t · hs
...

xp
̂f (x) + t · FMEx,hS

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Themultivariate secant considers equally proportional changes in all features. Figure 3
visualizes the discrepancy between the prediction function and the secant along a two-
dimensional FME. If the NLM indicates linearity, we can infer that if all individual
feature changes are multiplied by a scalar t ∈ [0, 1], the FME would change by t as
well.

Definition of the NLM: Comparing the prediction function against the linear ref-
erence function along the FME requires a normalized metric that indicates the degree
of similarity between functions or sets of points. Established metrics in geometry
include the Hausdorff (Belogay et al. 1997) and Fréchet (Alt and Godau 1995) dis-
tances. Another option is to integrate the absolute or squared deviation between both
functions. These approaches have the common disadvantage of not being normalized,
i.e., the degree of non-linearity is scale-dependent.
Molnar et al. (2020) compare non-linear function segments against linear models via
the coefficient of determination R2. In this case, R2 indicates how well the linear
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Fig. 3 A non-linear prediction function, the path along its surface, and the corresponding secant along a
two-dimensional FME from point (−5, −5) to point (5, 5). The right plot depicts the parameterization in
terms of t as the percentage of the step size hS . This type of parameterization and visualization is possible
for any dimensionality of hS

reference function is able to explain the non-linear prediction function compared to
the most uninformative baseline model, i.e., one that always predicts the prediction
function through its mean value. As we do not have observed data points along the
forward difference, points would need to be obtained through (Quasi-)Monte-Carlo
sampling, whose error rates heavily depend on the number of sampled points. As both
the FME and the linear reference function are evaluated along the same single path
across the feature space, their deviation can be formulated as a line integral. Hence, we
are able to extend the concept of R2 to continuous integrals, comparing the integral of
the squared deviation between the prediction function and the secant, and the integral
of the squared deviation between the prediction function and its mean value. The line
integral is univariate and can be numerically approximated with various techniques
such as Gaussian quadrature.
The parametrization of the path through the feature space is given by γ : [0, 1] �→ X ,
where γ (0) = x and γ (1) = (xS+hS, x−S). The line integral of the squared deviation
between prediction function and secant along the forward difference corresponds to:

(I) =
∫ 1

0

(

̂f (γ (t)) − gx,hS (t)
)2
∣

∣

∣

∣

∣

∣

∂γ (t)

∂t

∣

∣

∣

∣

∣

∣

2
dt

with

γ (t) =
⎛

⎜

⎝

x1
...

xp

⎞

⎟

⎠+ t ·

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

h1
...

hs
0
...

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, t ∈ [0, 1]
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and

∣

∣

∣

∣

∣

∣

∂γ (t)

∂t

∣

∣

∣

∣

∣

∣

2
=
√

h21 + · · · + h2s

The integral of the squared deviation between the prediction function and the mean
prediction is used as a baseline. The mean prediction is given by the integral of the
prediction function along the forward difference, divided by the length of the path:

̂f (t) =
∫ 1
0
̂f (γ (t))

∣

∣

∣

∣

∣

∣

∂γ (t)
∂t

∣

∣

∣

∣

∣

∣

2
dt

∫ 1
0

∣

∣

∣

∣

∣

∣

∂γ (t)
∂t

∣

∣
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∣

∣

∣
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The NLMx,hS is defined as:

NLMx,hS = 1 − (I)

(II)

Interpretation: The NLM has an upper limit of 1 and indicates how well the secant
can explain the prediction function, compared to the baseline model of using the mean
prediction. For a value of 1, the prediction function is equivalent to the secant (perfect
linearity). A lower value indicates increasing non-linearity of the prediction function.
For negative values, the mean prediction better predicts values on the prediction func-
tion than the secant (severe non-linearity). We suggest to use 0 as a hard bound to
indicate non-linearity and values on the interval ]0, 1[ as an optional soft bound.
Advantages of the NLM: Given only univariate changes in feature values, we may
visually assess the non-linearity of the feature effect with an ICE curve (see Sect. 5).
However, the NLM quantifies non-linearity in a single metric. For one, this facili-
tates interpretations: for instance, in Fig. 13, the average NLM correctly diagnoses
linear effects of the features x4 and x5 in Friedman’s regression problem. Second, this
information can be further utilized in an informative summary output of the predic-
tion function: in Sect. 4.3, we estimate feature effects for population subgroups where
individual NLM values can be averaged to describe average non-linearities within
subgroups. For bivariate feature changes, the NLM greatly simplifies non-linearity
assessments: as an example, consider Fig. 12 where the sinus curve’s point of inflec-
tion for the interaction of x1 and x2 in Friedman’s regression problem can be detected
with NLM values. Lastly, given changes in more than two features, visual interpreta-
tion techniques such as the ICE and PD are not applicable at all. As opposed to this,
the NLM is defined in arbitrary dimensions and can be used for feature changes of
any dimensionality (see Fig. 20 for an example with a trivariate feature change).
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4.2.2 Selecting step sizes and linear trust region

The step size is determined both by the question that is being addressed and the scale
of the feature at training time. In many cases, an interpretable or intuitive step size is
preferable. For instance, body weight tends to be expressed in kilograms, thus making
1kg (as opposed to 1g) a natural increment. Contextual information, too, dictates step
sizes. For instance, a 1kg difference in bodyweightmight not elicitmany physiological
changes. One might suspect, for instance, a 5kg difference to elicit noticeable changes
and to provide an actionable model interpretation, where the patient can be advised to
lose weight if the model predicts a favorable outcome of that action. If a natural unit
or contextual information is not available, the units recorded in the data set make a
reasonable default step size. This also links back to the natural interpretation of LMs,
whose beta coefficients indicate the change in predicted outcome due to a unit change
in the feature value.
Dispersion-based step sizes:Without contextual information, dispersion-based mea-
sures such as one standard deviation can also be used as step sizes (Mize et al. 2019).
Other options include, e.g., percentages of the interquartile range (IQR) or the mean
/ median absolute deviation. Furthermore, we can compute and visualize FME and
NLM distributions for various step sizes or step size combinations for multivariate
FMEs (see Fig. 18 for an example).
Local linear trust region (LLTR): In selected applications it might be of interest
to have confidence in the linearity of FMEs, which can be ensured with an NLM
threshold. Figure 4 visualizes an example by Molnar (2022) where LIME (see Sect. 5)
fails to accurately explain the black box prediction for a data point depending on
the chosen kernel width. We wish to explain the predictions of the black box model
(black line) for a single data point (black dot). For kernel widths 0.75 or 2, the local
surrogate indicates no or a positive effect of x on the predicted target, while the actual
effect is negative. In contrast, the FME can be used to compute the exact feature effect
where the NLM provides an LLTR (visualized by the orange arrows). In this example,
traversing the black box model from the black dot along each arrow is associated with
an NLM ≥ 0.9, i.e., an approximately linear FME. Which NLM threshold indicates
linearity is debatable. For this paper, we choose a very high threshold of 0.9 to leave
a margin of safety. The right plot visualizes FME and NLM pairs for each step of
the LLTR. Steps that cannot be included in the LLTR are greyed out. An LLTR for
multivariate steps is visualized in Fig. 17.

Step sizes and model extrapolations: The step size cannot vary indefinitely
without risking model extrapolations. Furthermore, when using non-training data
or training data in low-density regions to compute FMEs, we are at risk of the
model extrapolating without actually traversing the feature space. If the points x
or (xS + hS, x−S) are classified as extrapolation points (EPs), the FME should be
interpreted with caution or the observation be excluded from the analysis.
Fig. 5 demonstrates the perils of model extrapolations when using FMEs. We draw
points of a single feature x from a uniform distribution on the interval [−5, 5]. The
target is generated as y = x2 + ε, where ε is drawn from N (0, 1). A random forest
is trained to predict y given x . All points x /∈ [−5, 5] are located outside the range of
the training data and can be considered EPs. We compute FMEs with a step size of 1.
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Fig. 4 Left:Explaining a single local prediction at the black dot (x = 1.6, ̂f (x) = 8.5). The black boxmodel
predictions are given by the black line. Local surrogate explanations via LIMEdiffer considerably depending
on the chosen kernel width (straight lines, kernel width indicated by shape and color). In contrast, the FME
always represents an exact forward difference between the black dot and points on the prediction function
(where the secant is visualized by the orange arrows). The step sizes associated with the arrows represent
an exemplary LLTR of FMEs for which the NLM ≥ 0.9 (approximate linearity). Right: Visualization of
LLTR with pairs of FME and NLM for each explored step. Step sizes with an NLM < 0.9 are greyed out
(Color figure online)

Fig. 5 Left: A random forest is trained on a single feature x with a quadratic effect on the target. The
training space corresponds to the interval [−5, 5].Right: We compute an FMEwith a step size of 1 for each
observation. After moving 1 unit in x direction, points with x > 4 are considered EPs (red triangles). The
random forest extrapolates and predicts unreliably in this area of the feature space. The resulting FMEs are
irregular and should not be used for interpretation purposes (Color figure online)

By implication, all FMEs with x > 4 are based on model extrapolations. FMEs based
on model extrapolations exhibit a considerably different pattern and should not be
used for interpretation purposes, as they convey an incorrect impression of the feature
effect of x .
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4.3 Regional feature effects with conditional averagemarginal effects

It is desirable to summarize the feature effect in a single metric, similarly to the
parameter-focused interpretation of LMs. For instance, one is often interested in the
expected FME (for the entire feature space), which can be estimated via the AME.
However, averaging heterogeneous FMEs to the AME is not globally representative
of non-linear prediction functions such as the ones created by ML algorithms. A
heterogeneous distribution of FMEs requires a more local evaluation. As opposed to
conditioning on feature values in the case of MERs (local), we further suggest to
condition on specific feature subspaces (regional). The cAME is an estimate of the
expected FME for the random vector X [ ] with a restricted sample space X[ ]. It is
computed for a subsample of observations D[ ] sampled fromX[ ]:

cAMED[],hS = ̂
EX []

[

FMEX [],hS
]

= 1

n[]

∑

i :x(i)∈D[]

[

̂f
(

x(i)
S + hS, x

(i)
−S

)

− ̂f
(

x(i)
)]

with n[] = |D[]| (2)

A population subgroupX[ ] corresponds to a subspace of the feature spaceX , e.g., a
range of health characteristics of patients with a certain predisposition of developing
a disease. The subsample D[ ] consists of data that were drawn from this subspace,
e.g., patients with said predisposition that partook in a study. Note that in our case,
we are looking for subgroups with homogeneous effects on the model prediction, e.g.,
patients for whom increasing their age has similar effects on the predicted disease
risk. Even though such population subgroups might exist (in many cases they may
not), the model fit fundamentally determines whether we can find subgroups with
homogeneous effects for the trained model.

4.3.1 Desiderata for finding subgroups

Note that Eq. (2) is defined in general terms, conditional on an arbitrary subspace
X[ ].We can arbitrarily partition the feature space, determine corresponding subsets of
observed data, and run the estimator in Eq. (2) for each subsample to estimate expected
conditional FMEs. However, recall that our goal is to find accurate descriptors of
feature effects for the trained model across the feature space. Therefore, we formulate
multiple desiderata for these subspaces and the corresponding subsamples (hereafter
referred to as subgroups):

• Within-group effect homogeneity: FME variance inside subgroups shall be min-
imized.

• Between-group effect heterogeneity: cAMEs of subgroups shall be heteroge-
neous.

• Full segmentation: The data shall be fully segmented into subgroups.
• Non-congruence: Subgroups shall not overlap with each other.
• Confidence: Larger subgroups are preferred over smaller subgroups.
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• Stability: Subgroups shall be stable w.r.t. variations in the data.
Evidently, certain desiderata are difficult to meet. For instance, we can strive to min-
imize FME variance within a single subgroup, but this might increase FME variance
within other subgroups.
Note that the philosophy of regional or semi-global feature effects somewhat deviates
from our previous philosophy of obtaining simple and stable local model explana-
tions. Finding subgroups with more homogeneous local explanations by modeling
FME patterns necessitates some sort of approximation. In the following section, we
model FME patterns with decision trees and discuss the upsides and downsides of this
approach.

4.3.2 Estimation using decision trees

Decision tree learning is an ideal scheme to partition the entire feature space into
mutually exclusive subspaces, thus finding population subgroups. Growing a tree by
global optimization poses considerable computational difficulties and corresponds to
an NP-complete problem (Norouzi et al. 2015). Recent developments in computer sci-
ence and engineering can be explored to revisit global decision tree optimization from
a different perspective, e.g., Bertsimas and Dunn (2017) explore mixed-integer opti-
mization to find globally optimal decision trees. To reduce computational complexity,
the established way (which is also commonly available in many software implemen-
tations) is through recursive partitioning (RP), optimizing an objective function in a
greedy way for each tree node.
Over the last decades, a large variety of RP methods has been proposed (Loh 2014),
with no gold standard having crystallized to date. In principle, any RP method that is
able to process continuous targets can be used to find subgroups, e.g., classification
and regression trees (CART) (Breiman et al. 1984; Hastie et al. 2001), which is one of
themost popular approaches. Trees have been demonstrated to be notoriously unstable
w.r.t. perturbations in input data (Zhou et al. 2023; Last et al. 2002). Tree ensembles,
such as random forests (Breiman 2001a), reduce variance but lose interpretability as
a single tree structure. Exchanging splits along a single path results in structurally
different but logically equivalent trees (Turney 1995). It follows that two structurally
very distinct trees can create the same or similar subspaces. We are therefore not
interested in the structure of the tree itself, but in the subgroups it induces.
Stabilization of RP: As formulated earlier, we strive to find subgroups that are stable
w.r.t. variations in the data. For RP, one should therefore strive to stabilize splits. A
branch of RP methods incorporates statistical theory into the split procedure. Vari-
ants include conditional inference trees (CTREE) (Hothorn et al. 2006), which use
a permutation test to find statistically significant splits; model-based recursive parti-
tioning (MOB) (Zeileis et al. 2008), which fits node models and tests the instability of
the model parameters w.r.t. partitioning the data; or approximation trees (Zhou et al.
2023), which generate artificially created samples for significance testing of tree splits.
Seibold et al. (2016) use MOB to find patient subgroups with similar treatment effects
in a medical context. Furthermore, we can assess the stability of feature and split
point selection for arbitrary tree models by resampling the training data and retrain-
ing the tree (Philipp et al. 2016). The variance and instability of decision trees partly
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stems from binary splits, as a decision higher up cascades through the entire tree and
results in different splits lower down the tree (Hastie et al. 2001). Using multiway
trees, which also partition the entire feature space, would therefore improve stability.
However, multiway splits are associated with a considerable increase in computational
complexity and are therefore often discarded in favor of binary splitting (Zeileis et al.
2008). For the remainder of the paper, we use CTREE to find subgroups and compute
cAMEs.

4.3.3 Confidence intervals for the cAME and cANLM

Given estimates of the expected conditional FME, it is desirable to estimate the
expected conditional NLM for the corresponding subspaces as well. Analogously to
theAME,we can compute an averageNLM(ANLM) by globally averagingNLMs and
a conditional ANLM (cANLM) by averaging NLMs within a subgroup. The cANLM
gives us an estimate of the expected non-linearity of the prediction function for the
given movements along the feature space, conditional on a feature subspace.
A lower standard deviation (SD) of FMEs andNLMvalues increases confidence in our
estimates and vice versa, and a larger number of observations increases confidence
in our estimates and vice versa. Although we do not specify a distribution of the
underlying FMEs or NLMs, constructing a confidence interval (CI) is possible via the
central limit theorem. As the cAME and cANLM are sample averages of all FMEs and
NLMs for each subgroup,we can construct a t-statistic (as the SD is estimated) for large
sample sizes.Given a subgroupD[ ] that contains n[ ] observations,mean (cAMED[ ],hS
and cANLMD[ ],hS ) and SD (SDFME, [ ] and SDNLM, [ ]) values, the confidence level α,
and the values of the t-statistic with n[ ] −1 degrees of freedom at the 1− α

2 percentile
(t1− α

2 , n[ ]−1), the CIs correspond to:

CIcAME, 1−α =
[

cAMED[ ],hS − t1− α
2 , n[ ]−1

SDFME, [ ]√
n[ ]

,

cAMED[ ],hS + t1− α
2 , n[ ]−1

SDFME, [ ]√
n[ ]

]

CIcANLM, 1−α =
[

cANLMD[ ],hS − t1− α
2 , n[ ]−1

SDNLM, [ ]√
n[ ]

,

cANLMD[ ],hS + t1− α
2 , n[ ]−1

SDNLM, [ ]√
n[ ]

]

One option to ensure that the lower sample size threshold for CIs is valid is to specify
a minimum size for each subgroup, e.g., in the case of RP, not growing the tree too
large.
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5 Related work

5.1 Statistics and applied fields

MEs have been discussed extensively in the literature on statistics and statistical soft-
ware, e.g., by Ai and Norton (2003), Greene (2012), Norton et al. (2019), or Mullahy
(2017). Themargins command is a part of Stata (StataCorp. 2023) andwas originally
implemented byBartus (2005). A brief description of the margins command is given
byWilliams (2012). Leeper (2018) provides an overview onDMEs and their variations
as well as a port of Stata’s functionality to R. The R package marginaleffects
(Arel-Bundock 2023) supports various variants of MEs including FMEs. Ramsey
and Bergtold (2021) compute an ME for a single-hidden-layer feed-forward back-
propagation artificial neural network by demonstrating its interpretation is equivalent
to a logistic regression model with a flexible index function. Zhao et al. (2020) apply
model-agnostic DMEs to ML models in the context of analyzing travel behavior.
Furthermore, they mention the unsuitability of derivatives for tree-based prediction
functions such as random forests.
Mize et al. (2019) provide a test framework for cross-model differences of MEs. They
refer to an ME based on a forward difference as a discrete change and to the corre-
sponding AMEs as average discrete changes. Gelman and Pardoe (2007) propose the
predictive effect as a local feature effect measure. The predictive effect is a univariate
forward difference, divided by the change in feature values (i.e., the step size). This
differentiates it from the FME which is also defined for multivariate feature changes
and which is not divided by the step size, i.e., it provides a change in prediction as
opposed to a rate of change. Furthermore, the authors propose an average predictive
effect that corresponds to the average of multiple predictive effects that were mea-
sured at distinct feature values and model parameters. It is a generalization of the
AME that may be estimated with artificially created data points (as opposed to the
sample at hand) and incorporates model comparisons (measured with different model
parameters).

5.2 Interpretable machine learning

The most commonly used techniques to determine feature effects include the indi-
vidual conditional expectation (ICE) (Goldstein et al. 2015), the partial dependence
(PD) (Friedman 2001), accumulated local effects (ALE) (Apley and Zhu 2020), Shap-
ley values (Štrumbelj and Kononenko 2014), Shapley additive explanations (SHAP)
(Lundberg and Lee 2017), local interpretable model-agnostic explanations (LIME)
(Ribeiro et al. 2016), and counterfactual explanations (Wachter et al. 2018). Counter-
factual explanations indicate the smallest necessary change in feature values to receive
the desired prediction and represent the counterpart to MEs. Goldstein et al. (2015)
propose derivative ICE (d-ICE) plots to detect interactions. The d-ICE is a univariate
ICE where the numeric derivative w.r.t. the feature of interest is computed pointwise
after a smoothing procedure. Symbolic derivatives are commonly used to determine the
importance of features for neural networks (Ancona et al. 2018). While FMEs provide
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interpretations in terms of prediction changes, most methods provide an interpretation
in terms of prediction levels. LIME is an alternative option that returns interpretable
parameters (i.e., rates of change in prediction) of a local surrogate model. LIME, and
to a lesser extent SHAP, have been demonstrated to provide unreliable interpretations
in some cases (Slack et al. 2020). Furthermore, many techniques in IML are inter-
preted visually (e.g., ICEs, the PD, ALE plots) and are therefore limited to feature
value changes in at most two dimensions. FMEs are not limited by the dimension of
the intervention in feature values, as any change in feature values—regardless of its
dimensionality—always results in a single FME.

5.2.1 Relation between forward marginal effects, the individual conditional
expectation, and partial dependence

Given a data point x, the ICE of a feature set S corresponds to the prediction as a
function of substituted values x∗

S where x−S is kept constant:

ICEx,S(x∗
S) = ̂f (x∗

S, x−S)

The PD on a feature set S corresponds to the expectation of ̂f (X) w.r.t. the marginal
distribution of X−S . It is estimated via Monte-Carlo integration where the draws x−S

correspond to the sample values:

̂PDD ,S(xS) = 1

n

n
∑

i=1

̂f
(

xS, x−S
(i)
)

We can visually demonstrate that in the univariate case, the FME is equivalent to
the vertical difference between two points on an ICE curve. However, the AME is
only equivalent to the vertical difference between two points on the PD curve for
linear prediction functions (see Fig. 6). We generalize this result to the multivariate
FME and ICE, as well as the multivariate forward AME and PD (see Theorem 3
and Theorem 4 in Appendix B.2). Visually assessing changes in prediction due to a
change in feature values is difficult to impossible in more than two dimensions. High-
dimensional feature value changes therefore pose a natural advantage for FMEs over
techniques such as the ICE, PD, or ALE, which are mainly interpreted visually.

5.2.2 Comparison to LIME

LIME—one of the most popular model-agnostic feature effect methods—resembles
the interpretation given by an FME. It also serves as a local technique, explaining
the model for a single observation. LIME samples instances, predicts, and weights
the predictions by the instances’ proximity to the instance of interest using a kernel
function. Afterwards, an interpretable surrogate model is trained on the weighted
predictions. The authors choose a sparse linear model, whose beta coefficients provide
an interpretation similar to the FME.
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Fig. 6 Three ICE curves are black-colored. The PD is the average of all ICE curves (orange, dashed).
For each ICE curve, we have a single observation, visualized by the corresponding green x-shaped point.
We compute the FME at each observation with a step size of 1, which results in the corresponding red
triangle-shaped point. The FMEs are equivalent to the vertical difference between two points on the ICE
curves. If the prediction function is linear in the feature of interest, the average of all FMEs is equivalent to
the vertical difference between two points on the PD (Color figure online)

But there is a fundamental difference between both approaches. The FME directly
works on the prediction function, while LIME trains a local surrogate model. The
latter is therefore affected by an additional layer of complexity and uncertainty. The
authors suggest to use LASSO regression, which requires choosing a regularization
constant. Furthermore, one must select a similarity kernel defined on a distance func-
tion with a width parameter which has tremendous effects on the resulting model
explanation (see Fig. 4 for an example). The model interpretation is therefore funda-
mentally determined by multiple parameters. Furthermore, certain surrogate models
are incapable of explaining certain model behaviors and may potentially mislead the
practitioner to believe the interpretation (Ribeiro et al. 2016). A linear surrogate model
may not be able to describe extreme non-linearities of the prediction function, even
within a single locality of the feature space. In contrast, the only parameters for the
FME are the features and the step sizes. Without question, the choice of parameters
for FMEs also significantly affects the interpretation. However, we argue that their
impact is much clearer than in LIME, e.g., a change in a feature such as age is much
more meaningful than a different width parameter in LIME. In fact, we argue that
the motivation behind both approaches is fundamentally different. For FMEs, we start
with a meaningful interpretation concept in mind, e.g., we may be interested in the
combined effects of increasing age and weight on the disease risk. For LIME, we start
with a single observation, trying to distill the black box model behavior within this
specific locality into a surrogate model.
In addition to the sensitivity of results regarding parameter choices, LIME is noto-
riously unstable even with fixed parameters. Zhou et al. (2021) note that repeated
runs using the same explanation algorithm on the same model for the same observa-
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tion results in different model explanations, and they suggest significance testing as a
remedy. In contrast, FMEs with fixed parameters are deterministic.
As noted above, the authors of LIME mention that the faithfulness of the local sur-
rogate may be diminished by extreme non-linearities of the model, even within the
locality of the instance of interest. This exact same critique holds for the FME (see
Sect. 4.2). Hence, we introduce the NLM, which essentially corresponds to a measure
of faithfulness of the FME and whose concept can potentially be used for other meth-
ods as well. One could also use the coefficient of determination R2 to measure the
goodness-of-fit of the linear surrogate to the pseudo sample in LIME. However, we
argue that the goodness-of-fit to a highly uncertain pseudo sample is a questionable
way of measuring an explanation’s faithfulness.
Furthermore, the authors of LIME note that insights into the global workings of the
model may be gained by evaluating multiple local explanations. As there usually are
time constraints so that not all instances can be evaluated, an algorithm suggests a
subset of representative instances. Although this approach avoids the issue of misrep-
resenting global effects by averaging local explanations, it also misses the opportunity
to providemeaningful regional explanations. This is where the cAME comes into play.
It is motivated by the goal to aggregate local interpretations while staying faithful to
the underlying predictive model. Note that a subset of representative instances—as
suggested by Ribeiro et al. (2016)—can also be used to compute representative FMEs.

5.3 Sensitivity analysis

The goal of sensitivity analysis (SA) is to determine how uncertainty in the model
output can be attributed to uncertainty in the model input, i.e., determining the impor-
tance of input variables (Saltelli et al. 2008). Techniques based on FDs are common
in SA (Razavi et al. 2021). The numeric derivative of the function to be evaluated
w.r.t. an input variable serves as the natural definition of local importance in SA. The
elementary effect (EE) was first introduced as part of theMorris method (Morris 1991)
as a screening tool for important inputs. The EE corresponds to a univariate forward
difference quotient with variable step sizes, i.e., it is a generalization of the derivative.
Variogram-based methods analyze forward differences computed at numerous pairs
of points across the feature space (Razavi and Gupta 2016). Derivative-based global
sensitivity measures (Sobol and Kucherenko 2010) provide a global feature impor-
tance metric by averaging derivatives at points obtained via random or quasi-random
sampling.

6 Simulations

Here, we present multiple simulation scenarios to highlight the workings and interplay
of FMEs, the NLM, and the cAME. In all following sections, we use Simpson’s 3/8
rule for the computation of the NLM and CTREE to find subgroups.
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Fig. 7 The target is determined by a single feature x . On the interval [−5, 0[ there is a linear feature effect.
On the interval [0, 5] the functional relationship consists of a transformed sine wave. We first use the DGP,
then add random noise on top of the data and train an SVM (Color figure online)

6.1 Univariate data without noise

We start with a univariate scenario without random noise and work directly with the
data generating process (DGP). This way, we can evaluate how introducing noise
affects the information gained from FMEs in the subsequent simulation. We simulate
a single feature x , uniformly distributed on [−5, 5], and define f as:

f (x) =
{

x x < 0

5 sin(2x) x ≥ 0

The data are visualized in Fig. 7. An FME with step size h = 2 is computed for
each observation. We use CTREE on the FMEs to find subgroups. Subsequently, all
observations’ NLM values are averaged to cANLM values on the subspaces of the
cAMEs. Our computations are visualized in Fig. 8. Vertical lines indicate tree splits,
and corresponding FME or NLM subgroup averages are indicated by horizontal lines.
In the univariate case, we see a direct relationship between the shape of the DGP and
the FMEs and NLM values. The NLM has ramifications on the interpretation of the
FMEs. For instance, for x = −3, increasing x by 2 units increases the predicted target
value by 2 units, and we can conclude that the same holds proportionally for feature
value changes of smaller magnitudes, e.g., a change of 1 unit results in an FME of 1,
etc. On the contrary, given an observation x = 1, the NLM indicates considerable non-
linearity. For this observation, we cannot draw conclusions about FMEs with smaller
step sizes than 2 units.
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Fig. 8 Univariate data without noise. For each point, moving in x direction by the length of the arrow
results in the FME / NLM indicated on the vertical axis. Left: FMEs with step size h = 2. A regression tree
partitions the feature space into subspaces (in this case intervals) where the FMEs are most homogeneous.
The horizontal lines correspond to the cAMEs.Right: NLM values and cANLMs for each subspace (Color
figure online)

6.2 Univariate data with noise

We proceed to add random noise ε ∼ N (0, 1) on top of the data and tune the reg-
ularization and sigma parameters of a support vector machine (SVM) with a radial
basis function kernel (see Fig. 7). As we now employ a predictive model, we must
avoid potential model extrapolations. The forward location of all points with x > 3
falls outside the range of the training data. After removing all extrapolation points,
we evaluate the FMEs and NLMs of all observations with x ∈ [−5, 3] (see Fig. 9). In
this case, we can visually assess that the predictions of the SVM resemble the DGP
but also factor in noise (see Fig. 7). e.g., the SVM prediction function is non-linear in
linear regions of the DGP, which affects the FMEs and NLMs. This demonstrates that
FMEs can only be used to explain the DGP if the model describes it accurately.

6.3 Bivariate data with univariate feature change

We next augment the univariate data with one additional feature in order to empiri-
cally evaluate the additive recovery property of the FME (see Appendix B.1). Due to
potential model extrapolations, we only make use of the DGP. In the first example, the
DGP corresponds to a supplementary additively linked feature x2:

f (x1, x2) =
{

x1 + x2 x1 < 0

5 sin(2x1) + x2 x1 ≥ 0
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Fig. 9 Univariate data with noise. For each point, moving in x direction by the length of the arrow results
in the FME / NLM indicated on the vertical axis. Left: FMEs with step size h = 2 and cAMEs. Right:
NLM values and cANLMs (Color figure online)

In the second example, the DGP corresponds to a supplementary multiplicatively
linked feature x2, i.e., we have a pure interaction:

f (x1, x2) =
{

x1 · x2 x1 < 0

5 sin(2x1) · x2 x1 ≥ 0

The FMEs and NLM values for both DGPs are given in Fig. 10. For the additive DGP,
given the value of x1, moving in x2 direction does not influence the FMEs due to the
additive recovery property. As a result, we receive the same FMEs with an additively
linked feature x2 as without it (as long as the feature change does not occur in x2).
For the multiplicative DGP, the FMEs now vary for a given x1 value, even though the
feature change only occurs in x1. The NLM values are both affected by the presence of
an additively linked and a multiplicatively linked feature x2, even though the feature
change only occurs in x1. As opposed to the additive DGP, the cAME tree makes use
of x2 as a split variable for the multiplicative DGP.

6.4 Bivariate data with bivariate feature change

Next, we demonstrate bivariate FMEs and the corresponding NLM. We use the same
DGPs as for the univariate feature change. The FMEs and NLM values are given in
Fig. 11. As opposed to the univariate feature change for additively linked data, the
FME values now also vary in x2 direction for a given x1 value due to the simultaneous
change in x2. The NLM indicates linearity for a multitude of observations, given
both the additive and the multiplicative DGP. For these observations, we can infer
that multiplying both step sizes by a value on the interval [0, 1] results in an equally
proportionally reduced FME.
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Fig. 10 Bivariate data and univariate feature change h1 = 2. For each point, moving in x1 direction
by the length of the arrow results in the FME / NLM indicated by the color. FMEs (left) and NLM (right).
Negative NLM values are red-colored (Color figure online)

6.5 Friedman’s regression problem

In the last simulation example, we demonstrate how FMEs are able to discover effects
within a higher-dimensional function.4 In Friedman’s regression problem (Friedman
1991; Breiman 1996), we have 10 independent and uniformly distributed variables on
the interval [0, 1]. The target is generated using the first 5 variables:

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε

where ε is drawn from N (0, σ ). We simulate 1000 instances with σ = 0 and tune the
regularization and sigma parameters of an SVMwith a radial basis function kernel on
all 10 features. Recall that our ability to conduct inference regarding the DGP depends
on how well the model approximates it. In the following illustrations, we select an

4 As our goal is to recover terms within the DGP, we refrain from computing cAMEs here.
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Fig. 11 Bivariate data and bivariate feature change h1 = 2 and h2 = 3. For each point, moving in x1
and x2 directions by the lengths of the respective arrows results in the FME / NLM indicated by the color.
FMEs (left) and NLM (right). Negative NLM values are red-colored (Color figure online)

identical step size of 0.1 for each feature. As this represents roughly 10% of each
feature’s range, it facilitates the comparison between FMEs and the expected effect
within the DGP. For instance, with a step size of 0.1 for x5, we expect an AME of
5 · 0.1 = 0.5 if the model has a good fit. In this example, negative NLM values are set
to zero (which acts as a hard bound for non-linearity) to compute the ANLM.
We first analyze the interaction pair x1 and x2 (see Fig. 12). For small values of
either x1 or x2, univariate FMEs are mostly positive, while for feature values larger
than 0.5, they are increasingly negative. Bivariate FMEs are largest for medium value
combinations of x1 and x2 or large values of one feature and small values of the other.
FMEs are negative for the product of x1 and x2 approaching 1. This, too, is expected
since the sinus curve’s point of inflection is located at π

2 , and the blue area of negative
FMEs roughly corresponds to π

2 = πx1x2, e.g., for x1 = x2 ≈ 0.707. The bivariate
NLM confirms our analysis by indicating strong non-linearity in said area of the sinus
curve’s point of inflection.
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Fig. 12 Friedman’s regression problem: Univariate and bivariate FMEs and NLMs for x1 and x2 with
step sizes of 0.1 for both features. Negative NLM values are red-colored. Around the sinus curve’s point of
inflection, FMEs turn negative, and the NLM clearly diagnoses non-linearity (red triangles)) (Color figure
online)
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Next, we evaluate univariate effects of x3, x4, and x5 (see Fig. 13). For x3, we can
see a linear trend of FMEs, which are mostly negative for values smaller than 0.5 and
positive for values larger than 0.5. This is expected, since the effect of x3 within the
DGP is quadratic but shifted by 0.5 to the right. The NLM correctly diagnoses strong
linearity for small and large values of x3 but non-linearity for the point of inflection.
Both x4 and x5 have positive linear effects on the target within the DGP, with the effect
of x4 being twice as large as the effect of x5. Given the DGP, we would expect an
increase of 0.1 in x4 to have an AME of 1 (observed AME = 0.92) and an increase
of 0.1 in x5 to have an AME of 0.5 (observed AME = 0.46). FMEs reveal both linear
patterns with the AMEs closely recovering expected effects and the NLMs indicating
strong linearity.
Lastly, we evaluate FMEs for x6 (see Fig. 14) which has no effect on the target within
the DGP. We can see a cluster of FMEs, roughly without any correlations. The AME
is approximately zero, thus accurately recovering the (non-existent) feature effect of
x6.

7 Application workflow and applied example

We now present a structured application workflow that incorporates the theory pre-
sented in the preceding sections and apply it to real data:

1. Train and tune a predictive model.
2. Based on the application context, choose evaluation points D , the features of

interest S, and the step sizes hS .
3. Checkwhether any x(i) or (xS(i)+hS, x−S

(i)) are subject tomodel extrapolations.
See Appendix A.2 for possible options.

4. Either modify step sizes so no points are subject to model extrapolations or remove
the ones that are.

5. Compute FMEs for selected observations and the chosen step sizes.
6. Optional: Compute the NLM for every computed FME.
7. Optional: Compute cAMEs by finding subgroups with homogeneous FMEs.
8. Optional: Compute cANLM values.
9. Optional: Compute CIs for cAME and cANLM.

10. Conduct local (single FMEs of interest) and (optionally) regional interpretations
(cAME and cANLM).

Thewhitewinedata set (Cortez et al. 2009) consists of 4898whitewines produced in
Portugal. The target is the perceived preference score of wine testers on a scale of 1-10,
which we model as a continuous variable. The features consist of wine characteristics
such as alcohol by volume (ABV) or the pH value.We start by tuning the regularization
and sigma parameters of an SVM with a radial basis function kernel.
We first compare our results to the analysis by Goldstein et al. (2015) who train a
neural network with 3 hidden units. They note that their model might be subject to
performance issues and that their analysis shall only exemplify the types of interpreta-
tions ICE curves are able to generate. Model-agnostic interpretations are conditional
on the trained model and can only be vaguely compared. In their analysis, the effect
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Fig. 13 Friedman’s regression problem: Univariate FMEs and NLMs with step sizes of 0.1 for features
x3, x4, and x5. The NLM indicates non-linearity around the point of inflection of the quadratic effect of
x3. It indicates strong linearity for x4 and x5 which have linear effects on the simulated target. AMEs
approximately recover the expected FME within the DGP for x4 and x5 (Color figure online)
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Fig. 14 Friedman’s regression problem: Univariate FMEs and NLMs for feature x6 with a step size of
0.1. FMEs do not exhibit any pattern, and the AME is approximately zero. This correctly diagnoses that x6
has no effect on the simulated target (Color figure online)

of increasing the pH value on the predicted wine rating differs regarding the wine’s
alcohol content. In Fig. 15, we compute univariate FMEs of the pH value for a step
size of 0.3 (range 2.72 to 3.82). Wines that fall outside the multivariate envelope of
the training data are excluded from the analysis. The AME ≈ 0 suggests there is no
global feature effect. We use CTREE to search for exactly one split and observe that
a wine’s alcohol content induces subgroups of a positive cAME of 0.12 (low alcohol)
and a negative cAME of −0.39 (high alcohol). Resampling 500 times with 63.2% of
the data results in the same split every time. This confirms our proposition that global
aggregations are generally not a good descriptor of feature effects and that dividing the
data into subgroups lets us discover varying cAMEs. Our methods add new insights
compared to ICEs by automatically detecting the interaction between the pH value
and alcohol content.
Next, we are interested in the effects of alcohol on a wine’s quality rating. Again, the
univariate AME of ≈ 0.06 suggests there is a negligible global feature effect. Recall
that we motivate FMEs as a local model explanation method first and foremost, which
can be extended to regional or global explanationswhenmultiple FMEs are considered.
We select a single wine with an ABV of 10.7 (range 8.0 to 14.2) and compute an LLTR
for its alcohol content with an NLM threshold value of 0.9. Figure 16 visualizes each
explored step size and the corresponding FME and NLM pair. Step sizes that are
associated with non-linear effects are greyed out. Indeed, we can observe a large
effect on this wine’s predicted quality rating given variations in its alcohol content.
This confirms our proposition that aggregations of individual FMEs to the AME are
not accurately representing feature effects for non-linear models and that evaluating
effects for single observations in isolation can provide more insights into the model’s
workings.
Let us now investigate interactions between both features, first extending our earlier
search for an LLTR from Fig. 16 to bivariate step sizes for the same wine, where steps
represent 20% of each feature’s IQR. We succeed in finding step size combinations
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Fig. 15 White wine data: FMEs of increasing a wine’s pH value by 0.3 on its perceived quality rating,
colored by subgroup found by CTREE (left). The colored horizontal lines indicate cAMEs. CTREE finds
subgroups whose cAMEs correspond to 0.12 for ABV≤ 11.4 and−0.39 for ABV> 11.4 (right). A similar
interaction was found by Goldstein et al. (2015)

that are associated with linear multivariate effects. Next, we evaluate how the data
set behaves as a whole, starting with an exploratory analysis of bivariate step sizes
and visualizations of FME and NLM distributions via boxplots (see Fig. 18). For
combinations of larger step sizes, we can see a large variance in effects. Analyzing
the evolution of boxplots through increasing step sizes, we gather that given low pH
values, wine quality ratings are driven by the wine’s alcohol content (resulting in an
increasing dispersion of FMEs for increases inABV); given high pHvalues, increasing
the alcohol content has a negligible effect on the wine rating (where the dispersion of
FMEs for increases in ABV stays roughly the same). Figure 19 visualizes the bivariate
distribution of FMEs over both features given a fixed combination of step sizes (+
0.3 in pH value and +1% in ABV). The largest effects of such a bivariate increase in
feature values are mostly located around lower to medium feature value combinations,
whereas FMEs are increasingly negative around higher value combinations.
Lastly, we demonstrate how multivariate FMEs can provide insights into the model’s
workings when other techniques such as ICEs fail, as they are restricted to univariate
andbivariate visualizations. In addition to the previous bivariate feature change,we add
a 0.5 g

dm3 increase to the potassium sulphate concentration (range 0.22 to 1.08). This
noticeably boosts FMEs. In Fig. 20 we visualize the FME density for the threeway
feature change and the corresponding AME and ANLM. Again, the AME would
obfuscate interpretations by suggesting a negligible effect of this trivariate feature
change on the predicted wine quality rating. In contrast to restrictive techniques such
as the ICE and PD, we can take advantage of the FME distilling feature effects into a
single value for arbitrary feature changes.

123



3028 Scholbeck et al.

Fig. 16 White wine data: Given a single wine (ABV = 10.7), we compute an LLTR (NLM threshold =
0.9) for changes in ABV. Step sizes that are associated with non-linear effects are greyed out

To sum up, we discover that the pH value influences predicted wine quality ratings
on a global scale and that the effect differs depending on a wine’s alcohol content.
ABV has large local effects on predicted wine quality ratings, which cancel each
other out when being averaged to an AME. For single observations, we can find trust
regions for linear effects. There is an interaction between the pH value and alcohol
content with intensely varying effects across observations. The LLTR for ABV can
be extended to bivariate changes in pH value and alcohol content for the same, single
wine. Furthermore, there are large multimodal effects when adding a third feature
change in the potassium sulphate concentration where—again—the AME obfuscates
interpretations by indicating a negligible global feature effect.

8 Conclusion

This research paper introduces FMEs as a model-agnostic interpretation method for
arbitrary prediction functions, e.g., in the context of ML applications. We create a
unified definition of FMEs for both univariate and multivariate, as well as continuous,
categorical, and mixed-type features. Furthermore, we introduce an NLM for FMEs
based on the similarity between the prediction function and the intersecting linear
secant. Due to the complexity and non-linearity of MLmodels, we suggest to focus on
regional instead of global feature effects. We propose a means of estimating expected
conditional FMEs via cAMEs and present one strategy to find population subgroups
by partitioning the feature space with decision trees. The resulting subgroups can be
augmented with cANLM values and CIs in order to receive a compact summary of

123



Marginal effects for non-linear prediction functions 3029

Fig. 17 White wine data: We select a single observation (i.e., a single wine) and compute an LLTR
for bivariate step size combinations of the pH value and ABV with an NLM threshold of 0.9. Step size
combinations that are associated with non-linear effects are greyed out

the prediction function across the feature space. In the Appendix, we provide proofs
on the additive recovery property of FMEs and their relation to the ICE and PD.
Given arbitrary predictivemodels, FMEs can be used to address questions on amodel’s
behavior such as the following: Given pre-specified changes in one or multiple feature
values, what is the expected change in predicted outcome? What is the change in pre-
diction for an average observation?What is the change in prediction for a pre-specified
observation?What are population subgroupswithmore homogeneous average effects?
What is the degree of non-linearity in these effects? What is our confidence in these
estimates? What is the expected change in prediction when switching observed cate-
gorical feature values to a reference category?
However, model-agnostic interpretation methods are subject to certain limitations.
They are favorable tools to explain the model behavior but often fail to explain the
underlying DGP, as the quality of the explanations relies on the closeness between
model and reality. Molnar et al. (2022) discuss various general pitfalls of model-
agnostic interpretation methods, e.g., model extrapolations, estimation uncertainty, or
unjustified causal interpretations.
Throughout themanuscript, we noted various directions that may be explored in future
work. For the selection of step sizes, one may work towards better quantifying extrap-
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Fig. 18 White wine data: Here, we explore how bivariate step sizes affect the global distribution of FME
/ NLM values. Such an analysis may provide hints about what step sizes or step size combinations drive
effects in the model. With visualizations such as in Fig. 19, we can then “zoom in” on a particular step size
combination
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Fig. 19 White wine data: Distribution of FMEs given pH and alcohol values. We use averages within
hexagons to avoid overplotting values. FME hexagon averages are mostly positive around lower to medium
value combinations of both features, while they are increasingly negative around higher value combinations

Fig. 20 White wine data: Demonstrating how FMEs can be used to interpret the model for threeway
interactions when other techniques such as ICEs fail. We evaluate distributions of FMEs for feature changes
of the pH value by 0.3, ABV by 1%, and the potassium sulphate concentration by 0.5 g

dm3 . FMEs are
multimodal. Plotting the correspondingNLMdistribution reveals considerable non-linearity for themajority
of trivariate FMEs
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olation risk. For subgroup selection, one may work towards stabilizing split search or
quantifying subgroup uncertainty. To spare computations or facilitate local interpreta-
tions, one may search for a subset of representative observations. Furthermore, FMEs
may be used for feature importance computations as well.
Many disciplines that have been relying on traditional statistical models—and inter-
pretations in terms of MEs, the AME, MEM, or MER—are starting to utilize the
predictive power of ML. With this research paper, we aim to bridge the gap between
the restrictive theory on MEs with traditional statistical models and the more flexible
and capable approach of interpreting modern ML models with FMEs.

A Background information

A.1 Decomposition of the prediction function

The prediction function to be analyzed may be very complex or even a black box.
However, there are multiple ways to decompose the prediction function into a sum
of components of increasing order. Although the goal of FMEs is not to decompose
the prediction function, it is convenient to either regard the prediction function as an
additive decomposition or to keep in mind that it may be decomposed into one. An
additive decomposition of the prediction function has the following general form:

̂f (x) = g{0} + g{1}(x1) + g{2}(x2) + · · · + g{1,2}(x1, x2) + · · · + g{1,...,p}(x) (3)

In SA, the additive decomposition is typically referred to as a high-dimensional model
representation (HDMR) or ANOVA-HDMR (Saltelli et al. 2008). Various approaches
exist to estimate Eq. (3) or a truncated variant, e.g., via recursive computations of
PD functions (Hooker 2004b, 2007), random sampling HDMR (Li et al. 2006), or
accumulated local effects (Apley and Zhu 2020). Further assumptions are needed to
make the decomposition unique, e.g., feature independence (Chastaing et al. 2012).
For instance, we may recursively compute Eq. (3) as follows:

g{0} = EX
[

̂f (X)
]

g{1}(x1) = EX−1

[

̂f (x1, X−1)
]− g{0}

g{2}(x2) = EX−2

[

̂f (x2, X−2)
]− g{0}

g{1,2}(x1, x2) = EX−{1,2}
[

̂f
(

x1, x2, X−{1,2}
)]− g{2}(x2) − g{1}(x1) − g{0}

...

g{1,...,p}(x) = ̂f (x) − · · · − g{1,2}(x1, x2) − g{2}(x2) − g{1}(x1) − g{0}

where EX−S

[

̂f (xS, X−S)
]

is typically referred to as the PD of ̂f on feature set S in
ML. Model decompositions are frequently used in variance-based SA. We refer the
reader to the overview by Saltelli et al. (2008) for more details.
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A.2 Model extrapolation

King and Zeng (2006) define extrapolation as predicting outside the convex hull of the
training data. They demonstrate that the task of determining whether a point is located
inside the convex hull can be efficiently solved using linear programming. However,
the convex hull may be comprised of many empty areas without training observations,
especially in the case of correlated and high-dimensional data. Therefore, it seems
plausible to define model extrapolation differently, e.g., as predictions in areas of
the feature space with a low density of training points. Hooker (2004a) summarizes
two main predicaments of model extrapolations. First, the model creates predictions
which do not accurately reflect the target distribution given the features. Second,
the predictions are subject to a high variance. Many model-agnostic techniques are
subject to model extrapolation risks (Molnar et al. 2022). Hooker (2007) warns against
model extrapolationswhen computingmodel decompositions.Hooker et al. (2021) call
attention to the perils of permuting feature values for feature importance computations.
It is important to note that this issue highly depends on the behavior of the chosen
model. The issue of determiningwhether themodel extrapolates essentially boils down
to quantifying the prediction uncertainty. Some models might diverge considerably
from a scenario where they would have been supplied with enough training data (high
prediction uncertainty), while other models might be relatively robust against such
issues (low prediction uncertainty). Although FMEs based on model extrapolations
are still correct in terms of the model output, they might not represent any underlying
DGP in an accurate way. Therefore, it is important to take into account (and preferably
avoid) potential model extrapolations when selecting feature values and step sizes to
compute FMEs.
For some models, built-in measures exist to quantify the prediction uncertainty (Mun-
son and Kegelmeyer 2013), e.g., the proximity measure for tree ensembles which
counts how often a pair of points is located in the same leaf node for all trees of the
ensemble (Hastie et al. 2001). The samecanbedone for the pairwise proximity between
points in the training and the test set. For instance, given n training observations and a
test observation x, we can create an (n×1) vector of proximities which can be used to
detect model extrapolations. However, it is desirable to detect model extrapolations via
auxiliary extrapolation risk metrics (AERM) (Munson and Kegelmeyer 2013) which
are independent of the trained model. Detecting an EP is similar in concept to the
detection of outliers. Although a unified definition of outliers does not exist, they are
generally considered to differ as much from other observations as to suspect they were
generated by a different mechanism (Hawkins 1980). We can therefore consider an
outlier to be drawn from a different distribution than the training data (and one that
does not overlap with it), which suits our definition of EPs. In clustering, outliers are
often found using local density-based outlier scores such as local outlier probabili-
ties (LOP) (Kriegel et al. 2009). Based on the nearest data points, LOP provides an
interpretable score on the scale [0, 1], indicating the probability of a point being an
outlier. However, clustering techniques such as LOP are often based on the assump-
tion that the data exhibits a structure of clusters or on assumptions about the clusters’
distributions. In theory, one could use various other outlier detection (also referred to
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Fig. 21 We augment the training
data (orange) with uniform
points (blue). A classification
tree partitions the feature space
into non-extrapolation areas
(predominantly occupied with
training observations) and
extrapolation areas
(predominantly occupied with
uniform Monte-Carlo samples)

as anomaly detection) mechanisms for extrapolation detection, e.g., isolation forests
(Liu et al. 2012).
Hooker (2004a) proposes a statistical test to classify a point as an EP or non-EP. It
tests whether a point was more likely to be drawn from the data distribution (non-EP)
or the uniform distribution (EP). The uniform distribution is used as an uninformative
baseline distribution. The extrapolation risk indicator R(x) corresponds to:

R(x) = U (x)

U (x) + P(x)
(4)

withU (x) being the density function of the uniform distribution and P(x) the density
function of the data distribution. R(x) has a range of [0, 1]with 0 indicating the lowest
and 1 the highest extrapolation risk. R(x) > 0.5 indicates extrapolation.As the support
ofU (x)wemay either choose the recommendations of an application domain expert or
the observed feature ranges. Equation (4) cannot be directly computed, as the density
of the training data is unknown. If x falls outside the multivariate envelope of the
training data, it is plausible to set R(x) to 1.
We may estimate Eq. (4) by creating a binary classification problem on a data set
augmented with uniform Monte-Carlo samples (Hooker 2004a). The training data is
labeled as the foreground class. Next, artificial data points are sampled from a uniform
distribution and labeled as the background class. A predictive model is trained on the
augmented data set and predicts for a given point whether it ismore probable that it was
drawn from the data distribution or the uniform distribution. Consider two independent
standard normally distributed features. We augment the training data with a uniform
Monte-Carlo sample with support [min(x1),max(x1)]×[min(x2),max(x2)] and use
CART to partition the feature space into extrapolation areas and non-extrapolation
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areas (see Fig. 21). Some training points are located outside the center rectangles in
a low-density end of the bivariate normal distribution. Therefore, it is correct to be
cautious when evaluating predictions in this area, even if a point was drawn from the
training data.
Hooker (2004a) argues that in high-dimensional settings, theMonte-Carlo sample will
leave lots of areas of the feature space unoccupied which results in poor classification
performance. Classification performance may be boosted by directly utilizing distri-
butional information about the uniform distribution instead of a Monte-Carlo sample.
This technique termed confidence and extrapolation representation trees (CERT)
exploits a property of classification trees which lets one replace the number of Monte-
Carlo points per subspace with the expected number of uniform points at each split.
Given the feature space X with n observations and a subspace X[ ] with n[ ],data
observations, the expected number of uniform points on the subspace n[ ], uniform is
proportional to the fraction of feature space hypervolume the subspace occupies:

n[ ], uniform = hypervolume(X[ ])
hypervolume(X )

· n[ ], data

For the tree growing and pruning strategy, CERT uses a mixture of both CART (e.g.,
splitting based on the Gini index) and C4.5 (Quinlan 1993) (e.g., missing values and
surrogate splits). Apart from letting us directly supply the classification tree with dis-
tributional information instead of data, its interpretability is advantageous. The tree
partitions the entire feature space at once into hyperrectangles that indicate extrapola-
tion or non-extrapolation areas. Hooker (2004a) argues that CERTprovides amarkedly
lower misclassification rate as opposed to using Monte-Carlo samples with a classifi-
cation tree. However, it is unclear whether this advantage holds for other classification
algorithms used with Monte-Carlo samples.

A.3 Marginal effects for tree-based prediction functions

DMEs are not suited to interpret piecewise constant prediction functions, e.g., clas-
sification and regression trees (CART) or tree ensembles such as random forests or
gradient boosted trees. Generally, most observations are located on piecewise constant
parts of the prediction function where the derivative equals zero. FMEs provide two
advantages when interpreting tree-based prediction functions: First, a large enough
step size will often involve traversing a jump discontinuity (which corresponds to a
tree split in RP) on the prediction function (see Fig. 22), so the FME does not equal
zero; second, measures of spread such as the variance can indicate what fraction of
FMEs traversed a jump discontinuity and what fraction did not.
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Fig. 22 A quadratic relationship
between the target y and a single
feature x . A decision tree fits a
piecewise constant prediction
function (black line) to the
training data (blue points). The
DME (slope of green arrow) at
the point x = −2.5 (yellow dot)
is zero, while the FME with
h = 1 traverses the jump
discontinuity (secant = orange
arrow) and reaches the point
x = −1.5 (yellow triangle)

B Proofs

B.1 Additive recovery

We provide several proofs on additive recovery based on a prediction function in
additive form. Any prediction function can be decomposed into a sum of effect terms
of various orders (see Appendix 1). The sum of effect terms of a feature set K is
denoted by ΘK (xK ). For notational simplicity, the union { j} ∪ K of the j-th feature
index and the index set K is denoted by { j, K }. The sum of effect terms is denoted by
Θ{ j,K }(x j , xK ).

Theorem 1 (Additive Recovery of Finite Difference) An FD w.r.t. x j only recovers
terms that depend on x j and no terms that exclusively depend on x− j .

Proof Consider a prediction function ̂f that consists of a sum, including the main
effect of x j , denoted by g{ j}(x j ), a sum of higher order terms (interactions) between
x j and other features xK , denoted by Θ{ j,K }(x j , xK ), and terms that depend on the
remaining features x−{ j,K }, denoted by Θ−{ j,K }(x−{ j,K }):

̂f (x) = g{ j}(x j ) + Θ{ j,K }(x j , xK ) + Θ−{ j,K }(x−{ j,K })
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It follows that the FD of predictions corresponds to a function that only depends on
x j , i.e., it locally recovers the relevant terms on the interval [x j + a, x j + b].

FDj,x,a,b = ̂f (x1, . . . , x j + a, . . . , xp) − ̂f (x1, . . . , x j + b, . . . , xp)

= [

g{ j}(x j + a) + Θ{ j,K }(x j + a, xK ) + Θ−{ j,K }(x−{ j,K })
]

− [

g{ j}(x j + b) + Θ{ j,K }(x j + b, xK ) + Θ−{ j,K }(x−{ j,K })
]

= g{ j}(x j + a) − g{ j}(x j + b) + Θ{ j,K }(x j + a, xK )

− Θ{ j,K }(x j + b, xK )


�

Corollary 1 (Additive Recovery of Univariate Forward Marginal Effect) The univari-
ate FME w.r.t. x j only recovers terms that depend on x j and no terms that exclusively
depend on x− j .

Proof Consider a prediction function ̂f that consists of a sum, including the main
effect of x j , denoted by g{ j}(x j ), a sum of higher order terms (interactions) between
x j and other features xK , denoted by Θ{ j,K }(x j , xK ), and terms that depend on the
remaining features x−{ j,K }, denoted by Θ−{ j,K }(x−{ j,K }):

̂f (x) = g{ j}
(

x j
)+ Θ{ j,K }

(

x j , xK
)+ Θ−{ j,K }

(

x−{ j,K }
)

The FD w.r.t. x j is equivalent to the FME w.r.t. x j with a = h j and b = 0. Using
Theorem 1, it follows that:

FMEx,h j = g{ j}
(

x j + h j
)− g{ j}

(

x j
)+ Θ{ j, K }

(

x j + h j , xK
)− Θ{ j, K }

(

x j , xK
)


�

Theorem 2 (Additive Recovery of Multivariate Forward Marginal Effect) The mul-
tivariate FME w.r.t. xS only recovers terms that depend on xS and no terms that
exclusively depend on x−S.

Proof Consider a feature set S. The power set of S excluding the empty set is denoted
by P∗ = P(S)\ ∅. The prediction function ̂f consists of a sum, including the sum
of effects of all subsets of features K ∈ P∗, denoted by

∑

K∈P∗ gK (xK ), and a sum
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of terms that depend on the remaining features, denoted by Θ−S(x−S):

̂f (x) =
∑

K∈P∗
gK (xK ) + Θ−S (x−S)

FMEx,hS =
⎡

⎣

∑

K∈P∗
gK (xK + hK ) + Θ−S(x−S)

⎤

⎦

−
⎡

⎣

∑

K∈P∗
gK (xK ) + Θ−S (x−S)

⎤

⎦

=
∑

K∈P∗
[gK (xK + hK ) − gK (xK )]


�

B.2 Relation between forwardmarginal effects, the individual conditional
expectation, and partial dependence

Theorem 3 (Equivalence between Forward Marginal Effect and Forward Difference
of Individual Conditional Expectation) The FME with step size hS is equivalent to
the forward difference with step size hS between two locations on the ICE.

Proof

FMEx,hS = ̂f (xS + hS, x−S) − ̂f (x)

= ICEx,S(xS + hS) − ICEx,S(xS)


�

Theorem 4 (Equivalence between Average Marginal Effect and Forward Difference
of Partial Dependence for Linear Prediction Functions) The AME with step size hS

is equivalent to the forward difference with step size hS between two locations on the
PD for prediction functions that are linear in xS.

Proof If ̂f is linear in xS :

̂f
(

xS(i) + hS

)

= ̂f (xS + hS) ∀ i ∈ {1, . . . , n},
xS, hS ∈ × j∈SX j (5)
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It follows:

AMED ,hS = 1

n

n
∑

i=1

[

̂f
(

xS (i) + hS, x−S
(i)
)

− ̂f
(

x(i)
)]

= 1

n

n
∑

i=1

̂f
(

xS (i) + hS, x−S
(i)
)

− 1

n

n
∑

i=1

̂f
(

xS(i), x−S
(i)
)

(5)= 1

n

n
∑

i=1

̂f
(

xS + hS, x−S
(i)
)

− 1

n

n
∑

i=1

̂f
(

xS, x−S
(i)
)

= ̂PDD ,S (xS + hS) − ̂PDD ,S (xS)


�
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