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Abstract
Beetle larvae show high diversity in forms and ecological roles. Beetle larvae are often roughly categorised into certain larval 
types, for example: campodeiform, onisciform, scarabeiform, or elateriform. Larvae of the latter type are virtually absent from 
the fossil record. Here, we report three amber pieces from Cretaceous Kachin amber, Myanmar (about 100 million years old) 
that together include nine elateriform beetle larvae. One of the amber pieces has a single specimen included. The specimen 
is interpreted as a larva of Elateridae, the group of click beetles, possibly of the ingroup Elaterinae; yet accessible details 
are limited. Eight specimens within the other two amber pieces show certain similarities with larvae of Elateridae, but show 
significant differences in the trunk end, which bears two lobes armed with hooks in these fossils. This very specific structure 
is well known in modern larvae of Ptilodactylidae (toed-winged beetles). Therefore, the fossils are interpreted as larvae of 
Ptilodactylidae. Both types of here reported elateriform larvae represent the first fossil record of larvae of their respective 
groups. It is well known that larval morphology does not evolve in concert with adult morphology, and a modern-type mor-
phology of the one may precede that of the other. Hence, the new fossils are important indicators of the appearance of the 
modern larval morphologies of their respective lineages. We also briefly discuss the fossil record of larvae of Elateriformia 
(of which Elateridae and Ptilodactylidae are ingroups) in general.
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Introduction

Coleoptera is one of the most species-rich group of animals 
with more than 380,000 formally described species (e.g., 
McKenna et al. 2019). Despite the enormous species rich-
ness of beetles, people are usually able to recognise most 
beetles as such, at least adult beetles. Many beetles have 
an easily recognisable morphology as adults, with strongly 
sclerotised exoskeleton and elytra (Beutel and Lawrence 
2016), providing a straight line on the back, instead of 
an oblique one (however, some ingroups do show strong 

modifications of elytra; e.g., Ferreira et al. 2022; Goczał 
2023). In the immatures, there is not one specific morpho-
logical character uniting most of the larvae of beetles, and 
the larvae can have astonishingly different morphologies. To 
cope with the enormous form diversity of the larvae, they 
are often grouped into specific types: there are, for exam-
ple, campodeiform larvae (Jałoszyński and Kilian 2016), 
onsiciform ones (Jałoszyński and Beutel 2012; Jałoszyński 
2018), or grubs, also known as scarabeiform larvae, typical 
for a specific ingroup of beetles, Scarabeidae (dung beetles). 
A comparable case is that of elateriform larvae, a special 
type of larvae that occurs in certain species of click beetles 
(Elateridae; especially in Elaterini, Ampedini, or Cebrionini; 
Hyslop 1917; Schimmel and Tarnawski 2010 fig. 98 p. 469; 
Costa et al. 2010; Casari and Biffi 2012).

Such larvae of Elateridae are elongate and slender, with 
all trunk segments basically tube-shaped. The cuticle is 
more or less uniformly sclerotised. The head (often) bears 
sickle-shaped mandibles. The locomotory appendages (legs) 
are well developed, but are still short in comparison to the 
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elongate body. The trunk end has no posterior processes in 
the form of urogomphi (Costa et al. 2010).

Elateriform larvae occur in few other lineages, for exam-
ple, in other lineages of beetles, such as false click beetles 
(Eucnemidae; e.g., Otto 2017 p. 3, fig. 1 p. 8), darkling bee-
tles (Tenebrionidae; e.g., Costa and Vanin 2010 fig. 14 left 
p. 8), riffle beetles (Elmidae; e.g., Barr et al. 2015 fig. 22 p. 
543; González-Córdoba et al. 2020 fig. 3B p. 535; Shepard 
et al. 2020 fig. 2 p. 4), or toed-winged beetles (Ptilodac-
tylidae; e.g., Stribling 1986 fig. 33 p. 227; Lawrence and 
Stribling 1992 fig. 12), but also in non-coleopteran lineages, 
such as butterflies and moths (Lepidoptera; Hoare et al. 2006 
fig. 25 p. 578) or some scorpionflies (Mecoptera: Nanno-
choristidae; Pilgrim 1972 figs. 1–3 p. 153). Yet, most com-
mon elateriform larvae seem to be representatives of click 
beetles.

Click beetle larvae can fulfil numerous ecological 
roles. Some are, for example, ferocious predators that 
can also subdue much larger prey, such as the likewise 
predatory larvae of antlions (Devetak and Arnett 2010). 
Others are saprophagous or phytophagous. With these 
ecological roles, they are important, and also not rare, 
components in many habitats.

Click beetles have a quite astonishing fossil record 
with more than 250 formally described species (recently 
summarised in Kundrata et al. 2021a tab. A1 pp. 82–88). 
Of these, 23 species appear to be based on exceptionally 
preserved specimens in different types of ambers from 
various ages, including Miocene (Becker 1963; Zaragoza 
Caballero 1990), Eocene (Iablokoff-Khnzorian 1961; 
Schimmel 2005; Kirejtshuk and Kovalev 2015; Kundrata 
et al. 2020), and also Cretaceous ambers (Cockerell 1917; 
Otto 2019; Zhao et al. 2023). So far, all of these fossils 
seem to be adult individuals. Also general books provid-
ing overviews over amber from different deposits did not 
include any elateriform larva (Penney 2010; Gröhn 2015).

Toed-winged beetles, on the contrary, have so far quite 
a scarce fossil record and appear overall understudied 
(Kundrata et  al. 2021b p. 1). Kundrata et  al. (2021b) 
listed five fossil species (their tab. A1 pp. 11–12), each 
represented by very few specimens (Motschulsky 1856; 
Chatzimanolis et al. 2012; Alekseev and Jäch 2016; Kire-
jtshuk et al. 2019). Similarly to the fossil record of click 
beetles, the fossil record of toed-winged beetles so far 
includes only adult specimens.

The seeming absence of elateriform larvae is quite 
remarkable, given the fact that amber in general, and spe-
cifically Cretaceous amber has provided numerous types 
of holometabolan larvae. This includes, for example, 
larvae of hymenopterans (Lohrmann and Engel 2017), 
dipterans (Baranov et al. 2020; Liu et al. 2020), lepi-
dopterans (Haug and Haug 2021; Gauweiler et al. 2022), 
lacewings (Badano et al. 2021; Haug et al. 2021b, c, d, e, 

2022a; Hörnig et al. 2022; Zippel et al. 2021; Liu et al. 
2022; Luo et al. 2022), and their closer relatives (Haug 
et al. 2022b; Baranov et al. 2022), but especially also bee-
tles (Haug et al. 2021a, 2023b; Zippel et al. 2022a, 2023). 
Given the fact that in the modern fauna, elateriform lar-
vae are relatively well-known components of aquatic 
ecosystems and that adults of Elateridae are known in 
Cretaceous Myanmar amber, we should expect to be able 
to find such larvae also in this type of amber.

We here report the first elateriform larvae from Myan-
mar amber. We discuss implications of this finding.

Materials and methods

Material

In total, three amber pieces are in the centre of this study: 
BUB 4275, PED 0369, and PED 0925. All three amber 
pieces originate from about 100-million-year-old Creta-
ceous Myanmar Kachin amber from the Hukawng Valley 
(Cruickshank and Ko 2003; Shi et al. 2012). BUB 4275 
comes from the collection of one of the authors (PM), 
PED 0369 and PED 0925 are deposited in the Palaeo-
Evo-Devo Research Group Collection of Arthropods at 
the Ludwig-Maximilians-Universität München. The PED 
specimens were legally acquired via the online platform 
ebay.com from two different traders (globalburmiteam-
ber, burmite-miner).

The three pieces of amber include in total nine elateri-
form larvae. BUB 4275 includes a single larva of inter-
est, PED 0369 includes in total three larvae of interest, 
and PED 0925 includes five larvae of interest. All three 
amber pieces are filled with additional inclusions, such 
as air bubbles, detritus, or cuticle fragments.

Measuring methods

All specimens were measured separately in ImageJ 
(Schneider et al. 2012) based on the scales we obtained 
from the inbuilt software of the Keyence VHX-6000 digital 
microscope. Each structure of interest was measured with 
precision, because the most of the specimens we work with 
are of small size, with very small body parts. However, there 
are possible small deviations due to the human error, because 
the measuring process includes a subjective decision on  
the measuring starting point, and therefore, even such 
precise measurements are approximate.

Documentation methods

The specimens were documented on a Keyence VHX-
6000 digital microscope in front of a white and black 
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background under different illumination settings (cross-
polarised, co-axial light, and low-angle ring light; Haug 
et  al. 2018). All images were recorded as composite 
images (Haug et al. 2011; Kerp and Bomfleur 2011), 
combining several images of varying focus and several 
adjacent image details as well as different exposure times 
(HDR, cf. Haug et al. 2013). Images were further pro-
cessed and colour-marked with Adobe Photoshop CS2. 
Comparative drawings were prepared in Adobe Illustra-
tor CS2.

Results

Description of specimen BUB 4275

Amber piece with a single beetle larva. Total body length 
approximately 8.70 mm. Body elongate, cylindrical 
(Fig. 1a–c), differentiated into head and elongated trunk. 
Head prognathous, mouthparts facing forwards, slightly 
flattened (Fig. 1d, e), semi-ovoid in antero-lateral view, 
longer than wide, 1.9 × (~ 0.47 mm long). No stemmata 
discernible. Labrum (derivative of ocular segment), wider 

Fig. 1  Fossil specimen BUB 4275, possible larva of Elateridae: a 
habitus in lateral view; b colour-marked version of a; c habitus in 
antero-lateral view; d head in antero-lateral view; e colour-marked 

version of head and its mouthparts based on d. a1–a7 abdomen seg-
ments 1–7, at antenna, hc head capsule, li labium, md mandible, mx 
maxilla, pt prothorax, te trunk end
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than long, antero-medially drawn out into pentagonal (in 
antero-lateral view) projection (nasale) (Fig. 1d, e). Anten-
nae (appendages of post-ocular segment 1) only partially 
accessible, only one antenna with two elements discernible, 
shorter than head capsule, 2.8 × (~ 0.17 mm long). Possi-
ble further distal antenna element not accessible. Preserved 
distal element distally wider and with a spine-like process 
(Fig. 1d, e). Intercalary segment (post-ocular segment 2) 
without externally recognisable structures.

Mandibles (appendages of post-ocular segment 3) 
strongly sclerotised, only partially accessible, appear sickle-
shaped in antero-lateral view, right mandible ~ 0.32 mm 
long. A single seta discernible on left mandible (Fig. 1d, e). 
Maxillae (appendages of post-ocular segment 4) with two 
major parts discernible: rectangular proximal part, longer 
than wide (0.19 mm long), and distal palp, ~ 0.13 mm long. 
Maxillary palp with four elements (Fig. 1d, e). Labium (con-
joined appendages of post-ocular segment 5) partially acces-
sible, distal palps discernible in antero-lateral view.

Trunk further differentiated into thorax and abdomen. 
Thorax with three segments (pro-, meso-, and metathorax). 
Each thoracic segment with a pair of locomotory append-
ages (legs). Prothorax rectangular in lateral view, longer than 
wide, 2 × (~ 0.67 mm long), also longest segment of thorax. 
Anterior part of prothorax with a structurally differentiated, 
possibly more sclerotised region, probably as a ring around 
the body. Meso- and metathorax sub-similar. Mesothorax 
wider than long, 1.3 × (~ 0.42 mm long). Metathorax slightly 
wider than long, 1.1 × (~ 0.34 mm long) (Fig. 1a–c). Legs 
discernible, ~ 0.55 mm long (Fig. 1a–c).

Abdomen with nine discernible units. Abdomen segments 
1–8 subsimilar, rectangular in lateral view, longer than wide 
(between 0.56 and 0.82 mm long and between 0.29 and 
0.37 mm wide). Anterior part of abdomen units 3–9 each 
with a short, structurally differentiated, possibly more scle-
rotised region, probably as a ring around the body. Terminal 
end semi-ovoid in lateral view, longer than proximally wide, 
2.1 × (~ 0.75 mm long) (Fig. 1a–c).

General description of larvae in amber pieces PED 
0369 and PED 0925

Beetle larvae with elongate, cylindrical body. Body differ-
entiated into head and elongated trunk. Trunk further dif-
ferentiated into thorax and abdomen. Head prognathous, 
mouthparts facing forwards. Thorax with three segments 
(pro-, meso-, and metathorax). Thorax bears on each seg-
ment a pair of locomotory appendages (legs). Abdomen with 
ten discernible units, nine segments, and the trunk end. Seg-
ment 9 with tergite and sternite forming a single continuous 
sclerotic structure. Entire sclerotic structure of subtrapezoid 
shape in lateral view, with sternal region of approximately 
half the length of tergal region. Trunk end partly overhung 

by dorsal part of segment 9, hence functionally ventrally 
articulated to it. Trunk end with two postero-ventrally ori-
entated, thin, spine-like processes and a two-lobed structure 
(possible pygopod) with multiple hooks (at least five hooks 
per lobe).

Description of specimen 1 in amber piece PED 0369 
(Fig. 2a–c)

Total body length approximately 9.93 mm. Head semicir-
cular in dorso-lateral view, wider than long, 1.3 × (~ 0.38 
mm long). No stemmata discernible. Labrum (derivative of 
ocular segment) not discernible in dorso-lateral view. Anten-
nae (appendages of post-ocular segment 1) with at least two 
elements discernible, longer than head, 1.3 × (~ 0.51 mm 
long) (Fig. 2b, c). Intercalary segment (post-ocular seg-
ment 2) without externally recognisable structures. Mandi-
bles (appendages of post-ocular segment 3) not discernible. 
Proximal parts of maxillae (appendages of post-ocular seg-
ment 4) not accessible, possible distal part (palp) apparent 
(Fig. 2c), no details accessible. Labium (appendages of post-
ocular segment 5) not accessible. Anterior and lateral rim of 
head with several long setae (~ 0.32 mm long).

Three thoracic segments with prominent dorsal sclerite 
each (tergite, notum; pro-, meso-, and metanotum). Prono-
tum trapezoid in dorso-lateral view, longer than wide at ante-
rior end, 2 × , and at posterior end, 1.4 × (~ 0.94 mm long), 
longest tergite of thorax. Meso- and metanotum subsimilar, 
rectangular in dorso-lateral view. Mesonotum wider than 
long, 1.2 × (~ 0.6 mm long). Metanotum wider than long, 
1.3 × (~ 0.6 mm long) (Fig. 2b, c). Legs not accessible.

Abdomen segments 1–8 subsimilar, rectangular in dorso-
lateral view. Segments 1 and 2 shorter than wide (~ 0.68 mm 
long and between 0.77 and 0.81 mm wide), segment 5 as long as 
wide (~ 0.77 mm long), segments 3–4 and 6–8 longer than wide 
(between 0.82 and 0.86 mm long and between 0.68 and 0.78 mm 
wide). Abdomen segment 9 sub-trapezoid in dorso-lateral view, 
longer than proximally wide, 2 × (~ 1.2 mm long) (Fig. 2b, c). 
Posterior half of segment 9 bears multiple setae (between 0.17 
and 0.51 mm long). Trunk end largely concealed, partially vis-
ible lobe structure (Fig. 2c).

Description of specimen 2 in amber piece PED 0369 
(Figs. 2a, 3a)

Total body length unknown due to the inaccessibility of ante-
rior parts of the specimen (Fig. 3a). Head unaccessible. Tho-
rax and its appendages unaccessible. Abdomen segments 2–9 
discernible with total length of ~ 5.95 mm. Segments 2–8 sub-
similar, rectangular in dorsal view, between 0.51 and 0.79 mm 
long and between 0.59 and 0.67 mm wide. Abdomen segment 
9 subtriangular in dorsal view, longer than proximally wide, 
1.4 × (~ 0.58 mm long) (Fig. 3a). Trunk end not accessible. 
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Posterior half of segment 9 bears multiple setae (between 0.01 
and 0.21 mm long).

Description of specimen 3 in amber piece PED 0369 
(Figs. 2a, 3b–d)

Specimen is damaged in the posterior part of abdo-
men (Fig.  3b). Total body length only estimated to 

approximately 9.14 mm. Head pentagonal in dorso-lateral 
view, longer than wide, 1.7 × (~ 0.68 mm long) (Fig. 3c). 
No stemmata discernible. Labrum (derivative of ocular 
segment) strongly sclerotised, pentagonal in dorso-lateral 
view, posteriorly wider than long, 1.2 × (~ 0.43 mm long) 
(Fig. 3d). Antennae (appendages of post-ocular segment 
1) only partially accessible, only one antenna with at least 
two elements discernible, accessible part shorter than 

Fig. 2  Amber piece PED 0369 with close-up on specimen 1; a amber 
piece with various inclusions, three specimens of larvae of Ptilodac-
tylidae are numbered 1–3; b habitus of specimen 1 in dorso-lateral 

view; c colour-marked version of b, palp of maxilla discernible 
(white arrow). a2–a9 abdomen segments 2–9, at antenna, mt meta-
thorax, pt prothorax, te trunk end
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head. Intercalary segment (post-ocular segment 2) with-
out externally recognisable structures. Mandibles (append-
ages of post-ocular segment 3) strongly sclerotised, only 
partially accessible (Fig. 3c, d). Proximal parts of maxil-
lae (appendages of post-ocular segment 4) only partially 
accessible, distal part (palp) apparent. Maxillary palp with 
four elements (Fig. 3d, white arrows). Labium (conjoined 
appendages of post-ocular segment 5) partially accessible, 
possible distal palps discernible in dorso-lateral view.

Thorax tube-like in lateral view, with total length of ~ 1.35 
mm. Separate thoracic segments not discernible (Fig. 3b). 
Legs not accessible.

Abdomen tube-like in lateral view, with total length 
of ~ 7.12 mm. Separate abdomen segments 1–8 not clearly 
discernible. Abdomen segment 9 triangular in lateral 
view, longer than proximally wide, 2.3 × (~ 1.42 mm long) 
(Fig. 3b). Trunk end largely concealed, partially visible 
hooks on lobe structure (Fig. 3b, white arrow).

Description of specimen 1 in amber piece PED 0925 
(Fig. 4a, b)

Total body length approximately 8.25 mm. Head trapezoidal 
in lateral view, longer than wide, 1.4 × (~ 0.37 mm long). 
No stemmata discernible. Labrum (derivative of ocular 

Fig. 3  Specimens 2 and 3 of amber piece PED 0369; a habitus of 
specimen 2 in dorsal view; b habitus of specimen 3 in dorso-lateral 
view, hooks of trunk end discernible (white arrow); c head in dorso-

lateral view; d colour-marked version of head and its mouthparts 
based on c, palps of maxillae discernible (white arrows). at antenna, 
hc head capsule, li labium, lr labrum, md mandible, mx maxilla
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segment) not discernible in lateral view. Antennae (append-
ages of post-ocular segment 1) only partially accessible, 
only one antenna discernible, accessible part shorter than 
head capsule, 1.7 × (~ 0.22 mm long). Number of elements 
not discernible (Fig. 4b). Intercalary segment (post-ocular 
segment 2) without externally recognisable structures. Man-
dibles (appendages of post-ocular segment 3), maxillae 
(appendages of post-ocular segment 4), and labium (append-
ages of post-ocular segment 5) not accessible.

Prothorax tube-like in lateral view, anteriorly and 
posteriorly wider, longer than wide at posterior end, 
2.2 × (~ 0.78 mm long), also longest segment of thorax. 
Meso- and metathorax subsimilar, rectangular in lat-
eral view. Mesothorax wider than long, 2.1 × (~ 0.25 mm 
long). Metathorax wider than long, 1.2 × (~ 0.47 mm long) 
(Fig. 4b). Legs discernible, ~ 0.6 mm long (Fig. 4b, white 
arrows).

Fig. 4  Amber piece PED 0925 with close-up on specimen 1; a amber piece with various inclusions, five specimens of larvae of Ptilodactylidae 
are numbered 1–5; b habitus of specimen 1 in lateral view, probable legs discernible (white arrows)
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Abdomen segments 1–8 subsimilar, rectangular in lateral 
view. Abdomen segments 1–6 wider than long (between 0.47 
and 0.72 mm long and between 0.7 and 0.82 mm wide). 
Abdomen segments 7–8 longer than wide (between 0.8 and 
0.95 mm long and 0.55 and 0.66 mm wide) (Fig. 4b). Abdo-
men segment 9 triangular in lateral view, longer than wide 
at proximal end, 2.5 × (~ 1.17 mm long) (Fig. 4b). Trunk end 
not accessible.

Description of specimen 2 in amber piece PED 0925 
(Figs. 4a, 5a, 6c, d)

Total body length approximately 10.87 mm. Head 
semi-ovoid in lateral view (Fig. 5a), longer than wide, 
1.3 × (~ 0.51 mm long). No stemmata discernible. Labrum 
(derivative of ocular segment) not accessible. Antennae 

(appendages of post-ocular segment 1) only partially 
accessible, only one antenna discernible, longer than head, 
1.7 × (~ 0.86 mm long) (Fig. 5a, white arrow). Intercalary 
segment (post-ocular segment 2) without externally recog-
nisable structures. Mandibles (appendages of post-ocular 
segment 3), maxillae (appendages of post-ocular segment 
4), and labium (appendages of post-ocular segment 5) not 
accessible.

Prothorax tube-like, subrectangular in lateral view, 
longer than wide, 1.8 × (~ 1.14 mm long), also longest seg-
ment of thorax. Meso- and metathorax subsimilar, wider 
than long, 1.1 × (~ 0.78 mm long) (Fig. 5a). Legs discern-
ible, ~ 1.38 mm long (Fig. 5a).

Abdomen segments 1–8 subsimilar, rectangular in lateral 
view, longer than wide (between 0.75 and 0.86 mm long and 
between 0.51 and 0.77 mm wide). Abdomen segment 1 wid-
est segment of abdomen. Abdomen segment 9 trapezoidal in 

Fig. 5  Specimens 2 and 3 of amber piece PED 0925; a habitus of 
specimen 2 in lateral view, probable antenna discernible (white 
arrow); b habitus of specimen 3 in ventral view; c colour-version 

of b. a1–9 abdomen segments 1–9, hc head capsule, la locomotory 
appendages (legs), ms mesothorax, mt metathorax, pt prothorax, te 
trunk end
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lateral view, with convex posterior lateral sides of segment, 
tergite longer than sternite, 2.4 × (tergite ~ 1.38 mm long) 
(Figs. 5a, 6c). Trunk end partially concealed, with partially 
visible two postero-ventrally orientated, thin, spine-like pro-
cesses and lobed structure with hooks (Fig. 6c, d). Body 
bears setae (between 0.1 and 0.28 mm long).

Description of specimen 3 in amber piece PED 0925 
(Figs. 4a, 5b, c, 6a, b, e, f)

Total body length approximately 9.55 mm. Head (Fig. 6b) 
semicircular in ventral view, wider than long, 1.3 × (~ 0.53 mm 
long). No stemmata discernible. Labrum (derivative of ocular 
segment) not discernible, but presumed. Antennae (appendages 

Fig. 6  Close-ups of specimens 2 and 3 of amber piece PED 0925; a 
close-up of head, pro-, and mesothorax of specimen 3 in ventral view; 
b colour-marked version of a; c close-up of abdomen segment 9 and 
trunk end of specimen 2; d colour-marked version of trunk end from 

c; e close-up of abdomen segments 8–9 and trunk end of specimen 3; 
f colour-marked version of trunk end from e.  at antenna, cl claw, cx 
coxa, fe femur, hc head capsule, li labium, md mandible, ms mesotho-
rax, mt metathorax, mx maxilla, ti tibia, tr trochanter
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of post-ocular segment 1) with two elements and a short distal 
process discernible, longer than head, 1.2 × (~ 0.66 mm long). 
Proximal element longer than distal element, 1.3 × (~ 0.34 mm 
long) (Figs. 5b, c, 6a, b). Intercalary segment (post-ocular seg-
ment 2) without externally recognisable structures. Mandibles 
(paired appendages of post-ocular segment 3) only partially 
accessible, rectangular in ventral view with serrated gnathal 
edge, longer than wide, 1.8 × (~ 0.31 mm long) (Fig. 6a, b). 
Maxillae (paired appendages of post-ocular segment 4) with 
three parts discernible: trapezoidal proximal part, longer than 
wide, 2.6 × (~ 0.27 mm long), distal inner setous part (presum-
ably lacinia and galea), and distal outer part (palp) (~ 0.36 mm 
long). Maxillary palp with three elements (Fig. 6a, b). Labium 
(conjoined appendages of post-ocular segment 5) subrectangu-
lar in ventral view, wider than long, 1.3 × (~ 0.24 mm long), no 
palps discernible.

Prothorax rectangular in ventral view with convex ante-
rior rim, as wide as long (~ 0.76 mm long). Meso- and meta-
thorax subsimilar, trapezoidal in ventral view. Posterior rim 
of mesothorax wider than segment is long, 1.5 × (~ 0.57 mm 
long). Posterior rim of metathorax slightly wider than seg-
ment is long, 1.1 × (~ 0.76 mm long) (Fig.  5b, c). Legs 

discernible (one leg of metathorax presumably ripped 
out), with five elements (coxa, trochanter, femur, tibia, and 
claw), ~ 1.52 mm long (Figs. 5b, c, 6a, b).

Abdomen segments 1–8 subsimilar, rectangular in lat-
eral view. Abdomen segment 1 slightly longer than wide, 
1.1 × (~ 0.95 mm long). Abdomen segments 2–8 wider than 
long (between 0.61 and 0.76 mm long and between 0.72 and 
0.83 mm wide). Abdomen segment 9 elongate, semi-ovoid in 
ventral view, also longest segment of abdomen, longer than 
proximally wide, 2.2 × (~ 1.27 mm long) (Fig. 6e). Trunk end 
rectangular in ventral view, wider than long, 4.2 × (~ 0.11 mm 
long) with two postero-ventrally orientated, thin, spine-like pro-
cesses (~ 0.25 mm long) and two-lobed structure (~ 0.32 mm 
long) with at least five hooks per lobe (Fig. 6e, f). Body bears 
setae (between 0.1 and 0.42 mm long).

Description of specimen 4 in amber piece PED 0925 
(Figs. 4a, 7a, b)

Total body length approximately 8.71 mm. Head only partly 
accessible due to way of inclusion. Appendages of ocular 
and post-ocular segments not accessible (Fig. 7a).

Fig. 7  Specimens 4 and 5 of amber piece PED 0925; a habitus of 
specimen 4 in dorsal view, probable leg discernible (white arrow); b 
close-up of abdomen segment 9 of specimen 4; c habitus of speci-

men 5 in dorso-lateral view, probable antenna (black arrow) and legs 
(white arrows) discernible; d close-up of abdomen segment 9 of spec-
imen 5 in dorsal view
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Pronotum of prothorax semi-ovoid in dorsal view, with 
anterior rim concave, longer than wide, 1.3 × (~ 0.91 mm 
long). Mesonotum subrectangular in dorsal view, slightly 
wider than long, 1.1 × (~ 0.74 mm long). Metanotum trap-
ezoidal in dorsal view, wider than long, 1.4 × (~ 0.54 mm 
long) (Fig. 7a). One leg discernible, ~ 1.4 mm long (Fig. 7a, 
white arrow), others not accessible.

Abdomen segments 1–8 subsimilar, rectangular in dorsal 
view. Abdomen segments 1, 2, and 7 slightly wider than long, 
1.2 × (between 0.65 and 0.51 mm long). Abdomen segments 
3–6 longer than wide (between 0.71 and 0.8 mm long and 
between 0.61 and 0.73 mm wide). Abdomen segment 8 as long 
as wide (~ 0.57 mm long). Segment 9 triangular in dorsal view, 
also longest segment of abdomen, longer than proximally wide, 
2.7 × (~ 1.24 mm long) (Fig. 7b). Trunk end not accessible. Body 
bears setae (between 0.13 and 0.45 mm long).

Description of specimen 5 in amber piece PED 0925 
(Figs. 4a, 7c, d)

Total body length approximately 9.42 mm. Head pentagonal in 
dorso-lateral view, longer than wide, 1.3 × (~ 0.29 mm long). No 
stemmata discernible. Labrum (derivative of ocular segment) 
not accessible. Antennae (appendages of post-ocular segment 1) 
only partially accessible, only one antenna discernible (Fig. 7c, 
black arrow), longer than head, 1.3 × (~ 0.37 mm long). Mandi-
bles (appendages of post-ocular segment 3), maxillae (append-
ages of post-ocular segment 4), and labium (appendages of post-
ocular segment 5) not accessible (Fig. 7c).

Prothorax trapezoid in dorso-lateral view, longer than pos-
terior rim wide, 1.8 × (~ 0.79 mm long), pronotum strongly 
sclerotised. Mesothorax and metathorax subsimilar, rectangu-
lar in dorso-lateral view. Mesothorax slightly wider than long, 
1.2 × (~ 0.42 mm long). Metathorax as long as wide (~ 0.52 mm 
long) (Fig. 7c). Legs discernible, ~ 0.62 mm long (Fig. 7c, white 
arrows).

Abdomen segments 1–8 subsimilar, tube-like, rectangular in 
dorsal view, longer than wide (between 0.7 and 0.96 mm long 
and between 0.48 and 0.52 mm wide) (Fig. 7c). Segment 9 trap-
ezoidal in dorsal view, also longest segment of abdomen, longer 
than proximally wide, 2.7 × (~ 1.26 mm long). Posterior end of 
tergite 9 laterally on both sides bearing tufts of hairs (Fig. 7d). 
Trunk end not accessible. Body bears setae (between 0.18 and 
0.38 mm long).

Discussion

Identity of specimen BUB 4275

The overall morphology of all the here reported specimens 
is clearly elateriform, immediately identifying these speci-
mens as larval representatives of the group Holometabola. 

Still, as pointed out, larvae of this general organisation occur 
in several lineages of Holometabola. We therefore need to 
use some more details for further identifying them more 
precisely.

Specimen BUB 4275 is preserved in an unfortunate ori-
entation, prohibiting access to many details. Yet, the over-
all arrangement of the antennae and mouthparts, although 
only seen in antero-lateral view, is strongly resembling that 
in modern larvae of Elaterinae (e.g., Casari and Biffi 2012 
fig. 15 p. 69). Despite the limited access to details, we there-
fore see an interpretation of this larva as representatives of 
Elateridae and also Elaterinae as the most likely one.

As pointed out, the fossil record of Elateridae is relatively 
rich, at least for adults (Kundrata et al. 2021a). Many of the 
known fossils of adults of Elateridae are from Cretaceous 
deposits, including the Kachin Myanmar amber (Kundrata 
et al. 2021a). It should therefore not be surprising that an 
immature specimen of Elateridae is found in Myanmar 
amber as well. However, since the larvae and the adults of 
beetles, therefore also of Elateridae, drastically differ, it is 
hard to know which fossil adult and immature counterparts 
are of the same species. Therefore, it is likely that the new 
larva is an immature representative of an already-described 
species represented so far only by the fossil adults. We are 
therefore refraining from erecting a new species for the 
larva. The fact that we cannot further narrow down the inter-
pretation of the larva combined with the fact that modern 
larvae have a variety of different roles does not allow us to 
further speculate about the ecological role of the fossil larva.

Identity of the other specimens

The three specimens preserved in PED 0369 do not provide 
many details. The accessible details, especially of abdomen 
segment 9, resemble those of the overall better preserved 
specimens in PED 0925. Very informative details are acces-
sible especially in specimens 2 and 3, mainly of the posterior 
end. Abdomen segment 9 is elongated, as for example also in 
many larvae of Elateridae (Hyslop 1917; Costa et al. 2010; 
Casari and Biffi 2012). Yet, there is a significant difference 
between the fossils and click beetle larvae: In larvae of Elat-
eridae, the trunk end is positioned far anteriorly on abdomen 
segment 9; it seems that the trunk end is functionally in con-
tact with abdomen segment 8 and that abdomen segment 9 
basically has no real ventral structure. This is different in the 
fossils; there is clearly a ventral part of abdomen segment 9, 
reaching to about half of the overall length of the dorsal side. 
Accordingly, the trunk end is positioned further posteriorly.

Also the trunk end in the fossils is very distinct and 
unlike those of the larvae of Elateridae (cf. Costa et al. 2010, 
fig. 4.7.12.C, D and Lawrence 2005, fig. 18.9.1.). It basi-
cally appears to form two lobes, which are armed with few 
hooks, giving it almost the appearance of two hands. Such 



256 A. Zippel et al.

an arrangement of abdomen segment 9 with a two-lobed 
hooked trunk end is well known in larvae of Ptilodactyli-
dae (LeSage and Harper 1976 fig. 1 p. 234; Stribling 1986 
fig. 33 p. 227, figs. 34–39 p. 228), which are also elateriform 
(Stribling 1986 fig. 33 p. 227). Due to the distinct similarity 
of this very specific structure, we interpret the new fossils as 
larvae of Ptilodactylidae, toed-winged beetles.

The fossil specimens in PED 0925 have many details 
accessible, and therefore, a comparison with known extant 
larval representatives of Ptilodactylidae is possible. The 
overall appearance of the fossils strongly resembles that 
of extant representatives of the group Anchytarsus Guérin-
Méneville, 1843. The characters shared by the fossils and 
extant larvae of Anchytarus, but differing in other larvae of 
Ptilodactylidae, include: a relatively small prognathous head 
in comparison to the prothorax; moderately long antennae 
with multiple visible elements; an elongated and rectan-
gular prothorax in lateral view; abdomen segment 9 being 
the longest one of the abdomen and with dorso-ventrally 
flattened posterior part; a membranous terminal end with 
hand-like lobes with hooks; and relatively long setae on all 
segments. Also, the shape and the position of the antennae 
(Figs. 4b, 5a, b, 7c) strongly resemble the condition in extant 
representatives of Anchytarsus (Fig. 8a; Lawrence 2005 
fig. 18.9.1.C). The mandibles of the fossils appear symmetri-
cal, broad, and stout with multiple teeth. The maxillae have 
distally moderately long palps with multiple elements and 
setous endites (lacinia and/or galea; Fig. 6b). Therefore, also 
these mouthparts are similar to extant larvae of Anchytarsus 
(Lawrence 2005 fig. 18.9.2.C). Based on this, we conclude 
that the specimens within PED 0925 are either larval rep-
resentatives of Anchytarsus or at least closely related rep-
resentatives within the group of Anchytarsinae. This find 
would represent the first record of the group Anchytarsinae 
from the Cretaceous. The larvae in PED 0369 might be con-
specific, yet this must remain unclear due to fewer preserved 

details. Further reaching comparisons on species level are 
not possible due to inaccessibility of certain details of the 
terminal ends (Stribling 1986).

Fossil record of Ptilodactylidae

The group Ptilodactylidae was so far represented by very few 
specimens (Motschulsky 1856; Chatzimanolis et al. 2012; 
Alekseev and Jäch 2016; Kirejtshuk et al. 2019). The eight 
specimens reported here therefore expand the fossil record of 
the group from the perspective of individuals. A taxonomic 
interpretation of the specimens is much more challenging. 
As Kundrata et al. (2021b) pointed out, the group Ptilodac-
tylidae seems in urgent need of taxonomic re-working. Also, 
as in many other beetle groups, it appears that extant larvae 
are known for relatively few species (see discussion in Haug 
and Haug 2019). Hence the correspondence of larval mor-
phologies to certain taxonomic groups is not well established 
(see discussion in Haug and Haug 2019).

There is one formally described species of Ptilodactylidae 
from Kachin amber, Aphebodactyla rhetine Chatzimanolis 
et al. 2012 (Chatzimanolis et al. 2012) based on an adult 
male. Although the here reported larvae have strong similar-
ities with modern larvae of the group Anchytarsus, it cannot 
be easily excluded that the larvae are those of Aphebodactyla 
rhetine. The new fossils therefore do not necessarily increase 
the species richness of the fossil record of Ptilodactylidae. 
Yet, they demonstrate that such beetles are more common 
than indicated by only adults. Also the presence of a specific 
adult morphology is not a reliable indicator of a specific 
larval morphology (Scholtz 2005; Haug et al. 2015). The 
newly reported larvae resemble a very modern type of larva 
of Ptilodactylidae. This find demonstrates that this morphol-
ogy was already present 100 million years ago and indicates 
a similar ecological role of the larvae.

Fig. 8  Schematic representation of extant larva of Ptilodactylidae based on Stribling (1986, fig. 33); a habitus of larva in lateral view; b close-up 
of trunk end with lobes and hooks in ventral view
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Possible ecology of larvae of Ptilodactylidae

In extant representatives of Ptilodactylidae (Byrrhoidea), 
the larvae live close to or in rivers (Alekseev and Jäch 2016 
p. 593) and other water bodies (Kundrata et al. 2021b), in 
moist litter or rotten logs (Chatzimanolis et al. 2012 p. 570), 
and feed on decaying vegetation or rotting wood (Alekseev 
and Jäch 2016 p. 593) or possibly on fungi on these sub-
strates (Chatzimanolis et al. 2012 p. 570). We can assume 
that the fossil larvae had also one of the mentioned life 
styles. The extant larvae of Anchytarsus, which the speci-
mens in PED 0925 strongly resemble, live in an aquatic 
environment on or within submerged decaying wood, on 
which they also feed (LeSage and Harper 1976; Lawrence 
2005). A xylophagous lifestyle is not restricted to terres-
trial environments, but is also quite common among extant 
aquatic larvae of different insect groups (Cranston and 
McKie 2006). The fossil record of terrestrial beetle larvae 
shows that xylophagous lifestyle was already common in 
the Cretaceous (Haug et al. 2021a; Zippel et al. 2022a, 
2023), but has so far been relatively rarely reported (Peris 
and Rust 2020). The modern-appearing morphology of the 
new fossils of Ptilodactylidae implies that larvae possibly 
led a similar aquatic xylophagous lifestyle as their extant 
counterparts. Such a life style is so far quite rare in the fossil 
record. A fossil larva of Elmidae (Byrrhoidea) from Eocene 
Baltic amber that was recently described in Zippel et al. 
(2022b) also possibly led a xylophagous lifestyle in aquatic 
environment. This may hold true as well for another larva of 
Elmidae from Eocene of India that was recently described 
by Kirejtshuk et al. (2023). It shows that this lifestyle might 
have been already widely present in the past. The new fos-
sils push the time boundary of this type of lifestyle all the 
way back to Cretaceous.

While both general lifestyles, living in water or inside 
wood, may appear as not very beneficial for becoming pre-
served in amber, there are in fact numerous examples for 
both cases in Myanmar amber. Aquatic organisms include 
numerous larvae of various lineages of Pterygota (e.g., Sroka 
et al. 2018; Gustafson et al. 2020; Schädel et al. 2020; Haug 
et al. 2021g; Zippel et al. 2022b), but also many others (Xing 
et al. 2018; Salamon et al. 2019; Schädel et al. 2019, 2021a, 
b; Yu et al. 2019, 2021; Wang et al. 2020; Bolotov et al. 
2021). Larvae known to feed on or live inside wood are also 
well known as amber inclusions (Baranov et al. 2020), espe-
cially various types of beetle larvae (Peris and Rust 2020; 
Haug et al. 2021a; Zippel et al. 2022a, 2023).

Source of variation among larvae within one amber 
piece

Two amber pieces that contain multiple specimens of Ptilo-
dactylidae (PED 0369 and PED 0925) contain in total eight 

larvae of relatively similar sizes (total body length between 
8.7 and 10.9 mm). It is possible that the larvae within one 
amber piece hatched from the same clutch of eggs, therefore, 
might be conspecific. They do show variation in habitus, 
but that might be due to different views in which they are 
accessible.

An additional source of differences might be ontogeny. 
LeSage and Harper (1976) noted that the species Anchytar-
sus bicolor develops through ten instars. Larval instars were 
differentiated based on the size of the pronotum. Indeed 
there is a small variation in size of the whole prothorax 
among newly described specimens, but the size of the pro-
notum as a criterion for differentiating the instars cannot be 
considered here as the new larvae are accessible in differ-
ent views or are partially hidden by inclusions; therefore, 
measuring of the same two points on the pronotum was 
not possible. In addition to size, other characteristics, such 
as number of setae or hooks on the trunk end, were also 
changing during the development of the larvae described by 
LeSage and Harper (1976). Once again, this is not a clear 
factor we can rely on, since there is a possibility that speci-
mens got damaged during the process of inclusion within the 
resin. Nevertheless, we presume that the specimens are not 
first instars, but later ones. Out of these reasons, we cannot 
clearly say where the variation of the specimens comes from, 
even within one amber piece.

Fossil record of larvae of Elateroidea

Within the larger group Elateroidea, Elateridae is very spe-
cies-rich and has a quite good overall fossil record (Kun-
drata et al. 2021a). Still, there is so far only the single larva 
reported here. Other ingroups of Elateroidea, which are 
much less species-rich and with a less good fossil record, 
have a record of at least some fossil larvae, including pos-
sible Lycidae and Lampyridae (Ferreira et al. 2022; Haug 
et al.  2023b), Cantharidae (Fowler 2019), or Eucnemidae 
(Chang et al. 2016; Zippel et al. 2023). Especially remark-
able is the fossil record of larvae of the group Brachypsec-
tridae, which is quite species-poor in the modern fauna, but 
is known from larvae in amber from the Cretaceous (Zhao 
et al. 2020; Haug et al. 2021f), Eocene (Scheven 2004; 
Klausnitzer 2009; Haug et al. 2021f), and Miocene (Wu 
1996; Woodruff 2002; Klausnitzer 2009; Poinar 2010; all 
records recently reviewed in Haug et al. 2021f). The larvae 
of Brachypsectridae are very prominent and rather easy to 
identify as such, possibly explaining why these larvae have 
a (seemingly) better record. We still expect that more fossil 
larvae of Elateridae should be present in ambers, but simply 
have not been reported.
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Fossil record of larvae of Byrrhoidea 
and Elateriformia

Ptilodactylidae is recognised either as an ingroup of Dry-
opoidea (e.g., Kundrata et al. 2021b; Cai et al. 2022) or as 
an ingroup of Byrrhoidea (e.g., McKenna et al. 2019). Byr-
rhoidea, like Elateroidea, is a large ingroup of Elateriformia 
that may even be more species-rich than often anticipated, 
especially if one recent phylogenetic analysis is considered 
in which Buprestidae was resolved as an ingroup of Byr-
rhoidea (McKenna et al. 2019 figs. 1, 2). Even if the posi-
tion of Buprestidae within Byrrhoidea will not be further 
supported in future work, the group of Buprestidae stays 
widely recognised as an ingroup of Elateriformia (e.g., 
Zhang et al. 2018 fig. 2 p. 3). Larvae of Buprestidae, metal-
lic wood-boring beetles, are known from Cretaceous and 
Eocene ambers (Haug et al. 2021a and references therein; 
Haug et al. 2023a).

Different larvae of Byrrhoidea have also been reported in 
the fossil record, including: Elmidae (riffle beetles; Eocene 
amber, Zippel et al. 2022b; Eocene, Kirejtshuk et al. 2023), 
Heteroceridae (variegated mud-loving beetles; Miocene 
amber, Zippel et al. 2022c), Psephenidae (water penny bee-
tles; Cretaceous amber, Bao et al. 2018; Eocene, Wedmann 
et al. 2011; Miocene, Hayashi and Kawakami 2009; Pleisto-
cene, Hayashi et al. 2020). The findings reported here further 
expand this record.

Overall, it appears that many specialised larval forms are 
present from early on, in many cases already in the Creta-
ceous (see also Muona et al. 2020). Yet, many of these early 
larvae show at least some differences to their modern coun-
terparts (e.g., Haug et al. 2021a, 2023a; Zippel et al. 2022b, 
2023). This phenomenon has been not only recognised in 
beetles, but also in other lineages of Holometabola. In lace-
wings, for example, there are also very modern-appearing 
larvae known from the Cretaceous (e.g., Wang et al. 2016; 
Badano et al. 2018; Haug et al. 2018, 2021e; Haug and 
Haug 2022), but also more larvae with more plesiomorphic 
(≈ancestral) characters, and also highly specialised larvae 
not known before or afterwards (e.g., Badano et al. 2018, 
2021; Haug et al. 2019a, b, 2020a). This observation empha-
sises that it is important to report and describe fossil larvae 
and not assume the presence of a certain larval morphology 
based on the presence of a certain adult morphology (Haug 
et al. 2015; Baranov et al. 2019).

The observable details in the larvae of Ptilodactylidae 
here appear very similar to those of their modern counter-
parts. At most, the antennae appear slightly longer in fossil 
larvae in comparison to those of the modern counterparts. 
Similar, or even more expressed, cases of this phenomenon 
are already known from other larvae preserved in Cretaceous 
amber (Haug et al. 2020b, 2021d). Hence, the new larvae 

seem to be a case of a very modern-appearing type of mor-
phology back in the Cretaceous.
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