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ABSTRACT The increasing integration of genomics into routine clinical diagnostics requires
reliable computational tools to identify determinants of antimicrobial resistance (AMR) from
whole-genome sequencing data. Here, we developed PorinPredict, a bioinformatic tool that
predicts defects of the Pseudomonas aeruginosa outer membrane porin OprD, which are
strongly associated with reduced carbapenem susceptibility. PorinPredict relies on a database
of intact OprD variants and reports inactivating mutations in the coding or promoter region.
PorinPredict was validated against 987 carbapenemase-negative P. aeruginosa genomes, of
which OprD loss was predicted for 454 out of 522 (87.0%) meropenem-nonsusceptible and
46 out of 465 (9.9%) meropenem-susceptible isolates. OprD loss was also found to be com-
mon among carbapenemase-producing isolates, resulting in even further increased MICs.
Chromosomal mutations in quinolone resistance-determining regions and OprD loss com-
monly co-occurred, likely reflecting the restricted use of carbapenems for multidrug-resistant
infections as recommended in antimicrobial stewardship programs. In combination with avail-
able AMR gene detection tools, PorinPredict provides a robust and standardized approach to
link P. aeruginosa phenotypes to genotypes.

IMPORTANCE Pseudomonas aeruginosa is a major cause of multidrug-resistant nosoco-
mial infections. The emergence and spread of clones exhibiting resistance to carbapenems,
a class of critical last-line antibiotics, is therefore closely monitored. Carbapenem resistance
is frequently mediated by chromosomal mutations that lead to a defective outer mem-
brane porin OprD. Here, we determined the genetic diversity of OprD variants across the
P. aeruginosa population and developed PorinPredict, a bioinformatic tool that enables the
prediction of OprD loss from whole-genome sequencing data. We show a high correlation
between predicted OprD loss and meropenem nonsusceptibility irrespective of the pres-
ence of carbapenemases, which are a second widespread determinant of carbapenem re-
sistance. Isolates with resistance determinants to other antibiotics were disproportionally
affected by OprD loss, possibly due to an increased exposure to carbapenems. Integration
of PorinPredict into genomic surveillance platforms will facilitate a better understanding of
the clinical impact of OprD modifications and transmission dynamics of resistant clones.
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Carbapenems are last-line antibiotics reserved for the treatment of severe bacterial
infections. The emergence of carbapenem-resistant (CR) pathogens has thus cre-

ated a major challenge for public health. Of particular concern is the spread of carba-
penem-resistant Acinetobacter baumannii (CRAB), Enterobacteriaceae (CRE; including
Klebsiella pneumoniae, Escherichia coli, and Enterobacter spp.), and Pseudomonas aerugi-
nosa (CRPsA), which are major causes of nosocomial and multidrug-resistant infections
and associated with high mortality rates (1).

In clinical CRE and CRAB isolates, carbapenem resistance is typically conferred by
plasmid-acquired carbapenem-hydrolyzing enzymes (carbapenemases) (2, 3). In con-
trast, among clinical CRPsA isolates, carbapenemase positivity rates vary considerably
between survey sites: rates are below 5% in most European countries and in North
America, while rates of 30% to 70% have been reported from studies in Asia (4–11).
Among these carbapenemases, VIM and IMP show the highest prevalence; others such
as FIM, GES, GIM, KPC, OXA-48, and SPM are often associated with specific geographic
regions or high-risk clones, i.e., clones associated with multidrug resistance and global
spread (12).

In carbapenemase-negative CRPsA, carbapenem resistance is primarily associated with
the inactivation of the OprD outer membrane porin (11, 13). OprD, a monomeric 18-
stranded b-barrel, is responsible for the passive uptake of basic amino acids and small pep-
tides and serves as a diffusion channel for carbapenems such as meropenem and imipe-
nem, which structurally resemble dipeptides (14, 15). OprD defects can be mediated by
indels, recombination events such as the insertion of insertion sequence (IS) elements, non-
sense mutations, start- or stop-loss mutations, promoter disruptions, or amino acid substi-
tutions affecting the porin’s pore width, charge, or structural integrity (7, 11, 16). Other
genetic determinants contributing to decreased carbapenem susceptibility include the
overexpression of multidrug efflux pumps and the overexpression of the intrinsic beta-lac-
tamase AmpC (17, 18).

Pathogen surveillance has greatly benefited from the recent integration of genomics:
the timely and accurate identification of pandemic clones and transmission events is critical
to guide public health responses (19). Whole-genome sequencing has also become an inte-
gral part of antimicrobial resistance (AMR) surveillance, complementing phenotypic antimi-
crobial resistance testing by providing valuable information on resistance mechanisms and
evolutionary events that led to their acquisition (20). Whereas reliable databases and com-
putational tools are available for the detection of carbapenemase genes from whole-ge-
nome sequencing data (summarized by Hendriksen et al. [21]), there is a lack of robust and
standardized approaches for the detection of porin loss-mediated carbapenem resistance.
The identification of the various possible mutations leading to OprD deficiency currently
relies on technical expertise and laborious curation and is thus often omitted from routine
genotype-phenotype analyses. To address this, we investigated the genetic diversity of
OprD in 2,088 P. aeruginosa genomes and compiled a database of intact variants. This was
integrated into PorinPredict, a tool that predicts OprD porin loss from whole-genome
sequencing data. PorinPredict was validated using 1,124 additional genomes (including 987
carbapenemase-negative genomes) and facilitated considerably improved genotype-pheno-
type predictions for P. aeruginosameropenem resistance.

RESULTS AND DISCUSSION
Diversity of OprD in P. aeruginosa. A total of 2,088 high-quality genome assemblies

of P. aeruginosa isolates (NCBI data set) covering the phylogenetic clades A (n = 1,500), B
(n = 541), C1 (n = 25), and C2 (n = 14) and a C1-C2 intermediate clade (n = 8) (Fig. 1) were
screened for oprD. The oprD gene or fragments thereof were detected in 2,087 (99.95%)
assemblies. Despite a phylogenetically diverse data set, few OprD protein variants were
identified: of 1,483 isolates with a presumptively intact oprD open reading frame, 1432
(96.6%) encoded 1 of 15 distinct OprD protein variants (exact match), and 51 (3.4%)
encoded one of these 15 dominant variants with 1 to 4 variable amino acid substitutions
(no length variation). Eight variants were found in isolates belonging to clade A (OprD_1,
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OprD_2, OprD_3, OprD_4, OprD_5, OprD_6, OprD_7, and OprD_9) and five variants in
clade B (OprD_1, OprD_2, OprD_3, OprD_5, and OprD_8). Six (OprD_10 to OprD_15) of the
15 intact variants were only detected in clade C (Fig. 1; see Table S1 in the supplemental
material).

The 15 OprD variants consisted of 441, 443, or 446 amino acids and contained one of
four C-terminal loop L8 (according to references 15 and 22; formerly L7) sequences, which
determined the variants’ overall length, including the previously described L810 (formerly
L710; 372-VDSSSSYAGL-381) and L812 (formerly L712; 372-MSDNNVGYKNYG-383) (23), as
well as two novel L8 regions detected in clade C2 isolates, L815 (372-VSANSAYVKEDGSPL-
386) and L810b (372-VDSSSAYAGL-381) (Fig. 2). The latter differed from L810 by only one
amino acid substitution (S377A). Isolates with the L810 type OprD were previously associ-
ated with hypersusceptibility to meropenem, but not to imipenem (23, 24). OprD variants
of the same L8 group were polyphyletically distributed across the P. aeruginosa population:
both L810- and L812-containing variants were detected in isolates of clades A, B, C1, and the
C1-C2 intermediate (Fig. 1).

In the 605 genomes of the NCBI data set with a presumptively inactivated OprD
coding sequence, the open reading frame contained premature stop codons (n = 150),

FIG 1 Distribution of OprD variants and predicted OprD loss across the P. aeruginosa phylogeny. Assemblies of 2,088 isolates (NCBI data set) were included
in the analysis. Presence of OprD variants (exact amino acid sequence match) is labeled according to the legend. Putative OprD loss is shown in black bars.
Intact nonexact matches (n = 51) and putative OprD losses due to promoter disruptions (n = 12) are not indicated. Isolate affiliation to clades (shaded in
gray) and high-risk clones (outermost ring) is annotated. Phylogenetic distances were estimated using MASH and visualized in iTOL (46).
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frameshift mutations (n = 297), other indels or truncations (n = 155), start-loss muta-
tions (n = 2), or was not detected (n = 1). Disrupted promoter regions (but intact OprD
coding sequences) were identified in nine assemblies, which all contained contig
breaks within 200 bp upstream of oprD. In all nine cases, sequences matching with var-
ious IS elements (IS1394, ISPa82, ISPpu1, ISPpu21, ISPsme1, ISPsp2, ISPst7, or IS5 family)
were identified between the contig break and oprD (Table S3). IS elements typically
occur in multiple copies in a genome, preventing a resolved assembly of their sur-
rounding region from short-read sequencing data.

The high proportion (28.9%) of genomes with an inactivated OprD coding sequence
in this data set likely reflects an overrepresentation of sequenced clinical isolates which
had been exposed to antibiotics. Of the isolates, 391 (18.7%) belonged to the high-risk
clones sequence type 111 (ST111), ST175, ST233, ST235, ST244, ST277, ST298, ST308,
ST357, or ST654, which are known for their increased virulence and multidrug resist-
ance, often associated with various carbapenemases and extended-spectrum beta-lac-
tamases (12). Overall, 239 (61.1%) of all high-risk clone isolates were predicted to be
OprD deficient, compared to 375 of 1,697 (22.1%) isolates not belonging to high-risk
clones (Fig. 1).

Evaluation of PorinPredict: concordance of predicted OprD loss and carbape-
nem resistance. PorinPredict detects putative OprD defects by querying genomes against
a database consisting of the 15 identified intact OprD variants and against an oprD pro-
moter database. Truncated or absent oprD, indels, premature stop codons, stop-loss and
start-loss mutations, and disrupted promoter sequences are reported as putative OprD
porin loss. Missense mutations are reported but not per se classified as porin loss.

To evaluate PorinPredict regarding genotype-phenotype associations, 1,124 genomes
of P. aeruginosa isolates with known phenotypic meropenem susceptibility (validation data
set) were screened for a putative OprD loss and the presence of carbapenemase-encoding
genes. OprD loss was common and strongly associated with meropenem resistance: OprD
loss was predicted for 556 of 653 (85.1%) nonsusceptible isolates (including 484 of 551
[87.8%] resistant and 72 of 102 [70.5%] intermediately resistant isolates), as well as 47 of
471 (10.0%) susceptible isolates (Fig. 3; Table S2). Carbapenemase-encoding genes were
identified in 132 (20.2%) of the nonsusceptible isolates, often (n = 102, 83.1%) in combina-
tion with an inactivated OprD. Midlevel resistance conferred by carbapenemases may

FIG 2 Alignment of P. aeruginosa OprD variants. The variable region within loop 8 is colored (L810, blue; L810b, green; L812, yellow; L815, red). Scale numbers
above the alignment refer to amino acid positions in variant OprD_1 and include the signal peptide (23 amino acids, gray box). b-Strands (according to
PDB structure 3SY7) are underlined.
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predispose for OprD loss, synergistically decreasing carbapenem susceptibility: isolates
with concomitant OprD loss and carbapenemase presence showed a median meropenem
MIC of .32 mg/L (interquartile range [IQR], .8 to 128) compared to 12 mg/L (IQR, 4 to
.32) among isolates with a carbapenemase alone (Fig. 3b). A similar synergy of carbape-
nemases and outer membrane porin modifications has been described in carbapenem-re-
sistant K. pneumoniae (25).

In the subset of carbapenemase-negative isolates, OprD loss was predicted for 454
of 522 (87.0%) nonsusceptible and 46 of 465 (9.9%) susceptible isolates (Table 1).
Among the 79 isolates obtained at the University Hospital Basel, only 1 (1.3%) isolate
contained a carbapenemase; in the remaining (carbapenemase-negative) isolates,
OprD loss was predicted for 22 of 23 (95.7%) meropenem-nonsusceptible and 2 of 53
(3.8%) susceptible (MIC = 0.75 mg/L each) isolates.

For a total of 43 (7.8%) meropenem-resistant and 25 (24.5%)-intermediately resistant iso-
lates, the phenotype could not be explained by carbapenemase-encoding genes or OprD
loss. However, OprD variants with missense mutations were significantly more common
among these isolates (15/43, 34.9% and 3/25, 12.0%) than among meropenem-susceptible

FIG 3 Correlation between predicted OprD loss, presence of carbapenemases, and meropenem resistance phenotype.
(a) Intersection of P. aeruginosa isolates with (black circles) or without (white circles) carbapenemase and/or a
disrupted OprD. Assemblies of 1,124 isolates (validation data set) were included in the analysis. (b) Approximations of
meropenem MICs among a subset of 1,078 isolates with reported values. Due to differing test ranges, MIC values
reported as 512, 128, 64, .32, $32, 24, or .16 mg/L are here summarized as .16 mg/L; .8 or $16 mg/L are shown
as 16 mg/L, and #0.25 mg/L and ,0.25 mg/L are shown as 0.25 mg/L and 0.1 and 0.02 mg/L, respectively, thus
representing an approximation.

TABLE 1 Genotype-phenotype associations for meropenem resistance and causes of
putative OprD loss among 987 carbapenemase-negative P. aeruginosa isolates

Genotype-phenotype
association

No. of
susceptible isolates
(n = 465)

No. of intermediately
resistant isolates
(n = 97)

No. of resistant
isolates
(n = 425)

Intact OprD (exact match)a 408 22 28

Intact OprD (nonexact match)a 11 3 15
SNAP2 prediction: effect 0 3 12
SNAP2 prediction: neutral 11 0 3

OprD loss 46 72 382
Frameshift mutation 13 33 177
Premature stop 17 22 111
Gene truncation 14 11 87
Other indels 0 2 3
Incomplete promoterb 2 3 2
Start-loss 0 0 2
Stop-loss 0 1 0

aIntact variants with disrupted promoter regions are counted as OprD loss.
bCounted only if oprD coding region was intact.
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isolates with intact OprD (11/419, 2.6%, P , 0.001, respectively), possibly affecting the struc-
tural or functional integrity of OprD (Table 1). Missense mutations in nonsusceptible isolates
affected residue R154 (corresponding to R131 when excluding the 23-amino-acid signal
sequence), a critical site known to determine pore width (15); H288 and S403, which are
both conserved across different members of the OprD family (15); multiple sites in b-strands
(S278, Q340, L359) replaced by proline, which disrupts secondary structures; and G316, which
forms a hydrogen bond to R391 (R393 in L812), part of the characteristic basic ladder in the
OprD pore constriction (15) (Table 2). The R154, G316, S278P, and S403P substitutions were
previously associated with carbapenem resistance (16). Using the neural network-based clas-
sifier SNAP2, most (15/18) missense mutations in nonsusceptible isolates were predicted to
have functional effects (Table 2). Missense mutations in susceptible isolates were typically
located in the N-terminal region, more conservative, and predicted to be neutral. The posi-
tion of the amino acid substitutions in the OprD protein structure is shown in Fig. S1.

OprD loss and carbapenemase-encoding genes were identified in 47 (10.0%) and 5
(1.1%) out of 470 meropenem-susceptible isolates, respectively, and resulted in increased
MIC values (median, 2 mg/L) compared to those isolates without any detected carbape-
nem resistance determinants (median, 0.5 mg/L) (Fig. 3b).

Possible reasons for inconsistent genotype-phenotype associations include mixed
bacterial cultures, fragmented or absent (carbapenemase) gene assemblies from short-
read data, alternative carbapenem-resistance mechanisms such as mutations affecting
the functionality and overexpression of intrinsic beta-lactamases or efflux-pumps, tech-
nical errors during the susceptibility testing or sequencing, interlaboratory differences
in MIC readings, or transcription errors.

Overall, PorinPredict improved the accuracy of genotype-phenotype predictions for
meropenem nonsusceptibility from 53.1% (when predicted based on the presence of
carbapenemase-encoding genes alone; sensitivity and specificity of 20.2% and 98.9%,

TABLE 2Missense mutations in OprD in 29 isolates of the validation data set and associated meropenem susceptibility

Isolate
Meropenem
susceptibility

OprD reference
variant

Missense
mutation(s)

Predicted functional
effect (SNAP2)

Expected prediction
accuracy (SNAP2 [%])

287.12499_PA Intermediate OprD_3 R154H Effect 95
287.12621_PA Intermediate OprD_1 L359P Effect 75
287.1101_PA Intermediate OprD_2 L434R (in L812) Effect 80
287.5955_PA Resistant OprD_11 L127V Neutral 93
287.12587_PA Resistant OprD_4 R154C Effect 95
287.8031_PA Resistant OprD_5 S278P Effect 91
287.7799_PA Resistant OprD_1 S278P Effect 85
287.1095_PA Resistant OprD_5 S278P Effect 91
287.12616_PA Resistant OprD_1 H288R Effect 85
287.12490_PA Resistant OprD_1 L292Q Effect 80
287.5956_PA Resistant OprD_1 G307D Neutral 57
287.8490_PA Resistant OprD_6 G316D Neutral 61
287.12754_PA Resistant OprD_1 G316D Effect 71
287.12755_PA Resistant OprD_1 G316D Effect 71
287.12669_PA Resistant OprD_1 Q340P Effect 80
287.5971_PA Resistant OprD_1 G383D (in L810) Effect 80
287.12734_PA Resistant OprD_2 S403P (in L812) Effect 63
287.12639_PA Resistant OprD_6 L409P (in L812) Effect 76
287.860_PA Susceptible OprD_2 A8S Neutral 97
502940-8-20 Susceptible OprD_1 K34N Neutral 82
502940-9-20 Susceptible OprD_1 K34N Neutral 82
502940-3-20 Susceptible OprD_1 K34N, A247S Neutral (each) 82, 97
287.7801_PA Susceptible OprD_4 D43N Neutral 95
501539-19 Susceptible OprD_5 V63A Neutral 93
500658-19 Susceptible OprD_6 T66S Neutral 97
721748-19 Susceptible OprD_6 T66S Neutral 97
287.1066_PA Susceptible OprD_1 V86I Neutral 93
287.1043_PA Susceptible OprD_2 G98A, V129I Neutral (each) 82, 97
287.1190_PA Susceptible OprD_2 V129I Neutral 97
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respectively) to 89.6% (when predicted based on presence of carbapenemase-encod-
ing genes and/or porin loss; sensitivity and specificity of 89.1% and 89.4%, respec-
tively). Among the 79 University Hospital Basel (USB) isolates, for which MIC measure-
ments were performed as part of this study, the accuracy was 96.2% (sensitivity and
specificity of 95.8% and 96.4%, respectively). Very major discrepancies (resistant iso-
lates predicted to be susceptible) were found for 1 of 21 (4.7%) and 42 of 430 (9.8%)
isolates of the USB and PATRIC data sets, respectively. Considering amino acid substitu-
tions at critical sites as inactivating mutations would further improve accuracies and
discrepancy rates for genotype-phenotype predictions.

Role of regulators affecting MexAB and AmpC expression. Carbapenem suscepti-
bility can be affected by additional genetic factors, including the expression levels of the
intrinsic genes blaPDC (AmpC beta-lactamase) and mexA and mexB (MexAB multidrug
efflux pump) (17, 18). Here, loss (truncations, premature stop codons, frameshifts, or stop
loss) of the MexAB repressors MexR, NalC, and NalD was predominantly found among iso-
lates that simultaneously harbored primary carbapenem resistance determinants (OprD
loss, OprD missense mutations, or presence of carbapenemase genes) (Table 3). MexR-,
NalC-, and NalD-deficient isolates exhibited 1.5- to 4-fold-increased meropenem MICs com-
pared to those with intact repressor genes. In the absence of carbapenemase genes or
OprD loss, these isolates were predominantly classified as susceptible. MexR loss was, how-
ever, detected in 11 out of the 43 isolates with very major genotype-phenotype discrepan-
cies, sometimes (n = 4) coinciding with OprD missense mutations (Table S2). Loss of the
AmpC repressor AmpR (in combination with an intact blaPDC) was detected in 20 isolates,
which often (n = 11; 55.0%) coharbored primary carbapenem resistance determinants. The
nine isolates with AmpR loss alone showed no increased MICs (median, 0.5 mg/L; IQR, 0.5
to 1 mg/L). Missense mutations in repressor genes or changes in their binding sites may
also affect expression levels but were not further investigated here. Overall, our data sug-
gest that the derepression of efflux pumps and intrinsic beta-lactamase genes plays a
minor role in meropenem resistance of clinical P. aeruginosa isolates. Similar results were
recently reported for other carbapenems (11).

Convergent OprD-inactivating mutations and spread of oprD-deficient clones.
We observed identical OprD-inactivating mutations in distantly related isolates, suggesting
independent acquisitions at vulnerable sites. In the NCBI data set, these included a prema-
ture stop at position W277* identified in different OprD variants (OprD_1, OprD_2, OprD_8,
and OprD_15) of 28 isolates belonging to 21 distinct (and 3 unknown) sequence types
(Table S1). Likewise, the frameshift mutation c.1199_1200insC (in L810 variants [p.Q400fs])
or the corresponding c.1205_1206insC (in L812 variants [p.Q402fs]) was found in multiple
OprD variants (OprD_1, OprD_2, OprD_4, and OprD_8) of 38 isolates belonging to at least
22 distinct (and 2 unknown) sequence types.

Identical disruptive mutations were occasionally identified among closely related iso-
lates, pointing to the spread of OprD-deficient clones. A phylogenetic cluster of 18 isolates
within ST277 carried the frameshift mutation c.380_381delTG (p.E127fs) within OprD_6
(Table S1). These isolates were obtained between 1997 and 2019 at various geographic
locations in Brazil (n = 16) and the United States (n = 2), corresponding with reports of a

TABLE 3 Effect of defective MexAB repressors on meropenem susceptibility among 1,055 isolates with presumptively intact MexA and MexB

Genotype

Predicted OprD loss, OprD missense
mutations, or carbapenemase gene
presence

Median MIC
(IQRa [mg/L])

No. (%) of nonsusceptible
isolates

MexR, NalC, and NalD intact (n = 878) Yes (n = 501) 8 (8–16) 461 (92.0)
No (n = 377) 0.5 (0.25–1) 38 (10.1)

MexR loss (n = 65) Yes (n = 47) 16 (8–32) 40 (85.1)
No (n = 18) 2 (1–8) 7 (38.9)

NalC loss (n = 38) Yes (n = 24) 12 (8–28) 22 (91.2)
No (n = 14) 1 (0.25–2.5) 3 (21.4)

NalD loss (n = 78) Yes (n = 64) 16 (8–32) 62 (96.7)
No (n = 14) 2 (1.75–2) 2 (14.3)

aIQR, interquartile range.
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Brazilian endemic ST277 clone carrying this stable OprD-inactivating mutation (26). A sub-
clone of the high-risk clone ST175 carrying a characteristic premature stop codon (Q142*)
in OprD_1 and detected in Spanish and French hospitals over at least a decade (27, 28)
was represented in the validation data set (17 isolates) (Table S2).

Compensatory mutations and coacquisition of AMR determinants. The presence
of relatively conserved OprD throughout the P. aeruginosa population suggests an important
metabolic role of this porin, with OprD loss possibly leading to fitness defects. To investigate
potential compensatory mutations acquired by OprD-deficient isolates, we performed a
kmer-based genome-wide association study (using DBGWAS) for a subset of 700 isolates
with (n = 206) versus without (n = 494) predicted porin loss (NCBI data set; Table S1). While
mutations in oprD itself were not captured by DBGWAS, three genetic determinants reached
genome-wide significance (q [Benjamini-Hochberg adjusted P] , 0.05) for associations with
OprD-loss, (i) the chromosomal mutation gyrA T83I (qmin = 6.6E-18) and (ii) parC S87L
(qmin = 1.6E-7) (both contributing to ciprofloxacin resistance), and (iii) a component
(qmin = 1.4E-5) representing intI1, sul1 (sulfonamide resistance), qacED1 (antiseptic resistance),
and an acetyltransferase-encoding gene, which are typically colocated on a class I integron
(Table S4). Rather than representing compensatory mutations or gene acquisitions, these
results likely reflect an accumulation of antimicrobial resistance mechanisms during patient
treatment due to the use of carbapenems as a last-resort antibiotic for multidrug-resistant
clones, as commonly recommended in antibiotic stewardship programs. In the entire NCBI
data set of 2,088 isolates, 65.3% of the OprD-deficient isolates (n = 614) carried a mutation
linked to quinolone resistance (gyrA T83I, gyrA D87G, gyrA D87H, gyrA D87N, parC S87L, or
parE A473V) compared to 18.3% (P, 0.001; odds ratio [OR], 8.4; 95% confidence interval [CI,
6.8 to 10.4]) among the isolates with an intact OprD (n = 1,474). The sul1 gene was found in
47.7% of the OprD-deficient isolates, compared to 10.3% (P , 0.001; OR, 7.9; 95% [CI, 6.3 to
10.0]) of the isolates with intact OprD.

Conclusion. In conclusion, we developed, evaluated, and validated PorinPredict, a
much-needed tool that predicts OprD-inactivating mutations in P. aeruginosa. Among car-
bapenemase-negative isolates, predicted OprD loss was overall highly consistent with phe-
notypic meropenem nonsusceptibility. Independent prospective validation is, however,
necessary to provide evidence suitable for in vitro diagnostic regulations (IVDR). Although
relatively rare, the effects of OprD missense mutations often remain difficult to interpret.
The increasing availability of whole-genome sequencing and associated susceptibility data
will enable an extension of the database covering additional variants. Given the increased
application of whole-genome sequencing in clinical laboratories, PorinPredict will be valua-
ble for detecting and tracking resistance within patients and communities.

MATERIALS ANDMETHODS
OprD database generation. For the generation of a database of intact OprD sequences, 2,186 ran-

domly selected P. aeruginosa genome assemblies were retrieved from the NCBI Reference Sequence
Database (see “NCBI data set” in Table S1 in the supplemental material), corresponding to approximately
30% of the available RefSeq assemblies (searched in April 2021) and including both clinical and environ-
mental isolates. Species affiliation was confirmed using ribosomal multilocus sequence typing (rMLST)
(version 2022-06-23) (29) and sequence types assigned using mlst 2.19.0 (https://github.com/tseemann/
mlst). Assembly quality was assessed using QUAST 5.0.2 (30) and CheckM 1.1.3 (31). After removal of
low-quality assemblies (N50 , 15 kb, assembly length , 5.9 Mb, CheckM completeness , 97%, CheckM
contamination , 3%), 2,088 assemblies were available to investigate the diversity of OprD. OprD amino
acid sequences were extracted using DIAMOND 2.0.7 (32) (reference, GenPept accession no. AKQ14499,
BLASTx mode, 70% sequence identity and coverage) and bedtools 2.30.0 (33), and variants were dedu-
plicated using CD-HIT 4.8.1 (34). Deduplicated variants (n = 364) with inactivating mutations (n = 309; C-
or N-terminal deletions; frameshift, nonsense, start-loss, or stop-loss mutations) and rare variants (n = 40;
identified in ,5 isolates of the dominant clades A and B or in ,2 isolates of clade C) were excluded.
Protein alignments of the remaining 15 intact variants were generated using MAFFT version 7 (35) and
visualized using Jalview version 2.11.2.0 (36).

Development of PorinPredict. PorinPredict was designed to detect mutations leading to a putative
OprD loss or OprD amino acid substitutions from preassembled genomes. PorinPredict uses OprD nucleotide
and protein sequence databases in combination with BLASTn 2.5.01 (37) and DIAMOND 2.0.7 (32), respec-
tively, to assess OprD integrity. BLASTn 2.5.01 (37) is used with a 95% sequence identity threshold and the
options “-max_target_seqs 10 -evalue 1E-20 -culling_limit 1.” The BLASTn hit with the lowest E value is eval-
uated. DIAMOND is run in BLASTx mode with sequence identity and coverage thresholds of 95% and 60%,
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respectively, and the options “--query-gencode 11 -b 6 --max-target-seqs 1 --sensitive --masking 0 -c1.”
Amino acid substitutions are identified using the R package Biostrings (v3.14) (38). PorinPredict additionally
assesses the integrity of the oprD promoter region by screening input assemblies against a database consist-
ing of oprD promoter regions from five isolates representing the distinct P. aeruginosa clades (A, B, C1, C2,
and C1-2 intermediate; defined according to Ozer et al. [39]). These sequences consist of the 200-bp region
upstream of oprD comprising the ArgR binding site,235 and210 region, and Shine-Dalgarno sequence (40)
and 10 bp of the N-terminal oprD sequence. For the promoter screening, BLASTn 2.5.01 (37) is used as
described above. BLASTn and DIAMOND results are filtered and summarized in an interpretable output table.
PorinPredict reports (i) exact matches (same length, no amino acid substitutions) to intact OprD variants in
the database; (ii) nonexact matches, i.e., intact same-length variants with amino acid substitutions (missense
mutations); (iii) mutations leading to a presumptive OprD loss, including premature stop codons (nonsense
mutations), truncations, frameshift mutations and other indels, loss of stop codons (stop-loss), loss of start co-
dons (start-loss), and absence of oprD in the assembly (no hit); and (iv) putatively disrupted oprD promoter
regions (BLASTn matches with,98% coverage).

Evaluation of PorinPredict. PorinPredict 1.0.0 was evaluated using a second, independent data set con-
sisting of 1,124 P. aeruginosa genome assemblies that had associated meropenem susceptibility data available
and passed the above-defined CheckM and QUAST quality criteria. This collection (“validation data set” in Table
S2) included 79 assemblies from isolates of the University Hospital Basel (USB) sequenced as part of this study
and 1,045 assemblies accessed from PATRIC (41). For short-read sequencing of in-house isolates, genomic DNA
was extracted using the DNeasy blood and tissue kit (Qiagen) and sequenced on the Illumina NextSeq 500 or
Illumina MiSeq platforms. Draft genomes were assembled using Unicycler version 0.3.0b (42) after read trim-
ming with Trimmomatic version 0.38 (43).

Meropenem susceptibly of the USB isolates was determined using the microdilution assay Vitek 2
(n = 64; bioMérieux) or Etest (n = 15; Apteq) (Table S2). Meropenem susceptibility values of the PATRIC
data originated from various studies and were determined based on MICs (n = 1,001) or disk diffusion (in-
hibitory zone diameter [IZD]; n = 44). When available, MICs and IZDs were interpreted according to CLSI
guideline M100 (susceptible, #2 mg/L or $19 mm; intermediate, 4 mg/L or 16 to 18 mm; resistant,
$8 mg/L or #15 mm) (44). For 29 PATRIC assemblies, only phenotypic classifications (interpreted accord-
ing to CLSI criteria) but no MIC/IZD values were available (Table S2).

Genomic analyses. Phylogenetic distances were estimated using Mashtree 1.2.0 (45) in accurate mode
(--mindepth 0), and clades (A, B, C1, C2) were assigned based on phylogenetic clustering with previously
typed (39) genomes. Phylogenetic trees were visualized with iTOL version 6 (46). Antimicrobial resistance
genes and mutations in quinolone resistance-determining regions were detected using AMRfinder 3.10.24
with default parameters (47). Beta-lactamases were classified as carbapenemases based on antibiotic subclass
associations listed in the AMRfinder database. Genome-wide association studies for isolates with versus with-
out predicted OprD loss were performed using DBGWAS version 0.5.4 (options, –maf 0.05 -q100) (48). Due to
high computational requirements, the analysis was performed on a subset of 700 randomly selected assem-
blies of the NCBI data set irrespective of their phylogenetic distribution or susceptibility (Table S4). For
selected assemblies, the genetic context of oprD was manually investigated in CLC Main Workbench 22.0.1.
Insertion sequence (IS) elements were identified using ISFinder (49). Assemblies containing the oprD frame-
shift mutation c.1199_1200insC were identified using BLASTn 2.10.11 (37) in short-sequence mode with a
38-bp partial oprD sequence of NCBI accession nos. USI81034 (intact) and CP050331 (frameshifted) as referen-
ces. Functional effects of OprD amino acid substitutions were predicted using SNAP2 (50). Assemblies were
queried for MexR (references, GenPept accession nos. NP_249115 and WP_003153084), MexA (reference,
GenPept accession no. NP_249116), MexB (reference, GenPept accession no. NP_249117), AmpR (references,
GenPept accession nos. NP_252798, WP_024915537, and WP_058145575), NalC (references, GenPept acces-
sion nos. NP_252410 and WP_033984356), and NalD (reference, GenPept accession no. NP_252264) using
DIAMOND 2.0.7 (32) in BLASTx mode (minimum sequence coverage and identity, 50% and 90%, respectively).
Assemblies with no hit, incomplete hits (,98% alignment coverage on the amino acid level), or hits with in-
ternal stop codons were considered defective for the respective protein. Plots were generated in R 4.0.3 using
the ComplexUpset 1.3.3 package (https://zenodo.org/record/5762625#.YrWOVXZByUk).

Statistical tests. Frequency counts were compared using a two-tailed Fisher’s exact test. P values of
,0.05 were considered to reflect statistical significance.

Data and software availability. Sequencing data generated as part of this study are available under
BioProject accession no. PRJEB54973. Accession numbers of included assemblies are listed in Table S1
(NCBI data set) and Table S2 (validation data set) in the supplemental material. PorinPredict is available
under the terms of the GNU General Public License 3.0 at https://github.com/MBiggel/PorinPredict/.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, XLSX file, 0.5 MB.
SUPPLEMENTAL FILE 2, PDF file, 0.3 MB.
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