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Abstract 

Public employment services (PES) commonly apply profiling models to target labour market 
programs to jobseekers at risk of becoming long-term unemployed. Such allocation systems often 
codify institutional experiences in a set of profiling rules, whose predictive ability, however, is 
seldomly tested. We systematically evaluate the predictive performance of a rule-based profiling 
procedure currently implemented by the PES of Catalonia, Spain, in comparison to the 
performance of statistical models in predicting future long-term unemployment (LTU) episodes. 
Using comprehensive administrative data, we develop logit and machine learning models and 
evaluate their performance with respect to both discrimination and calibration. Compared to the 
current rule-based procedure of Catalonia, our machine learning models achieve greater 
discrimination ability and remarkable improvements in calibration. Particularly, our random 
forest model is able to accurately forecast LTU episodes and outperforms the rule-based model 
by offering robust predictions that perform well under stress tests. This paper presents the first 
performance comparison between a complex, currently implemented, rule-based approach and 
complex statistical profiling models. Our work illustrates the importance of assessing the 
calibration of profiling models and the potential of statistical tools to assist public employment 
offices in Spain. 
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1. Introduction 

Preventing long-term unemployment (LTU) remains a central objective of many labor market 

policies and is one of the main tasks of public employment services (PES). Low employment 

prospects and prolonged unemployment episodes can have serious consequences for the affected 

individuals. These impacts include economic deprivation through the so-called scarring effects 

(Filomena 2023), but also adverse health outcomes in the long run (Picchio and Ubaldi 2022). 

From a societal perspective, unemployment is associated with high costs for welfare services. In 

the European Union, this labour market problem is especially prevalent in countries like Spain or 

Greece with annual unemployment rates even doubling the average of the EU in 2023 (Eurostat 

2024a). This has involved a high expenditure in passive labour market policies, positioning Spain 

at the second place of the European ranking with a 1.52 % of the GDP devoted to these programs 

in 2019. At the same time, comparatively limited funding is used in these countries to support 

active labour market polices such as job search interventions (DG EMPL 2024). In this situation, 

an efficient allocation of access to such programs is essential.  

Given these manifold challenges, public employment services aim to identify individuals at risk 

of long-term unemployment via profiling procedures and allocate targeted support to increase 

labour market prospects. Accurately predicting adverse outcomes early on is a central concern in 

these efforts since support programs are sought to be allocated as preemptive measures. Given the 

promise of flexible machine learning models to achieve high prediction performance across 

various tasks (Caruana & Niculescu-Mizil, 2006; Fernández-Delgado et al., 2014), there is an 

increased interest by PES in many countries to explore profiling approaches that draw on modern 

statistical models to improve the efficiency and effectiveness of current procedures (Körtner and 

Bonoli 2023). Countries such as Belgium (Desiere and Struyven 2021), France (Gallagher and 

Griffin 2023), New Zealand (Desiere et al. 2019) and Portugal (Troya et al. 2018) either test or 

already implement machine learning models in their profiling practices. 

However, assessing the potentials of statistical profiling in specific application contexts is a 

nuanced process and requires careful comparisons to the current profiling procedures that are 
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already employed, which commonly include caseworker and rule-based approaches (Loxha and 

Morgandi 2014). While statistical models might draw on millions of data points to detect risk 

factors of LTU, caseworker and rule-based procedures may similarly make use of many years of 

“historical data” and institutional expertise and thus do not necessarily need to lead to inferior 

outcomes if those approaches are compared on the same grounds. However, such comparisons 

are complicated as detailed documentation of the specific profiling approaches employed by PES 

is often not available to the public. To the best of our knowledge, Desiere and Struyven (2021) 

and Van den Berg et al. (2024) are the few studies that explicitly compare the predictive 

performance of statistical profiling methods to rule-based and caseworker-based profiling 

implemented in the respective country (Belgium and Germany). 

The contributions of this paper are as follows. First, utilizing a unique data base provided by the 

public employment office of Catalonia, we are able to compare their currently implemented rule-

based profiling procedures with machine learning models in a highly realistic setting. The region 

of Catalonia is an interesting case of study due to its innovative use of data both to profile 

jobseekers and to evaluate public policies, something that is not typical in Spain (Junquera 2024). 

Second, we follow a broader vision of predictive performance in these comparisons, including 

measures of both statistical discrimination and calibration. This perspective recognizes that the 

predicted scores under any profiling approach should be an honest reflection of true labour market 

prospects as the mere reporting of such scores in counselling practice as a form of “weak 

intervention” can have significant consequences. Third, we present results of the first statistical 

models trained for Catalonia and the first machine learning models for Spain. We show that 

administrative databases may be used to build models that can considerably outperform rule-

based approaches currently used in profiling practice on various metrics. We further highlight the 

need of tailoring the model evaluation routine to the unique demands of the profiling context by 

considering stress tests, group-specific performance scores and model interpretability. 

Following Kuppler et al. (2022), we argue that the allocation of individuals into labour market 

programs can be  implemented via an allocation system with two stages, involving a decision and 
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a profiling step. In the decision step, the decision-maker must establish an allocation principle, a 

function that maps individuals into treatments according to certain variables. The allocation 

principle may be formulated according to distributive justice principles such as those presented 

in Elster (1992). Profiling is only required if the allocation principle includes as decision criterion 

the value of an unobserved variable at the time of decision. In the profiling step, such value is 

usually approximated through a predictive model if the criterion is a value in the future or through 

a descriptive model if the criterion is a latent value at decision time. Human discretion thus does 

not disappear in an allocation system with statistical profiling, since the selection of an allocation 

principle may often be guided by normative or political principles. The distinction between the 

profiling and decision steps further helps to channel recent critiques in the social policy literature 

to the emphasis on accuracy made by previous research on statistical models (Gallagher and 

Griffin 2023). 

In the following, we start by reviewing the literature on jobseeker profiling procedures paying 

special attention to rule-based and statistical models. We then present our database and the 

techniques used to build our prediction models. The next section reports the main results of our 

research. We go deeper into the similarity of the predictions of different models and their 

interpretation, taking into account the importance of human discretion when choosing a model 

for decision-making. Lastly, we offer some conclusions with lines of future research. 

1.1. Profiling models for jobseekers 

In the field of employment services, profiling models are used to sort jobseekers through classes 

(e.g., low or high risk of long-term unemployment) or scores (e.g., the probability of long-term 

unemployment) (Körtner and Bonoli 2023). The main goal of these tools is supporting a posterior 

action like allocating individuals into treatments, although they can also be used to describe 

jobseekers more succinctly or as an intervention of information provision (Harmon et al. 2021; 

Loxha and Morgandi 2014). In-depth reviews of jobseeker profiling models are available at Duell 

and Moraes (2023), Desiere et al. (2019), or Barnes et al. (2015). Here we focus on strands of the 
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literature related to our research: the profiling performance as a function of the degree of human 

discretion and the application of these models in public employment offices. 

It is common to distinguish three types of profiling models that differ in the degree of human 

discretion: caseworker-based, rule-based, and statistical profiling (Desiere et al. 2019; Rebollo-

Sanz 2018). Caseworker-based procedures allow each counsellor to have her own model, which 

is often implicit and unknown. Rule-based and statistical profiling establish a common model for 

all caseworkers and jobseekers. The difference lies in the specification of such function. While 

statistical models learn the parameters from data, rule-based models have parameters whose 

values are usually determined ad-hoc by employment offices or politicians (Rebollo-Sanz 2018). 

In this article, we concentrate on and contrast the performance of these two last model types. 

The performance of profiling models is usually assessed through discrimination metrics1. 

Regarding rule-based models, to our knowledge, only Desiere and Struyven (2021) have studied 

the discrimination ability of a rule-based procedure. This model, deployed in Belgium, attains an 

accuracy of 0.58 and has a higher false alarm rate for foreign (non-Belgium) individuals compared 

to Belgian nationals.  The authors conclude that their statistical model, in contrast, would allow 

better accuracy while presenting the same ratio of false alarms generated by the rule-based model. 

The downside is that they focus on a very simple rule-based model, which does not mimic the 

more complex structure these functions may have in other PES2. According to Desiere et al. 

(2019) and Loxha and Morgandi (2014), rule-based profiling has been applied at least in Ireland, 

Norway, Poland, and United Kingdom. In practice, they might be more prevalent. It is common 

that entry into active labour market programs  is governed by specific eligibility criteria  (Cronert 

2022) and they may be understood as a consequence of implicit rule-based models. Nonetheless, 

ruled-based approaches have not been sufficiently studied and their specific implementation 

details are hardly reported by PES. 

 
1 Along this paper we use “discrimination” with the meaning it has in the biostatistical literature (Austin & 
Steyerberg, 2012), i.e. as the ability to separate units that will and will not experience the event.  
2 See Appendix A for a graphical representation of one of the rule-based models studied in this article. 
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Concerning statistical models, the literature is more extensive. They have been implemented and 

publicly assessed by the PES of Austria, Belgium, Denmark, Ireland, or Netherlands (Desiere et 

al. 2019). Pooling all of them, their prediction accuracies range from 0.61 to 0.85. Academics 

have also recently proposed statistical models for Germany, attaining a ROC-AUC of 0.75-0.77 

(Bach et al. 2023; Kunaschk and Lang 2022); Finland, with a ROC-AUC of 0.8 (Viljanen and 

Pahikkala 2020), or Slovakia, with an accuracy of 0.918 (Gabrikova et al. 2023). The range of 

ROC-AUC found in the literature is 0.7-0.8 (see Appendix B for a detailed comparison). Research 

by Van den Berg et al. (2024) or Arni and Schiprowski (2015) has also shown that classifications 

made by caseworkers perform substantially worse than a statistical model in terms of sensitivity.  

In Spain, only Felgueroso et al. (2018) and Molina Romo et al. (2023) have explored the 

development of statistical profiling models3. Both articles estimated generalized linear models, 

but they experimented with different sets of predictors. The model of Felgueroso et al. (2018) 

incorporates classical covariates and indicates age as one of the most important predictors of long-

term unemployment4.  A similar version has already been used with a private provider of ALMP 

(Casanova et al. 2021). Molina Romo et al. (2023) studied the prediction ability of personality 

traits, personal networks, and job expectancies separately. Their results go in line with the findings 

of Van den Berg et al. (2024), with expectancies as a remarkable predictor of long-term 

unemployment in both cases. Our research tries to integrate both perspectives by constructing a 

long panel of episodes that incorporates information on lagged outcomes, which are possibly 

related to unobservables (Caliendo et al. 2017). 

 
3 There is a tool called “Send@” developed by the central public employment office (SEPE) that is closer 
to a targeting model in the sense of Körtner and Bonoli (2023). Profiling models try to predict a potential 
outcome after no intervention (Pr[𝑌(0) = 𝑦|𝑋]), whereas targeting models focus on a vector with an 
element for each potential outcome after going to a certain intervention (𝐯 = (Pr[𝑌(𝑑1) =
𝑦|𝑋] , Pr[𝑌(𝑑2) = 𝑦|𝑋] , … , Pr[𝑌(𝑑𝐾) = 𝑦|𝑋])). According to Muñiz (2021), Send@ detects those 
individuals that had certain covariates values 𝑿 = 𝒙 with the highest improvement in labour insertion (𝑖 ∈
𝐵𝑒𝑠𝑡𝒙). Then, it offers two sorted vectors of conditional probabilities on interventions in which they 
participated (𝐯𝟏 = (Pr[𝐷 = 𝑑1|𝑖 ∈ 𝐵𝑒𝑠𝑡𝒙] , … , Pr[𝐷 = 𝑑𝐾|𝑖 ∈ 𝐵𝑒𝑠𝑡𝒙] )) and on the occupations of interest 
of these individuals (𝐯𝟐 = (Pr[𝑂 = 𝑜1|𝑖 ∈ 𝐵𝑒𝑠𝑡𝒙] , … , Pr[𝑂 = 𝑜𝐽|𝑖 ∈ 𝐵𝑒𝑠𝑡𝒙])). 
4 It is difficult to judge the importance of each covariate, since all of them are categorical (usually with 
more than two levels) and only average marginal changes for each category are presented. 
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1.2. Current profiling in Catalonia 

The public employment office of Catalonia (Servei Públic d'Ocupació de Catalunya; SOC) 

already has an allocation system for jobseekers in place. Its profiling model is a mixture of a 

caseworker and rule-based procedures, where the latter is used for assisting office workers in 

allocating individuals to interventions. It includes an allocation principle for the first two 

interventions of each unemployment episode experienced by an individual5, which facilitates her 

placement among a set of job search assistance actions. Still, the office admits that the scores of 

its profiling step might also assist future decisions (SOC 2016). This system uses two sets of 

variables as decision-relevant criteria: the so-called occupational variables (combined through the 

Q models) and criticality variables (combined through the C function). Here we focus on the Q 

models, since they are the main tool of diagnosis and allocation (SOC 2016). Caseworker-based 

models are applied for further decisions and to temporally rank the treatments between individuals 

(SOC 2016). They are not documented and cannot readily be evaluated empirically. Let us review 

the inputs, processing, and outputs of the Q models. They take as input administrative data on 

labour markets and data collected through a questionnaire administered to the jobseeker. The first 

set of variables incorporate information on the economic environment, especially unemployment 

rates by occupation and sector. The second set includes covariates on work experience and on the 

skills of the individual6. Note that it does not consider variables on individual unemployment or 

inactivity episodes in the past. The processing of the information is made through two functions: 

a rule-based model that assigns a number to each individual representing how employable they 

are (Q-S) and a step function that assigns the individual to a certain group (Q-G).  

The important issue is that the weight attached to each variable was not assigned through a 

statistical method, but rather through human intuition. Q-S is a sum of coefficients attached to 

qualitative variables, whereas Q-G may be understood as a decision tree. Thereby, we end up with 

 
5 For some cases, it only defines the allocation principle for the first intervention. A graphical representation 
of the decision functions is available in Appendix A. In any case, these allocation principles are only 
formulated vaguely and disconnected to justice principles. 
6 The complete list of variables used in Q models is available in Appendix D. 
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two outputs: a continuous value on the assessed employability (𝑆𝑖𝑡 ∈ [0,139]) and a discrete value 

for the assigned group (𝐺𝑖𝑡 ∈ {A1, A2, A3, A4, B1, B2, B3, C1, C2, D, Z1, Z2, Z3, E, R6}). Although 

they are not explicitly framed as predictive models, we argue that we can interpret Q-S and Q-G 

as intended proxies of the (long-term) unemployment probability. 

The design of the profiling process establishes that 𝑆𝑖𝑡 and 𝐺𝑖𝑡 must be calculated for the same 

person 𝑖 at different points in time 𝑡, with a maximum of once a month (SOC 2016). Such 

calculations may be triggered by the beginning of a intermediation claim (demanda de empleo), 

changes of such claim, or the ending of an ALMP. The implementation of the profiling process 

was analysed by (Everis 2017), finding that 45 % of caseworkers thought that the efficacy of Q 

was either low or moderate. Moreover, they also report that caseworkers manually changed the 

output of Q-G in 20 % of cases. 

2. Methods 

2.1. Data 

To train our profiling models we have been granted access to administrative data provided by the 

public employment office of Catalonia (SOC). Four datasets have been matched: the dataset on 

employment claims (SICAS), on labour contracts (Contrat@), on active labour market programs 

(Galileu), and on benefits or passive labour market programs offered by the central PES. In a first 

stage, we have obtained a simple random sample of 25,000 individuals for four focal years (2017, 

2018, 2019, and 2022) from the population of individuals registered as unemployed in that year. 

In a second stage, we have extracted information on selected variables for each sampled individual 

of each dataset for the time window [2015, 2023].   

The next step has been the construction of the dataset of labour market episodes and the dataset 

of policy episodes. An episode is simply defined as a closed interval of time started at day 𝑡 and 

ended at day 𝑡′ by individual 𝑖. The first kind of episodes collects episodes of participation in the 

labour market, whereas the second registers episodes of participation in active or passive labour 
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market policies. For a given individual, labour market episodes are non-overlapping time 

intervals, but policy episodes may overlap in time. 

We distinguish three types of labour market episodes: employment episodes, unemployment 

episodes, and inactivity episodes. A new labour contract configures a new employment episode, 

whilst unemployment and inactivity episodes are defined according to the type of intermediation 

claim registered7. An exhaustive map of types of claims to the distinction of unemployment or 

inactivity is available in Appendix C. Some of the factors that define episodes of inactivity are 

temporary inability, permanent inability, prison entry, or family care. Thereby, unemployment or 

inactivity episodes are defined as the presence or succession of intermediation claims of such 

type. The dataset of policy episodes distinguishes four types of episodes: participation in adult 

training, participation in job search assistance or brokering, participation in an employment 

subsidy, and receipt of a benefit. 

Table 1 – Sample size and events of interest by year in which the episode started. 

Year Unemployment 
episodes 

LTU episodes Individuals Individuals with at 
least one LTU ep. 

2017 44,852 9,757 (21.8 %) 31,524 9,757 (30.95 %) 
2018 46,548 9,468 (20.3 %) 32,639 9,468 (29.01 %) 
2019 47,648 11,618 (24.4 %) 33,656 11,618 (34.52 %) 
2020 57,473 18,825 (32.8 %) 37,096 18,825 (50.75 %) 
2021 32,985 7,612 (23.1 %) 23,355 7,612 (32.59 %) 
2022 34,922 5,803 (16.6 %) 24,952 5,803 (23.26 %) 
Total 292,725 63,083 (21.55 %) 85,398 54,781 (64.15 %) 

 

The final step has been to compile a dataset of unemployment episodes. Concerning the outcome, 

following the bulk of the literature on jobseeker profiling (Körtner and Bonoli 2023), our response 

variable identifies whether an unemployment episode is a long-term unemployment episode. An 

unemployment episode is defined as long-term if it lasts at least 365 days (Eurostat 2024b). Table 

 
7 In Spanish, “demanda de empleo”.  
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1 summarizes the number of jobseekers and unemployment episodes by year and the prevalence 

of the event of interest, i.e. long-term unemployment (LTU). 

Regarding predictors, our data includes both time-invariant and time-variant covariates. Like in 

Bach et al. (2023), we have condensed the time-variant information on past labour market and 

policy episodes into variables that summarize (un)employment histories. Table 2 displays the 

groups of predictors used in our models with some examples of specific variables. This list of 

covariates follows the work of Bach et al. (2023) for Germany with an adaptation to the Catalan 

setup. A complete list of predictors is available in Appendix D and summary statistics on the 

socio-demographic features of our sample are presented in Appendix E. 

To compare our prediction models with the current profiling approach of the SOC, we use an 

extra dataset with profiling scores derived from the rule-based Q model. The current 

implementation of Q allows that an individual may receive one 𝐺𝑖𝑡, but more than one 𝑆𝑖𝑡 for the 

same episode (i.e., for the same starting date). This is possible because 𝑆𝑖𝑡 is actually defined for 

each occupation of interest (at most three). To facilitate the comparison with our models, we have 

calculated 𝑆𝑖𝑡 as the average of the score obtained for each occupation of interest. 

Table 2 – Groups of predictors 

Group Number of 
predictors 

Predictors (examples) 

Employment 18 
Days since last employment, days since last full-time 
employment, occupation of last employment… 

Unemployment 5 
Total duration of unemployment episodes, number of 
unemployment episodes, days since last 
unemployment episode… 

Inactivity 3 
Total duration of inactivity episodes, number of 
inactivity episodes, mean duration of inactivity 
episodes. 

Benefits 5 
Started the unemployment episode during a benefit 
interval, number of benefit episodes completed, total 
duration of benefit episodes… 

ALMP 9 
Total duration of job search assistance episodes, total 
duration of adult training episodes, total duration of 
employment subsidy participations… 

Socio-demographics 37 Sex, nationality, age, field of education… 
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2.2. Analytical strategy 

2.2.1. Development of models 

We build profiling models based on four prediction techniques, covering conventional regression 

models and tree-based machine learning algorithms: unpenalized logistic regression, penalized 

logistic regression (Friedman et al. 2010), random forest (Breiman 2001b), and gradient boosting 

machine (Chen & Guestrin, 2016). Logistic regression is the most common technique used for 

jobseeker profiling (Desiere et al., 2019) and is employed as a baseline. We considered the classic 

linear and additive specification, which ensures a high degree of interpretability. The problem is 

that, however, this functional form is often poorly justified. Machine learning methods are, on the 

other side, highly flexible regarding the relationship between predictors and the outcome. 

Nonetheless, that flexibility provokes a lower degree of interpretability. 

To estimate all models, we follow the dataset partition that is usually applied in the machine 

learning literature to avoid overfitting and provide realistic evaluations (Kuhn and Johnson, 

2019). Thereby, the data is split into three subsets: training, evaluation, and test data. The training 

subset is used to tune the internal parameters of the methods (if any) and to estimate the 

coefficients of the model. The evaluation subset is employed to select the probability threshold to 

assign the estimated class (i.e., LTU or non-LTU). The final models are assessed with the test 

subset. The training, evaluation and test subsets are constructed through two partitions. Firstly, 

following Bach et al. (2023), we assign the observations from years 2017 to 2020 to a training 

plus evaluation subset and reserve the 2022 data for the test subset. Secondly, we use a stratified 

random resampling to separate the training (80 % of units) and the evaluation (20 % of units) 

subsets. We use the outcome as the stratifying variable to guarantee a sufficient presence of events. 

Lastly, the hyperparameters of each model are tuned in the training subset with respect to ROC-

AUC through temporal cross-validation (Hyndman & Athanasopoulos, 2018), departing from the 

grid of candidates available in Appendix F. 
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The test subset is further reduced to a restrictive test subset. Note that one of the contributions of 

our article is the comparison of model coefficients estimated by humans (rule-based models) and 

statistical methods. This requires a test dataset in which the predictions of both the current (Q) and 

the proposed (K) models can be compared. To achieve this, we take the episodes already profiled 

with Q in 2022 and predict the score/class they had received in case they had been profiled with 

our models. We apply two restrictions to this dataset of Q-profiled episodes in 2022 to have a fair 

and realistic comparison between both profiling approaches. 

The first filter levels the playing field between the current and the proposed models. The reason 

is that the variable being predicted is eventually also affected by the (prediction-based) 

interventions. That is, if the allocation had followed the recommendations of the Q predictions 

and the ALMP had positive effects on re-employment, the current profiling would face a “blessed 

curse”: it would register a bad predictive performance when, in the absence of interventions, it 

might in fact have a good performance. To bypass this problem, we are going to define 𝐴𝑖𝑒 as the 

number of ALMPs in which the individual 𝑖 participated during the unemployment episode 𝑒. 

Therefore, removing those episodes with 𝐴𝑖𝑒 > 0, we assessed the models with the data 

𝑡𝑒𝑠𝑡\{𝐴𝑖𝑒 > 0}. The second filter focuses the attention on the target groups of the public 

employment office of Catalonia. Nowadays, this agency refers people who do not know neither 

Catalan nor Spanish to other public administrations to give them other treatments. Thereby, it 

would not be reasonable to prioritize a given model just because it is more sensitive to a group of 

individuals who eventually would not be treated by the office. For that reason, we removed 

episodes related to persons without knowledge neither of Catalan nor Spanish. After these two 

restrictions, we ended up with a so-called restrictive test subset of our data. 

2.2.2. Validation of models 

To validate the models, we focus on two dimensions of performance: discrimination and 

calibration. Discrimination is the usual objective of researchers on jobseeker profiling and tries 

to separate high-risk from low-risk individuals. It can be studied through ranking and 

classification metrics. Calibration focuses on the difference between the proportions of predicted 
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and observed events. It has been called “the Achilles heel of predictive analytics” (Van Calster et 

al., 2019) since it is often neglected in model evaluations although it can have significant impacts 

in practice. It is especially important for employment services, since caseworkers can inform 

jobseekers about their predicted risk as a form of intervention to foster an intensified job search. 

Such interventions may trigger important individual decisions and thus we need reliable 

predictions. 

Concerning discrimination, firstly, the ranking metrics we consider are the area under the receiver 

operating characteristic or c-statistic (ROC-AUC) and the area under the precision-recall curve 

(PR-AUC). These statistics provide summaries on the discriminatory performance of the models 

while remaining agnostic (silent) regarding the classification threshold. Note that they can only 

be computed for profiling functions that output a value measured at the ordinal level. 

Secondly, we assess classification performance through three metrics: accuracy, precision, and 

sensitivity. The accuracy statistic gives the same weight to correct predictions of events (LTU) 

and non-events (non LTU). It is reasonable to assume that employment offices are more interested 

in detecting events than non-events, and the sensitivity statistic is calculated for this purpose. 

Nonetheless, classifying all episodes as predicted events would attain a perfect sensitivity while 

being a highly non-efficient solution if treatment is assigned through predictions. Precision 

informs on the efficiency of predictions by confronting true positives with false positives8.  

Unlike ranking performance metrics, these quantities need the establishment of a threshold to 

assign scores to classes. Q is a rule-based profiling approach, and thus the threshold typically 

would not be defined based on a statistical procedure in practice. For the group profiling (Q-G), 

we classified as predicted events those episodes that were originally assigned to the groups linked 

to the most intense treatments (individual interventions to set the jobs of interest)9 (SOC, 2016). 

For the score profiling (Q-S), we consider two options. Firstly, we apply the standard procedure 

 
8 Appendix G reports additional results on two more metrics of classification performance: the Kappa 
statistic (a chance-corrected version of accuracy) and the false alarm rate (or rate of false positives). 
9 Appendix A describes in detail the different interventions. 
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for probability models: label a unit as “event” if its value is closer (or equally close) to the upper 

limit of the measure10. We called this �̂�𝑆50, since with a probability measure the class is equal to 

𝑒𝑣𝑒𝑛𝑡̂ = 𝑌𝑒𝑠 if Pr̂[𝑒𝑣𝑒𝑛𝑡] ≥ 0.5. Secondly, we used a stricter function that classifies a score as 

an event if it fits into the top 25 % of possible values of the measure. The transformations from 

scores to classes followed the functions: �̂�𝑆25 = {
𝑌𝑒𝑠     𝑆 ≤ 0.25(139)
𝑁𝑜     𝑆 > 0.25(139)

;  �̂�𝑆50 =

{
𝑌𝑒𝑠     𝑆 ≤ 0.5(139)
𝑁𝑜     𝑆 > 0.5(139)

;  �̂�𝐺 = {
𝑌𝑒𝑠     𝐺 ∈ {C1, C2, D}
𝑁𝑜      𝐺 ∉ {C1, C2, D}

. 

The four techniques employed for our models output an estimated probability of LTU, which we 

denote �̂�. To transform this estimated score to an estimated class, we applied two different policies 

that represent two different rationales. 

Classification policy A interprets probabilities as propensities by understanding binary 

phenomena as the output of a latent variable model (Long and Freese, 2006). Thereby, the 

probability threshold is a parameter that exists and whose value may be learned. The probability 

threshold will be denoted by 𝐶 and will be considered as a tuning parameter. Specifically, this 

tuning parameter will be learned in the additional evaluation subset. We assume that SOC is more 

interested in increasing sensitivity (detecting the true events of interest, i.e. the true LTU 

episodes), but not at any cost. Therefore, the cross-validation will try to maximize the Youden’s 

𝐽, an equal compromise between specificity and sensitivity. Following the taxonomy of Elster 

(1992), this classification policy is in line with an admission procedure for allocating goods, since 

it does not establish the number of treatment slots in advance. 

Classification policy B follows the rationale of a limited budget to fund public policies. The logic 

is that public administrations can only pay a finite number of services. To fix the number of 

predicted high-risk individuals, this function classifies as high-risk jobseeker only those 

individuals whose estimated probability is at least equal to the nineth decile of the predicted 

 
10 Or the opposite if the measure is reversed, as in our case.  
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probability estimated with the evaluation subset (�̂�9
(𝑒𝑣𝑎))11. If the office wanted to treat only those 

at the top of the distribution, it would require anticipating the value of �̂�9
(𝑒𝑣𝑎) for the current year 

to allocate individuals immediately without the need to cumulate all the candidates. The reasoning 

is that the demand of services should not change too much in the short run. In a way, this strategy 

introduces elements of the decision model into the predictive profiling model. In terms of Elster 

(1992), this classification policy fits with a selection procedure for allocating goods, because it is 

a relative allocation based on a ranking of candidates. 

In formal terms, �̂�𝐴 = {𝑌𝑒𝑠     �̂� ≥ �̂�(𝑒𝑣𝑎)

𝑁𝑜     �̂� < �̂�(𝑒𝑣𝑎)
;   �̂�𝐵 = {

𝑌𝑒𝑠     �̂� ≥ �̂�9
(𝑒𝑣𝑎)

𝑁𝑜     �̂� < �̂�9
(𝑒𝑣𝑎)

. 

Regarding calibration, two statistics are calculated following two stringency levels of this 

dimension. Firstly, mean calibration is approximated through the ratio of the proportion of 

observed events divided by the proportion of expected events, denoted as O:E (Van Calster et al., 

2019). Secondly, moderate calibration is assessed through flexible calibration curves summarized 

with the integrated calibration index proposed by Austin & Steyerberg (2019). This statistic is a 

weighted mean of the absolute difference between the diagonal line of perfect calibration and the 

calibration curve obtained with a restricted cubic spline of five knots. 

Note that to evaluate our models we make predictions at the beginning of each unemployment 

episode (for the test subset) or at the moment of the Q prediction (for the restrictive test subset, 

see section 2.2). 

2.2.3. Model similarity and interpretation 

Even if two models achieve similar classification performance, their unit predictions might differ 

(Breiman, 2001a). This phenomenon has been called model discrepancy (Marx et al. 2020) or 

model multiplicity (Black et al. 2022). The more discrepancy there is between two models, the 

higher are the consequences of deploying one model rather than the other. To measure how 

 
11 In Bach et al. (2023), the quantile is calculated with the test data. This might preclude the implementation 
of the profiling model because such quantile would have to be calculated at each individual profiling. 



15 
 

prevalent this phenomenon is in our case, we use Cohen’s Kappa to approximate the degree of 

overlap between the predictions of models once agreement by chance is subtracted (Geirhos et al. 

2020).  

We further apply the rationale of stress tests in our model evaluation (D’Amour et al. 2022). Stress 

tests are assessments of model performance using specific inputs designed to evaluate additional 

criteria of interest. The first test is called shifted performance evaluation and checks the model 

performance using as input a sample with a different distribution to the one presented by the 

training sample. We implicitly incorporate this approach by evaluating models with the restrictive 

test data.  The second test is named stratified performance evaluations and analyses whether 

performance metrics are similar in certain strata of the population. We know that SOC (2023) is 

specially interested in two subpopulations, older jobseekers (> 45 years old) and older female 

jobseekers, and thus we focus on these groups. 

Lastly, to facilitate the interpretation of the importance of each predictor in our models, we 

estimate permutation-based variable importance (Fisher et al. 2019). Specifically, we consider the 

ROC-AUC as the loss function, and we run ten permutation rounds with a random sample of 

10,000 observations to reduce computational burden. This ranking of predictors is especially 

interesting in the jobseeker profiling setup as it can provide valuable information for caseworkers.  

To foster transparency and replicability, we publish all the R code necessary to construct both the 

datasets and the statistical models12. 

3. Results and discussion 

3.1. Performance comparison 

We present the performance of all techniques for predicting LTU in the test subsets. In a first step, 

we focus on a comparison of our statistical profiling models.  Next, we assess the performance of 

 
12 Code is available at https://osf.io/jye6q/?view_only=3ef06ff290214bfd88f77954d7fb1b73.  

https://osf.io/jye6q/?view_only=3ef06ff290214bfd88f77954d7fb1b73
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the statistical models against the current profiling tools in Catalonia to assess whether changing 

the profiling scheme may be worthwhile to consider.  

The first results evaluate the ranking performance of our models considering the full range of 

probability thresholds. Table 3 shows the area under the ROC and PR curves and calibration 

metrics for the four prediction models considered. In line with results for Germany (Bach et al. 

2023), tree-based methods do better both at the ROC and at the PR functions, but the 

improvements they present are modest. The gradient boosting model wins in both cases, followed 

by random forests, which is reasonable due to the flexibility of these techniques. Considering that 

a ROC-AUC of 0.5 would be simply a product of chance and that this statistic reaches its 

maximum at 1, the four models achieve notable good performance. Our results for the ROC are 

slightly superior to the ones found in Belgium (Desiere and Struyven 2021) and Germany (Van 

den Berg et al. 2024), although these studies define LTU as a six-months interval. Using the same 

temporal window, the results of Bach et al. (2023) are very close to ours. 

Table 3 - Ranking performance of final models in the test subset (2022). 

 ROC-AUC PR-AUC O:E ICI 
LR 0.742 0.398 0.497 0.170 
PLR 0.745 0.396 0.503 0.166 
RF 0.758 0.419 0.531 0.147 
GB 0.763 0.433 0.603 0.110 

 

Regarding calibration, the gradient boosting (GB) model presents the most reliable probabilities 

both at the mean and at the whole range. The O:E statistic shows the correspondence between the 

average probability of LTU computed from the actual test data and from our predictive models. 

Thereby, it is desirable to be close to 1. Note that all models overestimate the probability of an 

LTU event, although the GB algorithm most closely approaches the actual probability. 

Considering a more stringent measure of calibration, the ICI informs on the average error of the 

predicted probabilities, so it is better to be close to 0. This time the differences between models 

are smaller, but the gradient boosting machine wins again. Table 3 shows that the average error 



17 
 

when predicting the probability of LTU is 11 p. p. when using this type of prediction model. To 

our knowledge, we are the first in the jobseeker profiling literature to measure calibration in this 

fine-grained sense. 

A pertinent question for the public employment office is whether the adoption of predictive 

models is really worth the effort. To answer that question, we present in Table 4 performance 

metrics for a comparison of the current Q-S model with our proposed models using the restrictive 

test data. Concerning discrimination, the results indicate that all statistical models outperform the 

rule-based approach and in this case random forest performs best in both ranking metrics. The Q 

model (Q-S) has a relatively poor performance if we look at the probability of concordance (ROC-

AUC) or the precision-recall curve. If we randomly picked one episode from the strata of actual 

events and another from the strata of actual non-events, using the Q-S model, the probability that 

the actual LTU episode had higher predicted probability is 59.3 %. Compare this discrimination 

ability with the 73.5 % concordance probability of the random forest. The performance gap 

between random forest and Q-S is even larger if we attend to the precision-sensitivity function. 

Table 4 - Ranking performance of final models in the restrictive test subset. 

 ROC-AUC PR-AUC O:E ICI 
Q-S 0.593 0.430 0.609 0.223 
LR 0.646 0.480 0.937 0.123 
PLR 0.648 0.479 0.943 0.118 
RF 0.735 0.603 0.908 0.037 
GB 0.696 0.557 1.015 0.067 

 

Concerning calibration, the improvements obtained with the best statistical model are even bigger. 

The ICI column of the Table 4 shows that the average error of the random forest model is small 

(only 3.7 p. p.). If we compared it with the current model, we would require multiplying it by six 

to obtain the average error of the Q-S model. In case we considered a softer version of calibration, 

the gradient boosting model would be the winner by generating an almost perfect calibration at 

the mean (O:E = 1.015). Figure 1 shows the calibration curves of each model in the same plot to 

compare the calibration across the whole support. The profiling model developed by Felgueroso 
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et al. (2018) for all Spain obtained an O:E statistic of 0.999, which is in practice equivalent to the 

result of our best model. 

It is interesting that this time the gradient boosting model performs worse than the random forest 

in most metrics, although it is still remarkably better than the rule-based model. This might 

suggest that the restrictive test subsample in which we are re-evaluating these techniques has not 

the same covariate distribution as the full test subset. We checked the first moment of the 

predictors and found that the highest differences were in the proportions of people whose last job 

was not temporary (11.4 p. p. more in the test subset), required commuting (9 p. p. more), or with 

a tertiary employment episode (7.2 p.p. more)13. The gradient boosting model estimates its 

parameters paying more attention to the units wrongly classified during the learning process. Our 

results indicate that this model is less robust to shifts in the covariate distribution in our 

application context. In light of the previous results, we consider the random forest as the “best” 

model. 

 

Figure 1 – Calibration curves in the restrictive test subset for each model. 

 

 
13 Figures with the quantitative and qualitative variables with the highest differences between samples are 
included in Appendix G. We removed from these lists the indicators of missingness. 
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The second set of results take side on the probability threshold to classify an episode as high-risk. 

Table 5 presents the classification performance of our models in the (full) test subset, i.e. with 

data from 2022. Following policy A, the classification that uses an optimized threshold, we can 

see how the first three methods (LR, PLR, RF) present very similar results on the discrimination 

metrics. Accuracy and precision slightly improve with the random forest, although it is the 

gradient boosting machine which excels in both statistics. We achieve remarkable results for 

sensitivity, presumably the most important metric for employment services, with a value of 0.793 

for the random forest. This high sensitivity is also accompanied by a rise in precision in the case 

of RF, which is good news in terms of efficiency. Lastly, notice that the gradient boosting model 

obtains a worse sensitivity result, which might indicate overfitting. The RF model achieves a 

better sensitivity than the statistical profiling model proposed for Spain in Felgueroso et al. 

(2018), who attained a sensitivity of 0.68214. 

Following policy B, the framework that prioritizes the budget, the results are much better in terms 

of accuracy. On the other side, there is a substantial decrease in sensitivity specifically for the 

tree-based methods. These techniques correctly predict the outcome classes for 83 % of the 

episodes, but the true positives do not represent a remarkable share of these forecasts. Continuing 

with the budget constrain, a compromise between policy A and B might be to use an alternative 

outcome variable: the duration of the unemployment episode in days. The ordered nature of this 

response variable might allow for sorting jobseekers and showing the PES the next candidate to 

be treated in case there is available funding to do so.  

  

 
14 Notice that if we had followed their same procedure, we could have gotten even higher sensitivity. They 
chose the probability threshold with the test data while measuring sensitivity, whereas we fixed it in a 
previous step using the evaluation subset. 



20 
 

Table 5 – Classification performance in the test subset based on different policies. 

 Accuracy Precision Sensitivity 
Policy A    
LR 0.572 0.251 0.794 
PLR 0.580 0.254 0.790 
RF 0.595 0.263 0.793 
GB 0.667 0.296 0.729 
Policy B    
LR 0.782 0.377 0.483 
PLR 0.782 0.378 0.482 
RF 0.830 0.481 0.323 
GB 0.826 0.469 0.362 

 

It is interesting to compare the classification performance of our models with the current methods. 

Setting a specific threshold also allows to assess the discrimination ability of the Q-G profiling 

model. Table 6 presents the results of such comparison, this time using data from the restrictive 

test subset. The first panel shows the metrics of the rule-based models. We can see how the 

quantitative version (Q-S) attains a very high sensitivity when its threshold is located at the middle 

of its codomain (Q-S50). This is mainly achieved through a very indiscriminate classification of 

episodes, as suggested by a high false alarm rate (see Appendix G). When the classification 

threshold is located at the top 25 % (Q-S25), the rule-based model is more precise, but at the cost 

of a very low sensitivity. The qualitative version (Q-G) presents a poor 0.204 in sensitivity with 

an improvement in accuracy against the alternative Q-S50.  

The patterns observed for our statistical models are similar to those obtained with the full test 

subset. In a nutshell, we have higher specificity when based on thresholds optimized with 

Youden’s 𝐽 (policy A) and higher accuracy when focused on the budget (policy B). When 

sensitivity is placed as a high priority, the random forest model under policy A is the model that 

performs best in this task. With a sensitivity of 0.860, this algorithm surpasses the discrimination 

ability of the rule-based Q-S50. Moreover, it improves it substantially both at accuracy and 

precision. The gradient boosting model may serve as a compromise between policy A and B, since 

it attains a good sensitivity but maintains decent results in accuracy and precision. 
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Table 6 – Classification performance in the restrictive test subset based on different policies. 

 Accuracy Precision Sensitivity 
Q-S25 0.641 0.482 0.090 
Q-S50 0.454 0.381 0.852 
Q-G 0.605 0.395 0.204 
Policy A    
LR 0.562 0.432 0.729 
PLR 0.567 0.436 0.735 
RF 0.579 0.452 0.860 
GB 0.613 0.472 0.730 
Policy B    
LR 0.653 0.517 0.404 
PLR 0.653 0.516 0.406 
RF 0.699 0.619 0.402 
GB 0.679 0.578 0.367 

Note: 𝑁 of the restrictive test subset = 11,082. 

With the analysis of calibration and discrimination, we have shown that our random forest model 

using policy A (RF-A) outperforms the rule-based model Q-S50 in all the metrics. Its added value 

is especially remarkable in the reliability of its predictions, since the Q-S50 is poorly calibrated. 

On the contrary, our random forest model achieves a remarkable calibration throughout the entire 

range of probabilities. It also shows an excellent sensitivity (0.860), with improvements in 

precision and accuracy that may rise the efficiency of treatment assignments. 

3.2. Model similarity and interpretation 

In this section, we dig into the specific episodes flagged by each method and explore how the 

statistical models utilize the training information. We first measure the degree of model similarity, 

followed by results of stress tests and the interpretation of the most important predictors of each 

model.  

Table 7 provides the Kappa coefficients of all model comparisons, both for the rule-based and for 

the statistical models. When comparing the three rule-based models with our alternative statistical 

classifiers, the agreement between models is quite low. This might be explained by the fact that 
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the rule-based models mainly represent random classifiers15. Therefore, we interpret this 

disagreement not as a consequence of both approaches approximating different data generating 

(sub)processes, but simply as a lack of fit of the rule-based models. If we focus on the statistical 

models, two results may be highlighted. Firstly, as expected due to the low penalization of the 

tuned PLR models (see Appendix F), the agreement with the model predictions of LR is almost 

perfect for both classification policies. Secondly, the two big competitors in terms of performance 

(RF and GB) have an intermediate agreement, especially for policy A. This invites us to review 

the consequences of choosing one model instead of the other. 

Table 7 – Kappa coefficients between predictions of different models in the restrictive test 

subset. 

 Q-S25 Q-S50 Q-G LR PLR RF GB 
Q-S25 1       
Q-S50 0.036 1      
Q-G 0.044 0.051 1     
Policy A        
LR 0.016 0.014 0.018 1    
PLR 0.015 0.017 0.017 0.925 1   
RF 0.018 0.031 0.025 0.576 0.587 1  
GB 0.018 0.011 0.028 0.703 0.715 0.671 1 
Policy B        
LR 0.014 0.011 0.029 1    
PLR 0.007 0.009 0.029 0.949 1   
RF 0.031 0.025 0.037 0.587 0.586 1  
GB 0.017 0.019 0.046 0.723 0.725 0.732 1 

 

When deciding which model should be deployed, consequences of model discrepancies may be 

clarified with so-called stress tests. The first test, the shifted performance evaluation, was carried 

out when analysing the differential discrimination and calibration of models with the restrictive 

test data. Prioritising sensitivity, the random forest had the best performance and also attained the 

highest degree of calibration measured through the entire probability range. The second test, the 

 
15 Appendix G includes a complete table of the Kappa coefficient comparing each model classification with 
the actual value. The chance-corrected accuracy of Q-S50 is 0.067. 
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stratified performance evaluation for older jobseekers and older female jobseekers, is presented 

in Table 8. Again, the RF model shows better performance than GB in terms of sensitivity for 

both subpopulations. However, note that this time simpler models (LR and PLR) do similarly well 

in predicting events in these groups at the cost of a lower precision and a lower accuracy. In the 

end, the model selection should take the costs structure of SOC into account. GB models offer the 

lowest sensitivity both for older and for female older jobseekers but have the largest accuracy. 

Thereby, if detection of non-events is considered more important, this model could also be 

implemented. 

Table 8 – Classification performance in two strata of the test subset. 

 Accuracy Precision Sensitivity 
Older jobseekers    
LR 0.551 0.277 0.826 
PLR 0.547 0.276 0.838 
RF 0.587 0.295 0.825 
GB 0.653 0.328 0.769 
Female and older    
LR 0.543 0.279 0.847 
PLR 0.537 0.278 0.859 
RF 0.603 0.309 0.837 
GB 0.665 0.344 0.794 

Note: N of the older stratum = 20,793. N of the female older stratum = 11,452. To simplify the 

exposition, we only showed the results for policy A. 

Lastly, to understand how the statistical models make predictions, we explore the most important 

predictors used by each method16. Figure 2 shows the ranking of the ten most important covariates 

as measured by the loss in ROC-AUC provoked by shuffling their values. There is an agreement 

between the four models that the two most important predictors of LTU are the number of days 

since the last unemployment episode and the total number of unemployment episodes experienced 

in the past. Another variable that rates high in the four models is age, whether on its own or as a 

scaling factor of other predictors. This result goes in line with the findings of Felgueroso et al. 

 
16 In the Appendix F, we also offer a global surrogate model (a decision tree) to interpret how the estimates 
of the random forest were produced. 
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(2018) for Spain. Looking closer at the tree-based models, the number of days since the last 

employment episode and the average duration of unemployment episodes in the past are also 

important predictors of LTU. These results are consistent with the findings of Bach et al. (2023), 

who also indicated the high predictive ability of age and labour market histories. McGuinness et 

al. (2022) developed a model for Ireland and detected that employment histories were also a 

remarkable set of predictors. 

 

Figure 2 – Top-10 variable importance of final models. 

 

Note: The extension of the bar indicates the permutation statistic, which is a mean across 

permutation rounds, joint with the boxplot collecting variability between rounds. 
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4. Conclusions 

In this article, we have contrasted the performance of rule-based versus statistical models for 

jobseeker profiling. Specifically, we have taken the predictions of the rule-based models currently 

deployed in Catalonia and compared them with newly developed statistical models for predicting 

long-term unemployment. Our results show that our statistical models outperform the current 

rule-based profiling approach considerably both in terms of discrimination (ROC-AUC: 0.735 vs. 

0.593) and in terms of calibration (ICI: 0.037 vs. 0.223). Furthermore, we have seen that machine 

learning methods achieve higher performance scores than conventional regression models, 

especially regarding calibration. These are the first machine learning models developed and 

validated to predict long-term unemployment with Spanish data. We have also shown that, 

compared with gradient boosting, our random forest model adapts better to covariate shifts and 

presents better sensitivity for two social groups (older jobseekers and older female jobseekers) 

targeted in the current operations of the employment services in Catalonia.  Our prediction models 

additionally highlighted two important predictor variables that are not utilized in the current 

profiling approach: the number of days since the last unemployment episode and the total number 

of past unemployment episodes. 

Our findings corroborate previous results of the profiling literature but also introduce new 

perspectives. In line with previous research, we confirm the importance of historical data on 

labour market transitions to accurately predict the risk of long-term unemployment (Gabrikova et 

al. 2023; McGuinness et al. 2022). Previous literature, however, has highlighted that more flexible 

methods like random forests do not make a big difference in performance compared to 

conventional models like logistic regression (Bach et al. 2023; Desiere et al. 2019). We argue that 

this conclusion only holds if we uniquely focus on discrimination. Our dual approach to 

performance revealed that machine learning models can improve over regression approaches in 

terms of calibration, a crucial but overlooked dimension in the jobseeker profiling literature. We 

propose to carefully consider calibration in the evaluation of profiling models due to the crucial 

role of the (predicted) risk scores in the counselling practices of employment offices. 
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Our work also presents some limitations that need to be considered. Firstly, compared with related 

work such as Bach et al. (2023), our set of covariates on past employment episodes was limited 

due to the unavailability of information on the actual end dates of labour contracts. This 

shortcoming might be tackled in the future by getting access to detailed social security data. 

Secondly, our models have been trained with individuals that actively engage with the public 

employment offices in Catalonia. In Spain, registration with PES is not compulsory, which 

implies that the population of participants in PES may not mirror the full population of jobseekers. 

This implies that some groups like young people may be underrepresented in our training set in 

comparison with their presence in the population of jobseekers in general. Thirdly, based on our 

profiling models we optimized the classification threshold assuming that false positives and false 

negatives have the same social costs. There can be sensible arguments for either error to have 

more significant consequences, and thus the thresholds could be re-optimized with different cost 

functions. Furthermore, while we evaluated prediction performance for sensitive social 

subgroups, our paper did not engage in a comprehensive fairness evaluation of the developed 

prediction models. Additional research is needed to carefully understand the fairness implications 

of the models for the Catalonian context, by e.g. evaluating whether the prediction models result 

in similar error rates for multiple sensitive (sub)groups of interest. Regarding the deployment of 

statistical models in PES, researchers could also experiment with different modes of profiling 

model implementation to foster the acceptance of the tool by caseworkers and by jobseekers. This 

line of research has been explored by Kern et al. (2022) and Scott et al. (2022), who have offered 

some possible explanations on the perception of uses of these models. Despite these potential 

extensions, our work illustrates the added value of flexible statistical models versus rule-based 

profiling to assist PES and also highlights the benefits of the machine learning perspective on 

performance evaluation in terms of studying both the predictive discrimination ability and 

calibration of (existing and new) profiling models on the same grounds. 
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Appendix 

Appendix A. Current profiling and decision models of SOC 

Figure A1 – Rule-based profiling model Q-G 
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Table A2 – Rule-based profiling model Q-S 

Q-S = (𝑆𝑖𝑡𝑜1
, 𝑆𝑖𝑡𝑜2

, 𝑆𝑖𝑡𝑜3
). �̃�𝑖𝑡 = mean(𝑆𝑖𝑡𝑜1

, 𝑆𝑖𝑡𝑜2
, 𝑆𝑖𝑡𝑜3

). 

𝑆𝑖𝑡𝑜 = 𝜆1𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛𝑖𝑡𝑜 + 𝜆2𝑠𝑒𝑐𝑡𝑜𝑟𝑖𝑡𝑜 + 𝜆3𝑟𝑒𝑔𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑖𝑡 + 𝜆4𝑖𝑟𝑟𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑖𝑡

+ 𝜆5𝑟𝑒𝑔𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑖𝑡𝑜 + 𝜆6𝑖𝑟𝑟𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑖𝑡𝑜 + 𝜆7𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑖𝑡

+ 𝜆8𝑐𝑜𝑚𝑝𝑡𝑟𝑎𝑖𝑛𝑖𝑡 + 𝜆9𝑑𝑟𝑖𝑣𝑖𝑛𝑔𝑖𝑡 + 𝜆10𝑐𝑙𝑜𝑠𝑒𝑑𝑖𝑡𝑜 + 𝜆11𝑠𝑒𝑎𝑟𝑐ℎ𝑖𝑡

+ 𝜆12𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒𝑠𝑖𝑡 + 𝜆13𝑑𝑖𝑔𝑖𝑡𝑎𝑙𝑠𝑘𝑖𝑙𝑙𝑠𝑖𝑡 + 𝜆14𝑤𝑖𝑙𝑙𝑖𝑛𝑔𝑛𝑒𝑠𝑠𝑖𝑡

+ 𝜆15𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑖𝑡 + 𝜆16𝑖𝑛𝑡𝑒𝑟𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝑖𝑡 

 

Variable (index 𝐿) Value 𝜆𝐿 
𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛𝑖𝑡𝑜  
(𝐿 = 1) 

𝑥 = level 1 𝜆1 = 0  
𝑥 = level 2 𝜆1 = 5  
𝑥 = level 3 𝜆1 = 6  
𝑥 = level 4 𝜆1 = 7  
𝑥 = level 5 𝜆1 = 10  

𝑠𝑒𝑐𝑡𝑜𝑟𝑖𝑡𝑜  
(𝐿 = 2) 

𝑥 = emergent 𝜆2 = 10  
𝑥 ∈ {more than one, normal} 𝜆2 = 5  
𝑥 ∈ {declining, missing value} 𝜆2 = 0  

𝑟𝑒𝑔𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑖𝑡  
(𝐿 = 3) 

𝑥 > 60 months  𝜆3 = 10  
36 months < 𝑥 ≤ 60 months  𝜆3 = 7  
18 months < 𝑥 ≤ 36 months  𝜆3 = 5  
6 months < 𝑥 ≤ 18 months  𝜆3 = 3  
0 months ≤ 𝑥 ≤ 6 months  𝜆3 = 0  

𝑖𝑟𝑟𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑖𝑡  
(𝐿 = 4) 

𝑥 > 60 months  𝜆4 = 2  
6 months < 𝑥 ≤ 60 months  𝜆4 = 1  
0 months ≤ 𝑥 ≤ 6 months  𝜆4 = 0  

𝑟𝑒𝑔𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑖𝑡𝑜  
(𝐿 = 5) 

𝑥 > 60 months  𝜆5 = 10  
36 months < 𝑥 ≤ 60 months  𝜆5 = 7  
18 months < 𝑥 ≤ 36 months  𝜆5 = 5  
6 months < 𝑥 ≤ 18 months  𝜆5 = 3  
0 months ≤ 𝑥 ≤ 6 months  𝜆5 = 0  

𝑖𝑟𝑟𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑖𝑡𝑜  
(𝐿 = 6) 

𝑥 > 60 months  𝜆6 = 2  
6 months < 𝑥 ≤ 60 months  𝜆6 = 1  
0 months ≤ 𝑥 ≤ 6 months  𝜆6 = 0  

𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑖𝑡  
(𝐿 = 7) 

𝑥 ∈ {0, 1nr, missing value, 25Bnr}  𝜆7 = 0  
𝑥 ∈ {1, 25B, 24nr, 35Bnr}  𝜆7 = 2  
𝑥 ∈ {24, 35B, 44nr, 45nr, 55Bnr, 54nr}  𝜆7 = 4  
𝑥 = {44, 45, 54, 55B, 55nr, 75Bnr}  𝜆7 = 6  
𝑥 ∈ {6nr, 7nr, 8nr, 55, 75B}   𝜆7 = 8  
𝑥 ∈ {6, 74, 75, 8}  𝜆7 = 10  

𝑐𝑜𝑚𝑝𝑡𝑟𝑎𝑖𝑛𝑖𝑡  
(𝐿 = 8) 

𝑥 ≥ 80  𝜆8 = 10  
𝑥 < 80  𝜆8 = 0  

𝑑𝑟𝑖𝑣𝑖𝑛𝑔𝑖𝑡  
(𝐿 = 9) 

𝑥 = B1  𝜆9 = 10  
𝑥 ≠ B1  𝜆9 = 0  
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Variable (index 𝐿) Value 𝜆𝐿  
𝑐𝑙𝑜𝑠𝑒𝑑𝑖𝑡𝑜  
(𝐿 = 10) 

𝑥 = (Yes ∧ (Has it ∨ Studying it))  𝜆10 = 5  
𝑥 ∈ {Recommended ∧ (Has it ∨ Studying it), No ∧

(Has ISCED 2 ∨ Studying ISCED 2)}  
𝜆10 = 4  

𝑥 ∈ {Recommended ∧ Doesn't have it, No ∧

Has not ISCED 2}  
𝜆10 = 2  

𝑥 ∈ {Yes ∧ (Doesn't have it ∨ Unknown),   
(Recommended ∨ No) ∧ Unknown}  

𝜆10 = 0  

𝑠𝑒𝑎𝑟𝑐ℎ𝑖𝑡  
(𝐿 = 11) 

𝑥 = 0  𝜆11 = 10  
𝑥 = 1  𝜆11 = 5  
𝑥 = 2  𝜆11 = 3  
𝑥 = 3  𝜆11 = 0  

𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒𝑠𝑖𝑡  
(𝐿 = 12) 

𝐶𝑎𝑡 ∈ {High, Middle} ∧ 𝑆𝑝 ∈ {High, Middle}  𝜆12 = 10  
𝐶𝑎𝑡 ∈ {High, Middle} ∧ 𝑆𝑝 ∈ {Basic, Null}  𝜆12 = 5  
𝐶𝑎𝑡 ∈ {Basic, Null} ∧ 𝑆𝑝 ∈ {High, Middle}  𝜆12 = 4  
𝐶𝑎𝑡 ∈ {Basic, Null} ∧ 𝑆𝑝 ∈ {Basic, Null}  𝜆12 = 0  

𝑑𝑖𝑔𝑖𝑡𝑎𝑙𝑠𝑘𝑖𝑙𝑙𝑠𝑖𝑡  
(𝐿 = 13) 

𝑥 = 0  𝜆13 = 10  
𝑥 = 1  𝜆13 = 5  
𝑥 ∈ {2, 3}  𝜆13 = 0   

𝑤𝑖𝑙𝑙𝑖𝑛𝑔𝑛𝑒𝑠𝑠𝑖𝑡  
(𝐿 = 14) 

𝑥 = 0  𝜆14 = 10  
𝑥 ≥ 1  𝜆14 = 0  

𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑖𝑡  
(𝐿 = 15) 

𝑥 = Yes  𝜆15 = 10  
𝑥 = No  𝜆15 = 0  

𝑖𝑛𝑡𝑒𝑟𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝑖𝑡  
(𝐿 = 16) 

𝑥 = Yes  𝜆16 = 10  
𝑥 = No  𝜆16 = 0  

𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑖𝑡 in ISCED-11 coding of educational attainment, with “nr” indicating that the 
credential has not been recognized in Spain and “B” indicating that the credential was obtained 
in the framework of labour market policies. “Cat” denotes the Catalan language and “Sp” the 
Spanish language. ∨ is the Boolean operator for OR, ∧ is the Boolean operator for AND. Appendix 
D includes a description of each variable. 
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Figure A3 – Decision model for decisions one and two 

First decision Second decision 

  

Source: Own elaboration based on SOC (2016). The green line indicates the path if the value is 

TRUE, the red line if the value is FALSE. The tree starts with the value of Q-G or C (the so-called 

“pre-collective”) and then links the decision, i.e. the intervention assigned. It also shows if such 

intervention is individual (I) or group-based (G) and the main objective of the action. The second 

decision is only determined by the rule-based profiling if individual was not assigned in Q-G to 

collectives C, D, or Z. In those cases, the second decision is not regulated by the model. ∨ is the 

Boolean operator for OR, ∧ is the Boolean operator for AND. 

 

The interventions to assign in these decisions may be classified according to three variables (SOC, 

2016): 

1. Number of participants: one (individual) or more than one (group). 

2. Main objective: training on job search techniques, foster adult training, information 

provision on labour market trends, set job of interest, or present the set of available 

interventions (the so-called “interventions menu”). 

3. Place of implementation: face-to-face or remote. 

Q
-G

A1 G3: job search 
techniques

A2 G1: interventions 
menu

{A3, A4} ∧ (Age > 45 ∨
General training ≥ 4)

G1: interventions 
menu

G4: foster training

B G2: info. on labour 
market trends

{C, D} I2: set job of interest
C

Age > 45 ⋁ Disability 
= Yes ⋁ Months of 
unemployment > 18 

months

I1: foster training

I0: interventions 
menu



38 
 

The intensity of the intervention may be defined according to different criteria. In this article, we 

have chosen to define individual actions as more intense than group actions, so 𝑑 ∈ {I0, I1, I2} >

𝑑′ ∈ {G1, G2, G3, G4}.  

We have maintained the original abbreviations of the group interventions, but we have changed 

the abbreviations of the individual interventions to avoid confusions. I0 is known as 

“Assessorament Polítiques Actives d'Ocupació” (originally abbreviated as APAO), I1 is known 

as “Assessorament Ocupacional” (originally abbreviated as AO), and I2 is known as “Orientació” 

(originally abbreviated as O). 
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Appendix B. Review on performance of jobseeker profiling models 

Country Model Outcome ROC-
AUC 

Sensitivity Precision Accuracy O:E Source 

Austria Statistical  
Labour market 
integration 
probability  

      0.80-0.85   
Desiere et 
al. (2019) 

Belgium 
(Flanders) 

Statistical, 
caseworker
-based  

Long-term 
unemployed 
(>6 months) 

0.76     0.67   
Desiere et 
al. (2019) 

Belgium 
(Flanders)* 

Statistical 
Long-term 
unemployed 
(>6 months) 

0.702     0.702   
Desiere & 
Struyven 
(2021) 

Denmark Statistical 
Long-term 
(>26 weeks) 
unemployed 

      >0.60   
Desiere et 
al. (2019) 

Finland* Statistical 
Unemployed 
after 12 months 0.80         

Viljanen & 
Pahikkala 
(2020) 

Germany* Statistical 
Long-term 
unemployed 
(>6 months) 

0.7   ~0.63  
Kunaschk 
& Lang 
(2022) 

Germany* Statistical 
Long-term 
unemployed 
(12 months) 

0.777 0.29 0.372 0.846  Bach et al. 
(2023) 

Germany* Statistical 
Long-term 
unemployed 
(>6 months) 

0.726 - 
0.735 0.8   0.647 1.237 

Van den 
Berg et al. 
(2024) 

Ireland Statistical 

Exit to 
employment 
within 12 
months 

      
0.70 - 
0.86   

Desiere et 
al. (2019) 

Ireland Statistical 
Unemployed 
after 12 months 

 0.752  0.777   
McGuiness 
et al. 
(2022) 

Netherlands Statistical 
Long-term 
unemployed 
(12 months) 

      0.7   
Desiere et 
al. (2019) 

New Zealand 
Statistical, 
rule-based 

Lifetime 
income support 
costs, lifetime 
income support 
and staff costs 

0.63 - 0.83         
Desiere et 
al. (2019) 

Slovakia* Statistical  

Duration of 
unemployment 
episode (four 
categories)  

 0.7886  0.9147 0.9182  
Gabrikova 
et al. 
(2023) 

Spain* Statistical  

Exit to 
employment 
within 12 
months 

    0.682 0.999 
Felgueroso 
et al. 
(2018) 

United 
Kingdom* Statistical  

Long-term 
unemployed 
(12 months) 

0.795 0.319 0.333 0.889  Matty 
(2013) 
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Note: This table only includes those models that were publicly validated with at least one statistic 

of discrimination or calibration. Classification metrics are only included if the author 

recommended or used at least one classification threshold. Note the differences between exit to 

employment within 12 months (at least once in the time interval) and exit to employment after 12 

months (at the measurement time of month 12). For the results of Gabrikova et al. (2013), 

although their model uses four categories, here we present the metrics for the category “more than 

12 months”. (*) Rows with the asterisk indicate that, according to the source, the model has not 

been yet deployed in public employment services. 
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Appendix C. Classification of intermediation claims 

Table C1 – Correspondence between causes of intermediation claims and type of episode 

Code Description of the cause Type 
1 Removal due to placement communicated with prior offer E 
2 Removal due to registration in the general Social Security system E 
3 Removal due to placement in the special self-employed regime E 
4 Removal due to placement communicated without prior offer E 
17 Removal due to the end of a collective dismissal file U 
19 Removal due to call of a seasonal permanent worker E 
25 Removal due to incomplete application U 
30 Suspension without intermediation due to temporary incapacity I 
31 Suspension without intermediation due to maternity/paternity, adoption, or 

foster care 
I 

32 Suspension without intermediation due to pregnancy with risk I 
35 Removal due to end of availability I 
36 Removal due to total permanent disability I 
37 Removal due to absolute permanent disability (major disability) I 
38 Removal due to retirement I 
39 Removal due to reaching the minimum retirement age I 
61 Removal due to other causes I 
62 Provisional removal due to untraceable applicant U 
70 Removal due to failure to appear before the managing entity U 
71 Removal due to failure to renew the application U 
73 Removal due to rejecting a suitable job offer U 
75 Removal due to refusal to participate in ALMP U 
100 Voluntary removal U 
102 Removal due to benefit exportation I 
103 Removal due to death I 
104 Suspension due to military service or alternative civilian service I 
105 Removal due to equalization U 
106 Suspension without intermediation due to preventive detention I 
107 Removal due to job placement declaration E 
108 Suspension without intermediation due to deprivation of liberty for fulfilling a 

sentence of applicants receiving benefits 
I 

109 Removal due to deprivation of liberty for fulfilling a sentence I 
110 Removal due to non-communication of the renewal of administrative 

authorization 
I 

114 Suspension without intermediation due to family obligations I 
120 Suspension without intermediation due to leaving the country I 
121 Suspension without intermediation due to attending training courses U 
122 Suspension with limited intermediation due to collective dismissal file or short-

time working arrangements of suspension or reduction of working hours 
U 

125 Suspension due to cause 125 I 
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509 Removal due to accumulated benefit payment caused by return to the country of 
origin 

I 

530 Suspension due to temporary inability with intermediation I 
531 Suspension due to maternity/paternity, adoption, or foster care with 

intermediation 
I 

614 Suspension due to family obligations with intermediation U 
620 Suspension with intermediation due to leaving the country I 
621 Suspension with intermediation due to attending training courses U 
625 Suspension due to assignment to social collaboration work* with intermediation E 
626 Suspension due to deferred coverage with intermediation E 
627 Suspension due to deferred call with intermediation E 
700 Registration due to enrolment U 
701 Registration due to coverage of a vacancy (to be phased out) E 
702 Registration due to collective dismissal file U 
703 Registration due to correction of an erroneous removal U 
704 Registration with recovery of a period in a removal situation U 
706 Registration due to initial enrolment U 
707 Registration due to reactivation of suspension U 
708 Registration due to enrolment as employment intermediation U 
709 Registration as a jobseeker for other ALMP U 
710 Registration for ALMP prior to employment U 
711 Registration due to benefit resumption-compatibility U 

Note: E: part of an employment episode, U: part of an unemployment episode, I: part of an 

inactivity episode. 
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Appendix D. List of predictors of Q, C and K 

Table D1 – Predictors used in Q models. 

Group Predictor 
Job Employability of the occupation of interest (5 categories) 

Employability of the sector of interest (3 categories) 
General employment 
experience 

Months of experience in regular employment (5 categories) 
Months of experience in irregular employment (4 categories) 

Employment 
experience in the 
occupation 

Months of experience in regular employment in the occupation of 
interest (5 categories) 
Months of experience in irregular employment in the occupation of 
interest (4 categories) 

General training Level of education (46 categories) 
Credential of non-formal learning of at least 80 hours (2 categories) 
Driving license (2 categories) 

Professional training It is a closed occupation, and he/she has or is enrolled in the 
credential (2 categories) 
It is an occupation with a recommended credential, and he/she has 
or is enrolled in the credential (3 categories) 
It is not a closed occupation, and he/she attained or is enrolled in the 
secondary level of education (3 categories) 

Job search Knowledge and use of job search techniques (4 categories) 
Language skills Knowledge of Catalan or Spanish (4 categories) 
Digital skills ICT abilities (3 categories) 
Transversal skills Willingness to learn (2 categories) 

Proper communication (2 categories) 
Proper interpersonal relation (2 categories) 

Source: Own elaboration based on screenshots of the Q software and SOC (2016). 

Table D2 – Predictors used in the C function. 

Group Predictor 
Used in formal 
allocation 

Age 
He/she has a disability 
Duration of the unemployment episode 

Not used in formal 
allocation 

Sex 
He/she receives a benefit 
Geographical mobility 
Availability to work 
Availability to participate in ALMP 
Economic dependence 

Source: Own elaboration based on SOC (2016). 
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Table D3 – Predictors used in our statistical models (K). 

Group Predictor 

PLMP 

Started unemployment during a benefit interval 
Number of benefit episodes (completed) in the past 
Total duration of previous benefit episodes 
Total duration of previous benefit episodes, scaled by age 
Mean duration of previous benefit episodes 

ALMP 

Total duration of employment subsidy participations 
Number of JSA/JSM participations in the past 
Number of training participations in the past 
Total durations of JSA/JSM participations in the past 
Total durations of JSA/JSM participations in the past, scaled by age 
Total durations of training participations in the past 
Total durations of training participations in the past, scaled by age 
Mean duration of training participations in the past (in days) 
 Mean duration of JSAM participations in the past (in days) 

Unemployment 

Number of unemployment episodes in the past (inside the window) 
Total duration of unemployment episodes in the past (until the present 
episode, not included) 
Total duration of unemployment episodes in the past (until the present 
episode, not included), scaled by age 
Mean duration of unemployment episodes until the present (until the 
present episode, not included) 
Days since last unemployment episode 

Inactivity 
Total duration of inactivity episodes 
Mean duration of inactivity episodes until the present 
Number of inactivity episodes in the past 

Employment 

Days since first employment (in the window) 
Days since (the beginning of) the last employment episode 
Days since (the beginning of) the last full-time employment episode 
Occupation of last job by major groups (63 categories) 
Last job was part-time 
Skill level required for last job (11 categories) 
Last job was temporary 
Industry of last job (22 categories) 
Commuted for last job 
Proportion of jobs with commuting in the past 
Number of employment episodes without any vocational training held in 
the past 
Number of occupations held in the past 
Number of employment episodes in the past 
Number of open-ended contracts in the past 
Number of temporary contracts in the past 
Maximum skill level required for past employment episodes (11 categories) 
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Maximum skill level required for past employment episodes (5 categories) 
Minimum skill level required for past employment episodes (11 categories) 

Socio-
demographics 

Sex 
Age in years when the episode started 
Maximum level of education 
Has a disability 
Local labour market (28 categories) 
National group (7 categories) 
Has a credential with field of education = xy (33 binary variables) 

Missing blocks 
Indicator of missingness on employment episodes in the past 
Indicator of missingness on unemployment episodes in the past 
Indicator of missingness on local labour market 

Note: Qualitative variables that do not indicate the number of categories are binaries, so there are 

until three possible categories (yes, no, or missing). For the models that use regularization, this 

list is actually a list of candidate predictors. PLMP: Passive Labour Market Policies. 
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Appendix E. Summary statistics 

Table E1 – Summary statistics on sociodemographic qualitative variables. 

   N % 
Sex   
Woman 153,424 52.412 
Man 139,301 47.588 
Maximum level of education   
0 Less than primary 4,965 1.696 
1 Primary 8,137 2.780 
24 Lower secondary – General 147,550 50.406 
25 Lower secondary – Vocational 41 0.014 
34 Upper secondary – General 27,382 9.354 
35 Upper secondary – Vocational 40,327 13.776 
55 Short-cycle tertiary – Vocational 32,071 10.956 
66 Bachelor’s 13,153 4.493 
76 Master’s 18,538 6.333 
86 Doctoral 561 0.192 
Disability   
No 273,733 93.512 
Yes 18,992 6.488 
National group   
Asia 788 0.269 
EU, Northern America, and Oceania 281,292 96.094 
Europe not EU 451 0.154 
Latin America and the Caribbean 2,088 0.713 
Northern Africa 6,352 2.170 
Sub-Saharan Africa 1,749 0.597 
Missing 5 0.002 

Note: The categories related to the local labour market, the field of study and the level of study 

are not shown to simplify the exposition. The tables are available upon request. 

 

Table E2 – Summary statistics on sociodemographic quantitative variables. 

 Mean Min Q1 Median Q3 Max 
Age 46.183 16 40 46 52 64 
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Appendix F. Tuning parameters 

Table F1 – Tuning grids. 

Model Parameter Candidate values 

Penalized logistic 
regression (PLR) 

Amount of regularization 
(penalty) 

0.001, 0.01, 0.1, 1, 10, 100, 1000 

Proportion of Lasso penalty 
(mixture) 

0, 1 

Random forest 
(RF) 

Number of predictors (mtry) sqrt(# predictors), log2(# predictors) 
Minimal node size (min_n) 1, 5, 10 
Number of trees (trees) 500, 750 

Gradient boosting 
machine (GB) 

Tree depth (tree_depth) 3, 5, 7 
Number of predictors (mtry) sqrt(# predictors), log2(# predictors) 
Number of trees (trees) 250, 500, 750 
Learning rate (learn_rate) 0.01, 0.025, 0.05 
Proportion of sampled 
observations (sample_size) 

0. , 0.8 

Note: In the parameter column, it is shown in parenthesis the name given in the R library 

{parsnip} to that parameter. The selected value is written in bold in the third column. The 

unpenalized logistic regression has no internal parameter to tune. 

 

Table F2 – Probability thresholds selected. 

Model Policy Probability threshold 

Unpenalized logistic regression (LR) 
A 0.2425 

B 0.5479 

Penalized logistic regression (PLR) 
A 0.24 

B 0.5424 

Random forest (RF) 
A 0.285 

B 0.5374 

Gradient boosting machine (GB) 
A 0.2675 

B 0.5453 
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Appendix G. Additional results 

Table G1 – Kappa statistic of models in the restrictive test subset 

 Kappa 
Q-S25 0.045 
Q-S50 0.067 
Q-G 0.035 
Policy A  
LR 0.172 
PLR 0.182 
RF 0.236 
GB 0.248 
Policy B  
LR 0.205 
PLR 0.205 
RF 0.287 
GB 0.238 

Note: The Kappa statistic discounts the amount of accuracy generated just by chance. Note that 

the chance-corrected accuracy of Q-S50 is low (𝜅QS50 = 0.067) and represents less than one third 

of the chance-corrected accuracy we could get with the random forest. 

 

Table G2 – False alarm rates in the restricted test subset. 

 FAR 
Q-S25 0.054 
Q-S50 0.767 
Q-G 0.173 
Policy A  
LR 0.531 
PLR 0.526 
RF 0.576 
GB 0.452 

Note: FAR = 1 – specificity. 
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Table G3 – False alarm rates in two strata of the test subset. 

 FAR 
Older jobseekers  
LR 0.514 
PLR 0.522 
RF 0.469 
GB 0.374 
Female and older  
LR 0.531 
PLR 0.541 
RF 0.454 
GB 0.367 

Note: FAR = 1 – specificity. 

 

Figure G1 – Top-10 differences in standardized means (left) or proportions (right) between the 

test subset and the restrictive test subset. 

 

Source: Own elaboration. Denoting with 𝜇𝑔 a summary statistic for the dataset 𝑔, it is shown the 

difference 𝜇𝑡𝑒𝑠𝑡 − 𝜇𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑣𝑒. Therefore, blue bars denote a positive difference, whereas red bars 

collect a negative difference. 
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Appendix H. Global surrogate model 

As an additional tool to interpretate how our statistical models make predictions, we have 

estimated a global surrogate model. The following regression tree model tries to forecast the 

predictions of the random forest model using 80 % of the training sample. The tuning parameters 

were fixed at the following values: the cost-complexity parameter equalled 0.005, the tree depth 

was 30, and the minimal node size was established at 2. The resulting model has a 𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
2 =

0.778 and a 𝑅𝑡𝑒𝑠𝑡
2 = 0.774, attaining a good approximation to the random forest with a relatively 

low interaction depth.  

As shown in Figure H1, the tree incorporates seven covariates: the number of days since last 

unemployment episode (time_lastu), the number of days since the beginning of the last 

employment episode (time_lastE), the mean duration of unemployment episodes until the present 

(meanund), the number of employment episodes in the past (n_emp), the number of 

unemployment episodes in the past (n_un), the age (age), and the indicator of missingness on 

unemployment episodes in the past (MIndicatorUE). Note that all the predictors selected by the 

global surrogate model were also highlighted as remarkably important by the permutation-based 

variable importance statistic. 

To interpret Figure H1, we must consider that each node shows the probability of experience a 

long-term unemployment episode and below the percentage of the sample that fits in each 

partition. Starting the partition from above, we see that the combinations of value that predict 

LTU with probability equal to 0.72 is: having the last unemployment episodes at least 764 days 

ago, having the last employment episode at least 1,264 days ago, and being older than 55 years. 

This profile is in line with the literature and fits with 3 % of our sample. 
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Figure H1 – Graphical representation of the decision tree 

 


