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Abstract
We show that the Caffarelli–Kohn–Nirenberg (CKN) inequality holds with a remainder term
that is quartic in the distance to the set of optimizers for the full parameter range of the
Felli–Schneider (FS) curve. The fourth power is best possible. This is due to the presence of
non-trivial zero modes of the Hessian of the deficit functional along the FS-curve. Following
an iterated Bianchi–Egnell strategy, the heart of our proof is verifying a ‘secondary non-
degeneracy condition’. Our result completes the stability analysis for the CKN-inequality to
leading order started by Wei and Wu. Moreover, it is the first instance of degenerate stability
for non-constant optimizers and for a non-compact domain.
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1 Introduction andmain result

1.1 The CKN-inequality

Caffarelli, Kohn, and Nirenberg [5] introduced, among others, the family of functional
inequalities

∫
Rd

|∇v|2
|x |2a dx ≥ Ca,b

(∫
Rd

|v|q
|x |bq dx

)2/q

, (1.1)

nowadays known as CKN-inequality, with dimension d ∈ N and parameters a, b ∈ R such
that

a < min{0, b} + d − 2

2
and 0 ≤ b − a ≤ 1. (1.2)

We will call pairs (a, b) satisfying (1.2) admissible. Note that the first condition reduces to
2a < d − 2 in case d > 2. We use the convention that Ca,b denotes the optimal constant in
(1.1). By a scaling argument, one can show that q has to satisfy

q = 2d

d − 2 + 2(b − a)
. (1.3)

Note that for admissible (a, b) the exponent q ranges between 2 and 2∗. Here 2∗ denotes
the critical Sobolev exponent with 2∗ = 2d(d − 2)−1 in case d ≥ 3 and 2∗ = ∞ in case
d = 1, 2. In fact, the CKN-inequality contains the classical Sobolev inequality (a = b = 0,
d ≥ 3) as well as the Hardy inequality (a = 0, b = 1, d ≥ 3) as special cases. If (a, b) is
admissible, v is allowed to be a function inD1

a(R
d), the completion of C∞

c (Rd) with respect
to the norm

(∫
Rd

|∇v|2
|x |2a dx

)1/2

.

Horiuchi [23] (d ≥ 2) and Catrina and Wang [6] (d ≥ 1) were able to complete the existing
results on whether the optimal constant for (1.1) is attained. Indeed, among all admissible
(a, b), an affirmative result was proved in case

0 < b − a < 1 or b = a ≥ 0, (1.4)

123



Degenerate stability of the CKN inequality Page 3 of 33 44

which is sharp. We will call admissible pairs (a, b) satisfying (1.4) attainable and denote the
set of optimizers of (1.1) by

Z:={v ∈ D1
a(R

d) : (1.1) becomes an equality}.
If we restrict (1.1) to radial functions, that is, functions that only depend on the radial coor-
dinate, and call the corresponding optimal constant C∗

a,b, then, obviously, Ca,b ≤ C∗
a,b. We

will call an admissible pair (a, b) symmetric if Ca,b = C∗
a,b. Otherwise, symmetry breaking

is said to occur. The constant C∗
a,b can be determined explicitly, and, for a ≤ b < a + 1, the

set of radial optimizers is given by
{

λ
μ

√
�(2q�)

1
q−2

(1 + |μ · |√�(q−2))
2

q−2

}

μ>0,λ∈R
with �:=

(
d − 2 − 2a

2

)2

> 0 (1.5)

(see [6, p. 236 f.]). This set agrees withZ in case (a, b) is symmetric [14]. The only exception
is (a, b) = (0, 0), where the set of optimizers contains, in addition, the translates of functions
in (1.5).

Admissible pairs (a, b)with a ≥ 0 arewell-known to be symmetric (see, e.g., [1, 34], [26],
and [9]), so, if symmetry breaking occurs, then necessarily a < 0. The fact that symmetry
breaking does occur for some parameters was observed by Catrina andWang [6]. Thereafter,
Felli and Schneider found an explicit curve that encloses a region where symmetry breaking
occurs; see [18, Corollary 1.2] for d ≥ 3 and [16, Theorem 1.1] for d = 2. More specifically,
among all attainable (a, b), they showed that the pair (a, b) is not symmetric if

� > 4
d − 1

q2 − 4
=:�FS . (1.6)

Note that for fixed dimension d , � = �FS describes a curve in the (a, b)-plane since
q = q(a, b) and � = �(a) are parametrized by (a, b) and a, respectively. The condition
(1.6) is trivially satisfied if d = 1, and hence symmetry is broken for all attainable (a, b)
in this case, which is in line with [6, Theorem 7.2]. After various partial results [13, 15, 27,
32], Dolbeault, Esteban, and Loss [14, Theorem 1.1] were able to settle the longstanding
conjecture on the optimal symmetry range by proving that the value �FS indeed separates
the symmetry from the symmetry breaking region. More concretely, among all attainable
(a, b), they proved that the pair (a, b) is symmetric if and only if

� ≤ �FS . (1.7)

In fact, they established that all optimizers are radial in the symmetric case. Assuming
a < 0, the case of equality in (1.7) then determines the FS-curve. At this point, let us briefly
mention that being attainable and being symmetric are not disjoint properties. Indeed, we
have Ca,a+1 = C∗

a,a+1 by continuity in case d ≥ 2 [6, Theorem 1.1(i), Theorem 7.5(i),
Remark 3.4], so (a, b) is symmetric for b = a + 1 but not attainable. (Note that the formula
of C∗

a,b given in [6, Eq. (2.13)] holds for d = 2 as well.) If d = 1, this follows from [6, p.
254] as C∗

a,b − Ca,b → 0 for 1 + a − b → 0. On the other hand, Ca,a < C∗
a,a as computed

in [6, Proof of Theorem 1.3(ii)], so admissible (a, b) with b = a are neither symmetric nor
attainable.

1.2 Stability for the CKN-inequality—ourmain result

In this paper we are interested in the question of stability, that is, whether the closeness to 1
of the quotient of the two sides in (1.1) for some v implies the closeness of v to the set Z.
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For the Sobolev inequality (a = b = 0, d ≥ 3), this questionwas raised byBrezis andLieb
[3]. Bianchi and Egnell [2] gave an affirmative answer with the gradient L2-norm ‖∇ ·‖L2(Rd )

as a measure for the distance to the set of optimizers. They showed that this distance vanishes
at least quadratically in the difference between 1 and the quotient of the two sides in (1.1).
Bianchi and Egnell introduced a very robust technique, which has been adapted to many
other functional inequalities; see, for instance, [29] for the Hardy–Sobolev inequality or [7]
for the fractional Sobolev inequality. This technique is based on two ingredients, namely, a
compactness theorem for optimizing sequences and a spectral analysis around an optimizer.
For a recent quantitative variant of the basic Bianchi–Egnell argument, leading to an optimal
dependence of the stability constants, we refer to [12]. Further progress on related questions
can be found in [8, 24, 25]. For an introduction to the Sobolev inequality and its stability, see
[20]. A quantitative version of the Hardy inequality (a = 0, b = 1, d ≥ 3) appeared in [10].

For the CKN-inequality, a Bianchi–Egnell-type stability inequality was recently shown
by Wei and Wu [35] in the interior of the symmetric regime (� < �FS); see also [29] for an
earlier contribution in case a = 0.

Our main result is a stability inequality on the boundary of the symmetric regime, that
is, on the FS-curve � = �FS . Remarkably, while the Wei–Wu result in the interior of the
symmetric regime involves a remainder term quadratic in the distance to the set of optimizers,
our bound will involve a remainder term that is quartic in this distance. We will also show
that this quartic vanishing is best possible. The reason is that in the spectral analysis part
of the Bianchi–Egnell strategy additional zero modes appear, namely, zero modes that do
not come from symmetries of the problem. [In passing, we note an inaccuracy in [35]; their
quadratic stability result only holds in the parameter range excluding the FS-curve, as the
inequality [35, Eq. (4.4)] breaks down due to the existence of non-trivial zero modes. This
was also noticed in [11].]

Theorem 1 (Degenerate stability of the CKN-inequality along the FS-curve) Let (a, b) ∈ R
2

satisfy a < 0 and � = �FS with d ≥ 2 and q given by (1.3). Then there is a constant
c(q, d) > 0 such that for all v ∈ D1

a(R
d),

∫
Rd

|∇v|2
|x |2a dx − Ca,b

(∫
Rd

|v|q
|x |bq dx

)2/q

≥ c(q, d) inf
χ∈Z

(∫
Rd

|∇(v − χ)|2
|x |2a dx

)2 (∫
Rd

|∇v|2
|x |2a dx

)−1

.

Moreover, the inequality is best possible with respect to the quartic vanishing of the distance
to Z, that is, there is a sequence (vn)n ⊂ D1

a(R
d) \ {0} with

lim
n→∞

∫
Rd

|∇vn |2
|x |2a dx

(∫
Rd

|vn |q
|x |bq dx

)2/q
= Ca,b

and

lim sup
n→∞

∫
Rd

|∇vn |2
|x |2a dx − Ca,b

(∫
Rd

|vn |q
|x |bq dx

)2/q

infχ∈Z
(∫

Rd
|∇(vn−χ)|2

|x |2a dx
)2 (∫

Rd
|∇vn |2
|x |2a dx

)−1 < ∞.

This theorem establishes the stability of the CKN-inequality along the FS-curve, but only
in a degenerate sense, where the distance to the set of optimizers vanishes faster than quadrat-
ically; compare (1.16). The interest in such degenerate stability of functional inequalities has
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been raised recently through a work by Engelstein, Neumayer, and Spolaor [17], who inves-
tigated the quantitative stability of the Yamabe problem for closed Riemannian manifolds.
While non-degenerate stability (with a square of the distance to the set of optimizers) was
proved for manifolds of a generic type, it was also shown that the manifold

S
1((d − 2)−1/2) × S

d−1(1) (1.8)

with its standard product metric exhibits only degenerate stability, namely, with an (unspeci-
fied) power of the distance that is strictly larger than two. This example builds upon work by
Schoen [30]. Recently, it was shown [19] that in the example (1.8) the sharp stability expo-
nent is four. The same phenomenon was observed in other types of Sobolev-type inequalities.
Let us stress that the example (1.8) indeed describes a degenerate scenario since the stabil-
ity becomes non-degenerate – that is, a stability inequality with a quadratic distance to the
optimizers—when varying the radius of the one-dimensional sphere in (1.8); see [20] for
more details. Similarly, as we show in this paper, while non-degenerate stability was shown
for the CKN-inequality in the interior of the symmetry region [35], only the weaker notion
of degenerate stability with a fourth power in the distance is available along the FS-curve.
Therefore, our result proves a loss of stability and highlights the phase transition occurring
due to symmetry breaking.

The underlying mechanism for degenerate stability in [19] and in the present paper is
similar. It is caused by the presence of zero modes of the Hessian of the deficit functional that
do not come from symmetries of the problem. As we will explain below, there are various
features of the CKN-setting that make the present analysis substantially harder than the one
in [19].

We emphasize that the degeneracy along the FS-curve occurs only on a finite-dimensional
subspace of D1

a(R
d), and hence an actual stronger stability result holds, with right side

proportional to

inf
χ∈Z

(∫
Rd

|∇(�dv − χ)|2
|x |2a dx

)2 (∫
Rd

|∇(�dv)|2
|x |2a dx

)−1

+ inf
χ∈Z

(∫
Rd

|∇(�⊥
d v − χ)|2
|x |2a dx

)
,

where �d is the orthogonal projection in H1(C) onto the d-dimensional subspace of non-
trivial zero modes and �⊥

d :=1 − �d . (For the precise definition of non-trivial zero modes,
we refer to Subsect. 1.4.) This follows by a slight modification of our proof, as in [20]. Such a
mix of quadratic and quartic stability was first observed by Brigati, Dolbeault, and Simonov
[4] in the setting of the log-Sobolev inequality on the sphere, which is yet another example
of a degenerately stable functional inequality.

Let us conclude this subsection by highlighting in which respect the present paper goes
beyond the above mentioned works on degenerate stability. An obvious difference is that, in
contrast to the inequalities covered in [19], the CKN-inequality contains integrals over a non-
compact domain, and that the optimizers are non-constant functions. This leads to several
technical complications—the crucial one being the verification of a certain secondary non-
degeneracy condition, which we will describe in detail below. This part of the proof, whose
analogue in the case of constant minimizers in [19] follows by a straightforward computation,
is one of our main achievements here and takes up a significant part of this paper. It involves
a series solution of a certain inhomogeneous second order equation and then the verification
of certain positivity properties of an infinite series; see Sect. 5 and the proof of Proposition 4.
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44 Page 6 of 33 R. L. Frank, J. W. Peteranderl

We stress that our treatment is fully analytical and does not rely on numerical assistance.
Finally, we want to stress a novel approach to deal with the quartic order expansion for the
Lq -norm when 2 < q < 4, which would simplify and unify the different ad-hoc approaches
employed in [19]. We hope this will be useful in other related works on degenerate stability.

1.3 A reformulation

As is common practice, we employ logarithmic coordinates to transform (1.1) to a Sobolev
inequality on the cylinder C:=R× S

d−1 without weights. With the so-called Emden–Fowler
transformation

v(r , ω) = ra− (d−2)
2 ϕ(s, ω),

where r = |x |, s = − log r , and ω = x/r , we can write (1.1) as

‖∂sϕ‖2L2(C)
+ ‖∇ωϕ‖2L2(C)

+ �‖ϕ‖2L2(C)
≥ Ca,b‖ϕ‖2Lq (C) (1.9)

for ϕ ∈ H1(C). Here ∇ω denotes the gradient on Sd−1. Via logarithmic variables the scaling
invariance of the CKN-inequality turns into the translation invariance of the Sobolev inequal-
ity on the cylinder. Note that (1.9) is an equality if and only if (1.1) is, and, calling functions
on C that depend only on s radial, the results on symmetry and symmetry breaking carry
over to (1.9) as well.

For symmetric, attainable (a, b) 
= (0, 0), equality in (1.9) is attained if and only if ϕ

equals (up to a scalar multiple and a translation) the radial function

u:=β(cosh(α · ))
− 2

q−2 , α:=q − 2

2

√
�, β:=

(q
2
�

) 1
q−2 ;

see [14, Cor. 1.3] for a reference. By the Emden–Fowler transformation, the set Z is cast to

M:={λu( · − t)}λ,t∈R,

the set of optimizers for (1.9). Some authors neglect the non-regular value λ = 0 to obtain a
differentiable manifold [2] or drop the multiplication by a scalar multiple entirely [18]. For
our purposes, it is convenient to keep the full set of optimizers when deriving orthogonality
relations.

The values α and β in the definition of u are chosen such that u is the unique even, positive
function solving the Euler–Lagrange equation

− ∂2s u + �u = uq−1 (1.10)

on C. We will use this and the following related equations frequently:(−∂2s + � − (q − 1)uq−2) ∂su = 0 , (1.11)(
−∂2s + q2

4
� − (q − 1)uq−2

)
u

q/2 = 0 . (1.12)

In the following, the norm in Lq(C) is denoted ‖ · ‖q . In H1(C) we use the (�-dependent)
norm

‖ · ‖:= (‖∂s · ‖22 + ‖∇ω · ‖22 + �‖ · ‖22
)1/2

.

The inner products in L2(C) and H1(C) are 〈·, ·〉2 and 〈·, ·〉, respectively. Moreover, we will
consider a, b, and d satisfying (1.2), (1.4), and (1.7), that is, (a, b) is admissible, attainable,
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and symmetric. As an immediate consequence, we know that 2 < q < 2∗ and d ≥ 2.
In particular, the assumption d ≥ 2 in Theorem 1 is redundant and for clarity only. As
the Sobolev inequality admits an additional symmetry, we exclude (a, b) = (0, 0). These
assumptions on a, b, d , q , and � are standard and will be used throughout Sects. 2, 3, and
4. In the latter two sections we will restrict ourselves to the FS-curve, that is, � = �FS for
a < 0.

1.4 Strategy of the proof

We will prove Theorem 1 in the equivalent formulation on the cylinder presented in the
previous subsection. This will appear in Corollary 6 below. We will also present some of the
main ingredients that go into the proof of this corollary. Those are stated in three propositions,
whose proofs will be given in the remaining sections of this paper.

Our basic technique in this paper will be the iterated Bianchi–Egnell strategy introduced
in [19]: While Bianchi and Egnell project on the space of trivial zero modes of the Hessian
of the deficit functional

F(ϕ):=‖ϕ‖2 − Ca,b‖ϕ‖2q , ϕ ∈ H1(C),

it is possible to project further on the nearest non-trivial zeromode. This leads to a Taylor-type
expansion of the deficit to quartic order of the distance to the set of optimizers

dist(ϕ,M):= inf
χ∈M ‖ϕ − χ‖, ϕ ∈ H1(C).

In our first step, we consider a minimizing sequence (un)n for the functional inequality
(1.9) and project it on the nearest trivial zero mode. As the CKN-inequality (1.1) is invariant
under dilations, and hence (1.9) under translations, we will have to handle the emerging lack
of compactness. The content of our first proposition is that the projection can be chosen to
be orthogonal in H1(C) to

span{u, ∂su},
the trivial zero modes of the Hessian ofF at u. We call these zero modes trivial, because they
come from symmetries ofF , namely, frommultiplication by a constant and from translations.
The proposition will lead us to a decomposition of (un)n into an optimizer and a remainder
term that converges to 0 in the H1(C)-norm.

Proposition 2 (Projection on the trivial zero modes of the Hessian) Let (a, b) ∈ R
2 \{(0, 0)}

be admissible (1.2), attainable (1.4), and symmetric (1.7) with d ≥ 2 and q given by (1.3).
Let (un)n be a sequence in H1(C) such that

‖un‖2q → 1 and ‖un‖2 → Ca,b for n → ∞. (1.13)

Then there are λn ∈ R \ {0}, tn ∈ R, and rn ∈ H1(C) such that, along a subsequence, we
have

un(s, ω) = λn(u + rn)(s − tn, ω), (s, ω) ∈ C, (1.14)

with dist(un,M) = ‖un − λnu( · − tn)‖ = ‖λnrn‖ and the following convergence and
orthogonality properties.

• Convergence properties: ‖rn‖ → 0 and λn → λ∗ hold for n → ∞ and some λ∗ ∈ R\{0}
with |λ∗| = ‖u‖−1

q .
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• Orthogonality properties: For all n ∈ N we have

〈rn, u〉 = 〈rn, ∂su〉 = 0.

We have written the orthogonality conditions in terms of the H1(C)-inner product. Using
the equations (1.10) and (1.11), we can rewrite them in terms of the L2(C)-inner product as

〈rn, uq−1〉2 = 〈rn, (q − 1)uq−2∂su〉2 = 0. (1.15)

For � < �FS , the Hessian of the deficit functional F at u has trivial zero modes only. In
case � = �FS , however, the Hessian of F admits non-trivial zero modes as well [18], that
is, the kernel of the Hessian strictly contains span{u, ∂su}. While some authors refer to all
zero modes that are not trivial as non-trivial zero modes, we will call a zero mode non-trivial
if it lies in the orthogonal complement of the trivial zero modes. As we will see later, the
space of non-trivial zero modes is given by the span of

u
q/2ωi , i = 1, . . . , d,

where ω1, . . . , ωd denote the Cartesian coordinates restricted to S
d−1. These modes do not

arise from symmetries of F .
We will now see that, if we require the functional F to decay faster than the distance to

the set of optimizers squared,

lim
n→∞

F(un)

dist(un,M)2
= 0, (1.16)

then a non-trivial zero mode contributes to un satisfying (1.13), and we are able to further
expand the minimizing sequence (un)n . It turns out that we can decompose the previous
remainder rn into the nearest non-trivial zero mode of the Hessian of F with decaying
amplitude and a new remainder term that converges even faster in the H1(C)-norm. This new
remainder can be chosen to be H1(C)-orthogonal to all zero modes of the Hessian.

Proposition 3 (Projection on the non-trivial zero modes of the Hessian) Let (a, b) ∈ R
2

satisfy a < 0 and � = �FS with d ≥ 2 and q given by (1.3). Let (un)n be a sequence in
H1(C) satisfying (1.13) and (1.16). Then there are λn ∈ R \ {0}, tn, μn ∈ R, Dn ∈ O(d),
and Rn ∈ H1(C) such that, along a subsequence, we have

un(s, ω) = λn(u + μn(u
q/2ωd + Rn))(s − tn, Dnω), (s, ω) ∈ C, (1.17)

with λn , tn , and u from Proposition 2 and the following additional convergence and orthog-
onality properties.

• Convergence properties: μn → 0 and ‖Rn‖ → 0 hold for n → ∞.
• Orthogonality properties: For all n ∈ N we have

〈Rn, u〉 = 〈Rn, ∂su〉 = 〈Rn, u
q/2ωi 〉 = 0 for i = 1, ..., d.

Here O(d) denotes the set of orthogonal d × d matrices.

Using the equations (1.10), (1.11), and (1.12), we can rewrite the orthogonality conditions
as

〈Rn, u
q−1〉2 = 〈Rn, (q − 1)uq−2∂su〉2 = 〈Rn, (q − 1)uq−2u

q/2ωi 〉2 = 0 for i = 1, ..., d.

(1.18)
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It is not hard to show that, in fact, (1.16) and ‖un‖2 → Ca,b for n → ∞ make the
assumption ‖un‖q → 1 redundant.

The decomposition in Proposition 3 allows us to expandF to quartic order. In this way, we
will obtain the following crucial asymptotic inequality, which will imply our main theorem.

Proposition 4 (Non-vanishing of the quartic order) Let (a, b) ∈ R
2 satisfy a < 0 and

� = �FS with d ≥ 2 and q given by (1.3). There is an explicit constant

J (q, d) > 0,

which is given in (4.18), such that for every sequence (un)n ⊂ H1(C) satisfying (1.13) we
have

lim inf
n→∞

‖un‖2F(un)

dist(un,M)4
≥ J (q, d). (1.19)

Moreover, the bound (1.19) is best possible in the sense that there is a sequence (un)n
satisfying (1.13) for which equality is attained in (1.19).

The key point of this proposition is the strict inequality J (q, d) > 0. In the limit q → 2∗,
it can be shown that J (q, d) vanishes, which is due to the additional translation symmetry in
case (a, b) = (0, 0). The non-vanishing of J (q, d) for q < 2∗ can be viewed as a secondary
non-degeneracy condition [19, 20]. We give a concrete definiton in terms of variational
derivatives of the deficit F , which may be generalized to the setting of other functional
inequalities.

Definition 5 Let ψ ∈ M. We say that the CKN-inequality satisfies the secondary non-
degeneracy condition if

(∂4εF)(ψ + ε(g + εϕ))|ε=0 > 0 (1.20)

for every non-trivial zero mode g in Ker(D2
ψF) and every ϕ that is H1(C)-orthogonal to

Ker(D2
ψF).

Note that

(∂4εF)(ψ + ε(g + εϕ))|ε=0 = 12(D2
ψF(ϕ, ϕ) + D3

ψF(g, g, ϕ)) + D4
ψF(g, g, g, g),

(1.21)

where we wrote the differentials in ψ as multilinear forms.
As a consequence of the previous proposition, the secondary non-degeneracy condition

can be verified, and we can prove, by contradiction, degenerate stability of quartic order. The
following assertion is equivalent to Theorem 1 via the Emden–Fowler transformation.

Corollary 6 (Degenerate stability of a Sobolev inequality for a cylinder along the FS-curve)
Let (a, b) ∈ R

2 satisfy a < 0 and � = �FS with d ≥ 2 and q given by (1.3). Then there is
a constant c(q, d) > 0 such that for all ϕ ∈ H1(C),

F(ϕ) ≥ c(q, d)
dist(ϕ,M)4

‖ϕ‖2 .

Moreover, the inequality is best possible with respect to the power four, that is, there is a
sequence (ϕn)n ⊂ H1(C)\{0} satisfying (1.13) with

lim sup
n→∞

‖ϕn‖2 F(ϕn)

dist(ϕn,M)4
< ∞.
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Proof Weargue by contradiction. For fixed (q, d), assume there is a sequence (un)n ⊂ H1(C)

with

lim
n→∞

‖un‖2(‖un‖2 − Ca,b‖un‖2q)
infχ∈M ‖un − χ‖4 = 0.

By homogeneity, we may assume ‖un‖2 = Ca,b. Using the CKN-inequality (1.9) for un and
the notion of the infimum infχ∈M ‖un − χ‖ ≤ ‖un‖, we find that

0 ≤ lim inf
n→∞

(
1 − ‖un‖2q

)
≤ lim inf

n→∞
‖un‖2(‖un‖2 − Ca,b‖un‖2q)

infχ∈M ‖un − χ‖4 = 0.

Hence, we have proved the required convergence properties for (un)n to apply Proposition 4,
which leads to a contradiction.

The assertion that the stability inequality is best possible with respect to the power four
follows immediately from the corresponding assertion in Proposition 4. In fact, this shows
that the sequence can be chosen such that the lim sup in the assertion equals J (q, d). ��

If (1.20) did not hold, we would go on projecting on zero modes corresponding to
(∂4εF)(ψ + ε(g + εϕ))|ε=0 and could formulate a similar next order non-degeneracy condi-
tion. Repeating this procedure, we would derive a non-degeneracy condition of higher order
in every step. If one of these conditions was satisfied, the iteration scheme would end, and we
would obtain a degenerate stability result with some exponent greater than four. Following
[17], one could probably show that this procedure terminates after finitely many steps. We
are not aware of an example of a degenerate stability result with a distance to the power six
or higher.

The remainder of this paper consists of four sections. In Sects. 2, 3, and 4 we present
the proofs of Proposition 2, 3, and 4, respectively. In Sect. 5 we provide the details of some
results used in Sect. 4.

2 Projection on the trivial zeromodes of the Hessian

2.1 Proof of Proposition 2

As we are dealing with the non-compact domain C = R× S
d−1, we can only expect relative

compactness of optimizing sequences to hold up to non-compact symmetries. Following
Lions’ concentration compactness principle [28], we only have to rule out two phenomena—
vanishing and dichotomy—in order to find convergent subsequences up to symmetries. For
absence of vanishingwe refer to [6, Lemma 4.1] and references therein. Exploiting theHilbert
space structure of H1(C), dichotomy can be excluded in a standard way; see [6, Proof of
Theorem 1.2(i)], for instance. As a result, given (un)n ⊂ H1(C) such that ‖un‖2q → 1 and
‖un‖2 → Ca,b, there are (t∗n )n ⊂ R such that un( · + t∗n , · ) converges in H1(C). The limit
is necessarily an optimizer of (1.9). In addition, the limit has unit Lq(C)-norm. According to
[14], the limit is a translate of λ∗u, where λ∗ ∈ R \ {0} satisfies |λ∗| = ‖u‖−1

q . By redefining
the t∗n , we may assume that the limit is λ∗u. Consequently, we can write

un(s, ω) = λ∗(u + r∗
n )(s − t∗n , ω), (s, ω) ∈ C, (2.1)

with r∗
n ∈ H1(C) satisfying ‖r∗

n‖ → 0 for n → ∞.
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Note that t �→ 〈u( · − t), un〉2 is a continuous, non-negative function that vanishes
at infinity. Therefore, it attains its maximum at some tn ∈ R. Moreover, for any t ∈ R,
infλ ‖un − λu( · − t)‖2 = ‖un‖2 − ‖u‖−2〈u( · − t), un〉2, and the infimum is attained
at λ = ‖u‖−2〈u( · − t), un〉. Thus, if we set λn := ‖u‖−2〈u( · − tn), un〉, we see that
dist(un,M)2 = infλ,t ‖un − λu( · − t)‖2 is attained at (λn, tn).

Define r̃n :=un( · + tn, · ) − λnu ∈ H1(C), and note that

‖r̃n‖ = inf
χ∈M ‖un − χ‖ ≤ ‖un − λ∗u( · − t∗n )‖ = ‖r∗

n‖ = on→∞(1).

We now deduce that λn → λ∗ and tn − t∗n → 0. To this end, we first notice that

|‖un‖q − |λn |‖u‖q | ≤ ‖un( · + tn, · ) − λnu‖q = ‖r̃n‖q ≤ C−1/2
a,b ‖r̃n‖ = on→∞(1)

and ‖un‖q → 1 imply that |λn | → ‖u‖−1
q = |λ∗|. Next, we use the decomposition (2.1) of

un to find that

λn = ‖u‖−2〈u( · − tn), un〉 = λ∗‖u‖−2〈u( · − tn), u( · − t∗n )〉 + on→∞(1).

Taking the absolute value on both sides, we deduce that |〈u( · − tn), u( · − t∗n )〉| → ‖u‖2.
Using 〈u( · − tn), u( · − t∗n )〉 = 〈u( · − tn), u( · − t∗n )q−1〉L2(C) ≥ 0 (by (1.10) for u( · − t∗n )

and the fact that u ≥ 0), we deduce on the one hand that λn → λ∗ and on the other hand that

‖u − u( · + t∗n − tn)‖2 = 2
(‖u‖2 − 〈u( · − tn), u( · − t∗n )〉) → 0.

Since u is symmetric decreasing, we deduce that t∗n − tn → 0, as claimed.
Since λn → λ∗ 
= 0, up to dropping finitely many n, we may assume λn 
= 0. Defining

rn :=λ−1
n r̃n then provides the desired decomposition (1.14) with ‖rn‖ → 0.

Note that Jn(t, λ):=‖un −λu( ·− t)‖2 inherits the differentiability in t from u. Moreover,
it is a polynomial in λ and hence differentiable in λ. This yields the desired orthogonality
relations

0 = ∂λ Jn(t, λ)|(t,λ)=(tn ,λn) = −2λn〈rn, u〉 ,

0 = ∂t Jn(t, λ)|(t,λ)=(tn ,λn) = 2λ2n〈rn, ∂su〉 . ��

3 Projection on the non-trivial zeromodes of the Hessian

While the analysis in the previous section is relevant in the full range of admissible, attainable,
and symmetric parameters, we now turn to properties that are specific for parameter values
on the Felli–Schneider curve � = �FS . Recall that ω1, . . . , ωd denote the Cartesian coordi-
nates restricted to Sd−1. These generate the space of spherical harmonics of degree 1. More
generally, (Yl,m)m is defined to be the L2(Sd−1)-orthonormal basis of spherical harmonics
of degree l. The degeneracy index m runs through a finite, l-dependent set, but we will not
need a more detailed description for our purposes. Note that spherical harmonics of degree
0 are constant. For an introduction to spherical harmonics, we refer to [33, p. 137–152].

3.1 Degeneracy along the Felli–Schneider curve

Let ψ = λu( · − t) ∈ M. We investigate the stability of the functional F around ψ in the
classical way by determining the zeros of the Hessian of F . The Euler–Lagrange equation
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(1.10) implies Ca,b = ‖u‖2‖u‖−2
q = ‖u‖q−2

q , which can be used to compute the Hessian of
the functional F . One finds that for all ϕ ∈ H1(C),

D2
ψF(ϕ) = ∂2εF(ψ + εϕ)|ε=0

= 2

(
‖ϕ‖2 − (q − 1)

∫
C
u( · − t)q−2ϕ2 d(s, ω)

+ (q − 2)‖u‖−q
q

(∫
C
u( · − t)q−1ϕ d(s, ω)

)2 )
.

This quadratic form corresponds to a self-adjoint, lower bounded operator Lψ in the Hilbert
space L2(C) with form domain H1(C) and operator domain H2(C) in the sense that

D2
ψF(ϕ) = 2〈ϕ,Lψϕ〉2,

where

Lψ := − ∂2s − 
ω + � − (q − 1)u( · − t)q−2 + (q − 2)‖u‖−q
q |uq−1( · − t)〉〈uq−1( · − t)|.

Here 
ω denotes the Laplace–Beltrami operator on S
d−1, and |uq−1( · − t)〉〈uq−1( · − t)|

denotes the rank one projector onto uq−1( · − t) in L2(C). We stress that the inner product
in the definition of the rank one projector is the one in L2(C), not in H1(C). We observe that
the operator Lψ is independent of λ, and hence Lψ = Lu( · −t).

Note that D2
ψF , and hence Lψ , is positive semi-definite by optimality of ψ . Indeed, we

find F(ψ) = 0 and, through the Euler–Lagrange equation (1.10), DψF = 0. Therefore,
expanding F with q > 2 around ψ yields

0 ≤ F(ψ + εϕ) = ε2

2
D2

ψF(ϕ) + oε→0(ε
2), ϕ ∈ H1(C).

Next, we show that the kernel of Lψ is given by

KerLψ = Ker(D2
ψF) = span{ψ, ∂sψ,ψ

q/2ωi , i = 1, . . . , d}. (3.1)

By means of −
ωωi = (d − 1)ωi and the equations (1.10), (1.11), and (1.12), it can
be verified easily that Lψ vanishes on ψ, ∂sψ,ψ

q/2ωi , i = 1, . . . , d , which are mutually
orthogonal in both L2(C) and H1(C). The other direction follows from a computation by
Felli and Schneider [18], which we briefly review here. After separating the radial and the
angular part of an arbitrary solution ϕ ∈ H1(C) toLψϕ = 0, they reduced this equation to an
eigenvalue problem involving a one-dimensional Schrödinger operator with Pöschl–Teller
potential:

(−∂2s − (q − 1)u( · − t)q−2)�l = θl�l (3.2)

with θl :=−(l(l+d−2)+�) and�l ∈ H1(R) for every l ∈ N0. The parameter l corresponds
to the angular momentum, that is, the degree of the spherical harmonic in the expansion of
ϕ.

We make use of the following facts about the operator appearing in (3.2).

Lemma 7 (Spectral analysis of lower eigenvalues) The lowest eigenvalue of the operator

−∂2s − (q − 1)u( · − t)q−2 in L2(R) is − q2

4 � with corresponding eigenfunction u( · − t)
q/2.

Its second eigenvalue is−� with corresponding eigenfunction ∂su( ·− t). These eigenvalues
are simple.
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Proof These facts are well-known (see, for instance, [21, 4.2.2. Example: Pöschl–Teller
potentials]), but it is easy to give an independent proof. Indeed, (1.12) says that u( · − t)q/2

is a positive H2(R)-solution of an eigenvalue equation involving the operator. By general

Schrödinger operator theory, this implies that uq/2 is the ground state, − q2

4 � is the lowest
eigenvalue, and this eigenvalue is simple. Similarly, (1.11) says that ∂su( · − t) is a negative
H2((t,∞)) ∩ H1

0 ((t,∞))-solution of an eigenvalue equation, so it is the ground state of the
Dirichlet realization of the operator on (t,∞). Since, in one dimension, the eigenvalues of
a Schrödinger operator with even potential are alternatingly those of the Neumann and the
Dirichlet realization, we obtain the assertion about the second eigenvalue. ��

Let us return to the study of equation (3.2). Note that we have neglected the rank one
projector in Lψ when writing (3.2), which can be justified as follows. When l ≥ 1, the
contribution of the rank one operator vanishes, since u( ·− t) is a radial (that is, independent
of ω) function. When l = 0, the function ψ is in the kernel of Lψ , as we have already
observed. When looking for other elements ϕ in the kernel, we may thus subtract a suitable
multiple of ψ from ϕ and are led, in view of (1.10), to the equation (3.2) without rank one
projector.

For l = 0 we have θ0 = −�, which, by Lemma 7, is the second eigenvalue of the
operator. Thus, in this case the L2(R)-solution space of (3.2) is one-dimensional and spanned

by ∂su( · − t). For l = 1 we have θ1 = −(d − 1 + �) = − q2

4 � (as � = �FS), which,
by Lemma 7, is the lowest eigenvalue of the operator. Thus, in this case the L2(R)-solution
space of (3.2) is one-dimensional and spanned by u( · − t)q/2. Finally, for l ≥ 2 we have
θl < θ1, and correspondingly there is no non-trival L2(R)-solution of (3.2).

Multiplied with a basis of spherical harmonics of the appropriate degree, we see that the
kernel of the Hessian is spanned by {ψ, ∂sψ,ψ

q/2ωi , i = 1, . . . , d}, as claimed.

3.2 Proof of Proposition 3

Step 1. Proposition 2 is applicable as ‖un‖2 → Ca,b and ‖un‖q → 1 for n → ∞. Passing
to a subsequence, we thus obtain the decomposition

un = λn(u + rn)( · − tn, ω), (s, ω) ∈ C,

with the prescribed convergence and orthogonality properties.Definingαn :=〈rn, uq/2ω〉 ∈ R
d

and μn := |αn |, we can choose an orthogonal matrix Dn ∈ O(d) such that Dnαn = μned . It
follows that

μnωd ◦ Dn = αn · ω for all ω ∈ S
d−1,

where · denotes the scalar product in R
d . We will abuse the notation slightly by writing

f ◦ Dn = f ( ·, Dn · ) for a function f defined on C. We define R̃n ∈ H1(C) to be

R̃n :=
(
rn − αn · ωu

q/2
) ◦ D−1

n = rn ◦ D−1
n − μnu

q/2ωd ,

so R̃n ◦Dn is the remainder term of projecting rn onto u
q/2ωi , i = 1, . . . , d , in H1(C). As D−1

n
only rotates the basis {ωi }i∈{1,...,d}, the set {ωi ◦ D−1

n }i∈{1,...,d} spans the spherical harmonics
of degree 1 as well. Therefore, we see that

〈R̃n, u
q/2ωi 〉 = 0 for every i ∈ {1, . . . , d}. (3.3)
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Since uq/2ωd is orthogonal to span{u, ∂su} in H1(C), we can apply the orthogonality condi-
tions for rn from Proposition 2 to obtain the relations

〈R̃n, u〉 = 〈R̃n, ∂su〉 = 0.

Step 2. Turning to the convergence properties, as q > 2, we can expand
∣∣∣∣|1 + x |q − 1 − qx − q(q − 1)

2
x2

∣∣∣∣ � |x |q∧3 + |x |q uniformly in x ,

∣∣∣∣|1 + y|2/q − 1 − 2

q
y

∣∣∣∣ � |y|2 for |y| → 0 .

Applying the expansions above with x = rnu−1 and

y = q(q − 1)

2‖u‖qq
∫
C
uq−2r2n d(s, ω) + On→∞(‖rn‖q∧3

q∧3 + ‖rn‖qq)

leads to

λ−2
n ‖un‖2q =

(∫
C
uq

∣∣∣1 + rn
u

∣∣∣q d(s, ω)

)2/q

= ‖u‖2q
(
1 + q(q − 1)

2‖u‖qq
∫
C
uq−2r2n d(s, ω) + On→∞(‖rn‖q∧3

q∧3 + ‖rn‖qq)
)2/q

= ‖u‖2q
(
1 + (q − 1)

‖u‖qq
∫
C
uq−2r2n d(s, ω)

)
+ On→∞(‖rn‖q∧3) ,

where the first order term in the penultimate step vanished due to orthogonality; see (1.15). In
the last step, Sobolev embedding and ‖rn‖ → 0 for n → ∞ simplified the error ‖rn‖q∧3

q∧3 +
‖rn‖qq = On→∞(‖rn‖q∧3). UsingHölder’s inequality,we can verify that theTaylor expansion
in use was indeed applicable as |y|2 = On→∞(‖rn‖q∧3). Recalling that by orthogonality

‖un‖2 = λ2n(‖u‖2 + ‖rn‖2),
we are able to expand F to quadratic order:

F(un) = ‖un‖2 − Ca,b‖un‖2q = λ2n

2
D2
uF(rn) + On→∞(‖rn‖q∧3). (3.4)

Above, the terms of order zero vanish due to the optimality of u, and the rank one projector
in D2

uF can be added as 〈rn, uq−1〉2 = 0.
Since ‖rn‖ → 0 for n → ∞, the expansion (3.4) yields

lim
n→∞

D2
uF(rn)

2‖rn‖2 = lim
n→∞

F(un)

dist(un,M)2
= 0, (3.5)

where we used our assumption (1.16) in the last step. We recall from Subsection 3.1 that the
Hessian of F corresponds to an operator Lψ in L2(C). Since its essential spectrum starts at
� (by Weyl’s theorem; see, e.g., [21, Theorem 1.14]), we see that D2

uF is positive definite
on the L2(C)-orthogonal complement of Ker(D2

uF) and has a spectral gap above 0, so

D2
uF |Ker(D2

uF)⊥ ≥ c̃‖ · ‖22
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for some c̃ > 0. The right side can be improved to the H1(C)-norm. To this end, let δ > 0
and ϕ ∈ Ker(D2

uF)⊥. As ‖u‖q−2
L∞(R)

≤ q
2�, we can bound

D2
uF(ϕ) ≥ δ‖ϕ‖2 +

(
(1 − δ)c̃ − δ(q − 1)

q

2
�

)
‖ϕ‖22 ≥ δ‖ϕ‖2

for δ chosen small enough. Therefore, it follows immediately that

D2
uF |Ker(D2

uF)⊥ � ‖ · ‖2,

that is, the induced norms are equivalent. Moreover, we know that D2
uF(uq/2ωd) = 0 by (3.1)

and 〈R̃n, u
q/2ωd〉 = 〈R̃n, u

q/2ωduq−2〉2 = 0 by (3.3) and (1.12). Using this and (3.5), we find
that

‖R̃n‖2
‖rn‖2 � D2

uF(R̃n)

‖rn‖2 = D2
uF(rn)

‖rn‖2 → 0 (3.6)

for n → ∞. The orthogonality relations (3.3) and the equation (1.12) for uq/2 along with
‖ωd‖2L2(Sd−1)

= |Sd−1|d−1 imply

‖R̃n‖2 + q − 1

d
‖uq−1‖22μ2

n = ‖rn‖2.

This and the asymptotics (3.6) show that μ2
n‖rn‖−2 → d((q −1)‖uq−1‖22)−1. It follows that

μn = On→∞(‖rn‖), and, unless rn = 0, we have μn 
= 0 for all sufficiently large n. We
finally set Rn := μ−1

n R̃n whenμn 
= 0 (and Rn = 0 whenμn = 0). Then ‖Rn‖ = on→∞(1),
and the above orthogonality conditions for R̃n translate into orthogonality conditions for Rn .

��

4 Non-vanishing of the quartic order

4.1 Quartic expansion of the deficit functional

As the denominator in (1.19) equals λ4n‖rn‖4, which is comparable to μ4
n for n → ∞, we

aim to expand the numerator to fourth order in |μn | and expect lower order terms to vanish.
In fact, the decomposition (1.17) formally leads to a quartic expansion of the functional F .
However, we cannot control arbitrary perturbations Rn in terms ofμn yet. We only know that
‖Rn‖ → 0 for n → ∞. In order to conduct perturbation theory, it would be more beneficial
to have control of the L∞-norm of Rn as suggested in [19]. In general, an expansion of
the Lq -norm up to fourth order requires q ≥ 4. However, we will circumvent this issue by
splitting the domain of integration in the Lq -norm: The remainder term |Rn | is cut off by
uq/2, which stems from the non-trivial zero mode, allowing expansions to arbitrary order. This
approach for 1 instead of uq/2 simplifies the computations for the quartic expansion in [19],
and we expect it to be applicable to prove other degenerate stability results in the future.

Lemma 8 (Quartic order expansion of F) If (un)n is as in Proposition 3, we have in the
notation of that proposition,

λ−2
n F(un) = λ−2

n (‖un‖2 − Ca,b‖un‖2q) ≥ (A) + (B) + On→∞(|μn |5),
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where for some n-independent constant C < ∞ we define

(A):=μ2
n

(
(1 − C |μn |(q−2)∧1)‖Rn‖2−(q − 1)

∫
C
(uq−2R2

n+(q − 2)μnu
2q−3ω2

d Rn) d(s, ω)

)
,

(B):=μ4
n
(q − 1)(q − 2)

4

(
q − 1

‖u‖qq

(∫
C
u2q−2ω2

d d(s, ω)

)2

− q − 3

3

∫
C
u3q−4ω4

d d(s, ω)

)
.

It is instructive to consider this result in view of the secondary non-degeneracy condition in
Definition 5. Setting ϕ = μn Rn and g = μnu

q/2ωd , (A) corresponds (to leading order in μn)
to the bilinear and linear part in ϕ of (1.21), that is, 2−1(D2

uF(ϕ, ϕ) + D3
uF(g, g, ϕ)), while

(B) is the constant part 24−1D4
uF(g, g, g, g). Hence, the main goal of the next subsection

is to bound them together from below by a positive constant.

Proof As the prerequisites for Proposition 3 are satisfied, the decomposition (1.17) is avail-
able. Exploiting the translation and rotation invariance of the assumptions and the expansion
in the theorem, we may assume without loss of generality that

un = λn(u + μn(u
q/2ωd + Rn)).

We consider the set of points in C where |Rn | < u
q/2 and the onewhere |Rn | ≥ u

q/2, separately.
Step 1. In the set where |Rn | < u

q/2 we have

|μn ||uq/2ωd + Rn |u−1 ≤ 2|μn |uq/2−1 ≤ 2|μn |
(q
2
�

)1/2 ≤ 1

2

for n large enough. Then we can write

|λn |−q |un |q = uq |1 + μn(u
q/2ωd + Rn)u

−1|q (4.1)

and expand the last term around 1. Applying the Lq({|Rn | < uq/2})-norm to (4.1), the order
of the error in |μn | of the expansion on the right side is preserved since uq is integrable.
Thus, we may expand the Lq({|Rn | < uq/2})-norm to arbitrary order. We will only need an
expansion to quartic order:

|λn |−q
∫

{|Rn |<uq/2}
|un |q d(s, ω) =

∫
{|Rn |<uq/2}

uq
(
1 + qμn(u

q/2ωd + Rn)u
−1

+ 1

2
q(q − 1)μ2

n(u
q/2ωd + Rn)

2u−2 + 1

6
q(q − 1)(q − 2)μ3

n((u
q/2ωd)

3

+ 3(u
q/2ωd)

2Rn)u
−3 + 1

24
q(q − 1)(q − 2)(q − 3)μ4

n(u
q/2ωd)

4u−4
)
d(s, ω)

+ On→∞(|μn |5 + |μn |3‖Rn‖2) , (4.2)

where we absorbed some of the third and fourth order terms into the error. In particular, we
used

∣∣∣∣μ4
n

∫
{|Rn |<uq/2}

(u
q/2ωd)

3Rnu
q−4 d(s, ω)

∣∣∣∣ � |μn |4‖Rn‖2 � |μn |5 + |μn |3‖Rn‖2.
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Step 2.We can surely expand the Lq -norm to second order for q > 2 on {|Rn | ≥ uq/2}:

|λn |−q
∫

{|Rn |≥uq/2}
|un |q d(s, ω)

=
∫

{|Rn |≥uq/2}

(
uq + qμn(u

q/2ωd + Rn)u
q−1+ 1

2
q(q − 1)μ2

n(u
q/2ωd+Rn)

2uq−2
)
d(s, ω)

+ On→∞
(∫

{|Rn |≥uq/2}
(|μn |3∧q |uq/2ωd + Rn |3∧q + |μn |q |uq/2ωd + Rn |q

)
d(s, ω)

)
,

(4.3)

where we used that uq−(q∧3) � 1 uniformly in s in the argument of On→∞. Denoting
p ∈ {q, 3 ∧ q} ⊂ (2, 2∗), we realize that

∫
{|Rn |≥uq/2}

|μn |p|uq/2ωd + Rn |p d(s, ω) � |μn |p‖Rn‖p
p � |μn |p‖Rn‖p. (4.4)

As uq/2 ≤ |Rn | holds pointwise and (uq/2−1)m is integrable for every m > 0, we obtain

1

6
q(q − 1)(q − 2)μ3

n

∫
{|Rn |≥uq/2}

uq−3(u
q/2ωd)

2

×
(

(u
q/2ωd) + 3Rn + 1

4
(q − 3)μn(u

q/2ωd)
2u−1

)
d(s, ω)

= On→∞(|μn |3‖Rn‖2) . (4.5)

Inserting (4.4) and (4.5) into (4.3) gives us a quartic expansion as in (4.2) but over {|Rn | ≥ u
q/2}

and with an additional error On→∞(‖μn Rn‖qq + ‖μn Rn‖q∧3
q∧3).

Step 3.By simplemanipulations, wemay reduce the overall error for the quartic expansion
of the Lq(C)-norm to On→∞(|μn |5 + |μn |q∧3‖Rn‖2). Using this expansion, we compute

λ−2
n ‖un‖2q = ‖u‖2q

(
1 + ‖u‖−q

q

∫
C

(
(q − 1)μ2

n(u
qω2

d + R2
n)u

q−2

+ (q − 1)(q − 2)μ3
n(u

q/2ωd)
2Rnu

q−3

+ 1

12
(q − 1)(q − 2)(q − 3)μ4

n(u
q/2ωd)

4uq−4
)
d(s, ω)

− 1

4
(q − 2)‖u‖−2q

q (q − 1)2μ4
n

(∫
C
uqω2

du
q−2 d(s, ω)

)2 )

+ On→∞(|μn |5 + |μn |q∧3‖Rn‖2) ,

where the whole first order term, the mixed term of second order, and the term including ω3
d

of third order vanish due to orthogonality relations of the spherical harmonic ωd and Rn ; see
Proposition 3. Together with the expansion of the H1(C)-norm,

λ−2
n ‖un‖2 = ‖u‖2 + μ2

n(‖uq/2ωd‖2 + ‖Rn‖2),
we obtain the desired expansion of the functional F to quartic order. Note that the terms of
order zero vanish by optimality of u, and the Rn-independent second order terms cancel due to
equation (1.12). The stated lower bound now follows from replacingOn→∞(|μn |q∧3‖Rn‖2)
by a lower bound of the form −C |μn |q∧3‖Rn‖2, C < ∞. ��
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4.2 Bounding (A) + (B) from below

In order to prove Proposition 4, we are going to estimate (A) + (B) from Lemma 8 from
below by the leading order μ4

n times a positive (q, d)-dependent constant. To this end, we
will use two well-known identities frequently hereafter:
∫
Sd−1

ωn
d dω = |Sd−1|�

( d
2

)
�

( n+1
2

)
�

( 1
2

)
�

( d+n
2

)1{n∈2N0} and
∫
R

| sinh(s)|n
coshν(s)

ds = �
(

ν−n
2

)
�

( n+1
2

)
�

(
ν+1
2

)
(4.6)

for ν > n, n ∈ N0. After passing to spherical coordinates, the first integral follows from [22,
3.621, Eq. 5], while the second one is a direct consequence of [22, 3.512, Eq. 2].

Let us start with (B). It is independent of Rn and can thus be computed explicitly by
means of the identities (4.6). We find that

(B) = μ4
n
β3q−4

α

|Sd−1|
4d2

�
(
3q−4
q−2

)√
π

�
(
3q−4
q−2 + 1

2

) (q − 1)(q − 2)

(
q(5q − 6)

2(3q − 2)
− d(q − 3)

(d + 2)

)
.

(4.7)

In order to estimate (A), we will expand Rn in spherical harmonics,

Rn(s, ω) =
∑
l,m

al,m(s)Yl,m(ω), (4.8)

where al,m are s-dependent coefficients and (Yl,m)m is an L2(Sd−1)-orthonormal basis of
spherical harmonics of degree l, which we introduced in Sect. 3. We will choose

Y0,0:= 1√|Sd−1| and Y2,0(ωd):=
√

d2(d + 2)

2(d − 1)|Sd−1|
(

ω2
d − 1

d

)
, (4.9)

where the normalizing constants can be computed using the first identity from (4.6). The
L2(Sd−1)-orthogonality of the spherical harmonics Yl,m allows us to state the L2(C)-
orthogonality conditions from Proposition 3 (see (1.18)) in terms of the coefficients:

〈a0,0, uq−1〉L2(R) = 〈a0,0, (q − 1)uq−2∂su〉L2(R) = 〈a1,m, (q − 1)uq−2u
q/2〉L2(R) = 0.

(4.10)

There will be two lemmas that provide sharp lower bounds on (A). The first estimate
says that, except for l = 0,m = 0 and l = 2,m = 0, the contribution of the coefficients is
bounded from below by 0. The other one takes care of the missing cases by a ‘completing
the square’-argument.

Lemma 9 (Negligible energies) Inserting (4.8) for Rn, we have for any n ∈ N,

(A) ≥ μ4
n

∑
l∈{0,2}

E(l)
(
al,0
μn

)
, (4.11)

where, for l ∈ {0, 2} and g ∈ H1(R),

E(l)(g) :=
∫
R

((1 − C |μn |(q−2)∧1)((∂s g)2 + (2d1{l=2}(l) + �)g2)

−(q − 1)uq−2g2 − 2 f (l)g) ds
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with

f (l):=Mu2q−3

(√
2(d − 1)

d + 2
1{l=2}(l) + 1{l=0}(l)

)
, M :=(q − 1)(q − 2)

√|Sd−1|
2d

.

Here to lighten the notation, we do not reflect the dependence of E(l) on n. Since μn → 0,
this dependence will be weak.

Proof By means of (4.9), we expand ω2
d in spherical harmonics:

ω2
d = (ω2

d − d−1) + d−1 =
√
2(d − 1)|Sd−1|

d2(d + 2)
Y2,0 +

√|Sd−1|
d

Y0,0.

As a result, expanding Rn in spherical harmonics as well, we can write (A) as

μ2
n

(
(1 − C |μn |(q−2)∧1)‖Rn‖2 − (q − 1)

∫
C

(
uq−2R2

n + (q − 2)μnu
2q−3ω2

d Rn
)
d(s, ω)

)

= μ2
n

∫
R

( ∑
l,m

(
(1 − C |μn |(q−2)∧1)((∂sal,m)2 + (l(l + d − 2) + �)a2l,m)

− (q − 1)uq−2a2l,m

)

− (q − 1)(q − 2)μn

√|Sd−1|
d

(
u2q−3

√
2(d − 1)

d + 2
a2,0 + u2q−3a0,0

) )
ds . (4.12)

The terms with (l,m) ∈ {(0, 0), (2, 0)} are the terms that appear on the right side in the
lemma. We will now show that the remaining terms are bounded from below by zero. This
will imply the lemma.

According to Lemma 7, the lowest eigenvalue of the operator−∂2s −(q−1)uq−2 in L2(R)

is− q2

4 �. This, together with the bound ‖u‖q−2
L∞(R)

≤ q
2�, implies that, once n is so large that

C |μn |(q−2)∧1 ≤ 1,

(1 − C |μn |(q−2)∧1)(−∂2s + l(l + d − 2) + �) − (q − 1)uq−2

≥ (1 − C |μn |(q−2)∧1)
(−∂2s + l(l + d − 2) + � − (q − 1)uq−2)

− C |μn |(q−2)∧1(q − 1)
q

2
�

≥ (1 − C |μn |(q−2)∧1)
(

−q2

4
� + l(l + d − 2) + �

)
− C |μn |(q−2)∧1(q − 1)

q

2
� .

We have − q2

4 � + � = − q2−4
4 �FS = −(d − 1). Since for l ≥ 2 we have l(l + d − 2) ≥

2d > d − 1, it follows that, if n is large enough, then for all l ≥ 2 we have

(1 − C |μn |(q−2)∧1)(−∂2s + l(l + d − 2) + �) − (q − 1)uq−2 ≥ 0. (4.13)

Therefore, we can bound the terms in the sum over l,m in (4.12) with l ≥ 2 by 0 from below;
however, we will keep the summand with (l,m) = (2, 0).
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We now bound the term with l = 1. We set Zm := 〈uq/2, a1,m〉L2(R)‖u‖−q
Lq (R)

and write

(1 − C |μn |(q−2)∧1)(‖∂sa1,m‖2L2(R)
+ (d − 1 + �)‖a1,m‖2L2(R)

)

− (q − 1)〈a1,m, uq−2a1,m〉L2(R)

= (1 − C |μn |(q−2)∧1)
(
‖∂s(a1,m − Zmu

q/2)‖2L2(R)
+ (d − 1 + �)‖a1,m − Zmu

q/2‖2L2(R)

− (q − 1)〈(a1,m − Zmu
q/2), uq−2(a1,m − Zmu

q/2)〉L2(R)

)
− C |μn |(q−2)∧1(q − 1)

×
(
〈(a1,m − Zmu

q/2), uq−2(a1,m − Zmu
q/2)〉L2(R) − Z2

m‖uq−1‖2L2(R)

)
.

Hereweused theEq. (1.12) foruq/2, the third condition in (4.10) and the assumption� = �FS .
Since a1,m − Zmu

q/2 is L2(R)-orthogonal to u
q/2, which is the ground state of the operator

−∂2s − (q − 1)uq−2 in L2(R), and since the second eigenvalue of this operator is −�, we
can bound

‖∂s(a1,m − Zmu
q/2)‖2L2(R)

+ (d − 1 + �)‖a1,m − Zmu
q/2‖2L2(R)

− (q − 1)〈(a1,m − Zmu
q/2), uq−2(a1,m − Zmu

q/2)〉L2(R)

≥ (d − 1)‖a1,m − Zmu
q/2‖2L2(R)

.

This, together with ‖u‖q−2
L∞(R)

≤ q
2�, implies that, when C |μn |(q−2)∧1 ≤ 1,

(1 − C |μn |(q−2)∧1)(‖∂sa1,m‖2L2(R)
+ (d − 1 + �)‖a1,m‖2L2(R)

)

− (q − 1)〈a1,m, uq−2a1,m〉L2(R)

≥
(
(1 − C |μn |(q−2)∧1)(d − 1) − C |μn |(q−2)∧1(q − 1)

q

2
�

)
‖a1,m − Zmu

q/2‖2L2(R)
.

This is non-negative for all sufficiently large n. Thus, we conclude that (4.11) holds. ��
Lemma 9 motivates to study the minimization problems

E (0):= inf
{
E(0)(g) : g ∈ H1(R), 〈uq−1, g〉L2(R) = 〈uq−2∂su, g〉L2(R) = 0

}
,

E (2):= inf
{
E(2)(g) : g ∈ H1(R)

}
.

The energy functionals E(l) are of the form quadratic plus linear, and therefore the cor-
responding minimization problems E (l) are abstractly solvable by a ‘completion of the
square’-argument. Producing concrete numerical values, however, is not straightforward,
in particular for l = 2. These numerical values are necessary in order to verify the secondary
non-degeneracy condition. We stress that this difficulty is already present in the model case
where μn is replaced by zero. To avoid distraction from the main idea of the proof, we state
here the outcome of the ‘completion of the square’-argument and provide a sketch of the
argument but defer the details for l = 2 to the next section.

Lemma 10 (Energy of the degree 0 solution) As n → ∞, we have

E (0) = −β3q−4

α

|Sd−1|
4d2

�
(
3q−4
q−2

)√
π

�
(
3q−4
q−2 + 1

2

) q(q − 2)3

4(3q − 2)
+ On→∞(|μn |(q−2)∧1).
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Lemma 11 (Energy of the degree 2 solution) As n → ∞, we have

E (2) = −β3q−4

α

|Sd−1|
4d2

�
(
3q−4
q−2

)√
π

�
(
3q−4
q−2 + 1

2

) q(q − 1)(q − 2)(d − 1)

(d + 2)P(−1)

∞∑
k=0

(P(k − ξ) − P(k))

+ On→∞(|μn |(q−2)∧1)

with a smooth function P : [−1,∞) → (0,∞) defined by

P(x):= �
(
x + 3

2

)
� (x + 2b − 1) � (x + 2b)

� (x + b − a + 1) � (x + b + a + 1) �
(
x + 2b + 1

2

) , x ≥ −1, (4.14)

and

a:=
√
1 + 2d

�

q − 2
, b:=2q − 3

q − 2
, ξ :=b − a. (4.15)

For the proof of these two lemmas, we consider for l ∈ {0, 2} the one-dimensional
Schrödinger operators

h(l)
n :=(1 − C |μn |(q−2)∧1)(−∂2s + 2d1{l=2}(l) + �) − (q − 1)uq−2. (4.16)

They can be considered as self-adjoint, lower semibounded operators in the Hilbert space
L2(R) with form domain H1(R) and operator domain H2(R).

Proof of Lemma 11 As we have seen in (4.13) in the proof of Lemma 9, the operator h(2)
n is

bounded from below by d+1+O(|μn |(q−2)∧1). Thus, for all sufficiently large n the operator
is boundedly invertible. We can write for any g ∈ H1(R),

E(2)(g) = ‖(h(2)
n )1/2g − (h(2)

n )−1/2 f (2)‖2L2(R)
− 〈 f (2), (h(2)

n )−1 f (2)〉L2(R) .

Thus, E (2) = infg E(2)(g) = −〈 f (2), (h(2)
n )−1 f (2)〉L2(R), and the infimum is attained at

the unique g that satisfies (h(2)
n )1/2g = (h(2)

n )−1/2 f (2). The latter is equivalent to having
g ∈ H2(R) and h(2)

n g = f (2). We have not been able to find a simple explicit expression
of this solution g (not even for μn = 0), but we have been able to find a power series
representation of it, which allows us to deduce the formula stated in the lemma. We defer the
details of this rather lengthy analysis to the next section. ��

The idea of the proof of Lemma 10 is similar to that of Lemma 11, and in this case, in
fact, an explicit expression for the solution is available. There is a different complication,
however, namely, in the first part of the proof. This comes from the fact that the operator
h(0)
n is not positive definite. Indeed, from Lemma 7 we know that at μn = 0 its lowest two

eigenvalues are −(
q2

4 − 1)� and 0. We need to remove these two unstable directions in
order to obtain a boundedly invertible operator. As we will show, this is achieved by the
orthogonality conditions in the definition of E (0). This is not completely obvious since the
functions in these orthogonality conditions are not eigenfunctions of the operator.

Proof of Lemma 10 Step 1.We denote by� the L2(R)-orthogonal projection onto the L2(R)-
orthogonal complement of span{uq−1, uq−2∂su}. We claim that for all sufficiently large n
the operator �h(0)

n �, considered in the Hilbert space ran�, is bounded from below by a
positive constant and, consequently, boundedly invertible on that space. Since the bottom of

123



44 Page 22 of 33 R. L. Frank, J. W. Peteranderl

the spectrum of �h(0)
n � depends continuously on μn , it suffices to prove this assertion for

the operator h(0), defined similarly as h(0)
n but with μn set to zero.

By the computations in Subsection 3.1, we know that the Hessian of F at u, restricted to
radial functions, is given by the operator h(0) + (q − 2)‖u‖−q

q |uq−1〉〈uq−1| in L2(R). Since
the Hessian is positive semidefinite and since

�h(0)� = �
(
h(0) + (q − 2)‖u‖−q

q |uq−1〉〈uq−1|
)

�,

we deduce that �h(0)� is positive semidefinite. Since the essential spectrum of this operator
starts at � > 0 (as before by Weyl’s theorem; see, e.g., [21, Theorem 1.14]), it suffices to
prove that 0 is not an eigenvalue of �h(0)�. Thus, assume that �h(0)�ϕ = 0 for some
ϕ ∈ H2(R). Then the above computation shows that �ϕ lies in the kernel of the Hessian of
F at u, restricted to radial functions. Hence, by (3.1), �ϕ = c1u + c2∂su for some constants
c1, c2 ∈ R. Since even and odd functions are mutually orthogonal, we deduce that

0 = 〈uq−1,�ϕ〉L2(R) = c1

∫
R

uq ds and 0 = 〈uq−2, ∂s�ϕ〉L2(R) = c2

∫
R

uq−2∂2s u ds.

Thus, c1 = c2 = 0 and �ϕ = 0. This means that �h(0)� has trivial kernel on the space
ran�, as claimed.

Step 2. Now we can proceed similarly as in the proof of Lemma 11. We can write for any
g ∈ H1(R) ∩ ran�,

E(0)(g) = ‖(�h(0)
n �)1/2g−(�h(0)

n �)−1/2� f (0)‖2ran�−〈� f (0), (�h(0)
n �)−1� f (0)〉ran�,

where we consider the natural inner product and norm that ran� inherits from L2(R). We
conclude that E (0) = infg∈H1(R)∩ran� E(0)(g) = −〈� f (0), (�h(0)

n �)−1� f (0)〉ran�, and

the infimum is attained at the unique g that satisfies (�h(0)
n �)1/2g = (�h(0)

n �)−1/2� f (0).
The latter is equivalent to having g ∈ H2(R) ∩ ran� and �h(0)

n �g = � f (0). This means
that

h(0)
n �g = f (0) + c3u

q−1 + c4u
q−2∂su (4.17)

for some constants c3, c4 ∈ R.
Exploiting (1.10), we compute directly

h(0)
n u = −(q − 2 + C |μn |(q−2)∧1)uq−1 ,

h(0)
n uq−1 = −(1 − C |μn |(q−2)∧1)q(q − 2)�uq−1

+ (q − 1)

q
(2(q − 2) − (3q − 4)C |μn |(q−2)∧1)u2q−3 ,

and therefore, if we set

g = Kuq−1 + Lu

with constants K , L ∈ R to be determined, then

h(0)
n g =

(
−(1 − C |μn |(q−2)∧1)q(q − 2)�K − (q − 2 + C |μn |(q−2)∧1)L

)
uq−1

+ (q − 1)

q
(2(q − 2) − (3q − 4)C |μn |(q−2)∧1)Ku2q−3 .
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If we choose

K := Mq

(2(q − 2) − (3q − 4)C |μn |(q−2)∧1)(q − 1)
,

then (q−1)
q (2(q − 2) − (3q − 4)C |μn |(q−2)∧1)Ku2q−3 = f (0). Further, if we choose

L:= − 2q

3q − 2
βq−2K ,

then, using the second identity in (4.6) and the functional equation of the gamma function,

〈uq−1, g〉L2(R) = 0 and 〈uq−2∂su, g〉L2(R) = 0.

Here the second identity follows immediately by parity. Thus, we have found a solution
g ∈ H2(R) ∩ ran� of (4.17) for certain explicit but irrelevant constants c3 and c4. (Indeed,
c4 = 0.)

It follows that

E (0) = −〈� f (0), (�h(0)
n �)−1� f (0)〉ran� = −〈 f (0), g〉L2(R)

= −M
∫
R

u2q−3 (
Kuq−1 + Lu

)
ds

= −MK
β3q−4

α

⎛
⎝�

(
3q−4
q−2

) √
π

�
(
3q−4
q−2 + 1

2

) − 2q

3q − 2

�
(
2q−2
q−2

) √
π

�
(
2q−2
q−2 + 1

2

)
⎞
⎠

= −MK
β3q−4

α

�
(
3q−4
q−2

) √
π

�
(
3q−4
q−2 + 1

2

) (q − 2)2

2(q − 1)(3q − 2)
.

Here we used the second identity from (4.6) and the functional equation of the gamma
function. If we insert the asymptotics K = Mq

2(q−2)(q−1) +On→∞(|μn |(q−2)∧1) and recall the
definition of M , we arrive at the assertion of the lemma. ��

4.3 Proof of Proposition 4

Without changing the notation, we restrict ourselves to a subsequence along which the liminf
on the left side of (1.19) is realized. We first consider the simple case where (along that
chosen subsequence) lim infn→∞ F(un)/ dist(un,M)2 > 0. Then, since by assumption
F(un) → 0, we have dist(un,M) → 0. Thus, ‖un‖2/ dist(un,M)2 → ∞, and therefore
the left side of (1.19) is equal to ∞.

We now consider the second case where lim infn→∞ F(un)/ dist(un,M)2 = 0. Then,
after passing to a subsequence, (1.16) is satisfied, and we may use the expansion from
Lemma 8, which involves the two terms (A) and (B). The term (B) was computed in (4.7).
Combining this with the bounds on (A) from Lemma 9, 10, and 11, we obtain

μ−4
n λ−2

n F(un) ≥ β3q−4

α

|Sd−1|
d2

�
(
3q−4
q−2

)√
π

�
(
3q−4
q−2 + 1

2

) q(5q − 6)(q − 1)

2(3q − 2)
J (q, d)

+ On→∞(|μn |(q−2)∧1) ,

123



44 Page 24 of 33 R. L. Frank, J. W. Peteranderl

where, abbreviating ξ = b − a as in Lemma 11, J (q, d) is defined by

J (q, d):= (q − 2)(3q − 2)

2(5q − 6)

(
3q − 4

4(q − 1)
− (q − 3)d

q(d + 2)
− d − 1

d + 2

∞∑
k=0

P(k − ξ) − P(k)

P(−1)

)
.

(4.18)

Meanwhile, as a consequence of the results from Propositions 2 and 3, we find that

μ−4
n λ−2

n = (‖ωdu
q/2‖2 + ‖Rn‖2)2
λ2n‖rn‖4

= ‖ωdu
q/2‖4

‖u‖2q‖u‖q−2
q

Ca,b

dist(un,M)4
(1 + on→∞(1))

= β3q−4

α

|Sd−1|
d2

�
(
2q−2
q−2

) √
π

�
(
2q−2
q−2 + 1

2

) 2q(q − 1)2

(3q − 2)

‖un‖2
dist(un,M)4

(1 + on→∞(1)) .

If we combine the previous two expansions, we arrive at the lower bound in (1.19).
Let us show that this bound is best possible in the sense that there is a sequence (un)n

with the same properties as before, for which (1.19) is an equality. Indeed, it suffices to take

un = ‖u‖−1
q (u + μn(u

q/2ωd + μn(g
(0)Y0,0 + g(2)Y2,0)))

for an arbitary sequence (μn)n tending to 0. Here g(l) are the functions in H1(R) for which
the infima in the definition of E (l) are attained; see the proofs of Lemma 10 and 11. With
this choice of (un)n , the bounds in Lemma 9, 10, and 11 become saturated, and therefore for
this sequence we have equality in (1.19), as claimed.

To complete the proof of the proposition, it remains to prove that J (q, d) > 0. This is
equivalent to proving that J̃ (q, d) > 0, where

J̃ (q, d):= (3q − 4)(d + 2)

4(q − 1)(d − 1)
− (q − 3)d

q(d − 1)
− 1

P(−1)

∞∑
k=0

(P(k − ξ) − P(k)) . (4.19)

We distinguish two cases.
Case 1. To bound J̃ (q, d), let us first assume that d > 2, 2 < q < 2∗ or d = 2,

2.8 < q < 2∗. Then Lemma 13 below is applicable, and we infer that P is strictly convex
on the interval [−1,∞). We deduce that

∞∑
k=0

(P(k − ξ) − P(k))

−ξ
>

∞∑
k=0

(P(k − 1) − P(k))

−1
= −P(−1)

>
P(−1)

−ξ

(
(3q − 4)(d + 2)

4(q − 1)(d − 1)
− (q − 3)d

q(d − 1)

)
, (4.20)

where we used

ξ −
(

(3q − 4)(d + 2)

4(q − 1)(d − 1)
− (q − 3)d

q(d − 1)

)
< 1 −

(
(3q − 4)(d + 2)

4(q − 1)(d − 1)
− (q − 3)d

q(d − 1)

)

= 5(d − 2)q2 − 4(4d − 3)q + 12d

4q(q − 1)(d − 1)
< 0 . (4.21)

Note that

ξ ∈
(
d − 2

d − 1
, 1

)
, (4.22)
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which is a consequence of the strict monotonicity of ξ with respect to q and the values of ξ

at the boundary points q = 2 and q = 2∗. The last step in (4.21) follows by computing the
roots of the numerator, which is quadratic in q for d > 2. The roots are 6

5 and 2d
d−2 , and thus

for all admissible q the quadratic term lies below 0. In case d = 2, the numerator reduces
to −20q + 24, which is smaller than 0. Multiplying (4.20) by −ξ P(−1)−1 < 0, we showed
that J̃ (q, d) > 0 for the assumed parameter range of (q, d).

Case 2.Wenowconsider the remaining cased = 2, 2 < q ≤ 2.8 andgive a lower boundon
E (2) that is not optimal but more explicit than the optimal bound from Lemma 11. In fact, we
give this bound in general dimension d and only specify to d = 2 at the end. The argument is
based on a rough version of the ‘completion of the square’-argument that we have used above.
We recall from the proof of Lemma 9 or Lemma 11 that the operator h(2)

n is bounded from
belowbyd+1+O(|μn |(q−2)∧1). Thus, for all sufficiently largen the operator is invertible, and
the operator-L2(R)-norm of (h(2)

n )−1 is bounded by (d + 1)−1 +O(|μn |(q−2)∧1). Moreover,
we have seen that E (2) = −〈 f (2), (h(2)

n )−1 f (2)〉L2(R). Hence, we can bound, using the second
identity in (4.6),

E (2) ≥ − ‖(h(2)
n )−1‖op‖ f (2)‖2L2(R)

≥ − β3q−4

α

|Sd−1|
4d2

�
(
3q−4
q−2

)√
π

�
(
3q−4
q−2 + 1

2

)q(q − 1)(q − 2)

× (d − 1)

(d + 2)

(
8(q − 1)(3q − 4)(d − 1)

(q + 2)(7q − 10)(d + 1)

)

+ O(|μn |(q−2)∧1).

Now assume d = 2, 2 < q ≤ 2.8. Then this lower bound directly implies J̃ (q, 2) > 0 in
(4.19) as

3q − 4

q − 1
− 2

q − 3

q
− 8

3

(q − 1)

(q + 2)

(3q − 4)

(7q − 10)
≥ 2 + 1

7
− 8

3
· 3
8

· 1
2

> 0, (4.23)

where we estimated every fraction using its monotonicity in q by its value at q = 2 or
q = 2.8. (We note in passing that the above argument works as long as the left side of (4.23)
is positive, that is, q is smaller than approximately 57.325.) This completes our discussion
of Case 2 and therefore the proof of the proposition. ��

5 Solving a certain inhomogeneous second order equation

To complete the proof of our main theorem, we still need to prove Lemma 11, as well as show
the strict convexity of P that we used in the proof of Proposition 4. This will be accomplished
in the present section.

5.1 Proof of Lemma 11

In the previous section, we have reduced the proof of Lemma 11 to solving the equation

h(2)
n g = f (2)
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for g ∈ H2(R) and computing

E (2) = −〈 f (2), (h(2)
n )−1 f (2)〉L2(R) = −〈 f (2), g〉L2(R).

The operator h(2)
n is defined in (4.16). The solution g depends on n (as well as q and d). We

stress that we already know the existence and uniqueness of this g thanks to the invertibility
of h(2)

n . Since f (2) is even, so is g. This motivates us to study the equation on the positive
halfline.

Lemma 12 (The degree 2 solution) There are η ∈ R and (Ak)k, (Bk)k ⊂ R, depending on
μn, q, and d, such that the affine space of H2((0,∞))-solutions g of

(1 − C |μn |(q−2)∧1)(−∂2s g + (2d + �)g) − (q − 1)uq−2g = f (2) in (0,∞) (5.1)

is parametrized by

g = τu

√
1+ 2d

�

∞∑
k=0

Ak cosh
−2k(α · ) − η f (2)

∞∑
k=0

Bk cosh
−2k(α · ) (5.2)

with an arbitrary parameter τ ∈ R. Moreover, we have

lim
s→0+ ∂s g(s) = −2ατβ

√
1+ 2d

�
√

π
�(2a + 1)

�(a + b − 1)

�(1)

�
( 3
2 − b + a

) Pn

+ 2αηMβ2q−3

√
2(d − 1)

d + 2

√
π

�(a + b + 1)

�(2b − 1)

�(1 + b − a)

�
( 3
2

) Qn ,

where a and b are defined in (4.15), and where Pn and Qn are certain numbers satisfying

Pn = 1 + On→∞(|μn |(q−2)∧1), Qn = 1 + On→∞(|μn |(q−2)∧1).

The fact that the solution space is one-dimensional is not surprising; since the equation
is of second order, the H2-requirement imposes a ‘boundary condition’ at infinity, while
there is no boundary condition at the origin. For the proof of Lemma 11, we will impose the
condition lims→0+ ∂s g(s) = 0 so that g extends by even reflection to an H2-function on R.
This determines the parameter τ uniquely.

Proof Step 1. In this step, we explain the overall idea of the proof and defer the rigorous
justification of the manipulations to the next step.

The ansatz (5.2) for g is a difference of two power series – a homogeneous and an
inhomogeneous formal solution of (5.1). The coefficients η, Ak , and Bk can be found by
inserting the homogeneous and the inhomogeneous ansatz into the respective equation and
comparing coefficients, as we explain now. Here (and only here) we use the symbol h(2)

n not in
the operator-theoretic sense but rather to denote the natural differential expression associated
to it. For c ∈ {a, b} we find that
h(2)
n (cosh−2(k+c)(αs))

= ((1 − C |μn |(q−2)∧1)(−4(k + c)2α2 tanh2 +2(k + c)α2 cosh−2 +� + 2d)

− (q − 1)βq−2 cosh−2)(αs) cosh−2(k+c)(αs)

= −(1 − C |μn |(q−2)∧1)4α2(k(k + 2c) + c2 − a2) cosh−2(k+c)(αs)

+ α2
(

(1 − C |μn |(q−2)∧1)(k + c)(4(k + c) + 2) − 2q(q − 1)

(q − 2)2

)
cosh−2(k+1+c)(αs) .
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Thus, with Ck ∈ {Ak, Bk}, a formal, termwise application of h(2)
n yields

h(2)
n

( ∞∑
k=0

Ck cosh
−2(k+c)(αs)

)
=

∞∑
k=0

Ckh
(2)
n (cosh−2(k+c)(αs))

=α2(1 − C |μn |(q−2)∧1)
( ∞∑

k=0

cosh−2(k+c)(αs)

(
− 4Ck(k(k + 2c) + c2 − a2)

+ Ck−1

(
(k − 1 + c)(4(k − 1 + c) + 2) − 2q(q − 1)

(1 − C |μn |(q−2)∧1)(q − 2)2

) ))
, (5.3)

where we performed an index shift in the last step. Here we use the convention C−1:=0.
If c = a, we set expression (5.3) equal to 0 to determine Ck = Ak for the homogeneous
formal solution by comparing the coefficients of cosh−2(k+a) for each k ∈ N0. Similarly,
for the inhomogeneous part, if c = b, we set (5.3) equal to −η−1 cosh−2b and compare the
coefficients of cosh−2(k+b) for each k ∈ N0 to find Ck = Bk . In summary, this leads to the
recursion relations

Ak :=Ak−1G(k) = A0

k∏
j=1

G( j)

Bk :=Bk−1G(k + b − a)B0

k∏
j=1

G( j + b − a) (5.4)

with

G(k):= (1 − C |μn |(q−2)∧1)(k + a − 1)(2(k + a) − 1)(q − 2)2 − (q − 1)q

2(1 − C |μn |(q−2)∧1)k(k + 2a)(q − 2)2
.

Note that the coefficient of cosh−2k vanishes in case c = a, which is the reason for A0 being
freely choosable. Put differently, fixing A0:=1, we obtain an additional degree of freedom
τ . In contrast, B0 is determined by the inhomogeneity, or equivalently, if we set B0:=1, η is
fixed and given by

η:= 1

4(1 − C |μn |(q−2)∧1)α2
(
b2 − a2

) . (5.5)

However, in the computation (5.3) the interchange of derivative and infinite sum has to be
justified. First, note that the infinite sums given in (5.2) converge absolutely, and thus we can
rearrange the terms of both sums. This is a consequence of Ak ∝ k−3/2 and Bk ∝ k−3/2, which
we will show in the next step. As the terms in the infinite sums still decay exponentially after
differentiation if s ∈ (0,∞), the termwise differentiated series converges uniformly in s on
every open interval I ⊂ (0,∞) that does not contain 0 at its boundary, and hence derivatives
of the proposed g are well-defined. In particular, the formal solution is a classical, smooth
solution on (0,∞). The convergence Ak, Bk ∝ k−3/2 implies that g extends continuously to
the origin. It follows that

(1 − C |μn |(q−2)∧1)(2d + �)g − (q − 1)uq−2g − f (2) ∈ L2((0,∞)),

and therefore g ∈ H2((0,∞)), as claimed. (Note that g ∈ H2((0,∞)) implies that g′
extends continuously to the origin, which is not clear from the series representation.)
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Step 2.We now justify the procedure outlined in Step 1, that is, we determine the asymp-
totics for Ak . The asymptotics for Bk is analogous.We recall that, for A0:=B0:=1 and k ∈ N,
the coefficients Ak and Bk were defined recursively in (5.4) and η in (5.5).

Our analysis will be more precise than what is needed in Step 1 but will be useful in the
proof of the next lemma. We factor

G(k) = G0(k)ρn(k) with G0(k):= (k + a + b − 2)
(
k + a − b + 1

2

)
k(k + 2a)

and note that, with On→∞ describing a k-independent error,

ρn(k) = 1 + On→∞(|μn |(q−2)∧1)
k2

.

Since there is a C ′ > 0 such that∣∣∣∣∣log
(
1 + On→∞(|μn |(q−2)∧1)

j2

)∣∣∣∣∣ ≤ C ′

j2
|μn |(q−2)∧1

for n large enough and all j ∈ N, the series
∑

j∈N log(ρn( j)) converges absolutely, and hence∏
j∈N ρn( j) converges by continuity of the exponential function. It follows that for each n,

Pn := limk→∞
∏k

j=1 ρn( j) exists, is non-zero, and satisfies Pn = 1+On→∞(|μn |(q−2)∧1).
Moreover, for any k,

k∏
j=1

ρn( j) = Pn

(
1 + On→∞(|μn |(q−2)∧1)

k

)
.

Concerning the main term, we note that

k∏
j=1

G0( j) = (a + b − 1)k
(2a + 1)k

(
a − b + 3

2

)
k

(1)k
, (5.6)

with ( · )k = �( · + k)(�( · ))−1 being the Pochhammer symbol for k ∈ N. The crucial
ingredient will be the following asymptotics for ratios of two Gamma functions

kd1−d2 �(k + d2)

�(k + d1)
= 1 + (d2 − d1)(d1 + d2 − 1)

2k
+ Ok→∞(k−2), d1, d2 > 0, (5.7)

which can be found by Stirling’s approximation. Applying (5.7) to (5.6), we obtain

k∏
j=1

G0( j) = k−3/2 �(2a + 1)

�(a + b − 1)

� (1)

�
( 3
2 − b + a

) + Ok→∞(k−5/2).

Combining this with the behavior of ρn(k) yields

Ak = k−3/2 �(2a + 1)

�(a + b − 1)

� (1)

�
( 3
2 − b + a

) Pn + Ok→∞(k−5/2) (5.8)

with an error that is uniform in n. The asymptotics for Bk is similar but with a shift by
b − a in every Gamma function and with a possibly different constant Qn that also satisfies
Qn = 1 + On→∞(|μn |(q−2)∧1). Using this behavior of the coefficients Ak and Bk , the
manipulations in Step 1 can be justified, and thus we proved the assertion of the lemma
concerning the solution.
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Step 3. We finally compute lims→0+ ∂s g(s). First, we note that for s > 0 we can differ-
entiate termwise the series defining g and obtain

∂s g = −2ατu

√
1+ 2d

�

∞∑
k=0

k Ak cosh
−2k(α · ) tanh(α · )

+2αη f (2)
∞∑
k=0

kBk cosh
−2k(α · ) tanh(α · ) + h ,

where h involves a series that converges absolutely on all of [0,∞) and satisfies
lims→0+ h(s) = 0. Since u and f (2) are continuous at the origin, the claimed formula
will follow from the fact that

lim
σ→0+ tanh(σ )

∞∑
k=0

Dk cosh
−2k(σ ) = √

π lim
k→∞ k

1/2Dk, (5.9)

provided the Dk are non-negative, and the limit on the right side exists. (Indeed, we apply
this with Dk ∈ {k Ak, kBk}, recalling the asymptotics of Ak and Bk from (5.8).)

To prove (5.9), we set cosh−2(σ )=:e−ζ and notice that the assertion is equivalent to

lim
ζ→0+ ζ 1/2

∞∑
k=0

Dke
−kζ = √

π lim
k→∞ k

1/2Dk .

The latter is a consequence of a well-known Abelian theorem corresponding to the measure
μ = ∑∞

k=0 Dkδk on [0,∞), noting that

μ([0, a)) =
∑
k<a

Dk ∼ 2a1/2 lim
k→∞ k

1/2Dk as a → ∞.

A simple proof of theAbelian theorem (which is an application of the dominated convergence
theorem) can be found, for instance, in [31, Theorem 10.2]. ��

Everything is now in place to compute E (2) and thus to complete the proof of Lemma 11.

Proof of Lemma 11 Given the notation from Lemma 12, we fix the value τ = τn in such a
way that lims→0+ ∂s g(s) = 0, for then the even extension of g is the unique H2(R)-solution
of h(2)

n g = f (2). This value is given by

τn =
√
2(d − 1)

d + 2
Mηβξ(q−2) 2�(a + b − 1)�

(
a − b + 3

2

)
�(a + b + 1)�(b − a + 1)√

π�(2b − 1)�(2a + 1)

Qn

Pn
.

SinceQn/Pn = 1+On→∞(|μn |(q−2)∧1) andη = (4α2(b2−a2))−1(1+On→∞(|μn |(q−2)∧1)),
we obtain the asymptotic behavior

τn =
√
2(d − 1)

d + 2

M

4α2(b2 − a2)
βξ(q−2)

× 2�(a + b − 1)�
(
a − b + 3

2

)
�(a + b + 1)�(b − a + 1)√

π�(2b − 1)�(2a + 1)

×
(
1 + On→∞(|μn |(q−2)∧1)

)
.
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We write

τn=:
√
2(d − 1)

d + 2
Mηβξ(q−2)τ̃n .

Inserting (5.2) from Lemma 12 and τn into the expression for E (2) gives

E (2) = −
∫
R

g f (2) ds

= −β3q−4

α

|Sd−1|
d2

q(q − 1)2
(d − 1)

(d + 2)
α2η

∞∑
k=0

×
(

τ̃n Ak
� (k + a + b)

√
π

�
(
k + a + b + 1

2

) − Bk
� (k + 2b)

√
π

�
(
k + 2b + 1

2

)
)

= −β3q−4

α

|Sd−1|
4d2

�
(
3q−4
q−2

) √
π

�
(
3q−4
q−2 + 1

2

)q(q − 1)(q − 2)
(d − 1)

(d + 2)

1

P(−1)

∞∑
k=0

(P(k − ξ) − P(k))

+ On→∞(|μn |(q−2)∧1) .

In the penultimate step, we interchanged integral and infinite sum, as the summands in the
respective infinite sum have the same sign, and applied the second identity from (4.6). Due
to the asymptotics (5.7) and (5.8) and their counterparts in the inhomogeneuous setting, the
infinite sums are absolutely summable, and thus we are allowed to rearrange the sums. ��

5.2 Convexity of P

We recall that the function P : [−1,∞) → R was defined in (4.14). The following property
is used in the proof of Proposition 4.

Lemma 13 (Strict convexity of P) Let d > 2, 2 < q < 2∗ or d = 2, 2.8 < q < 2∗. The
function P is strictly convex on the interval [−1,∞).

The lemma will not cover d = 2, 2 < q ≤ 2.8. Indeed, numerical computations suggest
that for d = 2 and q close to 2, P fails to be convex.

Proof We will show strict convexity by proving that the second derivative is positive. The
idea is to split P into three factors, analyze their sign and that of their first and second
derivatives, and conclude that the same pattern of signs can be observed for P . Be aware that
P is a well-defined, smooth function on an open, (q, d)-dependent set containing [−1,∞),
as Gamma functions are positive, smooth functions on the positive real axis. In particular, we
can differentiate at −1. Before investigating the single factors, let us show how P inherits
the property that differentiation alters the sign from its constituents.

Step 1. Let U ⊂ R be an open subset and Tj : U → R, j ∈ {1, . . . , J }, I -times

differentiable functions for I ∈ N0 and J ∈ N with (−1)i T (i)
j > 0, for all i ∈ {1, . . . , I }

and j ∈ {0, . . . , J }. Here ( · )(i) denotes the i-th derivative. Applying the general Leibniz
rule, we observe that

(−1)I

⎛
⎝ J∏

j=1

Tj

⎞
⎠

(I )

=
∑

m1+m2+···+mJ=I

(
I

m1,m2, . . . ,mJ

) J∏
j=1

(−1)m j T
(m j )

j > 0
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since every factor (−1)m j T
(m j )

j > 0.
Step 2. We are now going to apply Step 1 with I = 2 and J = 3 to the smooth function

P . To this end, we write

P(x) =
3∏
j=1

Tj (x) with Tj :
(

−3

2
,∞

)
→ R, Tj (x):=�(x + ε

j
1 )

�(x + ε
j
2 )

,

j ∈ {1, 2, 3}, where we denote
ε11 := 3

2 , ε21 :=2b − 1, ε31 :=2b,
ε12 :=b − a + 1, ε22 :=b + a + 1, ε32 :=2b + 1

2 .

Note that 3
2 ≤ ε

j
1 < ε

j
2 for all j ∈ {1, 2, 3} as 2−1 < ξ < 1 for the given parameter range of

q and d; see (4.22). In particular, Tj is a well-defined, positive function on
(− 3

2 ,∞
)
since

the Gamma functions are only evaluated at positive entries.
Next, we will use monotonicity of the Digamma function �(y):=∂y(log(�(y))), y > 0,

and its derivative, the Trigamma function �1. The monotonicity behavior can be deduced
in an elementary way from an integral formula for the Digamma function [36, 12.3], for
instance. As � is strictly monotonically increasing on the positive real axis, the second
inequality follows through

∂x Tj (x) = Tj (x)
(
�(x + ε

j
1 ) − �(x + ε

j
2 )

)
< 0

for x > − 3
2 and j ∈ {1, 2, 3}. Similarly, we compute

∂2x Tj (x) = Tj (x)

((
�(x + ε

j
1 ) − �(x + ε

j
2 )

)2 +
(
�1(x + ε

j
1 ) − �1(x + ε

j
2 )

))
> 0

for x > − 3
2 and j ∈ {1, 2, 3} using that �1 is strictly monotonically decreasing on the

positive real axis. Therefore, we can apply Step 1 to obtain ∂2x P > 0. ��
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