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Abstract 

In this paper, we advocate for the potential of reinforcement learning from human feed-
back (RLHF) with self-supervised pretraining to increase the viability of reinforcement 
learning (RL) for real-world tasks, especially in the context of cyber-physical systems 
(CPS). We identify potential benefits of self-supervised pretraining in terms of the query 
sample complexity, safety, robustness, reward exploration and transfer. We believe that 
exploiting these benefits, combined with the generally improving sample efficiency of 
RL, will likely enable RL and RLHF to play an increasing role in CPS in the future. 
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1 Introduction 

Reinforcement learning (RL) considers the setting of learning behavior from rewarded inter-
action with an environment. The reward function specifies the desired behavior while the 
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environment specifies the task dynamics. This setting is well-suited for cyber-physical sys-
tems (CPS), where the system repeatedly interacts with an environment to achieve some 
goal. RL can be used in this setting to learn a controller for a cyber-physical system, i.e., a 
policy that can choose appropriate actions based on the system’s inputs. Examples of RL for 
CPS include applications to smart grids [ 18], HVAC [ 32], energy storage [ 31], autonomous 
driving [ 3], as well as legged robots [ 39, 43] and robotic manipulation [ 36]. 

One of the main challenges of applying RL to any task is measuring the agent’s task 
performance in a way that is suitable for use as a reward function (reward design). Many of 
the largest successes of RL, such as as reaching or even exceeding human performance in 
the game of Go [ 37] and many Atari games [ 25], have been in the domain of games which 
have goals that are well-defined and easy to evaluate. 

This is not the case for most real-world tasks however. Goals are often vague, subjective 
and characterized by trade-offs. Misspecifying these objectives can lead to surprising behav-
iors as well as safety issues [ 2]. Knox et al. [ 13] studies the challenges of reward design 
for autonomous driving, where the objective is a mixture of objective factors such as time 
to destination, fuel consumption and safety as well as subjective factors such as passenger 
experience. The right balance of these components may depend on context, such as time 
of day or the passenger’s mood. More generally, Dulac-Arnold et al. [ 8] identifies reward 
design as one of the key challenges of applying RL to the real world. 

RLHF is one way to cope with the challenge of reward design. Instead of assuming that a 
reward function is part of the problem specification, RLHF treats the reward function as part 
of the problem itself and attempts to learn it from human feedback. This is commonly done 
by collecting pairwise preference feedback over alternative agent trajectories (PbRL [ 42]) 
and using it to infer a reward function, but other feedback modalities such as (imperfect) 
demonstrations [ 11], corrections [ 20], critiques [ 7] or natural language [ 41] may be used as 
well. 

Examples of RLHF include ChatGPT [ 28], an instance of a large language model fine-
tuned with RLHF to follow instructions [ 29] in a dialogue context. Other examples from the 
language domain are summarization [ 40] and question answering [ 27]. Beyond text, RLHF 
has been used to guide image generation [ 12]. RLHF has also been used in games [ 6] as well  
as simulated continuous control tasks [ 6, 17]. In the domain of CPS, existing applications 
of RLHF include robot-to-human object handover [ 14] and robotic manipulation [ 5, 38]. 

RLHF can greatly reduce the challenge of reward design by enabling us to learn tasks 
that humans can judge, even if they are difficult to express in an engineered reward function. 
This avoids the need to explicitly specify all objectives or their trade-offs—those can be 
communicated by example instead. The reward model can be trained to estimate human 
preferences directly from the system’s sensor inputs. If the sensor inputs convey sufficient 
information, the agent can even learn different trade-offs for different contexts. For example, 
an internal camera in an autonomous vehicle could be used to judge the mood of the passenger 
or detect the presence of a child and adapt the driving behavior accordingly.
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2 The Potential of Pretraining 

Learning rewards directly from sensor inputs presents us with a new challenge however, 
since these sensor inputs (especially when they are vision-based) are often high-dimensional. 
High-dimensional state- and action spaces are already a challenge for RL without human 
feedback [ 8]. In that setting the problem is often tackled by data augmentation [ 44], repre-
sentation learning [ 15, 34] or model-based RL [ 10]. 

The latter two approaches—representation learning and model-based RL—can be consid-
ered instances of self-supervised learning [ 16, 22], a form of learning that tries to learn some-
thing about the structure of the input data from unlabeled examples. This can be achieved by 
generating labels from the input data itself, such as training models to predict hidden parts 
of the input data or to determine whether two data points are related (e.g., transformations 
of each other) or not. Self-supervised learning is commonly used to learn representations or 
to initialize networks which are then later fine-tuned to specific tasks. Since self-supervised 
learning does not require any explicit human labels, it is possible to train on large amounts 
of data. This has been an important driving factor behind recent successes in the domain of 
language models [ 4]. 

In model-based RL, the self-supervised objective is to predict the environment dynamics, 
i.e., predict the next state from the current state and a chosen action. The goal of state-
representation learning is to learn a representation of the agent’s state that makes downstream 
tasks, such as reward prediction or policy learning, easier. Consider the example of an 
agent tasked with controlling an autonomous car: While the raw state of an agent may 
consist of low-level sensor inputs such as the pixels captured by a camera, the learned 
representation should capture information that is immediately relevant to the driving task 
such as the car’s position relative to other cars and pedestrians in a higher-level format. Such 
a representation can be learned from data that is already available, such as experiences of 
the environment dynamics [ 34], and can then enable more sample-efficient learning of the 
downstream task, such as reward prediction. See the overview by Lesort et al. [ 19] for a 
more detailed introduction to state representation learning. 

In this paper, we want to highlight the potential of self-supervised pretraining in the form 
of state representation learning and world model learning to effectively learn behavior from 
human feedback. We expect pretraining can improve query sample complexity as well as the 
learning system’s safety and robustness, allow for better exploration of the reward function 
and enable transfer of knowledge between tasks. 

Query sample complexity: Starting with a good state representation has the potential to 
learn more accurate reward models while requiring fewer human labels. Such a repre-
sentation can be learned in a self-supervised manner from unlabeled interactions with 
the environment [ 34] or as a side-effect of model-based RL [ 10, 26]. The learned rep-
resentation is often more compact than the original observation and may also integrate
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information over multiple time-steps. This can be particularly beneficial in environments 
with high-dimensional observations such as images captured by a camera. 
Similar sample-complexity benefits have been observed in RL without human feed-
back [ 34, 45], where learned state representations can often decrease the necessary 
amount of interaction with the environment or even enable the application of RL to 
domains in which it was previously not feasible. 
Metcalf et al. [ 24] explores this idea for RLHF and observes that by encoding environ-
ment dynamics in the state representation, i.e., choosing the representation learning task 
in such a way that the representation of the next state can be predicted from the current 
one with a simple linear layer, results in a significant increase in sample efficiency. 
In addition to explicit representation learning, sample efficiency could also be improved 
through data augmentation [ 30] as well as semi-supervised learning [ 30]. 

Safety: Instead of learning a state representation in isolation, it is also possible to learn 
a full model of the environment dynamics (world model). A world model provides the 
option of synthesizing queries, i.e., generating hypothetical behavior for feedback. This 
changes the active learning setting from (repeated) pool-based sampling to membership 
query synthesis [ 1]. Since these trajectories can be tailored to be informative about the 
human preferences, this can increase the sample efficiency of the preference learning 
process. In addition, synthesizing queries can increase the safety of the learning process 
since potentially dangerous behavior can be tested without actually performing it in 
the real world. Needless to say that this is particularly important when working with 
physical systems. Initial work has explored the potential of synthesized queries in an 
RLHF context [ 23, 33]. 
Another safety benefit of model-based RL is that it allows us to deploy separate policies 
in reality and in “imagination“. Imagination refers to training that uses only interactions 
with the learned world model, not with the real environment. While the imagination policy 
may be focused on exploration, the real world policy may be focused on conservative 
data gathering. 

Robustness: Synthesizing hypothetical behavior for feedback can not only improve the 
system’s safety, but may also contribute to the robustness and generalization of the learned 
rewards. This is because the synthesized queries can explore edge-cases that would rarely 
be encountered in the pool of experiences. It is possible to actively optimize the queries to 
fill gaps in the agent’s knowledge of the human preferences. The benefits of membership 
query synthesis over pool-based active learning are discussed by Elreedy et al. [ 9]. 

Reward exploration: Model-based RL can be used to improve the exploration behavior of 
RL agents by learning an exploration policy that leads the agent to novel states purely in 
imagination, which can then be deployed in the real environment for efficient exploration. 
This avoids the issue of retrospective novelty, where RL agents with intrinsic exploration 
bonuses optimize their policy to visit states which they previously found novel—which, 
by definition, they are not anymore once they are included in the training data.
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This approach has successfully been applied for regular state-space exploration [ 35]. 
Since reward-space exploration can be similarly important as state-space exploration for 
RLHF [ 21], one might expect additional benefits by applying this principle to reward-
space exploration as well. 

Transfer: Yet another benefit of representation- and model-learning is the possibility of 
transferring knowledge between tasks. Since a world model or state representation that 
was learned for one task remains valid for any other task with the same dynamics, this 
knowledge can be transferred and reward models for new tasks can be learned faster. A 
similar effect for model-based RL without human feedback is discussed by Moerland et 
al. [ 26]. 

3 Discussion and Conclusion 

Learning controllers for cyber-physical systems has the potential of enabling many new use 
cases with complex interactions and increased integration of multiple systems. This may be 
of use for many applications, such as robotics, smart buildings and autonomous vehicles. 

While to date applications of RL to real-world systems are sparse, the increasing sample 
efficiency of RL combined with the increased applicability to many tasks thanks to RLHF 
may cause that to change in the near future. Improving the feedback-efficiency of RLHF 
with approaches such as the ones discussed in this paper is therefore a promising area of 
future research. We believe that self-supervised pretraining has many benefits to offer and 
could play a crucial part in opening up many new use cases for cyber-physical systems. 
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