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This study explores the co-construction of probabilistic scoring systems. Using
a self-developed web-based tool, called PSLVIS, participants were able to create
their own decision-support models through an interactive interface. Seven
academic advising experts participated, assessing the probability of student
success both with and without the assistance of a Probabilistic Scoring List (PSL).
The results indicate that while the co-constructed models slightly improved
the experts’ accuracy, they also increased decision time. Experts interacted
with PSLVIS and PSL in diverse ways, displaying different levels of algorithmic
aversion and appreciation. This study underscores the potential of decision-
support systems that integrate data-driven algorithms with human expertise,
while also revealing the wide range of challenges that need to be addressed for
successful co-construction and practical implementation.
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1 Introduction

With the increasing access to technology and computational resources, the
idea of taking advantage of Machine Learning (ML) methodology for decision
support is becoming more and more feasible. Automated or partially automated
decision-making with data-driven models is appealing as it can lead to more
objective and accurate decisions than human decision-making alone. For
example, think of decisions in the context of employee recruitment, such
as hiring or placement decisions [14] in which humans alone may suffer
from several biases such as “similar-to-me”-decision biases, or the data-driven
construction of individualized treatment rules in personalized medicine [26].

ML models may increase the quality of decisions, but bear the problem of
user acceptance: How to motivate a human decision maker to apply automated
decision support systems and how to create trust and reliance in such systems
[12, 13, 15]? An important prerequisite in this regard is the transparency and
interpretability of the models [5,7]. Moreover, one may expect that participation,
i.e., the involvement of the human expert in the process of model construction,
has a positive influence, not only on acceptance [11]. Integrating humans in
the process of model construction may also further improve model quality and
performance — especially in cases where data is too sparse to reliably learn
well-generalizing models. Hence, we introduce a co-constructive approach
combining data-driven model induction with expert oversight.

As an underlying model class, we use so-called scoring systems. Roughly
speaking, a scoring system proceeds from a set of (binary) features charac-
terizing a decision context. The presence of a feature contributes a specific
score (a small integer value), and a positive decision is made if the cumulative
score exceeds a threshold. Models of that kind are especially comprehensible
and used in many applications and fields of applied research, such as medical
decision-making [18]. More specifically, we make use of PSL, an incremental
and probabilistic extension of scoring systems recently developed in [10].

As a first step toward the involvement of the human expert and co-construction
of a PSL, we introduce the graphical interface PSLVIS, which allows for adding,
removing, and reordering features of the model as well as changing the scores.
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The interface also supports the optimal (data-driven) calculation of scores and
features based on the training data, thereby helping the expert to align the
data with their domain knowledge. The mapping from scores to probabilities
of outcomes is calculated automatically and cannot be modified. Finally, the
performance of the system is visualized in the top right corner to give the user
life feedback.

Building on the user interface to facilitate model co-construction, we seek to
evaluate the effect of the co-constructive process on performance and reliance.
More concretely, we seek to answer the following research questions:

RQ1 How does PSL influence decision-making quality compared to humans
decisions without computational support?

RQ2 How do users interact with PSLVIS and navigate through the model space?

RQ3 What are the thought processes and challenges users face while using
PSLVIS and applying PSL?

2 Scoring Systems and Extensions

Scoring systems are simple linear classifiers where small integer scores are
assigned to each binary feature. The sum of all scores of positive features is
compared against a threshold to form a decision. PSL as introduced in [10] is
an extension that produces probabilistic (instead of deterministic) predictions.
Moreover, it organizes the features in the form of a decision list, so that a
prediction can be made at every stage. The scores of positive features are again
accumulated and then mapped to a probability estimate. An example of such a
stagewise model is depicted in the bottom right of Figure 1.

Scores, feature ordering, and the probability function are learned from training
data. This can be achieved by starting with an empty PSL and iteratively
expanding it with the most promising feature-score-pair in a greedy fashion,
similar to learning decision trees. As larger total scores should yield larger
probabilities, isotonic regression is employed to obtain probability estimates
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that are monotonically increasing in the total score. For a detailed description
of the learning algorithm, we refer to [10].

At prediction time, features are evaluated one after another, updating the total
score for each of them by adding up the scores of positive features. At each of
these stages, the probability estimate can be looked up. If the estimate is not
sufficiently informative to make a confident decision, additional features can be
evaluated to refining the estimate and reduce uncertainty.

3 Co-constructive Framework: PSLvis

As a first step toward co-constructive learning of a PSL, we introduce the web
interface PSLVIS instead of a purely data-driven induction. The user interface
(UI) allows adding, removing, and reordering features of the model as well as
changing the scores via drag-and-drop and button presses. Additionally, there
are buttons to reset the model, i.e., to remove all selected features and also
to add one feature optimally based on the training data. The interface also
supports the optimal calculation of scores and features, allowing the experts to
complement (or even replace) their expertise by a data-driven approach. The
mapping from scores to probabilities is calculated automatically and cannot be
modified. Finally, the performance of the entire decision list is visualized in the
top right corner to give the user life feedback. A screenshot of the main view of
PSLVIS is shown in Figure 1.

Significant emphasis was placed on usability during the development of the
web-based UI. The UI provides an interactive experience without requiring page
reloads, and any changes to features or scores result in instant model updates
and performance chart adjustments. Probabilities are visually highlighted using
color gradients for better clarity. The application’s data model is organized into
experiments, which can be configured independently (modifications in the user
interface, different datasets, . . . ). Participants are assigned to these experiments,
and all user data is stored in an anonymized format. All UI interactions are
logged in the database, enabling a detailed analysis of the co-construction
process. The implementation is publicly available1.
1 https://github.com/TRR318/pslvis
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Figure 1: User interface PSLVIS, which allows adding, removing and reordering features of the PSL
via drag and drop.

4 Method

4.1 Study Dataset

The study topic chosen was student counseling, specifically focusing on as-
sessing whether a student can successfully complete their university studies.
Employees from various student counseling departments were recruited as
experts for the study. The basis for the study comes from the German National
Educational Panel Study [2], in which pupils and students are surveyed over
a longer period. This dataset is available for research purposes. We built our
dataset based on Fourage and Heß [9], where we also define dropout as whether
students discontinue their initial studies at their initial institution.

In our dataset, there are a total of 1,804 students, and the success rate is 65.2%.
For the study, we divided the dataset according to the participants’ fields of study
and only used the data relevant to the areas the participants are involved with in
their work. For example, participant P1 received an engineering sample, while
P4 received a sample with students from law, economics, and social sciences.
The dropout rate varied slightly, and the instructions within the study explained
the sample.
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4.2 Think-Aloud Method

To explore how participants interact with the co-constructive tool PSLVIS and the
resulting PSL, and to identify challenges encountered during their application,
we employ the think-aloud method. This qualitative research method is used to
elicit cognitive processes by requiring participants to verbalize their thoughts
while performing tasks, with these verbalizations recorded for subsequent
analysis [4, 24]. The think-aloud method serves multiple purposes, including
documenting decision-making processes [19, 23] and assessing the usability
and perception of products such as software [1, 8, 22, 25]. It is also increasingly
utilized in human-computer interaction research [6, 16, 20, 21].

4.3 Procedure

Expert Participants. We contacted university staff with experience in academic
advising and recruited seven participants. The study took place individually
and in person, with participation conducted on a computer. Experimenters
were present in the room, briefly explained the procedure before the start of the
study, and answered any questions for clarification. All participants signed a
privacy consent form before the study began. Detailed information about the
participants can be found in Table 1.

Table 1: Participant Information Table

Profession Major Age Sex Sample

P1 Study Advisor Enginering Sci. Education 34 m Enginering
P2 Study Advisor Enginering Sci. Mech. Eng. 34 m Enginering
P3 Study Advisor Enginering Sci. Ind. Eng. 30 m Enginering
P4 Head of Teaching/Study Center Polical Sci. 42 m Law/Eco./Social
P5 Study Advisor Enginering Sci. Mech. Eng. 32 m Enginering
P6 General Study Advisor Education 35 f All
P7 Study Advisor Comp. Sci. Comp. Sci. 31 f Math/Nat. Sci.

A) Elicitation of Mental Models. The participants’ mental models regarding the
decision problem are elicited. Participants rated each feature based on how they
perceived the relationship between the feature and student dropout or success.
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They provided a numerical rating on a scale from −100 (indicating dropout) to
+100 (indicating success) to represent the perceived correlation.

B) Probability Assessment I. Each participant assessed the likelihood of
success for 10 students. To do this, they were shown the students’ features
and provided a percentage-based evaluation. The 10 students were randomly
selected from the eligible sample, and the order in which they were presented to
each participant was randomized. No feedback was given during this stage.

C) Co-Construction with PSLvis. Participants then moved into a phase where
they engaged with PSLVIS to co-construct PSL models. Their goal was to
develop models that perform optimally within a constraint — the models could
only expand up to five stages. This phase did not have a time limit, allowing
participants to work through the process at their own pace. During this time,
all interactions with the tool were logged, and participants were encouraged to
verbalize their thought processes through the think-aloud method. Before the
participants proceeded, the experimenters asked two questions: first, whether
the participants were able to represent and encode their views in the model, and
second, what the participants had focused on.

D) Probability Assessment II. In the final phase of the study, participants
were asked to reassess the success probabilities of students using the PSL

models they developed. This phase mirrors the initial classification task, but
with the significant difference that participants could now apply their own
co-constructed models. Throughout this process, the think-aloud method was
employed to capture detailed insights into how participants utilize their PSL

models in practice. As soon as the participants finished their second set of
estimates, the experimenters asked two final questions. First, whether they had
made use of the PSL levels and whether they had used all the features, and
second, to what extent the PSL had influenced their decisions.
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5 Results

5.1 Participants’ Assessments

Table 2 presents the average times all participants took to make their assessments
and their accuracy, measured by the Brier score (lower is better) [3]. The results
are divided between the two assessment rounds. A purely data-driven PSL

model, evaluated using individual samples for each participant, serves as the
reference for accuracy.

Although a precise statistical evaluation is not possible due to the small sample
size, the descriptive analysis shows that experts took longer to make their
assessments in the second round. This is likely because they were also interested
in reviewing their own PSL models, though there is considerable variance in
this aspect. In terms of accuracy, experts generally performed slightly better
with the PSL model than without, though this was not true for everyone. The
reference values indicate that, on average, the experts outperformed the purely
data-driven model in the second round.

Table 2: Average duration for the assessment of the students in seconds and the Brier scores (lower
is better) for the first and second assessments. The PSL column serves as a reference for a
purely data-driven model. The bottom row shows the average for all.

Average Time Brier Score
I II I II PSL

P1 110.8 70.8 0.29 0.28 0.26
P2 62.6 58.6 0.32 0.23 0.26
P3 75.4 94.1 0.24 0.24 0.26
P4 54.3 75.4 0.29 0.24 0.27
P5 45.2 31.6 0.33 0.26 0.26
P6 42.1 36.9 0.14 0.20 0.29
P7 19.2 104.9 0.26 0.25 0.25
ø 58.51 67.46 0.27 0.24 0.26
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5.2 Co-construction as Navigation in the Model Space

In phase A) of Section 4.3 the participants were asked to express their mental
model by providing weights for each feature in the dataset to elicit positive or
negative correlation with the target class “study success”. Figure 2 shows the
features and the accompanying assigned scores. The features are sorted by the
mean absolute score of the participant’s mental model assessments, shown as
blue bars. The participants assume that neuroticism is the strongest indicator
for study dropout, while life satisfaction, consciousness, and openness are the
three strongest indicators for study success.

Neuroticism

Life satisfaction

Conscientiousness
Openness

Distance learning
Extraversion

Migrant

Aggreableness

Attended gymnasium

Final school grade

Age at study start

Advanced math course Male
Part tim

e
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0

25

50

75

100

Phase
Mental Modal
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Figure 2: The blue bars show the mean feature importance assessment from phase A of the study;
the orange bars show the mean score for that features when PSL is fitted on the respective
data sample, normalized to the same domain [−100,100]. The error bars show the 95%
confidence interval of the mean.

The orange bars show the average scores of a fully data-driven PSL trained, each
on the same dataset as the participant. For easier comparability, the scores from
{−3, . . . ,+3} have been rescaled to [−100,100]. All dataset samples have been
pooled in that figure, as the number of participants is so small. The participant’s
assessment of feature importance strongly disagrees with the purely data-driven
feature importance as calculated from the PSL scores. In the reference model,
poor final school grades, distance learning, and high age at the start of study
are the strongest indicators of study dropout, while studying part-time and
having high life satisfaction are the strongest indicators of success. Since the
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participant’s goal was to have a high predictive performance on data points from
this dataset, it is important to lower the model gap between the mental model
and the data distribution in the domain.

During the co-construction process, features and scores can be changed. Each
of these changes can be interpreted as an action that navigates from one model h
to another model h′ with edited features and scores. Hence, the co-constructive
process can be seen as a navigation in the space of PSL models. We define the
following distance function between PSL models h and h′ in order to analyze
how human co-constructors navigate through this space as follows:

d(h,h′) = Kendall
(
F(h),F(h′)

)
+

∥∥∥∥
S(h)−S(h′)
|S|

∥∥∥∥ ,

which is the sum of the Kendall τ distance of the feature rankings and the
L2-norm of the normalized score difference (S is the set of possible scores).
F(h) denotes the feature ranking2 and S(h) the score assignments3 of h .

Model changes during co-construction. The model changes during co-con-
struction can be analyzed by comparing the current model, created by the
participant, to other models. To this end, the distance between the mental
model and the purely data-driven model was observed. As the mental model
of part A) of the study is only observed through the feature importance scores
from [−100,+100], a PSL can be constructed as follows: First, the features are
sorted with regard to the absolute importance score in descending order. Ties of
feature importance assessments are broken arbitrarily. Second, the scores can be
computed by mapping the [−100,+100] interval to the score set {−3, . . . ,+3}
by rescaling linearly and rounding.

Figure 3 shows the relative distance of the co-constructed model towards the
mental model and the data-driven reference model over the time of the co-
constructive process. All participants except P1 and P6 have an overall trend
towards the data-driven model, starting with a model that is closer to their initial
belief. For participants P2, P3, and P5, the final model is especially close to
the data-driven model at the end of the co-construction phase. The large steps

2 Features not present in h are assigned the maximum rank |F|, with F being the set of all features.
3 The score of absent features is set to 0.
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Figure 3: The relative distance between the co-constructed model for each participant towards two
reference models is shown on the y-axis: one model created from the feature importance
assessment (y = 0) and one model trained purely data-driven (y = 1). The x-axis shows
the relative time over the course of the co-constructive process.

towards the data-driven model in P2 through P5 are caused by the participants’
use of the reset and automatic feature addition buttons. However, P7 also
co-constructed the model closer to the data-driven model only by manually
adding features and modifying scores. When ignoring changes induced by the
automatic feature addition, we can see that most participants seem to end up
with models that have similar distances to their initial mental model and the
data-driven reference. This is particularly illustrated with P4, where the changes
from the automatic feature addition after around 90% of the co-construction
time are mostly reverted manually. Similarly, P5 also modifies the model after
feature addition to move closer toward their mental modal after using automatic
feature addition (60%, 90% time). As Figure 3 only visualizes the relative
distance to two anchor points, it still seems that most participants do not fully
explore the space of models, as the relative distance changes are relatively small.
Note that all co-constructive models consist of at most 5 features, while the two
reference models consist of all features.

Proc. 34. Workshop Computational Intelligence, Berlin, 21.-22.11.2024 243



5.3 PSLvis User Actions

Figure 4 illustrates how the participants interacted with PSLVIS during the co-
construction process. This is shown through a timeline for each participant,
revealing several key insights: the duration of the co-construction process varied
significantly. While two experts (P2, P6) spent less than 5 minutes on this part,
two others (P4, P7) took more than 13 minutes.

0 2 4 6 8 10 12 14
Time Since First Action (minutes)

P7

P6

P5

P4

P3

P2

P1

 

Adding Features
Removing Features

Automatically Add Features
Moving Features

Updating Score
Reset PSL

Figure 4: Action timelines for each participant, showing the time elapsed since the first recorded
action. Each marker represents the subject’s specific action.

All participants started by independently adding features to the model. Three
of them simultaneously adjusted the scores (P3, P4, P7), while the others first
focused on filling in the model. Participant P6 did not remove any features and
stayed with the initially selected ones. Four participants (P2, P3, P4, P5) used
the reset function, all directly related to the automatic addition of features. Of
these, one participant (P3) accepted the features without adjusting the scores,
two (P2, P4) only modified the scores, and one (P5) both changed the features
and adjusted the scores. One expert (P7) used the automatic addition function
without resetting.
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5.4 Think-Aloud Results

The audio data was first transcribed and then inductively coded after multiple
readings. First, the data was categorized into statements about PSLVIS and/or
PSL, and second, into statements about thought processes and/or challenges.

5.5 Co-Construction with PLSvis

Thought Processes. Participants in the co-construction process with PSLVIS

engage in various strategies as they explore and modify the model. They add
features they believe are important, sometimes based on their intuition or domain
knowledge. However, they also experiment with different feature combinations
and observe how these changes impact the model’s performance: “I’ll throw in
what I think might be important. Maybe I can also just throw in a lot and delete it
afterward.” (P1). Performance is constantly evaluated, and features are removed
if they do not contribute positively to the results. In some cases, participants
experiment with features even if they do not fully understand them (e.g., the
“Life Satisfaction” feature) just to observe how the performance changes.

Additionally, scores are tested to understand their influence on the performance:
“I can still tweak the scores a bit, but no matter what changes I make, the model
performance always gets worse.” (P2)

The tool’s ability to automatically suggest features is also tested, and while
these suggestions may not always align with the participant’s intuition, they
may still be retained: “I wanted something to be added automatically, and then
it gave me ’Agreeableness’. That’s a trait I haven’t thought much about, but it
can certainly make sense.“ (P7). Throughout the process, participants remain
mindful of the five-feature limit, which shapes their decisions about feature
inclusion and removal: “I would have liked to add more than five traits, but I’m
not sure if that had made it more accurate.” (P7).

Challenges. Several challenges emerged during the co-construction process.
An expert encountered features that are rare in practice, such as “Part-Time
Studies While Working,” which created confusion about their relevance: “I
actually noticed during the modeling process that I disagreed with at least
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one selection of traits, because it was about a part-time study program. If
I remember correctly, none of the students were actually studying part-time.
That was a trait I only included because it significantly improved the model’s
performance. In hindsight, I think I would choose against it. This means I
definitely didn’t blindly follow the model, because I noticed this issue while
working with it.” (P7).

Additionally, problems arose when thresholds led to scores that appeared
counterintuitive, causing frustration as the participants struggled to understand
why a certain threshold resulted in an “unnatural” decision boundary.

One expert expressed a desire to revise their models during the second estimation
phase: “You can’t go back. Damn! I should have. . . Ugh, crap. I should have
actually given a minus point for ’Migrant’.” (P1). There were also concerns
about model performance, with some participants perceiving the performance
as suboptimal. Many felt that the limit of five features was too restrictive for
building effective models: “It’s incredibly difficult now with these five things
I’ve chosen. I do believe that they are all relevant, but so is the rest. At least in
part.” (P4).

For an expert, it is not clear how high or low the scores can be set (presumably
due to the previous example explanation, where the scores only went up to +2):

“I’ll play around a bit with the scores. I can do them too. I somehow thought I
could only make it up to plus and −2, but I can make them up to seven. That’s
relevant, of course.” (P7).

Some experts noted discrepancies between the data provided and their real-
world experiences, further diminishing confidence in the tool: “Uh, difficult.
I generally found it challenging to align my experience from my specialized
counseling sessions with the traits you have. So, the selection of traits wasn’t
really good. I would rarely classify my counseling sessions based on what you
have.” (P5). Challenges also arose with binary features; for example, when a
student was female, participants found it unclear how to use the feature ’Male’.
Finally, the direction of certain features, such as ’Final school grade,’ created
confusion, as the relationship between the feature and the score did not always
align with the participant’s expectations.
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5.6 Decision-Making with PSL

Thought Processes. When using PSL, experts tend to go through the process
methodically, often calculating probabilities all the way to the end. They adjust
the output on occasion, but not always; in some cases, they accept the PSL-
generated probability as is. One reason for adjusting the output was that the
expert had a different weighting of features in mind compared to the system:

“Okay, I tried it with the model, and it would be 62%. When I think about it now:
18 years old, relatively young, 2.5 final grade — let’s say an average school
diploma. Male. Not a migrant, took advanced math courses in school. (. . . )
Yeah, I can see again in my own evaluation that, as I said, I tend to rate all
these soft skills or personality traits lower than I probably should.” (P3).

PSL influenced the estimation behavior of the participants. One expert noted
that they felt motivated to deviate more from the average value when they saw
the PSL probabilities, suggesting that the tool impacted their decision-making
strategy: “And if the model now gives me 86%, I’m actually more motivated,
let’s say, to deviate a bit more from this average score than before. So, I’ll go
with 75%.” (P3).

Some participants were not concerned about small differences in probabilities;
minor variations did not affect their overall judgment: “In the end, it doesn’t
really matter whether someone has a 75% or 85% probability of success. But it
definitely makes a difference whether they have 40% or 75%.” (P4)

Challenges. One notable challenge with PSL was the inability to modify the
model during the second estimation phase. Another challenge arose from the
fact that a 0% probability is practically impossible in real-world scenarios. For
one expert, receiving such a result led to significant aversion: “The probability
of successfully completing an engineering degree will never be 0%, because,
well, if you have enough people, someone will always manage to do it. So, in
this case, I would deviate significantly from the model and estimate it around
60%.” (P3).
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6 Discussion

In this study, we focused on the interactive co-construction of interpretable
predictive models, specifically through the lens of probabilistic scoring systems.
To this end, we developed a web-based user interface that allows experts to
construct their own PSL models and co-construct them with the PSL model. In
a study involving 7 experts, we investigated how PSL influences the decision-
making quality of users, how the experts co-construct their models, and how the
interaction unfolds, identifying where challenges arise.

First, the results show that co-construction can slightly improve experts’ per-
formance in terms of accuracy, although at the cost of longer decision times.
Notably, the co-constructed models also outperformed purely data-driven mod-
els. While we expected performance improvements due to co-construction and
anticipated longer decision times due to the interpretability and computational
complexity of PSL, the slightly better performance compared to the data-driven
model can be explained by the complexity of the decision problem and the
limited dataset. This also highlights that co-construction can offer an advantage,
though this was not the case for all participants.

It is also important to note that there were different forms of co-construction.
Some participants shifted from their own mental models towards the data-
driven model, while others were resistant to the automated assistance [7].
This was evident in the think-aloud results: experts initially relied on their
own opinions but experimented with different combinations of features and
scores, occasionally guided by the automated function, even if they did not fully
understand it. This corresponds to the issue of over-reliance or automation bias,
often observed in human-AI interactions [17]. Participants partially relied on
the PSL, not blindly, but taking it as advice that influenced their own judgment.
However, there was aversion when the advice deviated too much or seemed
unrealistic.

Our study also highlights challenges that can arise in human-AI interaction
research, which may not be immediately apparent to researchers during devel-
opment. For example, difficulties in understanding feature thresholds or the
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binary nature of features, especially when the data in experiments does not
match real-world practice.

7 Limitations and Future Research

A key limitation is the small number of participants, preventing statistical
analysis of how PSL impacted expert decisions. This is common in human-
computer interaction research with experts. Future studies might consider using
laypeople via platforms like Prolific, requiring familiar datasets and problems.
Although not experts, a larger sample would be more cost-effective.

Another issue is the dataset used. Estimating academic success and dropout
rates is complex, and the available data was limited, resulting in low model
accuracy and minimal expert improvement. Future studies could benefit from
better data to enhance model performance and highlight interaction effects.

Additionally, this study did not explore how participants handle missing infor-
mation during decision-making, a key focus of PSL. We kept all information
available to simplify the decision problem. Future research could examine
how participants manage missing data or time pressure, where they have all
the information but limited time to assess everything, possibly requiring more
experience with PSL.

This study highlights both the potential advantages and the challenges of co-
constructed and interpretable machine learning models in decision support.
While the results suggest that models created by experts can slightly improve
the accuracy of their decisions, they also require significantly more time for
decision-making. The co-constructive interaction with the web-based tool we
developed was highly varied in terms of how the functionalities were used and
experimented with, as well as in the adoption of algorithmic suggestions and
the adaptation of models to individual mental models. However, some issues
should be addressed in future research.
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