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Inferring histology-associated gene
expression gradients in spatial
transcriptomic studies

Jan Kueckelhaus1,2,12 , Simon Frerich 3,4,12, Jasim Kada-Benotmane 1,5,
Christina Koupourtidou 6,7, Jovica Ninkovic6,7, Martin Dichgans3,7,8,
Juergen Beck 5, Oliver Schnell2 & Dieter Henrik Heiland 1,2,9,10,11

Spatially resolved transcriptomics has revolutionized RNA studies by aligning
RNA abundance with tissue structure, enabling direct comparisons between
histology and gene expression. Traditional approaches to identifying sig-
nature genes often involve preliminary data grouping, which can overlook
subtle expression patterns in complex tissues. We present Spatial Gradient
Screening, an algorithm which facilitates the supervised detection of
histology-associated gene expression patterns without prior data grouping.
Utilizing spatial transcriptomic data along with single-cell deconvolution from
injured mouse cortex, and TCR-seq data from brain tumors, we compare our
methodology to standard differential gene expression analysis. Our findings
illustrate both the advantages and limitations of cluster-free detection of gene
expression, offering more profound insights into the spatial architecture of
transcriptomes. The algorithm is embedded in SPATA2, an open-source fra-
mework written in R, which provides a comprehensive set of tools for inves-
tigating gene expression within tissue.

In recent years, significant advancements have been made in the field
of spatial biology, providing essential tools for profiling gene, protein,
and metabolic expression in biological tissues1. These developments
have been crucial in various research domains, such as developmental
biology2, neuroscience3, and cancer microenvironment4 studies. The
discoveries emerging from these studies have greatly enhanced our
understanding of spatial organization in different tissues. While heal-
thy tissue typically exhibits a highly ordered structure, diseases can
disrupt this order, leading to a complex range of dynamic alterations.

The human neocortex, for instance, is generally understood through a
well-established model of six cortical layers. This organized structure
contrasts sharply with the chaotic and heterogeneous architecture of
malignant CNS tumors, a phenomenon encapsulated in the concept of
intertumoral heterogeneity5,6. The heterogeneous complexity of
pathologies in general, benign and malignant alike, poses significant
challenges in medical care, given that effective treatments rely on
recurring biological patterns or functions that can be targeted. In this
context, ensuing efforts of the past decades have resulted in the
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identification of key histomorphological niches, that have become
crucial factors in contemporary diagnostics and research. In glio-
blastoma, for instance, necrosis and the border between tumor and
healthy tissue are notable examples. Recent advances in spatial tran-
scriptomics have also revealed recurrent patterns of gene expression
reflecting responses to inflammatory or metabolic stimuli and differ-
ent stages of development4. The recurring nature of these spatial
niches, whether of histomorphological or molecular nature, highlights
their significance in understanding these medical conditions. How-
ever, to fully comprehend their roles and dynamics within the micro-
environment, sophisticated analysis tools for supervised screening
approaches are essential. Conventional approaches, such as clustering
followed by differential expression analysis (DEA), encounter sub-
stantial limitations when applied to spatial multi-omic studies. The
binary nature of clustering and its imposition of artificial boundaries
can obscure nuanced expression patterns and fail to capture critical
featureswithin intricate tissues. Furthermore, the outcomes are reliant
on the selected number of clusters, which is influenced by sample
characteristics and algorithmic parameters. This reliance presents
challenges in data interpretation, particularly given the continuous
nature of gene expression in spatial samples. Consequently, clustering
with DEA is suboptimal for addressing questions concerning spatial
gene expressionpatterns, especially in complex anddisordered tissues
like malignancies. To overcome the limitations of DEA, unbiased
computational methods like SpatialDE7 and SPARKX8 have been
developed. While they are effective in identifying genes based on
spatial variability, these algorithms primarily offer a holistic view and
do not allow to incorporate additional information important to the
sample and the specific query. Consequently, they may identify genes
with statistically significant spatial expression patterns that are, how-
ever, not related to specific areas of the tissue architecture the
researcher wants to focus on, Supplementary Fig. 13a–h. In certain
scenarios, a more refined approach is necessary, one that can provide
insights specifically tailored to the specificities of the tissue sample and
the research questions at hand.

In this work we present a flexible, supervised screening approach
attuned to detecting spatial subtleties. Furthermore,we aim to capture
spatial expression dynamics through gradients rather than group-
based log-fold changes, recognizing the inherent continuous nature of
expression data in a spatial context8. Our efforts have led to the
development of two methods falling under the umbrella term spatial
gradient screening (SGS). These methods empower users to define
spatial locations of interest and use them as reference points while
screening for genes and other continuous features with relevant bio-
logical meaning. We demonstrate that this dual focus on location-
specific screening and spatial gradients seamlessly complements and
extends established gene identification approaches in spatial biology,
catering to both exploratory and hypothesis-driven inquiries.

Results
DEA is unreliable in predicting gene expression with spatial
dependencies
To demonstrate the challenges inherent in analyzing gene expression
in relation to defined tissue architecture, we analyzed a glioblastoma
Visium dataset with three histologically distinct regions: a tumor core,
a transition area, and the infiltrative cortex area, Fig. 1a–c. We hypo-
thesized that genes exhibiting a gradual change of gene expression
from the core to the infiltrative regions of glioblastoma are inade-
quately represented by traditional differential gene expression analy-
sis. We compared classical differential gene expression analysis with
our Spatial Trajectory Screening to characterize the histological
regions based on their gradient and group-based gene expression
profiles. To incorporate the histological classification into our data, we
utilized SPATA2’s interactive annotation tool and labeled each bar-
coded spot depending on the histological region it was located in. This

resulted in the division of spots into three groups: (1) Tumor, (2)
Transition, and (3) Infiltrated Cortex, as depicted in Fig. 1a–c and
Supplementary Fig. 1a, b. To validate our histological classification, we
inferred copy number alterations (CNA) using SPATA2’s implementa-
tion of the infercnv R package. This showed an inferred gain of chro-
mosome 7 and loss of chromosome 10 in the malignant region on the
left, displayed in Fig. 1f, g, consistent with previous studies5. Addi-
tionally, the integration of histologically defined areas enabled us to
quantify CNA across histological groups. We observed the highest
abundance of Chr 7 and 10 alterations in the tumor area, partial
alterations in the transition zone, and almost no alterations in the
infiltrated cortex (ANOVA, Chr 7 p < 2.2 × 10−22, Chr 10 p < 2.2 × 10−22),
Fig. 1h, i, confirming our histological annotation. To further investigate
the role of the transition zone we aimed to determine significantly
upregulated genes of the annotated regions. The copy number aber-
ration (CNA) profile suggests that the transitional region exhibits a
significantly reduced tumor proportion, thereby representing the
boundary zone towards the normal cortex. A border-like function of
this area was also supported by spatial clustering results using the
BayesSpace algorithm9 which incorporates transcriptional and spatial
distance, suggesting two spatially segregated clusters that largely
overlapped with our manually annotated transition area, Supplemen-
tary Fig. 1c, d. To identify uniquely expressed genes, we performed
differential expression analysis (DEA) basedonourmanual histological
annotation. This resulted in the identification of 3489 significant dif-
ferentially expressed genes (DEGs) using the default thresholds
(avg_log2FC >0.25; p_adj < 0.05). We found 1698 DEGs in the tumor
area, 533 DEGs in the transition group, and 1258 DEGs in the infiltrated
cortex group. DEA results further supported our categorization of the
left area as a tumor region, evident from the presence of marker genes
such as EGFR, and the right area as cortex, characterized by neural
marker genes like SNAP25. The transition area exhibited elevated
expression levels of genes associated with glial cells, such as MBP and
MOG. Intriguingly, this region shared 78 differentially expressed genes
(DEGs) with the tumor area and 21 genes with the infiltrated cortex, as
highlighted in the volcano plot presented in Fig. 1k. Notably, there
were no shared DEGs between the tumor area and the infiltrated cor-
tex. Attributing DEA the capacity to predict gene expression in space,
we hypothesized that after removing shared DEGs, the remaining ones
should be exclusively expressed within the boundaries of the histolo-
gical area occupied by the group they were assigned to as marker
genes. We refer to DEGs that were not shared between two groups as
area-specific DEGs. The top 18 of those in terms of significance (lowest
adjusted p-values) are displayed in Fig. 1e.

To benchmark whether the remaining area-specific marker genes
featured a corresponding spatial expression,wedeployed a supervised
spatial trajectory to predefine the axis along which gene expression
changes are to be examined, Fig. 2a. We used this spatial trajectory to
infer the gene expression of the top 18 group specific DEGs gradient
along it. For a detailed description of the process involved in obtaining
an expression gradient using a spatial trajectory please refer to the
method section as well as to Supplementary Figs. 7e–i and 8b. While
the expression of some genes along the trajectory clearly reflected the
corresponding region, as exemplified in Fig. 2b, c, we found that DEA
results were unreliable in determining the precise spatial extent of
gene expression, even after filtering for area-specific marker genes,
showcased in Fig. 2e–h. Inferring the expression gradient showed that
the expression of even the most significant unique DEGs from the
tumor and the transition group did not always decline abruptly when
crossing the boundary. Unique marker genes from the transition zone
featured gradual decreasing patterns transgressing both borders to
the cortex- and the tumorous area alike, e.g. genes EEF1A1 and MBP.
Furthermore, unique marker genes from the tumorous area featured
rather a gradual transgression through the borders to the transition
area, while marker genes from the cortex-like area declined rather
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abruptly right before the passage of the transition zone. Giving DEA
the benefit of the doubt, we hypothesized that our potentially biased
manual annotation could have affected the results, hindering DEA
from reliably identifying genes with gene expression confined to the
borders of the marked areas. To this end, we employed DEA based on
the grouping suggested by BayesSpace clustering, Supplementary
Fig. 2a. Example genes whose gradients do correspond to the area of
their clusters are displayed in Supplementary Fig. 2b, c. Still, even
among the most significant cluster-specific marker genes (Supple-
mentary Fig. 1e, f), multiple genes did not feature gene expression
patterns confined to the area covered by their corresponding cluster,
Supplementary Fig. 2d–h. Our spatial trajectory methodology under-
scores the difficulty in establishing precise boundaries when analyzing
spatial transcriptomic data, emphasizing the importance of acknowl-
edging the gradual changes of gene expression in tissue. Furthermore,
it reveals notable shortcomings of differential expression analysis in
examining spatial expression patterns, thereby highlighting the
necessity for analysis approaches that are independent of predefined
groups.

Exploring the local environment of histological microstructures
independently of grouping
We showed that capturing gene expression in the form of gradients
can be valuable for gene pattern identification related to specific
spatial structures, but the applicability of linear trajectories as a

spatial reference is limited to rectangular areas. While they suit a-to-
b architectural scenarios like the border between the tumor and
healthy tissue, they do not capture tissue patterns related to spatial
niches of a circular nature. To exemplify this limitation, we
employed a Visium dataset of two mouse brain sections with stab
wounds representing traumatic brain injury10. Our objective was to
incorporate the location and spatial dimensions of these wounds
into our spatial gradient screening process. To achieve this, we uti-
lized SPATA2’s interactive spatial annotation tools, which facilitate
the manual definition of spatial reference areas by directly inter-
acting with the image, Supplementary Fig. 6a. Please refer to the
method section for an elaboration on the differences between
manual annotation of data points, as conducted for the three his-
tological groups in Fig. 1a, and spatial annotations. Figure 3a illus-
trates the resulting stab wound outlines. Given the initial processing,
which unveiled a noticeable cluster around the stab wounds per-
turbing the otherwise healthy CNS architecture of the mouse cortex,
Fig. 3b, we assumed that these injuries likely exerted a substantial
impact on their immediate surroundings. To explore gradual chan-
ges of gene expression, likely inflicted by the stabwounds on their
surroundings, we conducted spatial gradient screening, inferring
gene expression gradients as a function of distance to each stab
wound, Fig. 3c, d, and screened for multiple patterns, Supplemen-
tary Fig. 14d. This approach allowed us to identify genes with des-
cending expression patterns, reflecting their fine-grained biological
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plot showcases the 18most statistically significant uniquemarker genes, ranked by
their average log2-fold change, in accordance with histological areas. f and
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association with the injury. Figure 3c–f visualizes inferred gradients
of genes up to a distance of 1.5mm from the injury border. Notably,
several genes associated with immune activity (C1qa, C1qb, B2m),
immune cell types (Cd68, Aif1), migration (Vim, Tyrobp), prolifera-
tion (Cd64, Ccnd1), and wound healing (S100a16, Lamp2) exhibited
increased expression closer to the injury, Fig. 3g–j and Supple-
mentary Fig. 3b–e, that faded with increasing distance. Subsequent
screening within a shorter distance of 0.75mm reaffirmed these
findings and revealed additional genes that suggest increased
immune activity, migration, and proliferation near the injury zone
(Jun, Manf, Camk1, Ier5l) displayed in Supplementary Fig. 3f, g. It is
worth noting that the genes depicted in Supplementary Fig. 3f, g
were not identified as marker genes through DEA we conducted on
the clustering (Supplementary Fig. 3a). This observation under-
scores the capability of spatial gradient screening to detect even the
most subtle and intricate expression patterns. Lastly, the estimation
of cell density, obtained through single-cell deconvolution via
Tangram11, highlighted increased microglia and macrophage density
near the injury site decreasingwith increasing distance, as suggested
by the genes identified by spatial annotation screening, Fig. 3k–m. In
summary, our study demonstrates that spatial annotation screening
can adapt to complex spatial reference features and infer gene
expression gradients related to them. Our findings with spatial
annotation screening align with existing knowledge of the central
nervous system’s response to injury, highlighting its capabilities to
identify spatial gene expression patterns related to spatial areas and
paving the way for new insights.

Identification of confounders of gene expression in spatial
transcriptomic studies
Glioblastoma presents a unique challenge in spatial transcriptomics
due to its heterogeneous and chaotic nature, making it difficult for
clustering algorithms to discern optimal cluster numbers and iden-
tify marker genes and spatial niches. This complexity sharply con-
trasts with the well-structured architecture of its healthy
counterpart, the human neocortex, which demonstrated clearly
defined spatially segregated layers that can be reliably derived from
clustering, as illustrated in Supplementary Figs. 4, 5, 14a–c. One of
our examined samples, UKF313T, exemplified this challenge. Initially,
we observed a prominent central necrotic region, manually outlined
as the “necrotic center” using SPATA2’s image annotation tool.
Clustering the sample with BayesSpace, Supplementary Fig. 4d,
revealed the absence of a clear elbow point in the clustering
assessment, Supplementary Fig. 4b, highlighting the inherent chal-
lenges in defining clusters and borders in such samples. Annotating
the central necrotic area alongside the clustering results, we noted
that clusters proximal to the necrotic outline either coincided spa-
tially with necrosis (B1) or organized themselves in a circular fashion
around the necrotic center (B2, B3), akin to the injury cluster
observed around the stab wound in Fig. 3b. However, when we
computed top marker genes of each BayesSpace cluster in space,
Supplementary Fig. 4d, marker gene expression did not align with
the boundaries of their initially assigned clusters, emphasizing the
unsuitability of this sample for traditional cluster analysis. This
chaotic gene expression pattern was further evidenced by many
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marker genes sharing nearly identical average log2 fold changes
across multiple clusters, Supplementary Fig. 4c. Assuming a des-
cending relationship betweenmarker genes of clusters B2 and B3 and
the necrotic area, similar to the relationship between the stab wound
and its environment, we computed the gene expression of marker

genes relative to the distance from the necrotic center. The inferred
gradients of CD44, NDRG1, THBS2, and IGFBP3 (predicted by DEA to
be strongly expressed in the circular area represented by cluster B4)
led to the assumption that a spatial dependency between the
expression of these genes and the presence of necrosis exists. We
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also observed an inverse relationship in genes from clusters distant
to necrosis, suggesting their repulsion by the presence of necrosis.
This observation was supported by the decline of their expression at
~2–3mm, Supplementary Fig. 4d, coinciding with the influence zone
of another necrotic area at the bottom right of the sample, which was
initially not accounted for in our single necrotic center annotation.
To accurately account for necrotic areas in this sample, we intro-
duced two additional annotations, referred to as “necrotic edge I”
and “necrotic edge II”, Fig. 4a, b. Given the insights acquired from the
gradients displayed in Supplementary Fig. 4d and the significant role
necrosis plays as a histomorphological correlate of malignancies, we
hypothesized that necrosis significantly confounded gene expres-
sion in the sample. Subsequently, we conducted comprehensive
spatial gradient screening, considering the spatial extent of all three
necrotic annotations, Fig. 4b. We employed SPARKX to preselect
genes predicted to exhibit spatial significance, resulting in a set of

genes (n = 11,478, adj. p-value < 0.05) that we subsequently subjected
to the screening. We focused on subsets of descending and
ascending models, Supplementary Fig. 14d, to specifically identify
genes associated with necrosis and those repelled by it. Prominent
examples of necrosis-associated genes included those involved in
hypoxia response (VEGFA), glycolytic metabolism (SLC2A1), and cell
cycle arrest (TMEM158), illustrated in Fig. 4c, d. Conversely, genes
repelled by necrosis were linked to oxygen-dependent metabolism
(NDUFS) and TCR receptor signaling (CD74, HLA-DRB1), displayed in
Fig. 4e, f. In summary, our analysis involving spatial gradient
screening using spatial annotations illuminated intricate spatial
patterns within glioblastoma, shedding light on the association and
repulsion of specific genes in response to necrosis. In particular, it
shed light on a potential spatial dependency between necrosis,
hypoxia and TCR immune response, which we aimed to investigate
closely in the following section.
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Elucidating the spatial dynamics of T cell abundance and
hypoxic metabolism in glioblastoma
Building upon prior findings that T cell receptor (TCR) signaling
diminishes in the immediate vicinity of necrotic regions but steadily
intensifies within one to two millimeters from these necrotic areas in
glioblastomas, we hypothesized that the hypoxic metabolic environ-
ment found surrounding necrotic regions significantly impacts the
immune landscape within these tumors.We examined the distribution
of immune cells from hypoxic to non-hypoxic areas by combining
spatial annotations from six glioblastomas with identified hypoxic
niches. Cell abundance was determined using the cell2location algo-
rithm, and CytoSpace was employed to enhance resolution from spot
to single-cell level. Further, we integrated spatially resolved T cell
sequencing12 (SPTCR-seq) to support our hypothesis and understand
the distribution of clonal and non-clonal T cells dependent on the
presence of hypoxia, Fig. 5a. We began by characterizing hypoxia
niches in six glioblastoma samples based on gene expression, Fig. 5b, c
and Supplementary Fig. 6c. Horizontal integration of each samples
results were facilitated by SPATA2s incorporation of SI units. We then
assessed the distribution of cell types from hypoxic to non-hypoxic
areas, aggregating data by average cell abundance. Our analysis
showed that gene expression related to hypoxia normalized beyond
~1000 µm from hypoxic regions (elbow at 954.3 µm), Fig. 5d. By
focusing on lymphoid cells, we found that T cells peak in abundance
around 1000 µm from hypoxic cores and are present up to 1500 µm
(spanning from 500 to 2000µm). Beyond 2000 µm, T cell presence
diminishes, Fig. 5e. Similarly, bone-derived myeloid cells, abundant in
hypoxic areas, decrease in number beyond 2000 µm, mirroring the T
cell distribution, Fig. 5f. This immune response pattern relative to
distance from hypoxia was also evident in the varying abundance of
mesenchymal-like (higher towards hypoxia) and NPC-like (high
towards infiltration regions) malignant cell populations Figures 5f, g.
Integration of T cell receptor sequencing (SPTCR-seq) data confirmed
the estimated T cell abundance from cell type deconvolution, Fig. 5h, i.
We then focused on the distribution of exhausted and cytotoxic CD8
T cells based on their proximity to hypoxic areas. By analyzing gene
expression markers for cytotoxic (e.g., GZMA, GZMB) and exhausted
(e.g., PDCD1, LAG3) CD8 T cells, we found a higher concentration of
exhausted CD8 T cells near hypoxic regions, whereas cytotoxic gene
expression was more prevalent in T cells further from these areas,
Fig. 5j. In summary, we demonstrated the utility of annotation
screening in elucidating the immune response architecture in relation
to hypoxic metabolism in glioblastoma. Our findings suggest a robust
spatial dependency between hypoxia and T-cell abundance shared
across six glioblastoma samples contributing to the quest of under-
standing the intricate biological architecture of glioblastoma.

Statistical challenges and benchmarking
Our endeavors to identify gene expression patterns related to spatial
reference areas or trajectories introduce a statistical challenge: accu-
rately identifying patterns amid the noise and variability inherent to
biological data. To tackle this challenge, we employ LOESS smoothing
to model gene expression data along the distance, Supplementary
Fig. 8a, b, and quantify the degree of randomness in the emerging
patterns using the total variation, Supplementary Fig. 8c.We validated
our approach through extensive simulations wherein controlled noise
levels were introduced into predefined spatial patterns. This allowed
us to evaluate the efficacy of our method in distinguishing between
these patterns amidst various noise types and noise intensities, Sup-
plementary Figs. 9–11. In addition, we compared our method to two
existing approaches designed for scRNA-seq pseudotime trajectories,
namely tradeSeq13 and PseudotimeDE14,15. SPATA2’s SAS and the said
algorithms share a common goal of detecting differential expression
patterns along a one-dimensional axis. In our simulated scenario, SAS
exhibited a higher correlation with ground truth noise, achieving a

mean R² of 0.75 across different pre-defined patterns, in contrast to
the R² of 0.59 for tradeSeq’s Wald Statistic and an R² of 0.64 for
PseudotimeDE’s test statistic, Fig. 6a–c. Moreover, our benchmark
illustrates that SPATA2’s SAS can rapidly screen 10,000 genes within a
few minutes on a personal laptop (32GB RAM, 10 cores), Supplemen-
tary Fig. 14e. This is at least an order ofmagnitude faster than tradeSeq
and PseudotimeDE model fitting alone (run on 256GB RAM, 48 cores;
see the “Methods” section). This emphasizes the substantial compu-
tational efficiency and applicability of our method for large-scale
datasets.

Lastly, while the spatial reference features—spatial annotations or
spatial trajectories—can be placed in an automated manner, Supple-
mentary Fig. 6b, c, we explored the resilience of our method against
human error in case of manual placement. We evaluated the implica-
tions for spatial annotation screening (SAS) and spatial trajectory
screening (STS) test performance after systematically modifying the
positions or orientations of selected spatial annotations and trajec-
tories in our dataset, Supplementary Figs. 6d–g and 12. Our simula-
tions indicate thatboth SAS andSTS canbe susceptible to type II errors
with increasing deviation from the original annotation or trajectory
placement. However, this susceptibility remained well-controlled
within the expected bounds of human error, and notably, type I
error rates stayed below 5%across all deviations, ensuring that random
patterns are rarely incorrectly identified as non-random, even with
large deviations in annotation. In conclusion, our thorough simula-
tions and benchmarking highlight the robustness, adaptability, and
computational efficiency of our approach for identifying spatial gene
expression patterns along a one-dimensional gradient. This reaffirms
our method as an advantageous application for hypothesis-driven
spatial biology research.

Discussion
Despite the transformative potential of spatial transcriptomics, the
field has encountered limitations with existing analytical methods,
which often do not fully capture the continuous and intricate patterns
of gene expression across diverse tissues. To address these challenges,
we introduce spatial gradient screening (SGS), an algorithm designed
to capture gene expression patterns along a spatial continuum. It
pursues the hypothesis that specific genes—or other numeric features
for thatmatter—display non-random expression patterns in relation to
spatial reference features.When screening for spatially variable genes,
we utilize these reference features to incorporate the integration of
potential biological forces, such as the direction of tumorous infiltra-
tion using spatial trajectories (spatial trajectory screening, STS),
Fig. 2a, or the presence of stabwounds and necrotic areas using spatial
annotations (spatial annotation screening, SAS) (Figs. 3a, b and 4a, b).
STS captures changes along a-to-b trajectories, while SAS focuses on
radial changes from core to periphery. Together they facilitate a
comprehensive framework for both exploratory and hypothesis-
driven analyses. A particularly notable finding from our work is the
identification of a spatial interplay between necrotic and hypoxic
zones and T-cell distribution within glioblastomas, hinting at a
potentially stratified immune landscape within these tumors.

Thorough benchmarking of the evaluation metrics showed that
spatial gradient screening reliably differentiates between existing
patterns and randomness. However, despite their utility, both spatial
trajectory screening and spatial annotation screening have limitations.
The flexibility they offer necessitates a close examination of histolo-
gical architecture and other potential confounding factors. Interactive
placement using SPATA2’s tools can introducehumanerror, impacting
the course of a spatial trajectory and the outline of a spatial annotation
and, thus the inferred expression gradients. We conducted a thorough
investigation into the sensitivity of spatial gradient screening to such
variations and our findings demonstrate that both spatial gradient
screening approaches yield robust results against an expected degree
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of human-induced variation. Still, for precise outcomes, careful pla-
cement of spatial reference features is essential. The inclusion of
confounding elements or the omission of crucial ones can significantly
affect results, potentially leading to the misinterpretation of gene
expression.

Our findings highlight a critical limitation of traditional DEA in
capturing genes that exhibit gradual expression shifts in response to
microstructural changes or metabolic gradients within complex tis-
sues. It is important to note that, while we have identified these lim-
itations, our intention is not to diminish the significant contributions
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of these traditional analysis methods. Both clustering-based and
manual annotation-based approaches demonstrated their value in
numerous spatial transcriptomics studies and will continue to do so.
However, for a nuanced analysis of spatial expression patterns and
gradients, it is evident that integrating supplementary tools is
essential to achieve comprehensive interpretation. Spatial gradient
screening represents our contribution to this evolving field, aug-
menting classical methodologies with enhanced capabilities to
interpret complex spatial gene expression data. Although here we
focused on brain-derived disease models, spatial gradient screening
is a helpful tool in a broad variety of tissues in health and disease
conditions in which spatial dependencies and heterogeneity are
important players. To streamline the integration of spatial gradient
screening into downstream analysis, we have incorporated it into
SPATA2, an R-based framework that provides a user-friendly imple-
mentation of well-established analytical techniques. This integration
encompasses the identification of spatially variable genes, facilitated
by SPARKX, interactive manual annotation of barcode spots, and a
suite of algorithms for tasks such as inferring copy number altera-
tions, clustering, conducting differential expression analysis, and
performing gene set enrichment analysis.

Furthermore, with regard to spatial analysis, SPATA2 fully incor-
porates the utilization of distance measures in SI units. This feature
greatly enhances usability, allowing for the seamless integration of
multiple samples. Additionally, it ensures that results remain scalable
to different image resolutions, offering an intuitive framework for
analysis, interpretation, and visualization. Moreover, while SPATA2’s
default pre-definedmodels, as employed in this study to guide further
interpretation of identified genes, cover a substantial portion of bio-
logically relevant patterns, Supplementary Fig. 14d, specific research
scenarios may necessitate tailored models. SPATA2 offers additional
functions to expand the rangeofmodels available for screening. Lastly,
it’s worth noting that while SPATA2 was initially developed with the
10X Visium platform inmind, it has been extended to support virtually
all spatial platforms, regardless of the modality and observational unit
(e.g., barcoded spots, single cells, beads). SPATA2 offers various
functions to ensure compatibility with platforms established in recent
years, such as Seurat16,17, Giotto18, Scanpy19, and Squidpy20. To assist
users in adopting SPATA2, we offer user-friendly tutorials on our
website. All in all, we believe that SPATA2 and the spatial gradient
screening approach will be a valuable tool in the analysis of an exciting
and rapidly developing field in spatial biology, that is spatial
transcriptomics.

Methods
Ethical statement
The study design, data evaluation, and imaging procedures were given
clearance by the ethics committee at the University of Freiburg, as
delineated in protocols 100020/09 and 472/15_160880. All meth-
odologies were executed in compliance with the guidelines approved
by the committee. Informed consent, in written form, was received
fromall participating subjects. TheDepartment ofNeurosurgery of the
Medical Center at the University of Freiburg, Germany, was respon-
sible for securing preoperative informed consent from all patients
participating in the study. Mice were housed and handled under the
German and European guidelines for the use of animals for research
purposes. Experiments that included mice were approved by the
institutional animal care committee and the government of Upper
Bavaria (ROB-55.2-2532.Vet_02-20-158).

The R-package SPATA2
SPATA2 is an R package that offers an object-oriented programming
framework centered around an S4 object, named spata2. This object
serves as a container for raw expression data, processed data, and the
results of various downstreamanalyses, such as inferring copy number
alterations, clustering using multiple algorithms, differential expres-
sion analysis (DEA), gene set enrichment analysis (GSEA), and identi-
fication of spatially variable genes and histological microstructures in
image analysis. Thepackage’s name is anacronymderived fromSpatial
Transcriptomic Analysis, highlighting its focus on spatial tran-
scriptomics, specifically the 10X Visium platform. However, the stan-
dard analysis pipelines for clustering, DEA, GSEA, etc., can be applied
to any type of expression data, including single-cell sequencing. Note
that extensive tutorials can be found at our SPATA2 website: https://
themilolab.github.io/SPATA2/.

Architecture of the S4 SPATA2 object
At the core of the SPATA2 package is the S4 SPATA2 object, which
serves as a container for both data and analysis progress. the package
to be compatible with a wide range of spatial biology platforms pro-
vided that the data structure adheres to the following criteria: First, the
numeric variables under analysis should correspond to molecule
counts, such as RNA readcounts,metabolite counts, or protein counts.
Second, a clearly defined observational unit must exist to which the
numeric variables can be mapped. For example, the Visium platform’s
observational unit consists of barcoded spots, while the SlideSeq
platform utilizes barcoded beads as its observational unit. In the case
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of the Xenium- or the MERFISH platform, the observational unit is the
individual cell. Given the different observational units possible we
refer to them with the umbrella term data points throughout this
manuscript. Third, the observations must be equipped with x- and y-
coordinates for analysis in two-dimensional space and should be
equally distributed over the analyzed tissue. We provide helping
functions to initiate analysis via SPATA2 for the standardized data
output of the following platforms:
– MERFISH: initiateSpataObjectMERFISH()
– SlideSeq: initiateSpataObjectSlideSeq()
– Visium: initiateSpataObjectVisium()
– Xenium: initiateSpataObjectXenium()

Lastly, the flexible function initiateSpataObject(), allows
the user to initiate analysis from the output data of any other platform,
provided that it adheres to the aforementioned requirements. Infor-
mation around the platform used is stored inside the created SPATA2
object andmight decide onwhich features of the package canbe used.
(E.g. BayesSpace clustering is only compatible with the ST or Visium
technique.) The Spatial Gradient Screening algorithms are compatible
with *all* platforms.

Naming convention and families of functions
Most functions of the SPATA2 package start with a verb which indi-
cates the family to which the function belongs. The most important
families are: add*(): Add additional content ranging from grouping
variables fromexternal clustering algorithms (e.g.addFeatures()) or
manually set up trajectories (e.g. addSpatialTrajectory()). cre-
ate*(): Add additional content by creating, which either implies the
necessity for interaction or additional computation is done b. (e.g.
createSpatialSegmentation()to create a grouping variable based
onmanually encircling regions and labeling the barcode spots that fall
into the circle, createImageAnnotations()to annotate the regions
and microstructures on the histological image.) get*(): Extract results
in the form of data.frames, lists, or vectors. (e.g. getCoordsDf(),
getDeaResultsDf(), getSpatAnnBorderDf()) ggpLayer*(): Create
additional layers of miscellaneous aspects that can be added to cor-
responding plots of the ggplot2 framework via the + operator. (e.g.
ggpLayerSpatAnnOutline()to add the border of previously anno-
tated microstructures and regions to a surface plot, ggpLayerSca-
leBar()to add a scale bar for visual indication of the physical distance
in SI units to a surface plot.) plot*(): Plots results. Usually by outputting
objects of class gg from the ggplot2 package. (e.g. plotSurface()to
visualize barcode spots that fall on the underlying tissue, usually
colored by a variable.) run*(): Runs algorithms that are implemented
from external packages (e.g. runDEA() to run differential expression
analysis using Seurat::FindAllMarkers(), runCNV()to run the
pipeline of the infercnv-package). The results are stored inside the
SPATA2 object and can be extracted with corresponding get*() func-
tions. set*(): Set miscellaneous content. Recommended if program-
ming with SPATA2 to prevent bugs in case of changing architecture of
the S4 object.

Implemented packages and algorithms
SPATA2 implements a variety of external algorithms and presents
them in user-friendly wrapper functions that. The architecture of the
SPATA2 object allows to conveniently store the results in the SPATA2
object to extract them via the corresponding get*() functions
(e.g. getDeaResultsDf()) and to plot them via corresponding
plot*() functions (e.g. plotDeaVolcano()).

Dimensionality reduction
Dimensional reduction is implemented in twoways. If a SPATA2 object
is created using the Seurat pipeline, the embedding of the dimensional
reduction (PCA, TSNE, and UMAP) is inherited from the Seurat object.

If not, the dimensional reduction can be conducted from within
SPATA2 using runPCA()which implements irlba::prcom-
p_irlba(), runTSNE() which implements tsne:: tsne()and runU-
MAP()which implements umap::umap(). The embedding of each
dimensional reduction currently stored in the SPATA2 object can be
extracted via getPcaDf(), getTsneDf() or getUmapDf() and
plotted via plotPCA(), plotTSNE() and plotUMAP().

Spatial clustering
BayesSpace clustering is implemented as a wrapper of the pipeline
suggested by the R-package BayesSpace. The corresponding function
in SPATA2 is called runBayesSpaceClustering(). This function is a
wrapper around all functions needed to obtain cluster results based on
the BayesSpace algorithm, including BayesSpace::readVisium()
or alternatively asSingleCellExperiment(), BayesSpace::spa-
tialPreprocess(), BayesSpace::qTune(), BayesSpace::spa-
tialCluster(). The resulting grouping variable is stored together
with all other variables that do not refer to the expression of single
genes in the feature data.frame of the SPATA2 object. The resulting
grouping can be obtained via getFeatureDf() and can be used for
downstream analysis by referring to the name of the grouping variable
(chosen by the user while calling runBayesSpaceClustering()) in
the recurring arguments across and grouping_variable as in
'my_spata_obj <- runDEA(object = my_spata_obj, across =
'bspace_7')'.

Differential expression analysis (DEA)
Differential expression analysis (DEA) is implemented via the function
runDEA() relies on Seurat::FindAllMarkers(). A temporary
Seurat object is created using the counts matrix of the SPATA2 object.
The Seurat object is processed according to the specifications of the
user. Then, the grouping variable based on which the testing is sup-
posed to be conducted is transferred to the meta.data of the Seurat
object and to the slots @active.idents. Then the function Seur-
at::FindAllMarkers() is called, which outputs a data.frame, that is
stored in the SPATA2 object. The SPATA2 object contains a slot @dea
where DEA results are stored according to the grouping variable they
base on as well as themethodwith which the testing is run (defaults to
the default of Seurat which is Wilcoxon Sum Rank testing). Using
arguments across to specify the grouping variable and methode_de to
specify the method, results can be extracted via, e.g. getDeaDf() or
getDeaGenes() or they can be plotted via. e.g. plotDeaVolcano(),
plotDeaHeatmap()or plotDeaDotplot().

Gene set enrichment analysis (GSEA)
Gene signature enrichment analysis (GSEA) is implemented using the
hypeR package21 which conducts GSEA using hypergeometric testing.
GSEA is conducted using the stored DEA results. Therefore, runDEA()
with a specific combination of grouping variables andDEAmethodhas
to be called beforehand. GSEA results are stored in slot @dea next to
the corresponding dea results. Results can be extracted via getG-
seaDf() or can be plotted via plotGseaDotPlot(). Extensive
tutorials about GSEA in SPATA2 can be found here: https://themilolab.
github.io/SPATA2 Gene sets can be used for gene set enrichment
analysis and visualization and are stored in an extra R-object, a data.-
frame called gsdf. The SPATA2object carries it in slot@used_genesets.
The gene set collection can be expanded by user-defined gene sig-
natures using the function addGeneSets(). The gene set data.frame
contains a collection of more than eleven thousand gene sets down-
loaded from https://www.gsea-msigdb.org/gsea/index.jsp. This
includes gene ontology genesets for biological processes (prefixed
with BP.GO), cellular components (prefixed with CC.GO), molecular
functions (prefixed with MF.GO), as well as hallmark gene sets (pre-
fixed with HM), biocarta gene sets (prefixed with BC) and reactome
gene sets (prefixed with RCTM).
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Inferring copy number alterations (CNA)
Inferring copy number alterations (CNA) is implemented as a wrapper
of the pipeline suggested by the R-package infercnv. The corre-
sponding function in SPATA2 is called runCNV(), which is a wrapper
around all functions needed to infer copy number variations. This
includes: infercnv::CreateInfercnvObject(), infercnv::re-
quire_above_min_mean_expr_cutoff(), infercnv::requir-
e_above_min_cells_ref(),infercnv::normalize_counts_by_
seq_depth(), infercnv::anscombe_transform(), infercnv::
log2xplus1(), infercnv::apply_max_threshold_bounds(),
infercnv::smooth_by_chromosome(), infercnv::center_-
cell_expr_across_chromosome(), infercnv::subtract_ref_
expr_from_obs(), infercnv::invert_log2(), infercnv::-
clear_noise_via_ref_mean_sd(), infercnv::remove_
outliers_norm(), infercnv::define_signif_tumor_
subclusters(), and infercnv::plot_cnv(). The output of infercnv::-
plot_cnv() is stored under a specified directory from which the results
are read back into the R session and stored together with metadata
regarding the analysis in slot @cnv of the SPATA2 object. Results can
be extracted via getCnvResults()and visualized via plotCnvLi-
neplot() or plotCnvHeatmap() as well as with common plotting
functions like, e.g. plotSurface(…, color_by = 'Chr7') or
plotBoxplot(…, variables = 'Chr7', across = 'histology').

Spatially variable genes
Identification of spatially variable genes using SPARKX is implemented
as a wrapper around the function SPARK:: sparkx()from the SPARK
package. The corresponding function in SPATA2 is called run-
SPARKX(). The count matrix as extracted via getCountMtr() is
provided as input for argument count_in. The coordinates, as extrac-
ted via getCoordsMtr()is provided as input for argument locus_in.
The results are stored in slot @spatial of the SPATA2 object which is a
list with a slot named $sparkx. The original output can be obtained via
getSparkxResults(). A shortcut to obtain genes with significant
spatial variability is offered by the function getSparkxGenes()which
defaults to a p-value threshold of <0.05.

Manual annotation of data points (spatial segmentation)
Manual annotation of data points is done with create-
SpatialSegmentation(). In the interface the function provides the
user can interactively annotate data points on the histology image
based on their spatial location. While drawing on the image the cur-
sor’s position is captured every fivemilliseconds and creates a detailed
polygon of the annotated region. Eachdata point within the polygon is
then labeled according to the user’s designation and stored in a
grouping variable in the SPATA2 object’s feature data.frame. This
allows for statistical testing and data subsetting based on the anno-
tated regions. Results can be obtained via getFeatureDf() and can
be used for downstream analysis by referring to the name of the cre-
ated grouping variable (chosen by the user within the interface of
createSpatialSegmentation()) in the recurring arguments across
and grouping_variable as in 'my_spata_obj <- runDEA(object =
my_spata_obj, across = 'histology')'. We use the term spatial
segmentation to contrast the labeling of barcoded spots from our
spatial annotation approach outlined below.

Distance and area measurements in SPATA2
Distance handling and transformation in SPATA2 is based on a
package-built unit system that encompasses both SI units (nanometer
(nm), micrometer (um), millimeter (mm), centimeter (cm)), and pixels
(px). Every histology image processed by the method is accompanied
by a set fiducial frame, with the example of the 10X Visium platform
having a frame of 8mm×8mm. However, the width and height of the
loaded image in R may vary based on the resolution. This inbuilt sys-
tem relies on the barcode-spots having the same distance of 100μmto

each other. Using that as the ground truth, the spatial coordinates of
the spots provided in pixel units for alignment with the image section
can be converted into SI units, or alternatively, the parameter adjust-
ments that relate to distance measures can be converted to pixel units
behind the scenes of each SPATA2 function. To simplify the transfor-
mation of pixel-based distances to SI units, SPATA2 offers several
transformation functions. These functions allow to provide distance
measures in SI units for precise adjustments of spatial parameters in
algorithms such as Spatial Trajectory Screening and Image Annotation
Screening as, for example, the distance and binwidth parameters.
Additionally, the extracted image sections can be adjusted using these
parameters. This concept is applied seamlessly to measuring areas in
the case of image annotations, too.

Spatial annotations
In spatial experiments, spatial annotations are pivotal for marking
regions of interest. Unlike manual annotation of data points (e.g.
barcoded spots, beats, or cells) through spatial segmentation, where
each annotation is translated into a single label per data point, spatial
annotations are distinct. Each annotation consists of at least one
detailed polygon, with vertices outlining the area of interest, thereby
defining its spatial boundaries. Additional polygons might be needed
to outline holes within the annotation (Fig. 5a, b, vivid area). Each
annotation is uniquely identified by an ID and can be enriched with
tags and metadata. This information, encompassing spatial position,
extent, tags, and metadata, is encapsulated in an S4 object of class
SpatialAnnotation. We categorize spatial annotations into three
types, each characterized by different methods of generating the
outlining polygon: image annotations, numeric annotations, and
group annotations. Supplementary Fig. 6a–c showcases each concept.
Image Annotations focus on histomorphological features discerned
through visual inspection of histological tissue. Users can manually
outline structures of interest using an interactive interface, adding tags
and labels as needed. This concept is depicted in Supplementary
Fig. 6a and is facilitated by the SPATA2::createImageAnnota-
tions()function in SPATA2. Group Annotations are generated auto-
matically. Data points are grouped based on criteria like prior
clustering. Then DBSCAN is applied to identify and remove spatial
outliers that could disproportionately distort the outline. Lastly, the
concaveman algorithm is employed to outline the filtered spots. This
method is illustrated in Supplementary Fig. 6b and is implemented via
the SPATA2::createGroupAnnotations()function in SPATA2.
Numeric Annotations are automatically created by binning data points
according to expression values, either through k-means clustering or a
manually set threshold.DBSCAN is then applied to identify and remove
spatial outliers that could disproportionately distort the outline. The
concaveman algorithm subsequently outlines the remaining spots, as
shown in Supplementary Fig. 6c. This process is executed through the
SPATA2::createNumericAnnotations()function in SPATA2.
Beyond their use in the spatial annotation screening algorithm, the
spatial properties of these annotations, such as area, center, centroid,
and outline, can be leveraged for further computational analysis and
the development of customized analytical approaches. The user is free
to add individually obtained spatial annotations using the function
SPATA2::addSpatialAnnotation()which takes a data.frame of x-
and y-coordinates that determine the vertices of the polygon outlining
the area of interest.

Spatial trajectories
Spatial Trajectories abstract a linear direction along with expression
gradients inferred. They canbe interactively createdusing the function
SPATA2::createSpatialTrajectories(), which allows the user
to interact with the spatial sample by determining the start and end
point of the trajectory via double clicks. Alternatively, the trajectory’s
start and end points can be programmatically determined using

Article https://doi.org/10.1038/s41467-024-50904-x

Nature Communications |         (2024) 15:7280 11

www.nature.com/naturecommunications


SPATA2::addSpatialTrajectory(). The results are stored in spe-
cific S4 objects that can be enrichedwithmetadata. They also carry the
ID with which each trajectory is identified.

Simulation of expression patterns related to spatial annotations
and trajectories
In our study, we simulated expression patterns related to spatial
annotations and trajectories. This process was integral to validating
our Spatial Gradient Screening methodology and to benchmark dif-
ferent evaluationmetrics in their capability to quantify randomness as
well as to benchmark their sensitivity to human deviations and varia-
tions caused by humanbias. Furthermore, it is repeated with every call
to the spatial gradient screening if argument estimate_r2 is set to
TRUE to estimate the reliability of the results. The simulation is
structured into three steps. Supplementary Figs. 9, 10 visualize the
steps for both, spatial annotations and spatial trajectories, respec-
tively. The first step involves the computation of distance values for
each data point (the same way as conducted during inferring an
expression gradient). Following the distance computation, the data
points are categorized into bins based on these distance values (Sup-
plementary Figs. 9a, 10a). The bins are then systematically ordered in
ascending fashion according to the mean distance values of each bin
and provided with an index. In the second step, expression values are
assigned to eachmember of a distance bin. These values are extracted
fromanumeric vector, the length of which corresponds to the number
of bins. The arrangement of these values, when plotted against their
indices in the vector, represented the specific pattern intended for
simulation, as displayed in Supplementary Figs. 9c, d, 10c, d. Initially,
this approach resulted in identical expression values for all members
within a distance bin. Note that for visualization purposes a higher
binwidth was chosen for Supplementary Figs. 9b, 10b. The simulation
processwe conducted for the actual benchmarking utilized a binwidth
equal to the center-to-center distance of the visium spots, which is
100μm. Results of this are displayed in Supplementary Figs.
9d–f,10d–f. The third and final step introduces noise into the simu-
lated expression data in a controlled and systematic manner. This is
achieved by creating a numeric vector from a randomized uniform
distribution, equal in length to the number of data points. The range of
values in this vector is aligned with the range of expression values
assigned during the second step. The integration of noise with the
pattern-like expression from the second step was executed in four
distinct manners, each representing a different type of noise. Results
of this integration are displayed in Supplementary Figs. 9d–f, 10d–f.
These types included equally distributed (ED, d), where each data
point’s simulated and noisy expression values were scaled based on
the noise ratio and then combined; equally punctuated (EP, e), where a
percentage of randomly selected spots received random expression
values; focally punctuated (FP, f), which differed from EP in that the
spots receiving random values were not chosen randomly but were
instead centered around initially selected data points, creating spatial
niches of randomness; and Combined which amalgamated all three
previous noise types). To ensure a comprehensive estimation, the
simulations used for the benchmarking of our evaluation metrics
spanned every possible combination of six pattern variations and four
noise types. Thesewere conducted at incremental noise levels, ranging
from 0% to 100%, with a step size of 2%, resulting in a total of
61,200 simulations. Each simulation was uniquely named following a
specific syntax: SE. <pattern>.<noise type>.<noise percentage>.<i-
teration>. This naming convention facilitated detailed tracking and
analysis of each simulated iteration. We placed particular emphasis on
Equally Distributed and Combined noise types, as they closely
resemble patterns likely to be encountered in real-world data. While
the Equally Punctuated and Focally Punctuated noise patterns are not
commonly encountered in real-life scenarios, their inclusion was cru-
cial for a thorough evaluation of our algorithm.

Inference of gene expression gradients and screening
SPATA2 introduces two group-independent algorithms that allow the
user to identify and visualize genes whose expression stands in
meaningful relation to regions or microstructures identified by image
analysis. Gene expression gradients can be inferred along spatial tra-
jectories with Spatial Trajectory Screening or in spatial relation to
image annotations Image Annotation Screening. First, this section
explains how expression gradients are inferred along spatial trajec-
tories. Second, it explains how expression gradients are inferred as a
function of distance to image annotations. Third, it explains how the
screening for specific gradients is conducted by fitting inferred
expression gradients to predefined models and how their fit is
evaluated.

Inferring an expression gradient
By inferring an expression gradient, we mean capturing how the
expression levels of a particular gene change in relation to a spatial
feature, such as along a trajectory or depending on the distance to a
spatial annotation’s outline. This encompasses three substeps which
are displayed in Supplementary Fig. 8a, b when using spatial annota-
tions (a) and spatial trajectories (b). (Please refer to Supplementary
Fig. 7 for a visual glossary of the terms used throughout the method
section with regards to spatial annotations, trajectories, and the
screening in general.). First, we calculate the distance of each data
point to the relevant spatial feature. In the case of spatial trajectories
all data points within the trajectory frame are projected onto the tra-
jectory’s T that connects the origin of trajectory P to the barcode spot
of interest. Then, C is projected onto T such that projection P corre-
sponds to:

P =
C � T
Tj j ð1Þ

The magnitude of the vector P corresponds to the projection
length (PL) and the projection length in turn corresponds to the dis-
tance along the trajectory:

Dist = PL = Pj j ð2Þ

In the case of spatial annotations, each data point is projected to
its closest vertex of the polygon, forming the outline of the spatial
annotation and the distance is computed22. After obtaining the dis-
tance values, the gene’s expression levels of eachdata point are related
to the corresponding distance.

Then, locally weighted scatterplot smoothing (LOWESS or LOESS)
is used to fit a curve that approximates the changes in gene expression
along this distance. Theαparameter for this loessfit, whichdetermines
the degree of smoothing, is standardized, and calculated as follows:

αloess =
Resolution
Distance � CF ð3Þ

where
• Resolution defaults to the average minimal center-to-center
distance (CCD) of the data points. In the case of regularly fixed
data points, as with Visium’s barcoded spots, the value is given
(100μm). For irregularly scattered data points, as is the case for
single cell-based platforms, this value is computed.

• Distance indicates the total distance covered in the screening.
• CF is the correction factor computed as the proportion of data
points that exist from the total data points required to call the
data set complete (see Supplementary Fig. 7c, d).

The resolution should not exceed the CCD. Generally speaking,
the higher the resolution, the more reliable the results, however, the
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resolution can not be increased infinitely since this will run into errors
with the LOESS fitting. Generally speaking we found that a resolution
between the CCD and half of the CCD provides good results. The
reasoning behind using a correction factor is as follows: Due to plat-
form limitations, tissue morphology, and data quality, the necessary
data for a complete screening is often only partially available. For
instance, Supplementary Fig. 7a–d illustrates a screening setup that
references the largest of the three necrotic areas and includes the
environment up to a distance of 3mm. Supplementary Fig. 7d
demonstrates how both the tissue’s edge and the capture area of the
Visium platform can impose constraints on data completeness. Con-
sequently, the dataset represents only a subset of the data points
needed to fully address thehypothesis. In this example, only about 42%
of the necessary data points are available to consider the dataset
complete in the context of our hypothesis. (If two ormore annotations
areused in the screening asdisplayed in Fig. 5b, the correction factor is
computed according to the data requirements of all annotations.) A
similar problem arises with spatial trajectories and the width of the
screening area. If the alpha parameter of the LOESS fit only depends on
the distance screened and the platform resolution, this can run into
errors if the number of data points is too small due to incompleteness.
Dividing the alpha parameter by the proportion of available data
points ensures results in a higher alpha proportional to the incom-
pleteness of the data set. If all required points are available, the pro-
portion is 1 and the alpha parameter stays as is.

In summary, as the resolution of the platform increases, or the
distance screened increases, the fit allows more details. The more
incomplete the data set, the less details it allows. The more details it
allows the better the screening can differentiate between random and
non-random gradients as indicated by the R2 between total variation
and noise percentage that is estimated beforehand to every screening
set up if the argument estimate_R2 is set to TRUE.

With inferred gradient we refer to a numeric vector of expression
estimates capturing the resulting pattern of the fitted curve. To obtain
it, we utilize the loess model for gene expression estimation along the
distance via stats::predict(). The number and position of the
expression estimates are computed by averaging the distance values
of all data points within predefineddistance bins, using a binwidth that
corresponds to the spatial screening resolution. E.g. if the distance
screened is 3mm and the resolution is 0.1mm, 30 expression esti-
mates form the gradient approximately starting at a distance of
0.05mm and ending at 2.95mm. Finally, the vector of expression
estimates is standardized to a defined range (we use 0–1, equivalent to
‘low’ to ‘high’). When plotted against their corresponding distance
values, the expression estimates form a polygonal curve representing
the pattern of the inferred gradient.

Identification of non-random gradients
The second step in spatial gradient screening is focused on the iden-
tification of genes whose expression gradients exhibit a pattern that is
unlikely due to randomness. Depending on the algorithm used, spatial
annotation screening (SAS) or spatial trajectory screening (STS), for
every inferred gradient we posit the null hypothesis:

Null Hypothesis (H0): The expression pattern of the tested gene
does not show spatial significance in relation to specific spatial refer-
ences, such as delineated areas or spatial trajectories, and is attribu-
table to random chance rather than being influenced by proximity to
defined areas within the tissue.

Correspondingly, for every inferred gradient we formulate the
alternative hypothesis:

Alternative Hypothesis (H1): The expression pattern of the tested
gene exhibits spatial significance when analyzed in relation to specific
spatial references, such as delineated areas or spatial trajectories. It
forms a recognizable pattern that statistically distinguishes it from
genes whose expression is not influenced by proximity to these areas,

suggesting a biologically meaningful connection between the gene
and the reference feature.

Representative examples of either hypothesis as well as for either
screening approach, are displayed in Supplementary Fig. 8a, b. To be
able to adopt either of these hypotheses, we posit that, if the inferred
gradient in question stems from a gene whose inferred expression
gradient is dependent on the spatial trajectory or the spatial annota-
tion, it should not merely consist of randomly scattered expression
values. Instead, it should display a discernible degree of gradual
expression change forming a recognizable pattern. Thus, the
smoother the inferred gradient, the less random it is, and vice versa.
Assuming this relationship, we quantify the degree of randomness of a
gradient using its total variation (TV). This metric is calculated by
considering the absolute differences between adjacent expression
estimates, as displayed in Supplementary Fig. 8c. The total variation is
calculated according to the formula:

TV=
Xn�1

i= 1

yi+ 1 � yi
�� �� ð4Þ

where
• TV is the total variation.
• n is the number of expression estimates in the gradient.
• yi represents the gene expression value at expression estimate i.
• |yi+1−yi| calculates the absolute difference between the gene
expression values of adjacent expression estimates.

To assess the effectiveness of the total variation in capturing the
percentage of noise or randomness introduced into a gradient, we
leveraged the simulated dataset discussed above, where a certain
degree of noise was introduced per simulation, represented by ran-
domly generated expression values. Each resulting simulation was a
combination of pattern-specific expression (Supplementary Figs. 9c,
10c) and randomly generated expression, based on different noise
types (Supplementary Figs. 9d–f, 10d–f).Weexamined the relationship
between the total variation and the degree of randomness across dif-
ferent underlying patterns and various types of noise. Our findings
consistently demonstrated a strong linear relationship between the
total variation and noise ratio across all simulation modalities using a
resolution of 100 μm. The high C values of 0.77–0.92 and 0.78–0.91 in
the noise types equally distributed and combined (which we consider
the most realistic manifestation of noise in real-life data) indicate that
this metric effectively quantifies the degree of randomness.

Using estimate_r2 = TRUE, the spatial gradient screening
algorithm conducts the simulation with the sample and the setup
chosen by the user which estimates the reliability of the evaluation
metrics in terms of their capability to account for randomness and
noise. We recommend doing this, since we noted that the resulting R2

varies depending on the distance screened, the resolution as well as
the number of data points available. Generally speaking, we found that
R2 increased with increasing resolution. However, the resolution can
not be increased infinitely since the data points available become too
sparse for the LOESS to fit a curve to the expression vs. distance plot.
We recommend choosing a resolution equal to or lower than the
center-to-center distance of the data set, which can be obtained via
SPATA2::getCCD().

Calculation of p-values in spatial gradient screening
In our study, we used total variation (TV) as a crucial metric to deter-
mine the randomness in an inferred gradient.Wedefine the p-value for
the hypotheses presented in the previous section as the likelihood of
observing a TV as low as or lower than that of gradients observed
under random conditions. Thus, to calculate a p-value for a given
inferred gradient, we first simulate random expression gradients by
assigning random expression values to all data points within the
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screened area and continue to infer the resulting expression gradient
as described above. This simulation is repeated 10,000 times to build a
robust distribution of TV scores under random conditions. To further
ensure a robust distribution of TV scores that represent the distribu-
tion of total variation under randomness potential outliers are
removed by calculating the interquartile range (IQR) and identifying
TV scores that lie significantly outside the IQR above the thirdor below
the first quartile. Using the resulting distribution of randomly gener-
ated total variation values, we calculate the p-value according to the
following formula:

p� value =

Pn
i = 1I rTVi ≤oTV

� �
n

ð5Þ

where
• p-value is the p-value.
• rTVi represents the total variation for the ith simulated gradient
under complete randomness.

• oTV is the total variation of the observed inferred gradient from
the gene of interest.

• n is the number of random simulations (with a default of 10,000),
subtracted by the number of outlier TV removed by IQR.

• I(·) is the indicator function that equals 1 if the condition inside the
parentheses is true and 0 otherwise.

Supplementary Fig. 11c, f provides a comprehensive visualization
of the relationship between noise levels and p-values across all simu-
lationmodalities. In the case of equally distributed noise, we observed
a consistent and stable relationship between p-values and noise ratios
regardless of the underlying pattern, highlighting that the mentioned
differences in TV baseline across simulated patterns did not have an
effect. The resulting corrected p-values are adjusted according to the
Benjamini–Hochberg approach and returned in a separate column
called fdr (false discovery rate). We recommend using the adjusted p-
values with a threshold of lower than 0.05.

Identification of biologically relevant pattern
The final step of our methodology is centered on identifying non-
random gradients that are indicative of biologically relevant patterns.
In this process, each gradient inferred from the data is systematically
compared against a series of predefined models. These models are
numeric vectors that match the length and range of the inferred gra-
dients and are designed to represent simplified versions of biologically
relevant dynamics. Expression patterns can be complex and vary
depending on the specific research questions. To address this varia-
bility, our approach not only supports the integration of user-defined
models but also includes a basic set of models, as shown in Supple-
mentary Fig. 14d. These standard models are developed to simplify
complex gene expression patterns into three primary types, providing
a practical and comprehensive framework for analyzing diverse bio-
logical data. This strategy ensures that our methodology is both ver-
satile and grounded, capable of accommodating different research
requirements while offering a solid base for the interpretation of gene
expression patterns in relation to spatial features. The three patterns
we provide standardized models for are:

• Association pattern: Higher gene expression near the annotation,
decreasing with distance, indicative of an association. This is
exemplified by the hypoxic gene signatures near the necrotic area
(descending models, Fig. 4d).

• Recovery pattern: Lower expression near the annotation,
increasing with distance, suggesting recovery. An example is the
increase in oxygen-based metabolism away from necrotic areas
(ascending models, Fig. 4g).

• Layered pattern: Transient increase in expression at a certain dis-
tance, forming a layer-like organization (peaking models, Fig. 2b).

Predefined models provide precision in addressing specific
research questions, offering an intuitive framework for embedding
findings in biological contexts (Supplementary Fig. 8d). The goodness
of the fit between each gradient (G) and model (M) can be evaluated
using two metrics: mean absolute error (MAE) and root mean squared
error (RMSE). MAE evaluates average absolute deviation, robust to
outliers and offering straightforward interpretation, and is computed
according to the formula:

MAE=
1
n

Xn
i = 1

Gi �Mi

�� �� ð6Þ

RMSE emphasizes larger errors and is sensitive to outliers. It is
computed according to the formula:

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
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Identification of zero-inflated variables
Given the limitations of the spatial gradient screening algorithm in
handling variableswith a highproportionof zerovalues,we advisepre-
emptively removing such variables. To facilitate this, we have incor-
porated an option within the algorithm, which can be activated by
setting the parameter rm_zero_infl to TRUE. When this option is
enabled, each variable considered for screening undergoes an outlier
detection process. This process involves calculating the Interquartile
Range (IQR) and excluding spots that fall significantly outside 1.5 times
the IQR, either above the third quartile or below the first quartile.
Should the process result in the retention of only zero values, indi-
cating that all non-zero spots are outliers, the variable is deemed zero-
inflated and subsequently removed fromconsideration. This approach
helps mitigate the algorithm’s sensitivity to zero-inflated variables,
ensuring more robust and reliable screening outcomes.

Sensitivity to human bias in spatial gradient screening
Both spatial reference features, spatial trajectories, and spatial anno-
tations can be generated either computationally or manually through
user interaction. While the interactive creation of both methods
enables direct tissue interaction, it introduces the potential for human
error, leading to variations in outlining spatial areas in the case of
image annotations or drawing spatial trajectories. To assess suscept-
ibility to human bias in both spatial annotation and spatial trajectory
screening, we conducted a comprehensive investigation. In both
approaches, we identified potential sources of human error and
simulated deviations from originally created annotations or trajec-
tories with increasing degrees of variation. Subsequently, we gener-
ated a ground truth dataset of expression variables using our
simulated expression dataset, created using either the original trajec-
tory or the original spatial annotation. The positive (non-random)
ground truth consisted of a subset of 2400 simulated expression
variables with an adjusted p-value (FDR) of 0. Conversely, the negative
(random) ground truth was defined as a subset of expression variables
with a noise percentage of 100%. Supplementary Figs. 6g, 12a presents
the resulting distribution of total variation values for each population.
These simulations were developed using the original spatial features.
We then conducted spatial annotation and spatial trajectory screening
with annotations and trajectories that deviated from the original ones
in various ways. Subsequently, we compared the genes identified as
random and non-random in these runs with the original population
and quantified the ratio of false positives and false negatives. False
positives were defined as randomly simulated expression variables
incorrectly identified as non-random due to the introduced deviations
in spatial features. Conversely, false negatives were defined as non-
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randomly simulated expression variables falsely identified as random
due to the introduced deviations in spatial features.

Sensitivity to human error using spatial annotations
To introduce increasing variation into spatial annotations, we sys-
tematically added noise to the spatial annotation outlines and pro-
gressively rotated them by increasing degrees. The degree of
introduced variation was quantified by measuring the deviation from
the original outline and assessing their overlap. Supplementary Fig. 6d
displays representative examples along with their quantified degree of
deviation from the original outline, which is displayed in black, and
their respective IDs. The IDs are used to map their screening results in
Supplementary Figs. 6e, f. Notably, the percentage of false positives
remains consistently low, staying close to 0%. However, the percen-
tage of non-randomexpression variablesmisseddue to the introduced
variation increases linearly with the degree of deviation, with some
outliers. Observing outliers along this linear increase suggests that not
only the degree of deviation but also the nature and shape of the
overlap contribute to decreased test performance measures. Most
importantly, however, the increase in false negatives only became
apparent when the outline deviation exceeded 20%, highlighting the
robustness of spatial annotation screening via image annotations
against human-introduced bias. Supplementary Fig. 6e illustrates a
representative example with a 13% deviation from the original outline.

Sensitivity to variations using spatial trajectories
The creation of spatial trajectories can introduce variations in terms of
their start and endpoint, as well as variations in the angle at which they
deviate from the original or optimal placement. To simulate variations
in the start and endpoint, we generated trajectories and randomly
displaced the start and endpoint of each trajectory randomly. After-
ward, we measured the introduced deviation by calculating the
resulting length of the new trajectory and subtracting it from the
length of the original trajectory. Representative examples are pre-
sented in Supplementary Fig. 12b. Supplementary Fig. 12c displays the
screening results compared to the introduced deviation in length,
demonstrating that the percentage of false positives remains con-
sistently low, approaching 0%, regardless of the introduced variation.
It also indicates that variations in the start and endpoint do lead tonon-
random expression variables being missed (false negatives), with the
proportion increasing linearly. However, the increase in false negatives
only becomes noticeable when the deviation exceeds 0.75mm (the
original trajectory is approximately 5.75mm in length), surpassing the
5% threshold. This suggests that there is a sufficient margin for varia-
tions in the start and endpoint. To simulate variations in degree, we
generated deviating trajectories by displacing the endpoint along a
vector perpendicular to the course of the original trajectory, resulting
in trajectories with deviations of up to 25°. Supplementary Fig. 6d
provides representative examples of these deviations. The test per-
formance, influenced by the integrated deviations is displayed in
Supplementary Fig. 6e. This figure demonstrates that the number of
false positives remains unaffected, too, by variations introduced in this
manner. Additionally, it reveals that the number of false negatives
remains consistently low, only beginning to increase when the devia-
tion degree reaches 15°. Based on the examples shown in Supple-
mentary Fig. 12d, we conclude that the range of realistic variations
introduced by human error does not exceed this threshold and spatial
trajectory screening is robust with regards to this. Finally, we assessed
the impact of the screening area size using spatial trajectories, defined
as a rectangle formed by multiplying the trajectory’s length with a
parameter referred to as trajectory width. By default, the trajectory
width equals the trajectory length, resulting in squares encompassing
as many data points as possible. In cases where specific areas within
this square might confound the screening process, one can either
remove data points from these areas individually or reduce the width

(Supplementary Fig. 7e–i). Our investigation revealed that reducing
the width had no discernible effect on the number of false positives,
which consistently remained low. Furthermore, the impact on the
number of false negatives was negligible (Supplementary Fig. 12f, g). In
conclusion, we found that spatial trajectory screening remains robust
against variations introduced by human error.

Comparison with test statistics derived from scRNA-seq pseu-
dotime methods
Given that pseudotime-dependent gene expression identification
methods and spatial gradient screening both aim to detect non-
random patterns along a one-dimensional axis (distance or pseudo-
time), we conducted a comparative analysis of our total variation (TV)
test statistic, as illustrated in Supplementary Fig. 8c, against well-
known metrics from pseudotime-centric algorithms—specifically, the
waldStatistic from tradeSeq and the log-likelihood from Pseudoti-
meDE. To evaluate the correlationbetween eachmethod’s test statistic
and the degree of noise obscuring the ground truth pattern in our
simulated expression dataset, we selected a subset of 10,000 simu-
lated genes from a ‘combined’ noise type. We analyzed their gradient
in relation to the distance from a ‘necrotic_center’ spatial annotation,
considering barcode spots as cells and utilizing distances up to 3mm—

the scenario for which the dataset was simulated.
For this analysis, distances to the annotation, retrieved via SPA-

TA2::getCoordsDfSA(), substituted the pseudotime variable. Spots
beyond the scrutinized region, the environment, were excluded. Fol-
lowing guidelines from the tradeSeq (https://statomics.github.io/
tradeSeq/articles/tradeSeq.html) and PseudotimeDE (https://
htmlpreview.github.io/?https://rpubs.com/dongyuansong/842884)
tutorials, we fitted a generalized additive model (GAM) for each gene.
For tradeSeq, we chose nknots=7 for tradeSeq::fitGAM() based on the
Akaike Information Criterion (AIC) visual inspection. Due to compu-
tational limitations, a random sample of 1000 genes was analyzed for
PseudotimeDE, using n = 100 subsamples for PseudotimeDE::r-
unPseudotimeDE() as analyzing 10,000 genes would surpass 24 h on a
system with 256GB RAM and 48 cores. We then calculated the linear
correlation between the introducednoise in these simulatedgenes and
the derivedmetrics from both tradeSeq (waldStat) and PseudotimeDE
(test.statistics), alongside our total variation measure from SPA-
TA2::spatialAnnotationScreening() (column tot_var). This correlation
was assessed using the square of the base R cor() function, as depicted
in Fig. 6b, c, to gauge the linear relationship between the noise level
and the test statistics.

Benchmarking computational efficiency
To measure runtime, we used bench::mark() on a subset of sample
#UKF275_T_P, annotated for its hypoxic core, Supplementary Fig. 6c.
Subsets included all combinations of randomly selected spots (35, 350,
3500) and genes (10, 100, 1000, 10,000), generated using the base R
sample function. Each subset underwent 15 iterations. Benchmarks
were run on a MacBook Pro with 32GB RAM and 10 cores. Results are
displayed in Fig. 6d.

Cross-platform compatibility
Converting functions are provided by SPATA2 that seamlessly convert
S4 objects of class spata2 to S4 objects from platforms such as Giotto
or Seurat and vice versa as well as to AnnData-format for compatibility
withplatforms relyingonPython. These functions comewith theprefix
as*(). E.g.asGiotto(), asSeurat(), asSingleCellExperiment(),
asAnnData().

Data acquisition and processing of glioblastoma samples
The raw data for both samples, #UKF269 and #UKF313, were obtained
from the online database of our 10XVisium platform using the SPA-
TAData R package. SPATAData provides an interface with the
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SPATAData::launchSpataData()function that allows access to all
10XVisium samples used in previous publications by the Micro-
environment and Immunology Research Group Freiburg. Currently,
this collection comprises 32 samples, including 25 malignancies of the
central nervous system (CNS), such as #UKF269T and #UKF313T (for
detailed information on how these datasets were generated, see Ravi
et al. 4). The raw data sets were downloaded using the SPATADa-
ta::downloadRawData()function. Data processing, clustering and
DEA have been conducted the same way for both samples, as descri-
bed below. From the downloaded data sets we used the initi-
ateSpataObject_10X()function to create both SPATA2 objects. For
data normalization, we used the pipeline with Seurat::SCTrans-
form()using the default parameter setupof the function as illustrated
in the tutorials on how to use Seurat::SCTransform()here: https://
satijalab.org/seurat/articles/sctransform_vignette.html. As described
previously, the count matrix, as well as the scaled matrix and dimen-
sional reductions, are inherited by the respective SPATA2 object as
outputted by initiateSpataObject_10X()which is a direct imple-
mentation of the default pipeline suggested by Stuart and Butler
et al. 2019.

Data acquisition and processing of mouse brain sample
#MCI_LMU
Mouse experiments. Operations were performed on 9–11 weeks old
C57Bl6/J male mice, housed and handled under the German and Eur-
opean guidelines for the use of animals for research purposes.
Experiments were approved by the institutional animal care commit-
tee and the government of Upper Bavaria (ROB-55.2-2532.Vet_02-20-
158). The anesthetized animals received bilateral stabwound lesions in
the cerebral cortex by inserting a thin knife into the cortical par-
enchyma using the following coordinates from Bregma: RC: −1.2; ML:
1–1.2 and from Dura: DV: −0.6 mm. To produce stab lesions, the knife
was moved over 1mm back and forth along the anteroposterior axis
from −1.2 to −2.2mm.Animalswere euthanized 3 days post-injury (dpi)
by cervical dislocation10.

Visium experiments. A mouse brain was embedded and snap-frozen
in an isopentane and liquid nitrogen bath as recommended by 10x
Genomics (Protocol: CG000240). During cryosectioning (Thermo
Scientific CryoStar NX50), the brain was resected to generate a smaller
sample, and two 10μm-thick coronal sections of the dorsal brain area
were collected in one capture area. The tissue was stained using H&E
staining and imaged with the Carl Zeiss Axio Imager.M2mMicroscope
using ×10 objective (Protocol: CG0001600). The sequencing library
was prepared with the Visium Spatial Gene Expression Reagent Kit
(CG000239) using 18min permeabilization time. An Illumina, a paired-
end flow cell, was used for sequencing on a HiSeq1500 following
manufacturer protocol, to a sequencing depth of 75,398 mean reads
per spot. Sequencing was performed in the Laboratory for Functional
Genome Analysis of the LMU in Munich.

scRNA-seq experiments. The lesioned grey matter of the somato-
sensory cortex from three C57BL/6J mice at 3dpi was isolated using a
biopsy punch (∅ 0.25 cm) and the cortical cells were dissociated
using the Papain Dissociation System (Worthington, # LK003153)
followed by the Dead Cell Removal kit (Miltenyi Biotec # 130-090-
101), according to manufacturer’s instructions. Incubation with dis-
sociating enzyme was performed for 60min. Single-cell suspensions
were resuspended in 1xPBS with 0.04% BSA and processed using the
Single-Cell 3’ Reagent Kit v2 from 10x Genomics according to the
manufacturer's instructions. In brief, this included the generation of
single-cell gel beads in emulsion (GEMs), post-GEM-RT cleanup,
cDNA amplification, and library construction. Illumina sequencing
libraries were sequenced on a HiSeq 4000 following manufacturer
protocol, to a mean depth of 30,000 reads per cell. Sequencing was

performed in the genome analysis center of the Helmholtz Center
Munich.

scRNA-seq data analysis. Read processing was performed using 10X
Genomics Cell Ranger (v3.0.2). After barcode assignment and UMI
quantification, reads were aligned to the mouse reference genome
mm10 (GENCODE vM23/Ensembl 98; 2020A from 10xGenomics).
Further processing was performed using Scanpy1 (v1.9.1). Cells
were excluded if they had ≤300 or ≥6000 unique genes, or ≥20%
mitochondrial gene counts. The count matrix was
normalized (sc.pp.normalize_total) and log(x + 1)-transformed
(sc.pp.log1p), before proceedingwith dimensionality reduction and
clustering (sc.tl.pca, sc.pp.neighbors with n_pcs=20,
sc.tl.umap, sc.tl.leiden with resolution=0.6). Cell types
were manually annotated using known marker genes (‘ECs’: [‘Cldn5’,
‘Pecam1’], ‘Mural cells’: [‘Vtn’, ‘Pdgfrb’, ‘Acta2’, ‘Myocd’], ‘Fibroblasts’:
[‘Dcn’, ‘Col6a1’, ‘Col3a1’], ‘Oligodendrocytes’: [‘Mbp’, ‘Enpp2’], ‘OPCs’:
[‘Cspg4’, ‘Pdgfra’], ‘Neurons’: [‘Rbfox3’, ‘Tubb3’], ‘Astrocytes’: [‘Aqp4’,
‘Aldoc’], ‘Microglia’: [‘Aif1’, ‘Tmem119’], ‘Monocytes/Macrophages’:
[‘Cd14’, ‘Itgb2’, ‘Cd86’, ‘Adgre1’], ‘B cells’: [‘Cd19’], ‘T/NK cells’: [‘Cd3e’,
‘Il2rb’, ‘Lat’], ‘Neutrophils’: [‘S100a9’]).

Visium data analysis. Read processing was performed using 10x
Genomics Space Ranger (v1.2.2). After barcode assignment and UMI
quantification, reads were aligned to the mouse reference genome
mm10 (GENCODE vM23/Ensembl 98; 2020A from 10xGenomics).
Scanpy (v1.9.1) was used for further processing of the Visium dataset.
Barcode spots with <400 counts were excluded (sc.pp.®lter_-
cells). The count matrix was normalized (sc.pp.normalize_to-
tal) and log(x + 1)-transformed (sc.pp.log1p), before proceeding with
dimensionality reduction and clustering of barcode spots (sc.tl.pca
with n_comps = 40, sc.pp.neighbors, sc.tl.leiden). Clusters
were annotated based on histology and known locations of the injury
sites. The full-sized Space Ranger input image (7671×7671 px) was used
to segment nuclei using Squidpy and Cellpose23 via sq.im.segment
with method = cellpose_he and flow_threshold = 0.8; as sug-
gested in https://squidpy.readthedocs.io/en/stable/external_tutorials/
tutorial_cellpose_segmentation.html). Next, Tangram was used to
integrate scRNA-seq and Visium datasets by providing a cell type
probability score per barcode spot, based on spatial correlation of
genes shared by the datasets2. This probability score was used to
deconvolve the Visium dataset by assigning each segmented nuclei a
most likely cell type (using tg.pp_adatas with 1238 overlapping
training genes from the top 125 marker genes of each single-cell clus-
ter, tg.map_cells_to_space, tg.project_cell_annotations,
tg.create_segment_cell_df, tg.count_cell_annotations,
tg.deconvolve_cell_annotations; total assigned nuclei 4,356; as
suggested in https://squidpy.readthedocs.io/en/stable/external_
tutorials/tutorial_tangram.html). Processed h5ad files were imported
to SPATA2 by first loading them toR via anndata::read_h5ad() and
converting them using asSPATA2().

Initiation and processing of the SPATA2 objects
Data was read into R using SPATA2::initiateSpataObjectVi-
sium() from the SpaceRange outs folder. The count matrix was pro-
cessed using the R function Seurat::NormalizeFeatures(). For
further analysis, the normalized matrix of slot @layers from the
corresponding Seurat objectwas used. The tissue outline (tissue edge)
was identified using SPATA’s inbuilt image processing pipeline SPA-
TA2::identidySpatialOutliers(). Spatial outlier spots were
identified and removed using SPATA2::identifySpatialOut-
liers() and SPATA2::removeSpatialOutliers(). Afterward, we
clustered the barcoded spots using the BayesSpace algorithm as
implemented in SPATA2::runBayesSpaceClustering() (number
of clusters ranging from n = 3 to n = 15). Next, we identified spatially
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variable genes using the SPARKX implementation
SPATA2::runSparkx().

Downstream analysis of sample #UKF269
First, we inferred copy number alterations using SPATA2 imple-
mentation of the infercnv R-package via SPATA2::runCNV(). Second,
for sample #UKF269 we created a grouping variable based on the
histological architecture of the sample using the function SPA-
TA2::createSpatialSegmentation() called histology. The results
canbeobtained via theR commandspatial_segmentations$T269.
Differential expression analysis based on the grouping variable his-
tology was conducted using the default of SPATA2::runDEA()which
in turn calls the default of Seurat::FindAllMarkers(). The default
parameters were used. DEA was conducted based on the grouping of
the Bayes space clustering and the histological segmentation using the
default of runDEA(). Identification of spatially variable genes was
conducted using SPATA2::runSparkx(). The spatial trajectory was
named horizontal_mid and added via SPATA2::addSpatial-
Trajectory(). Start point was set to the min of all x-coordinates and
the mean of all y-coordinates. End point was set to the max of all x-
coordinates and the mean of all y-coordinates. Spatial trajectory
screening was conducted with the function SPATA2::spatial-
TrajectoryScreening(). The parametervariableswere set to the
vector of genes that were identified as spatially variable by SPARKX as
obtained by getSparkxGenes(…, threshold_pval = 0.05). The
output of STS is an S4object of classSpatialTrajectoryScreening
containing the results in slot @results. This is a data.frame in which
each row corresponds to ta gene-model fit as indicated by the columns
variables (theoretically, all numeric variables can be included in the
screening process) and models.

Downstream analysis of sample #MCI_LMU
Differential gene expression analysiswas conductedusing the function
runDEA() based on the clustering suggested by the Scanpy pipeline
(see above). The function SPATA2::createImageAnnotations()
was used to manually draw image annotations guided by prior infor-
mation on injury location and histology. The two image annotations
were labelled inj1 (upper section) and inj2 (lower section). Spatial
annotation screening was conducted two times. The first run (Main
Fig. 3) included parameter adjustments distance = "1.5 mm" and
resolution= "50um". Models corresponding to the gene expression
gradient of Hmox1 and Lcn2 used for the screening were obtained via
SPATA2::getSasDf() with equal parameters to the screening, con-
verted to a list via base::as.list() and added with the argument
add_models. The second run (Supplementary Fig. 3) included para-
meter adjustments distance="0.75 mm" and resolution "50 um".
In both cases, aswell as for all visualizations, parameteridswere set to
c("inj1", "inj2") including both injury annotations.

Downstream analysis of sample #UKF313
After visual inspection of the histology image and identification of the
necrotic area as well as the pseudopallisades we created a spatial
annotation that captured the spatial extent of the central necrotic area
using the function SPATA2::createImageAnnotations() and
named it necrotic_center (Supplementary Fig. 7a). The vivid partwithin
the annotated area of necrotic_center was also interactively annotated
and labeled vivid. Additionally, the spatial annotations necrotic_edge
and necrotic_edge2 were also created within the interactive interface
of SPATA2::createImageAnnotations(). The spatial annotation
necrotic_center was equipped with the spatial annotation vivid as a
hole using SPATA2::addInnerHoles() and the resulting spatial
annotation was called necrotic_area. The spatial annotation screening,
as visualized in Fig. 5b, was conducted using the function SPA-
TA2::spatialAnnotationScreening() with parameter ids set to

c("necrotic_area", "necrotic_edge", "necrotic_edge2"),
distance set to “dte”. Genes screened were subsetted according to the
list of spatially variable genes as provided by SPATA2::get-
SparkxGenes(…, threshold_pval = 0.05). The output of the
image annotation screening algorithm is an S4 object of the class
SpatialAnnotationScreening. Resulting model fits were filtered
for genes with an adjusted p-value (FDR) of <0.05 and with an RMSE
evaluation of <0.25 for either of the descendingmodels (Fig. 5c) or the
ascendingmodels (Fig. 5d). The remaining genes were grouped by the
model class (descending or ascending) and supplied to hypeR::hy-
peR(). Gene sets were provided by SPATA2::getGeneSetList. The
resultswerefiltered forgene sets in eithergroupwithanFDR<0.05.Gene
sets used for Fig. 5e, h were picked as examples for either group. Their
original name, as listed in the data.frames of SPATA2 are HM_HYPOXIA
and RCTM_CELLULAR_HEXOSE_TRANSPORT (e) as well as HM_OX-
IDATIVE_PHOSPHORYLATION and RCTM_TCR_SIGNALING (h).

Cell2Location
We have integrated the cell2location model into our study, using it
to bridge the Visium spatial transcriptomics data with the GBMap
single-cell dataset of glioblastoma. The single-cell dataset was
downsampled to 100,000 cells to accommodate computational
demands. Signature estimation from the single-cell dataset was
conducted via the cell2location Negative Binomial regression
model, producing the inf_aver_sc.csv file, which served as the
foundation for the spatial deconvolution process. Shared genes
between the signature genes and the spatial dataset were identified,
leading to the initiation of the cell2location model. The model was
trained adhering to recommended hyperparameters and utilizing
early stopping criteria based on ELBO loss. Post-training, the pos-
terior distribution of cell abundance was quantified and extracted
for subsequent analytical pursuits. The expected expression for
each cell type was computed, and cell-specific expressions were
documented.

CytoSpace
For the decomposition of cell types, we utilized the GBMap atlas,
which encompasses a dataset of over one million cells. We have
developed a pipeline for single-cell deconvolution employing Cyto-
Space in conjunction with SPATA objects, details of which are acces-
sible at our dedicated GitHub repository (githun.com/heilandd). The R
script named “CytoSpace_from_SPATA.R”provides adetailedworkflow
for preparing files compatiblewith theCytoSpace suite, supplemented
by a bash script to facilitate the batch processing of SPATA2 objects.
The CytoSpace analysis itself runs within a bash environment, and
upon its completion, a script is made available for importing the
results back into the SPATA2 framework using the CytoSpace2SPATA
function.

SPTCR-seq
Weutilized the spatial T cell receptor sequencing samples published in
Benotmane et al. 2023. Data were downloaded at GEO accession code
GSE238071 and processed by the analysis script https://github.com/
heilandd/SPTCR_seq_code.

Horizontal integration of spatial annotation screening
Horizontal Integration of the Spatial Annotation Screening was per-
formed with the output of the SPATA2::getSasDf() function which
provides inferred expression estimates at distance intervals as
explained in section Inferring an expression gradient. The distance
parameter was set to 3mm and the resolution parameter was set to
100μm. The data.frames of all six samples containing their respective
expression estimates of all variables displayed in Fig. 5 were merged
using base::rbind().
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Statistics and reproducibility
Statistical analysis was conducted with R (version 4.1.2). No statistical
method was used to predetermine the sample size. No data was
excluded from the analysis. The experiments were not randomized.
The investigators were not blinded to allocation during experiments
and outcome assessment. SPATA2 is a package that undergoes con-
tinuous improvements and adjustments. A stable version that can be
used to reproduce the analysis and figures of thismanuscript using the
source data file can be installed via ‘devtools::install_github(repo =
“kueckelj/SPATA2”, ref = “0e3eb85”)‘. The latest version of the package
can be installed via ‘devtools::install_github(repo = “theMILOlab/
SPATA2”)‘. The following packages are required as dependencies for
the SPATA2 version with which this study has been conducted: Bioc-
Generics >= v0.40.0; DT >= v0.23; DelayedArray >= v0.20.0;
DelayedMatrixStats >= v1.16.0; EBImage >= v4.36.0; FNN >= v1.1.3.2;
Matrix.utils >= v0.9.8; S4Vectors >= v0.32.4; Seurat >= v5.0.2; Single-
CellExperiment >= v1.16.0; SummarizedExperiment >= v1.24.0; aplot
>= v0.1.6; batchelor >= v1.10.0; broom >= v0.8.0; colorspace >= v2.1-0;
concaveman >= v1.1.0; confuns >= v1.0.3; dbscan >= v1.1-10; dplyr >=
v1.1.2; ggalt >= v0.4.0; ggforce>= v0.3.3; ggplot2 >= v3.4.3; ggridges >=
v0.5.3; ggsci >= v2.9; glue >= v1.7.0; grid >= v4.1.2; keys >= v0.1.1; limma
>= v3.50.3; lubridate >= v1.8.0; magick >= v2.7.3; magrittr >= v2.0.3;
paletteer >= v1.4.0; pheatmap>= v1.0.12; pracma>= v2.3.8; progress>=
v1.2.2; psych >= v2.2.5; purrr >= v1.0.1; readr >= v2.1.2; reticulate >=
v1.34.0; rlang >= v1.1.1; scattermore >= v1.2; shiny >= v1.7.1; shiny-
Widgets >= v0.7.0; shinybusy >= v0.3.1; shinydashboard >= v0.7.2;
shinyhelper >= v0.3.2; sp >= v1.5-0; stringi >= v1.7.6; stringr >= v1.5.0;
tibble >= v3.2.1; tidyr >= v1.2.0; tidytext >= v0.3.3; umap >= v0.2.8.0;
units >= v0.8-0; viridis >= v0.6.2.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw stRNA-seq data from human glioblastoma used in this study
have been deposited at https://datadryad.org/stash/dataset/doi:10.
5061/dryad.h70rxwdmj. The raw scRNA-seq and stRNA-seq data from
the injured mouse brain is deposited at https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE226211. Source data and code to
reproduce the panels presented in all main and Supplementary Figs.
are available in the source data file. Cluster results, interactively
created segmentations as well as spatial annotations are additionally
available as lists in the SPATA2 package. The data can be obtained
using the commands SPATA2::clustering, SPATA2::spa-
tial_segmentations, SPATA2::spatial_trajectories and
SPATA2::spatial_annotations. Furthermore, processed SPATA2
objects used in this study can be downloaded using SPATA2::-
downloadFromPublication(). Source data are provided with
this paper.

Code availability
The SPATA2 package is available https://github.com/theMILOlab/
SPATA2. SPATA2 version 3.0.0 which contains the features presented
in this manuscript will be made available within two weeks from pub-
lication of this manuscript. Further information and requests for
resources, raw data and reagents should be directed and will be ful-
filled by the contact: D. H. Heiland, henrik.heiland@uk-erlangen.de.
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