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BACKGROUND: Ventricular repolarization time (ECG QT and JT intervals) is associated with malignant arrhythmia. Genome- wide 

association studies have identified 230 independent loci for QT and JT; however, 50% of their heritability remains unexplained. 

Previous work supports a causal effect of lower serum calcium concentrations on longer ventricular repolarization time. We 

hypothesized calcium interactions with QT and JT variant associations could explain a proportion of the missing heritability.

METHODS AND RESULTS: We performed genome- wide calcium interaction analyses for QT and JT intervals. Participants 

were stratified by their calcium level relative to the study distribution (top or bottom 20%). We performed a 2- stage analy-

sis (genome- wide discovery [N=62 532] and replication [N=59 861] of lead variants) and a single- stage genome- wide meta- 

analysis (N=122 393, [European ancestry N=117 581, African ancestry N=4812]). We also calculated 2- degrees of freedom 

joint main and interaction and 1- degree of freedom interaction P values. In 2- stage and single- stage analyses, 50 and 98 

independent loci, respectively, were associated with either QT or JT intervals (2- degrees of freedom joint main and interaction 

P value <5×10−8). No lead variant had a significant interaction result after correcting for multiple testing and sensitivity analyses 

provided similar findings. Two loci in the single- stage meta- analysis were not reported previously (SPPL2B and RFX6).

CONCLUSIONS: We have found limited support for an interaction effect of serum calcium on QT and JT variant associations 

despite sample sizes with suitable power to detect relevant effects. Therefore, such effects are unlikely to explain a meaningful 
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proportion of the heritability of QT and JT, and factors including rare variation and other environmental interactions need to 

be considered.
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Sudden cardiac death accounts for over half of all 

cardiovascular deaths globally.1 There are multi-

ple underlying causes, including ischemic heart 

disease, inherited arrhythmic syndromes, cardiomy-

opathies, and electrolyte disturbances.2 Abnormal 

ventricular repolarization is an important precursor to 

malignant ventricular arrhythmia, which is captured 

by the QT interval on the ECG.2 Because the QT in-

terval includes the QRS complex (representing ven-

tricular depolarization), the JT interval (QRS offset to 

T- wave end) has attracted interest, as it includes only 

the period of repolarization.3 Both QT and JT intervals 

are heritable; however, despite the 230 independent 

loci that have been identified previously, approximately 

50% of the single nucleotide variant (SNV)- based heri-

tability remains unexplained.4

To improve prevention and treatment strategies 

for sudden cardiac death, there is a need to advance 

our knowledge of risk markers and modifiers of dis-

ease. Serum electrolytes are established modifiers of 

ventricular repolarization.5 In our previous Mendelian 

randomization study, we found support for a causal 

relationship between lower serum calcium concentra-

tions and longer ventricular repolarization time.6 Of in-

terest, a 0.1 mmol/L decrease in genetically predicted 

serum calcium was associated with a 3 millisecond in-

crease in the QT interval, an effect size similar to a pre-

vious observational studies.5,6 Calcium ions have an 

important role in regulating cardiac electrophysiology 

through their role in excitation- contraction coupling 

and counterbalance with sodium ions during phase II 

of the cardiac action potential.7 Severe hypocalcemia 

(<1.9 mmol/L) is well established to cause QT prolon-

gation and ventricular arrhythmia.8 An observational 

study has also reported an association of lower serum 

calcium levels with sudden cardiac death, even within 

the normal range of values.9

Gene–environment interactions are an important 

component of the underlying genetic architecture of 

complex traits. Such interactions may explain a pro-

portion of the missing heritability not identified from 

main effect analyses in classic genome- wide asso-

ciation studies (GWASs).10 For ventricular repolariza-

tion, an interaction effect of hypokalemia on the QT 

interval (14.6 milliseconds versus 2.7 milliseconds) 

has been reported for the common missense variant 

S1103Y at SCN5A in individuals of African ancestry.11 

Pharmacogenetic drug- SNV interaction analyses for 

QT and JT have also identified novel loci.12,13 However, 

it is unknown whether serum calcium interacts with ge-

netic association for QT and JT intervals.

We hypothesized that low or high serum calcium 

concentrations may influence genotype associations 

with QT and JT intervals and may explain a proportion of 

the missing heritability for these measures. Accounting 

for these effects in large study samples may identify 

novel biomolecular insights relevant to ventricular re-

polarization.14 We have therefore performed genome- 

wide calcium (joint) interaction meta- analyses for QT 

and JT intervals in over 122 000 individuals.

METHODS
Data Availability
Summary statistics from the single- stage SNV- by- 

calcium interaction analysis for QT and JT intervals will 

be made available on the National Human Genome 

Research Institute- European Bioinformatics Institute 

CLINICAL PERSPECTIVE

What Is New?
• Interaction serum calcium concentrations with 

variant associations for QT and JT intervals do 

not account for a meaningful proportion of the 

missing heritability of these traits in genome- 

wide association studies.

What Are the Clinical Implications?
• Rare variation and other environmental interac-

tions need to be explored.

Nonstandard Abbreviations and Acronyms

HC high calcium

LC low calcium

PJOINT 2- degrees of freedom joint main and 

interaction P value

PINT 1- degree of freedom interaction  

P value

UKB United Kingdom Biobank
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Catalog of human GWASs website, https:// www. ebi. 

ac. uk/ gwas/ .

Code Availability
Codes are available from the original software used for 

each analysis.

Study Cohorts
A total of 18 studies (and their substudies) contributed 

to calcium- stratified GWAS interaction meta- analyses 

for QT and JT, comprising a total maximum sample 

size of 122 393 (117 581 [96.1%] European, 4812 [3.9%] 

African) (Table  S1, Data  S1 and S2). These included 

members of the CHARGE (Cohorts for Heart and 

Aging Research in Genomic Epidemiology) consor-

tium.15 All participating institutions had approval from 

their relevant local medical ethics committee, and 

written informed consent was obtained at a study 

level from all individuals. Cohorts included in associa-

tion analyses were predominantly population based. 

Before genotype imputation, study- specific genotype 

quality control filters were applied, including call rate, 

Hardy–Weinberg equilibrium P value, and minor allele 

frequency (Table S2). The majority of studies used the 

1000 genomes phase 3 reference panel16 for impu-

tation, with a smaller proportion using the Haplotype 

Reference Consortium (r1.1 2016) panel17 or TOPMed 

Freeze 518 (Table S2).

Phenotyping of Participants
ECG acquisition and annotation was performed at a 

study level, including calculation of QT and JT inter-

vals in milliseconds (ms) (Table  S3). Individuals were 

included in the study if serum calcium concentration 

(mmol/L) was also available. Across all participat-

ing studies, serum calcium concentrations were pre-

dominantly within normal limits, with a small number 

of individuals with abnormal values (average mini-

mum 1.86 mmol/L, average maximum 2.94 mmol/L) 

(Table S3). For 10 studies, samples for calcium meas-

urement were taken on the same day as the ECG re-

cording (total N=84 833 [Table S3]). For the remaining 

8 studies (N=37 760), measurements were typically 

taken within a day or week. As serum calcium concen-

trations are typically stable over time,19 these studies 

were included in the meta- analysis as small degrees 

of variation are unlikely to significantly impact alloca-

tion of individuals to high calcium (HC) or low calcium 

(LC) strata. We have performed sensitivity analyses 

(described subsequently) to evaluate the effects of this.

Individuals were excluded at a study level if they 

had a QRS duration >120 milliseconds (as a surrogate 

marker for cardiovascular disease), right or left bundle- 

branch block, atrial fibrillation or flutter on ECG, prior 

diagnoses of myocardial infarction or heart failure, 

were pregnant at the time of ECG acquisition, or if a 

pacemaker or implantable cardiac defibrillator had 

been inserted. Additionally, if the data were available, 

individuals using digitalis medication, class I or III an-

tiarrhythmics, or established QT prolongation medica-

tion were excluded (Table  S4). In total, there were 3 

studies where medication data were not available. This 

represents a total of 18 203 individuals (14.5% of the 

meta- analysis sample size); however, the proportion 

of these individuals on QT- prolonging medication will 

be small (eg, approximately 1.8% of UK Biobank [UKB] 

individuals with ECG data were on these medication 

after applying all other exclusions).

Statistical Analysis
For each study before performing the GWAS, an impu-

tation quality cutoff Rsq>0.5 (or similar in IMPUTE) and 

minor allele frequency filter >1% was applied. Population 

substructure was accounted for using genetic principal 

components or linkage disequilibrium calculated from 

hard- call genotyped SNVs.20 Individuals of European 

and African ancestry were analyzed separately. When 

applicable, a kinship matrix (or hard- call genotyped 

SNVs in BOLT- LMM) was used to account for related-

ness between individuals. Mandatory covariates in-

cluded in the GWAS model were age, sex, height, and 

body mass index as performed in standard QT/JT 

GWAS.4 Correction of QT and JT intervals for heart rate 

was applied by also including heart rate in the linear re-

gression model, as done in previous studies.4 Additional 

cohort- specific covariates were included when appropri-

ate, such as cohort recruitment site or genotyping array.

To perform the GWAS, each cohort first divided in-

dividuals into different strata to represent exposure to 

HC or LC according to their serum calcium concentra-

tion relative to the study distribution:

HC:

 1. Exposed group (HC- exposed): Individuals with 

a serum calcium concentration in the top 20% 

of the study distribution.

 2. Unexposed group (HC- unexposed): Individuals 

not in HC- exposed group (ie, serum calcium in 

the bottom 80% of the study distribution).

LC:

 1. Exposed group (LC- exposed): Individuals with 

a serum calcium concentration in the bottom 

20% of the study distribution.

 2. Unexposed group (LC- unexposed): Individuals 

not in LC- exposed group (ie, serum calcium in 

the top 80% of the study distribution).

https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
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Subsequently, for each ECG trait (QT and JT) and 

stratum (HC- exposed, HC- unexposed, LC- exposed, 

and LC- unexposed) GWASs were performed using an 

additive genetic effect model (Equation 1):

Where P is the phenotype (QT or JT), G is the gen-

otype at SNV s, 𝛽 is the fixed effect size of SNV s, C is 

a matrix of covariates, g is a random effect capturing 

unequal relatedness, and e is the random effect of re-

sidual errors.21

The GWAS software used was chosen at cohort- 

level: either ProbABEL (v.0.5.0),22 MMAP (v.04.2018),23 

SAIGE,24 SNPTEST (v2.5.4),25 BOLT- LMM,20 RVTEST 

(v.10.2017),26 or Regscan.27 In addition, to permit cal-

culation of main effect beta estimates, a GWAS was 

also performed for each ECG trait including all individ-

uals irrespective of serum calcium concentration.

Quality control of GWAS summary statistics sub-

mitted by each cohort was performed centrally using 

standardized steps with the EasyQC R- package (ver-

sion 9.2).28 In brief, allele frequencies (AF) of variants 

were compared with the reference panel used by the 

original study and outliers (AF difference>0.2) were 

removed. To ensure only high- quality SNVs were se-

lected, variants with a product of minor allele count 

and imputation quality (minor allele count*Rsq) <20 

were excluded. Quantile- quantile plots, P value, and 

Z- statistic plots and lambdas were manually inspected 

for each study to identify analytical errors and uncor-

rected population stratification.

Two- Stage SNV- by- Calcium Interaction 
GWAS Meta- Analyses for QT and JT
The primary analysis was a 2- stage analysis (Figure 1). 

Participating studies were split into discovery and 

replication cohorts (Table). Manhattan and quantile- 

quantile plots for each stage were generated using the 

R package QQman (v.0.1.8).

The discovery phase included 16 studies and their 

substudies, with individuals of European ancestry only 

(total N=62 532). For each group (HC- exposed, HC- 

unexposed, LC- exposed, LC- unexposed) and for each 

ECG trait (QT and JT), a full GWAS meta- analysis was 

performed using an inverse variance- weighted, fixed 

effects model with METAL (version released March 25, 

2011).29 Variants were excluded from the meta- analysis 

if present in ≤2 studies or had a meta- analysis sam-

ple size <2000 in the exposed group. To estimate the 

main effects of SNV associations with QT and JT, a 

meta- analysis was also performed including all indi-

viduals irrespective of their serum calcium concentra-

tion. Subsequently, SNV- strata specific joint P values 

(2- degrees of freedom [df] main and interaction [PJOINT, 

Equation 2]) and interaction P values (PINT, Equation 3) 

between each exposed and unexposed stratum (HC- 

exposed versus HC- unexposed, LC- exposed versus 

LC- unexposed) were calculated using the EasyStrata 

R package (v8.6).30

Where 𝛽 is the effect size estimates of stratum I, 

SE is the corresponding SE of stratum I, and N is the 

sample size of the stratum.30

All variants from the discovery analysis with a 

PJOINT<1×10−6 were subsequently grouped into loci 

using the following method. For each lead variant 

(smallest PJOINT) in a 1 mb region, linkage disequilibrium 

correlations were calculated using the 1000 genomes 

reference panel in PLINK (v1.9) including individuals of 

European and African ancestry.16,31 Locus boundaries 

were defined as either ±500 kb from the lead SNV or a 

region containing variants with an r2>0.1 with the lead 

SNV, whichever was greater. Overlapping loci were 

merged to create a list of lead variants representing 

each locus. These lead variants were subsequently 

taken forward for replication.

Replication of each lead variant was performed in 

a meta- analysis of 2 cohorts of European ancestry 

(N=55 049) and a further 3 cohorts of African ancestry 

(N=4812), a total of 5 cohorts with N=59 861 across 

both ancestries (Table; Figure 1). The lead variants were 

declared replicated if meeting the following criteria:

 1. A 2- df main and interaction joint test P value 

less than a Bonferroni- corrected threshold for 

the number of lead variants tested for rep-

lication in each analysis (PJOINT<[0.05/number 

of loci]).

 2. Concordant direction of beta effect size esti-

mates between discovery versus replication.

 3. PJOINT genome- wide significant (<5×10−8) in a 

combined meta- analysis of discovery and rep-

lication cohorts. A locus was declared novel if 

no SNV from previous published QT or JT main 

effect GWASs mapped within its boundaries.4 

Table S5 contains a list of all previously reported 

loci for QT (N=195) and JT (N=172).

To identify support for an interaction effect of calcium 

on the association of genotypes with QT and JT, 1- df 

interaction P values (PINT) were reviewed for each repli-

cated lead variant and declared significant if meeting a 

Bonferroni- corrected threshold (<0.05/number of unique 

(1)P ∼ Gs𝛽s +C + g + e

(2)PJOINT =
∑N

i=1

(
β2

i

1

se2
i

)
∼ X2(N)

(3)
PINT =

𝛽1 − 𝛽2√
se
(
𝛽1

)2
+ se

(
𝛽2

)2

∼ N(0, 1)
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independent loci). 1- df interaction P values <0.05 but 

greater than the Bonferroni- corrected threshold were 

considered to identify suggestive support for an inter-

action effect.

To determine whether between- ancestry (European 

versus African) heterogeneity may influence our results 

(which could be by affecting replication of discovery 

lead variants or identification of support for interaction 

effects), between- ancestry main effect heterogeneity P 

values were calculated by performing a meta- analysis 

of the European ancestry meta- analysis versus the 

African ancestry meta- analysis within METAL.29 A 

between- ancestry heterogeneity P value <0.01 was 

used to declare evidence of heterogeneity for each 

lead variant brought forward to replication. As some 

heterogeneity was observed at a minority of loci, rep-

lication was repeated in the 2 European ancestry co-

horts only (N=55 049).

Figure 1. Overview of the primary analysis performed in this study.

AF indicates allele frequency; df, degrees of freedom; GWAS, genome- wide association study; MAC, minor allele count; MAF, minor 
allele frequency; N, number; PINT, interaction effect P value; PJOINT, joint (main and interaction effect) P value; and SNV, single nucleotide 
variant.
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Single- Stage Full Cohort Discovery  
SNV- by- Calcium Interaction GWAS  
Meta- Analyses for QT and JT Intervals
To maximize power for the discovery of interac-

tion effects with calcium, a single- stage interaction 

meta- analysis was also performed using all cohorts 

(N=122 393, Figure 2). For this analysis, variants were 

excluded if their sample size was <60% of the total 

sample size (N<73 436) to ensure findings are not 

driven by a minority of studies. Variants were declared 

significant if the joint main and interaction effect was 

genome- wide significant (PJOINT<5×10−8) and without 

evidence for between- study heterogeneity (heteroge-

neity P value >0.01). The 1- df interaction P values were 

declared significant if meeting a Bonferroni- corrected 

threshold (<0.05/number of loci in each analysis).

Sensitivity Analyses
Five sensitivity analyses were performed to test whether 

our study design influenced our findings (Figure 2):

 1. Serum sampling for calcium measurements 

on a different day to ECG acquisition could 

introduce noise and prevent the detection of 

significant interactions. Therefore, the single- 

stage all cohorts SNV- by- calcium interaction 

GWAS meta- analyses were repeated including 

only studies where these data were collected on 

the same day (10 studies, N=84 833) (Table S3).

 2. Interaction effects may be easier to detect if 

directly comparing extremes of the serum cal-

cium concentration distribution. To test this, we 

repeated the SNV- by- calcium interaction meta- 

analysis for QT and JT using EasyStrata, by 

calculating the joint main and interaction effect 

estimates between the top 20% (HC- exposed) 

and bottom 20% (LC- exposed) GWAS meta- 

analyses (N=50 151).

 3. As the criteria used to define each stratum may 

influence the detection of interaction effects, 

analyses were repeated in UKB only (N=45 624) 

having recategorized individuals as “exposed” if 

in the top 1% of the HC group or bottom 1% of 

the LC group. Joint (main and interaction) and 

interaction effects between the 1% exposed 

and 99% unexposed for each HC and LC group 

were recalculated using EasyStrata and com-

pared with the UKB analysis using the original 

definition (Exposed group=top or bottom 20%).

 4. As differences in serum albumin concentration 

may have a small impact on the categorization 

of individuals to different strata by modifying cal-

cium binding,6 analyses in UKB only (N=45 624) 

were repeated using serum albumin- corrected 

calcium concentrations as the exposure. LC 

or HC groups were defined as the bottom or 

top 20% of individuals in the serum albumin- 

corrected calcium distribution. Significant loci 

were compared with the original UKB analysis 

using serum total calcium.

 5. We were interested if including calcium as a 

categorical variable in the model along with the 

interaction term SNV*calcium, would yield dif-

ferent findings compared with our approach 

using EasyStrata. To address this question, 

Table. Cohorts Included in the GWAS Meta- Analyses

Discovery (EA only) Replication (EA)

Study
Sample 
size Study

Sample 
size

ARIC 7789 LIFELINES- 

UGLI

9426

BRIGHT 1201 UKB 45 623

CHRIS 4410 Total 55 049

CHS 1408

INGI- CAR 355

INGI- FVG 781 Replication (AA)

INTER99 5928 Study Sample size

KORA- F3 2639 ARIC 2399

KORA- S4 2354 MESA 1182

LIFELINES- CS 12 092 UKB 1231

MESA 2006 Total 4812

MICROS 515

NEO 5173

OGP 435

ORCADES 1710

RS- 1 1544

RS- 2 1372

RS- 3 2559

SHIP 2885

SHIP- TREND- 1 833

SHIP- TREND- 2 2429

VIKING 1868

Total 62 532

AA indicates African ancestry; ARIC, Atherosclerosis Risk in Communities 

study; BRIGHT, British Genetics of Hypertension study; CHRIS, The 

Cooperative Health Research in South Tyrol study; CHS, Cardiovascular 

Health Study; EA, European ancestry; GWAS, genome- wide association 

study; INGI- CAR, Italian Network of Genetic Isolates- Carlantino; INGI- 

FVG, Italian Network of Genetic Isolates- Friuli Venezia Giulia; INTER99, 

A Randomised Non- pharmacological Intervention Study for Prevention 

of Ischaemic Heart Disease; KORA, Cooperative Health Research in the 

Region Augsburg; LIFELINES- CS, Lifelines Cohort Study Cyto SNP subset; 

LIFELINES- UGLI, Lifelines Cohort Study University Genetics Lifelines 

Initiative subset; MESA, Multi- Ethnic Study of Atherosclerosis; MICROS, 

Microisolates in South Tyrol; NEO, Netherlands Epidemiology of Obesity; 

OGP, Ogliastra Genetic Park; ORCADES, Orkney Complex Disease Study; 

RS, Rotterdam study; SHIP, Study of Health in Pomerania; UKB, UK Biobank; 

and VIKING, Viking health study.
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we performed this analysis in UKB (N=45 509) 

(Data S3).

For sensitivity analyses 1 through 4, significant find-

ings were reported for variants where the PJOINT was 

genome- wide significant (<5×10−8). Lead variant inter-

action effect P values were reported significant if below 

a Bonferroni- corrected threshold (<0.05/number of lead 

variants for each trait) to account for multiple testing.

Follow- Up of Novel Loci
For lead variants at each “novel” locus previously not 

reported for QT or JT, variant annotation was per-

formed using Variant Effect Predictor, RegulomeDB 

(v2.0.3) and Combined Annotation Dependant 

Depletion (v1.6) platforms.32–34 To identify potential ef-

fects on tissue- specific gene expression, a look up was 

performed using Genotype- Tissue Expression data 

(version 8) for overlap of lead variants and their prox-

ies (r2>0.8) with lead expression quantitative trait loci 

variants.35,36 Colocalization analyses were performed 

using the R package COLOC(version 5.1.0.1).37 These 

colocalization analyses use Bayesian statistical meth-

ods to calculate a posterior probability for a variant 

being causal in both analyses (>75%). GWAS catalog 

and Phenoscanner were used to investigate pleiot-

ropy and cross- trait association of our novel loci, by 

identifying any previously reported GWAS associations 

(P <5×10−8) of any other traits or diseases for variants in 

strong linkage disequilibrium (r2>0.8) with the lead vari-

ant.38,39 The Open Targets Gene to Locus pipeline was 

used as an additional source to identify potential can-

didate genes at loci.40,41 This pipeline uses a machine- 

learning model to weight evidence sources including 

distance from variant to gene transcription start site, 

colocalization and chromatin interaction data, and pre-

dicted variant pathogenicity.

Post Hoc Power Calculations
The Quanto+ program42 was used to calculate the 

power to detect a calcium interaction effect in a similar 

total sample size (120 000) for an SNV with a minor al-

lele frequency of 10% and a genome- wide significance 

level (<5×10−8).

RESULTS
Two- Stage SNV- by- Calcium QT and JT 
Interaction GWAS Analyses
In a genome- wide discovery meta- analysis of 16 stud-

ies (22 substudies with 62 532 individuals of European 

ancestry), lead variants at 61, 62, 62, and 60 loci for 

QT- HC, QT- LC, JT- HC, and JT- LC, respectively, met 

Figure 2. Overview of the single- stage all cohorts interaction analysis and subsequent sensitivity 

analyses.

GWAS indicates genome- wide association study; N, number; PINT, interaction effect P value; PJOINT, joint 
(main and interaction effect) P value; SNV, single nucleotide variant; and UKB, UK Biobank study.
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the predetermined PJOINT threshold (<1×10−6) for test-

ing in replication (Table, Figure 1, Data S1). The rep-

lication meta- analysis (total N=59 861) included 2 

European ancestry (N=55 049) and 3 African ancestry 

(N=4812) cohorts, for a total replication sample size of 

59 861 participants (Table). In total, 40, 38, 42, and 42 

independent lead variants for QT- HC, QT- LC, JT- HC, 

and JT- LC, respectively, met all 3 criteria to declare 

significance after the replication stage ([1] PJOINT<0.05/

number of lead variants tested in each analysis, [2] 

concordant direction of beta effect size estimates and 

[3] PJOINT<5×10−8 when combining discovery and repli-

cation cohorts) (Figure 1, Table S6). These correspond 

to 53 unique and independent loci across all 4 analy-

ses. All 53 loci have been previously reported as asso-

ciated with QT or JT intervals in main- effects standard 

GWAS analyses.14

None of the lead variant PINT reached a Bonferroni- 

corrected threshold for significance (PINT<0.05/number 

of loci), indicating that the association at each locus 

was primarily driven by the main variant effect after 

accounting for serum calcium concentration. Plots 

comparing effect size estimates for exposed versus 

unexposed strata are shown in Figure 3. A linear trend 

and high correlation in effect size estimates (Spearman 

correlations 0.97–0.98) were observed when compar-

ing strata. Specifically, SNVs with large effect sizes 

in the exposed group also had large effect sizes in 

the unexposed group, that is, effect sizes for variant 

associations in each stratum were similar. Five vari-

ants had suggestive support for an interaction effect 

(PINT<0.05 but >Bonferroni corrected PINT). These were 

lead variants at loci for QT- LC ([PINT=0.023, for NKX2- 
5], [PINT=0.047, for RNF150]), JT- HC ([PINT=0.025, 

for KCNQ4], [PINT=0.034, for CASR]), and JT- LC 

(PINT=0.026, for KLF12) (Table S6).

To determine whether between- ancestry (European 

versus African) heterogeneity was present in the rep-

lication analysis and potentially affected our findings, 

we performed a lookup of main effect heterogeneity 

P values for all lead variants brought forward from dis-

covery to replication. The between- ancestry heteroge-

neity P value for a QT or JT lead variant was <0.01 

for 5 loci (NOS1AP, KCNH2, LAPTM4B, SLC4A3, and 

RNF207) (Table S6). NOS1AP and KCNH2 consistently 

give the strongest association signals for QT and JT 

(by P value) and with large effect sizes. Their effects are 

easier to detect in smaller studies, but the larger effect 

size estimates may be more susceptible to slight dif-

ferences between studies. However, the heterogeneity 

could also be due to true differences in effect sizes.

Because there was some evidence of between- 

ancestry heterogeneity at some loci, a European 

ancestry replication analysis was performed for com-

parison. There was no substantial difference in the 

results for 38, 37, 41, and 43 independent loci identi-

fied for QT- HC, QT- LC JT- HC, and JT- LC, respectively 

(Table S7). These corresponded to 52 unique and in-

dependent loci across all 4 analyses and all were re-

ported in the primary analysis. None of the lead variant 

PINT reached a Bonferroni- corrected threshold for sig-

nificance (PINT<0.05/number of loci).

Single- Stage SNV- by- Calcium QT and JT 
Interaction GWAS Meta- Analyses for All 
Cohorts
To maximize power for discovery of interaction effects 

with calcium, we performed single- stage SNV- by- 

calcium QT and JT interaction GWAS meta- analyses 

including all cohorts. Variants not present in >60% of 

the full meta- analysis sample (N=122 393) and vari-

ants with between- study heterogeneity P values <0.01 

were excluded after meta- analysis for quality control 

filtering. Variants were declared significant if the joint 

main and interaction effect P value was genome- wide 

significant (PJOINT<5×10−8). PJOINT quantile- quantile and 

Manhattan plots are in Figures S1 through S5.

In total, 72, 73, 81, and 76 genome- wide significant 

independent loci were identified for QT HC, QT- LC, JT- 

HC, and JT- LC, respectively (Table S8). These loci cor-

responded to 98 unique and independent loci across 

all analyses. Two of the loci have not been reported 

previously for QT or JT (SPPL2B and RFX6). The lead 

variant PINT were >0.05 for SSPL2B and RFX6, indicat-

ing that the associations were driven by the main ef-

fect. Across all 98 unique loci, PINT were not significant 

after correction for multiple testing.

We also scanned the entire data set for variants 

for suggestive support (PINT<1×10−6). PINT values were 

between 2.7×10−7 and 7.9×10−7 for lead variants at 6 

unique and independent loci: 2 each for QT- LC, JT- 

HC, and JT- LC (Figure  4). One lead variant maps 

within the boundaries of a previously reported locus 

(4:84853269:A:G, candidate genes SEC31A/COPS4).4 

The other 5 loci have not been reported for either QT 

or JT associations (Table S9).

The calcium- sensing receptor (CASR) locus explains 

the largest proportion of the variance of serum cal-

cium concentration (0.5%)43 and is a significant locus 

in main effects GWASs for QT and JT.4 A lookup of 

variants at this locus indicated the minimum PINT were 

9.6×10−4, 1.4×10−3, 2.4×10−3, and 6.3×10−3 for QT- 

HC, QT- LC, JT- HC, and JT- LC, respectively. The val-

ues do not meet our threshold for suggestive support 

(PINT<1×10−6).

Power Calculations
In designing the study, we expected to have adequate 

power to detect interaction effects, because studies 
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Figure 3. Comparison of main effect beta estimates between exposed and unexposed groups in low or high calcium serum 

concentrations for QT and JT.

Correlation plots comparing replicated lead variant main effect estimates between “unexposed” (x- axis) and “exposed” (y- axis) 
groups using values from the combined discovery and replication meta- analysis. Main effect estimates are plotted in milliseconds 
along with 95% CIs. Cor indicates Pearson correlation coefficient. Points in red indicate those with a 1- degree of freedom interaction 
P value <0.05.



J Am Heart Assoc. 2024;13:e034760. DOI: 10.1161/JAHA.123.034760 10

Young et al Variant- Calcium Interaction on QT and JT Intervals

Figure 4. Manhattan plot for each single- stage SNV- by- calcium interaction analysis 1- df joint P values.

Joint 1- degree of freedom P values from the single- stage all cohorts genome- wide high calcium- SNV interaction meta- analysis 
for the QT interval. (A) QT high calcium, (B) QT low calcium, (C) JT high calcium, (D) JT low calcium. Study- level linear regression 
summary statistics for exposed (top or bottom 20% of serum calcium distribution) and unexposed (top or bottom 80% of serum 
calcium distribution) were meta- analyzed separately before calculation of joint (main and interaction) effect P values. Variants within 
the boundaries of previously reported loci for QT and JT are highlighted in green. y axis: log P values, x axis: chromosome and base 
pair position (hg19). df indicates degrees of freedom; and SNV, single nucleotide variant.



J Am Heart Assoc. 2024;13:e034760. DOI: 10.1161/JAHA.123.034760 11

Young et al Variant- Calcium Interaction on QT and JT Intervals

with similar sample sizes had significant findings.44 

To confirm that we had sufficient statistical power, 

we performed a post hoc analysis using the Quanto+ 

program,42 to compute power values at various minor 

allele frequencies for our approximate sample size 

(120 000 participants).

Figure 4.  Continued
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At our sample size, and with correction for multiple 

testing (genome- wide significance, P<5×10−8), we had 

at least 80% power to detect true gene by environment 

interaction effects of 2.75 milliseconds for SNVs with 

minor allele frequency values of 10%. For comparison, 

main effects of 3.76 milliseconds, 3.85 milliseconds, 

4.75 milliseconds, and 7.06 milliseconds have been re-

ported for variants at NOS1AP, SCN5A, KCNH2, and 

KCNE1, respectively. The analysis indicates that our 

study was unlikely to have been underpowered for clin-

ically relevant calcium interaction effects on SNV asso-

ciations with QT and JT. The analysis instead supports 

an interpretation of lack of significant interactions.

Sensitivity Analyses
Four sensitivity analyses were performed to test 

whether our study design influenced our findings.

 1. To test whether inclusion of studies with serum 

calcium measurements and ECG acquisition 

on different days introduced noise that pre-

vented detection of a true interaction effect, 

we repeated the analyses after excluding such 

studies. In total, 84 833 individuals of European 

ancestry from 10 different studies (69.6% of the 

original sample size) were included. Compared 

with the single- stage discovery meta- analysis, 

no additional loci were identified and no lead 

variant had a significant PINT value after apply-

ing a Bonferroni- correction for multiple testing 

(Table  S10).

 2. Using all cohorts, joint main and interaction ef-

fects P values were also calculated directly com-

paring individuals in the top and bottom 20% of 

the serum calcium distribution (N=50 151). In 

total, 24 loci for QT and 27 for JT, were genome- 

wide significant with a between- study heteroge-

neity P value >0.01 (Table S11). None of the lead 

variants had PINT values and beta estimates for 

these 2 strata were highly correlated (Figure S6).

 3. To test whether our definition of “high” and “low” 

calcium affected detection of interaction effects, 

we repeated the interaction analysis in UKB- 

only participants (N=45 624) after reclassifying 

individuals as “exposed” if calcium levels were 

in the top 1% (for the HC group) or the bottom 

1% (for the LC group). For the 30, 33, 34, and 37 

genome- wide significant loci (PJOINT) for QT- HC, 

QT- LC, JT- HC, and JT- LC, respectively, no lead 

variant had a significant PINT (Table S12).

 4. We also assessed whether stratifying individuals 

into high or low groups by serum calcium lev-

els corrected for albumin concentrations yielded 

different results in UKB (N=45 624). Compared 

with the UKB analyses where serum calcium 

was not corrected for albumin concentration, 

there were no significant differences in PJOINT or 

PINT (Table S13).

 5. Comparing our methodological approach using 

EasyStrata versus analysis with inclusion of cal-

cium as a categorical variable and the interaction 

term SNV*calcium in the model, we observed 

high correlations for PJOINT (≥0.91), PINT (≥0.89), 

and interaction betas (≥0.96) across all inter-

action analyses indicating it is unlikely that our 

conclusions would significantly alter by using a 

different approach (Data S3, Figure S7).

Bioinformatic Investigation of “Novel” Loci 
From the Single- Stage SNV- by- Calcium 
All Cohorts Interaction Analysis
For the 2 “novel” loci found in the single- stage inter-

action analysis, both lead variants are noncoding. 

The nearest genes are RFX6 for rs12201457 on chro-

mosome 6 and SPPL2B for rs3746287 on chromo-

some 19. rs3746287, in strong linkage disequilibrium 

(r2=0.86) with a lead expression quantitative trait locus 

variant for SPPL2B in left ventricular tissue. However, 

there was no support for colocalization (posterior 

probability 4=4.4×10−4). There were no significant 

findings when testing the lead variants and their prox-

ies (r2>0.8) for long- range promotor interactions. The 

variant rs12201457 at RFX6 has previously been re-

ported to be associated with height.45 A search on 

PhenoScanner revealed it is located within a cluster of 

elements with distal enhancer- like signature and asso-

ciated with methylation of 3 CpG sites (cg20376953,46 

cg2037695,47 cg06608376). It is also associated with 

expression of FAM26F, alias CALHM6 (calcium homeo-

stasis modulator) from expression quantitative trait loci 

blood derived expression data in 26 353 individuals.48

DISCUSSION
In these large SNV- by- calcium interaction meta- 

analyses for QT and JT intervals with >120 000 indi-

viduals, there was limited support for SNV- by- calcium 

interaction effects. In the single- stage analysis, we 

identified 2 previously unreported loci for QT (RFX6 

and SPPL2B), but both findings were primarily driven 

by the SNV- main effects only.

Gene–environment interactions contribute to the 

genetic architecture of complex traits and disease.10 By 

studying these interactions in a gene- by- environment 

GWAS analysis framework, novel loci have been iden-

tified for lipid and blood pressure traits using sample 

sizes similar to the size of our study.44,49

Of the 2 previously unreported loci identified in this 

study at genome- wide significance, the candidate 
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genes are FAM26F (alias CALHM6) and SPPL2B. 

FAM26F is the pore- forming component of a voltage- 

gated ion channel with calcium homeostasis activity.50 

It is mainly expressed in immune system cells including 

cardiac macrophages; however, it is also expressed at 

low levels in cardiac endothelial and muscle cells.

In this study, for all lead variants for QT and JT 

(including the 2 previously unreported loci), SNV- by- 

calcium PINT did not reach a Bonferroni- corrected 

threshold for significance (0.05/number of loci), sup-

porting an interpretation that the association at each 

locus was primarily driven by the main variant effect 

even after stratification by serum calcium concen-

tration. Scanning the entire genome for interaction P 

values of suggestive significance (PINT<1×10−6) led to 

consideration of 6 loci, although replication is neces-

sary in a separate large cohort to determine whether 

the results represent true interaction effects.

We have previously shown using large- scale 

population- level data that lower serum calcium con-

centrations are associated with an increase in ven-

tricular repolarization time and provided support for a 

causal relationship.5,6 Therefore, we hypothesized the 

existence of SNV- by- calcium interactions with QT and 

JT intervals that may provide additional insights into 

the biomolecular mechanisms regulating the effects of 

calcium on these ECG measures. Previous QT and JT 

main effect GWAS meta- analyses have reported as-

sociations at loci for L- type calcium channel subunits 

(CACNB2) and calcium regulation (ATP2A2, PLN).4,51 

Low extracellular calcium concentrations can prolong 

the cardiomyocyte action potential duration through 

inactivation of the L- type calcium current.52 Genes in-

volved in calcium current modulation are rare causes 

of congenital long QT syndromes including CACNA1C 

(Timothy syndrome) and CALM1- 3 (types 14–16).53,54 

However, we did not identify an interaction effect at 

these loci, nor at the CASR locus. CASR explains 0.5% 

of the variance of serum calcium and is a genome- 

wide significant locus for QT and JT intervals in main 

effects GWAS.4,43 Sensitivity analyses also suggest 

that the thresholds chosen to define HC and LC levels 

in the populations studied did not significantly influ-

ence our results.

Our findings therefore suggest that the associations 

of common and low frequency genetic variation for 

QT and JT intervals are not substantially influenced by 

circulating extracellular calcium concentrations in the 

general population. This work also suggests that an 

interaction effect of serum calcium does not explain 

a meaningful proportion of the missing SNV- based 

heritabilities for QT and JT. Effects of small changes 

in extracellular calcium on genetic associations with 

ventricular repolarization duration may be mitigated 

by extensive intracellular regulation that maintain cal-

cium homeostasis and therefore not observed as an 

interaction effect.55 It is also possible that more subtle 

interactions such as anatomical (spatial) characteristics 

are not captured by an epidemiological study design 

and may account for the absence of evidence for inter-

action in this study, despite adequate power. Genetic 

predisposition to QT and JT interval prolongation and 

the effects of serum calcium are likely to be additive (as 

supported by our previous Mendelian randomization 

study)5 and therefore further work is necessary to ex-

plore potential to increase susceptibility for ventricular 

arrhythmia.

Limitations
The power to detect associations due to interaction 

effects is reduced, compared with main effect GWAS 

analyses. Therefore, larger sample sizes have potential 

to identify new findings. However, the size of our study 

(>120 000 with approximately 24 000 individuals classi-

fied as having either low or high serum calcium levels) 

is comparable to sizes of other gene- by- environment 

interaction GWAS meta- analyses that had significant 

findings. Moreover, power calculations suggested we 

had at least 80% power to detect clinically meaningful 

effect sizes of 2.75 milliseconds.44,56 This meta- analysis 

contains primarily cohorts of European ancestry, and 

we did not have sufficient sample size for individuals of 

African ancestry to permit a discovery and replication 

analysis in this ancestry alone. Further investigation is 

necessary to determine whether effects may be pre-

sent in individuals of non- European ancestry, although 

such data (with serum calcium and ECGs) are currently 

not yet available. Our study tested for an interaction 

effect on variants with a minor allele frequency >0.01. 

Rare coding variation may be more susceptible to 

changes in extracellular calcium concentration; how-

ever, large sample sizes for such analyses were not 

available for this study.

CONCLUSIONS
We have found limited support for SNV- by- calcium 

interaction effects on common and low- frequency 

genotype associations for QT and JT intervals despite 

adequate power. Our study indicates interaction ef-

fects do not explain a meaningful proportion of the un-

explained heritability of these traits, and therefore other 

factors including rare variation and other environmental 

interactions need to be considered.
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