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Abstract
Background Inter-individual differences in treatment response are marked in multiple sclerosis (MS). This is true for Natali-
zumab (NTZ), to which a subset of patients displays sub-optimal treatment response. We conducted a multi-centric genome-
wide association study (GWAS), with additional pathway and network analysis to identify genetic predictors of response 
to NTZ.
Methods MS patients from three different centers were included. Response to NTZ was dichotomized, nominating responders 
(R) relapse-free patients and non-responders (NR) all the others, over a follow-up of 4 years. Association analysis on ~ 4.7 M 
imputed autosomal common single-nucleotide polymorphisms (SNPs) was performed fitting logistic regression models, 
adjusted for baseline covariates, followed by meta-analysis at SNP and gene level. Finally, these signals were projected onto 
STRING interactome, to elicit modules and hub genes linked to response.
Results Overall, 1834 patients were included: 119 from Italy (R = 94, NR = 25), 81 from Germany (R = 61, NR = 20), and 
1634 from Sweden (R = 1349, NR = 285). The top-associated variant was  rs11132400T (p = 1.33 ×  10–6, OR = 0.58), affect-
ing expression of several genes in the locus, like KLKB1. The interactome analysis implicated a module of 135 genes, with 
over-representation of terms like canonical WNT signaling pathway (padjust = 7.08 ×  10–6). Response-associated genes like 
GRB2 and LRP6, already implicated in MS pathogenesis, were topologically prioritized within the module.
Conclusion This GWAS, the largest pharmacogenomic study of response to NTZ, suggested MS-implicated genes and 
Wnt/β-catenin signaling pathway, an essential component for blood–brain barrier formation and maintenance, to be related 
to treatment response.
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Introduction

Multiple Sclerosis (MS; MIM 126200) is a disease of the 
central nervous system (CNS) characterized by chronic 
inflammation, demyelination, and axonal loss [1]. It is a 
complex multifactorial disorder, with both genetic and 

environmental components playing a role in disease suscep-
tibility. Genome-wide association studies (GWAS) greatly 
helped to elucidate genetic susceptibility for MS, revealing a 
highly polygenic architecture, with an ever-increasing num-
ber of common SNPs associated with risk [2].

Despite the expanded availability of multiple disease-
modifying therapies (DMT), to date, no single drug has 
proven to be effective in controlling or delaying disease pro-
gression in the vast majority of patients. Further, the disease 
is highly heterogeneous and unpredictable in its expression 
and marked inter-individual differences have been observed 
in response to different treatments: currently, there is in 
fact paucity of biological markers that can help identifying 
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responders and non-responders before starting a new drug 
[3, 4]. The identification of such biomarkers can help the 
neurologist to optimize treatment strategies, thus perform-
ing treatment decisions in clinical practice on an individual 
or stratum basis.

This is a critical need also for Natalizumab (NTZ), a 
second-line DMT approved in 2004 for relapsing–remitting 
course of MS, with established clinical efficacy in reducing 
the rate of clinical relapses, risk of sustained disability pro-
gression, and the number of new or enlarging brain lesions 
on Magnetic Resonance Imaging (MRI) [5, 6].

The drug is a humanized monoclonal antibody that selec-
tively inhibits α4β1 and α4β7 integrins, expressed on the 
surface of lymphocytes, hindering their binding to vascular 
endothelial adhesion molecules and their migration in the 
CNS across the blood–brain barrier (BBB), with the result 
of diminishing inflammation [7].

Despite the high efficacy, a subset of patients treated with 
NTZ, estimated around 25% [8], do not respond or respond 
sub-optimally to the drug. To date, only a few candidate 
gene studies [9, 10] have been pursued to identify the factors 
that can genetically influence the response to NTZ, mostly 
relying on the putative mechanism of action of the drug. 
The difficulty in collecting large cohorts of well-phenotyped 
patients has hampered sufficiently powered pharmacogenetic 
studies.

In this multi-center study, we report the results from a 
meta-analysis of genome-wide screens of common variants 
with response to NTZ in cohorts of MS patients from Italy, 
Germany and Sweden followed up for 4 years. Analyses 
were conducted at variant and pathway level, followed by a 
network approach to investigate joint association signals and 
to facilitate elucidation of mechanisms underlying response 
to drug. We then tested association of two genes emerging 
from a previous candidate study of response to NTZ [9], 
focusing on detoxification enzymes that counteract toxic 
compounds of oxidative stress (OS): a variety of reactive 
oxygen species are in fact produced in MS pathogenesis, 
enhancing mitochondrial injury, energy failure, and conse-
quent oligodendrocyte apoptosis[11] and putative role in 
response may be played by detoxification enzymes in the 
context of OS.

Patients and methods

Study population

The study included patients enrolled at three centers, from 
Italy, Germany, and Sweden.

Given the diversity in clinical data collection, a harmo-
nization effort was put in place using data dictionary, which 
defined the variables that were then utilized in the common 

harmonized database. Data dictionary also defined the unit 
types that the data would be transformed to, and the final 
values for enumeration type variables. The data from the 
three centers were then mapped into the data dictionary vari-
ables by providing file name, column name, and unit type 
for each, and in case of enumeration types, the values were 
mapped to the harmonized values.

For each center, we constructed the study cohort includ-
ing patients for which there were imputed data and complete 
availability of baseline variables like age and disease dura-
tion and the number of relapses 2 years before starting NTZ.

We excluded: (i) patients with age at treatment start 
<18 years and >55 years, (ii) patients who were on progres-
sive courses (primary or secondary) at treatment start, and 
(iii) patients with Expanded Disability Status Scale (EDSS) 
>4 at treatment start, given that these patients were likely 
in secondary progressive phase and thus different from the 
rest of the cohort.

The resulting values from harmonization phase were gen-
erated in longitudinal format, where each row corresponded 
to one treatment exposure for the patient. If a patient had 
multiple exposures to NTZ, the first observation with expo-
sure >12 months was considered eligible. If none of the 
observations had exposure larger than this threshold, the 
observation with the largest exposure was considered inde-
pendently of the order.

In case of a previous short exposure to NTZ, the patient 
was included in the analysis only if the interval between 
the two exposures was longer than 12 months, to avoid any 
reactivation/rebound activity during the second NTZ treat-
ment related to the withdrawal of the previous exposure. 
In the same way, patients previously treated with fingoli-
mod were not included in the analysis, unless the interval 
between fingolimod withdrawal and NTZ start was longer 
than 12 months.

The study was approved by the local ethical committees.

Response to therapy

We assessed response to NTZ with a dichotomous outcome, 
designating as responders patients who were relapse-free in 
the 4 years follow-up and non-responders those who expe-
rienced at least one relapse. Relapses were defined as new 
symptoms or exacerbation of existing symptoms persisting 
for ≥24 h, in the absence of concurrent illness/fever, and 
occurring ≥30 days after a previous relapse.

Quality control

Our study cohort was derived as a subset of a larger multi-
centric dataset, that constituted the replication cohort for 
study on MS severity, performed in the context of the Inter-
national Multiple Sclerosis Genetic Consortium (IMSGC). 
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Details on pre-imputation quality control, phasing and impu-
tation steps are thus described therein [12].

Quality control steps on imputed data were performed 
within data from each center. For the two centers that had 
multiple distinct genotyping platforms (Italy and Sweden), 
we performed post-imputation quality control after obtain-
ing a unique merged dataset. On a ‘per-marker’ basis, we 
excluded variants that: (1) had a call rate less than 95%; (2) 
had minor allele frequency (MAF) below 5%; (3) deviated 
from Hardy–Weinberg Equilibrium exact test at p <  10-5. 
On a ‘per-individual’ basis we excluded subjects who had 
high rates of genotype missingness (>5%) and one member 
of each pair of samples that showed, across platforms and 
within centers, high degree of recent shared ancestry (up to 
the second degree of kinship) inferred by robust estimation 
of their kinship coefficient [13]. We finally used Principal 
Component Analysis (PCA) pruning from the data variants 
with a call rate less than 99% and regions of extended link-
age disequilibrium, to control for population stratification 
and to discard individuals with outlying values in ancestry. 
We considered as outliers those samples being more than 4 
standard deviations away from the mean of the first two PCs. 
All the quality control steps were performed with PLINK 
2.0 [14].

Association analysis

The workflow of the study is depicted in Fig. 1. We per-
formed single-SNP association analysis fitting logistic 
regression models as implemented in PLINK 2.0, assum-
ing additive effects of imputed continuous dosages of minor 

alleles. Models were adjusted for age and disease duration 
at treatment start, sex, the number of relapses in the 2 years 
preceding NTZ therapy, and the first five eigenvectors from 
PCA to account for population substructure. Summary sta-
tistics were aggregated using fixed-effect meta-analysis with 
inverse-variance weighting of log(odds-ratios), as imple-
mented in PLINK 2.0.

Variants were annotated with ANNOVAR [15] and 
visualization of the top-associated locus was generated via 
regional plot with LocusZoom [16].

Gene-based analysis was conducted by means of Multi-
marker Analysis of GenoMic Annotation (MAGMA, [17]) 
method v1.10, adjusting for the same set of covariates. The 
tool accounts for linkage disequilibrium and confounders 
like gene size and density. We used the multi option, which 
combines evidence from three models (principal compo-
nents regression, mean of SNP squared Z-scores, and top 
SNP association).

A critical choice in gene-based and gene-set analysis is 
the assignment of SNPs to genes, since inclusion of noisy 
variants can be detrimental to association analysis. We 
assigned SNPs to the target gene with a “proximity rule” 
using a flanking window of 5  kb, to minimize overlap 
between nearby genes. Second, we applied a “functional 
rule” by:

a) integrating in target genes cis-eQTL SNPs, based on 
significant SNP–gene associations in immune cells 
(FDR < 5%), as available in DICE repository [18], that 
identified common genetic variants that are associated 

Fig. 1  Patients’ workflow. For each participating center, the number of patients for each subsequent application of filtering criteria is reported. 
The sample size for final study cohort is reported in bold character
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with the expression of > 12,000 genes in 13 human 
immune cell types.

b) integrating in target genes those variants significantly 
affecting splicing regulation (FDR<5%), using a cata-
logue of cis-splicing QTLs (sQTL, [19]) processed on 
transcriptome data in blood tissue from the Genotype-
Tissue Expression Consortium [20].

Gene-wise statistics were then meta-analysed with 
weighted Stouffer’s procedure, which combines the Z-scores 
for each strata with weights set to the square root of the 
sample size. Approximately independent signals were iden-
tified upon application of a clumping procedure (primary 
p1 < 5 ×  10-5, secondary p2 < 0.01, r2 > 0.6, maximum 
distance = 250 kb).

Gene‑set analysis

We used the gene-wise meta-analytic p values as input for 
gene-set analysis of association using as reference Gene 
Ontology (GO) Biological Processes, retrieved from Human 
Molecular Signature Database (MSigDB v2023.1, [21]). We 
filtered out GO terms with less than 10 and more than 500 
annotated genes, finally testing 5376 gene-sets.

Each GO term was tested under the competitive null 
hypothesis, which states that aggregated variation in genes 
annotated to the gene set is no more associated with the out-
come than that in all other genes in the genome. To accom-
plish this, we used as background signal the whole set of 
genes used in meta-analysis (n = 24,110).

Network analysis

We performed a subnetwork detection analysis, project-
ing meta-analysed statistics onto STRING v11.5 reference 
interactome [22]. We retained only those links with high 
interaction evidence (score > 0.7) in one of the three evi-
dence domains: (i) protein–protein interaction, derived from 
multiple interactomes, such as IntAct, BioGrid, MINT, and 
others; (ii) co-expression, which leverages gene expression 
data from multiple sources; (iii) databases, which collects 
evidence of interaction from curated pathway resources.

We then used dmGWAS tool [23], which applies a greedy 
search algorithm of dense modules within the node-weighted 
interactome, to detect association signals that aggregate 
in subnetworks. This procedure scores each module by a 
Z-score corresponding to the association level of the gene: 
the module score is obtained dividing the sum of the nodes 
scores by the square root of each module size. Starting from 
each seed, the procedure examines first-order neighbours 
and identifies those that generate the maximum increment 
of module score. We selected the top 1% of the top-scoring 
modules and merged them in a final subnetwork.

The top-scoring subnetwork was imported into Cytoscape 
v3.8 environment [24] for visualization, manipulation, and 
extraction of topologically relevant nodes (hubs, bottle-
necks) with CentiScaPe plugin [25]. We computed distri-
butions of graph centrality metrics like degree, between-
ness and eigenvector centrality for the detected module and 
selected nodes residing in the top 5% of at least one of the 
four distributions: these metrics should measure the func-
tional importance of genes in the module.

ClusterProfiler R package [26] was used to perform gene-
set over-representation analysis with hypergeometric test of 

Table 1  Clinical and 
demographic characteristics of 
the three study cohorts

Values are presented as mean (standard deviation), unless otherwise stated
§ Median (Inter-quartile range)
p values refer to the comparison among the three cohorts (*Chi-squared test, otherwise one-way ANOVA)

Germany Italy Sweden P value
(n = 81) (n = 119) (n = 1634)

Sex ns*
 Female 53 (65.4%) 81 (68.1%) 1,195 (73.1%)
 Male 28 (34.6%) 38 (31.9%) 439 (26.9%)

Age drug start, years 33.4 (8.1) 34.2 (8.6) 36.7 (8.8)  < 0.001
Disease duration drug start, years 5.7 (6.1) 8.9 (5.9) 7.4 (6.2) 0.003
EDSS drug start § 1.5 (1.5) 2 (1.5) NA ns
Relapses 2 years before drug start 1.9 (1.4) 2.1 (1.3) 1.3 (1.3)  < 0.001
Time exposed to NTZ, months 35.6 (11.7) 30.7 (12.7) 37.3 (12.5)  < 0.001
Relapses at 4 years 0.6 (1.0) 0.6 (1.0) 0.4 (0.8) 0.011
Response to treatment ns*
 Non responders 20 (24.7%) 25 (21%) 285 (17.4%)
 Responders 61 (75.3%) 94 (79%) 1,349 (82.6%)
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the genes annotated to the extracted module and the detected 
communities, using GO Biological Process domain as ref-
erence database; the list of genes from meta-analysis that 
were present on the filtered STRING interactome was used 
as background universe. Benjamini–Hochberg adjusted p 
values < 0.05 were used to nominate significant gene-sets.

Results

Association analysis

Clinico-demographic variables are reported for the three 
cohorts of the study population in Table  1. It can be 
observed that the sample size of the Swedish cohort (SWE) 
was much larger (N = 1634) as compared to the other two 
cohorts [N = 119 and N = 81 from Italy (ITA) and Germany 
(GER), respectively]. While there was some degree of het-
erogeneity at baseline variables, the proportion of R/NR did 
not significantly differ across the three cohorts (Table 1).

After quality control, a total of ~ 4.7 M variants were 
retained for downstream association analyses (SWE: 
4768680, ITA: 4612675, and GER: 4716021). Fixed-
effect inverse-variance weighted meta-analysis of effect 
sizes across the three strata was finally performed on a 
set of 4747971 variants shared between at least two of the 
three cohorts. QQ plot reported in Supplementary Fig. 1 

did not show effect of genomic inflation due to population 
substructure.

No variants showed significant association at genome-
wide level (p < 5 ×  10−8). Overall pattern of association 
is reported on the Manhattan plot in Fig. 2, whereas inde-
pendent clumped variants associated at suggestive level 
(p < 5 ×  10–5) are reported in Table 2. The most significant 
signal of association was detected at  rs11132400T, located in 
the intronic region of the F11-AS1 gene, coding for an anti-
sense RNA, on chromosome 4 (p = 1.3 ×  10–6, OR = 0.58, 
Fig. 3). For this variant, at least nominally significant eQTL 
effects in multiple tissues were detected using QTLbase 
[27]: In particular, eQTLs were identified in Induced Pluri-
potent Stem Cell for genes KLKB1, CYP4V2, F11 and in 
Blood-Macrophage for FAT1 gene.

Other top-associated variants were  rs12885261T, 
located in the intergenic region between genes PIGH and 
ARG2 on chromosome 14 (p = 1.67 ×  10–6, OR = 1.53) 
and  rs1323374T, located in the intergenic region between 
genes KLF4 and ACTL7B (p = 2.79 ×  10–6, OR = 0.59) 
(Fig. 2). In QTLbase,  rs12885261T was found to exert 
eQTL effect in blood B cells on ARG2 gene (T allele, 
beta = 0.31, p = 7.45 ×  10–8).

The three mentioned variants exhibited an I2 heteroge-
neity index that was low (0% or 12.9%), reflecting con-
cordance in effect sizes across the three cohorts, which 
can be observed in Supplementary Table 1, reporting the 

Fig. 2  Manhattan plot. The Manhattan plot of −  log10(p) of associa-
tions from fixed-effect meta-analysis. The genome-wide significance 
level is set at p = 5 ×  10–8 (blue line), whereas suggestive significance 

threshold at p = 5 ×   10–5 (red line). rsIDs of the top five associated 
SNPs are marked
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single-stratum effects of the SNPs in Table 2. We further 
report in Supplementary Table 2 the top ten variants with 
highest and lowest meta-analytic odds ratios.

Upon assignment of SNPs to genes according to prox-
imity and function rules, a total of 24,110 autosomal 
genes had at least one assigned variant and 2,536,188 
variants (63%) mapped for proximity, eQTL or sQTL 
effect to at least one gene. The complete list of meta-
analysed genes from gene-based associations at p < 0.05 
is reported in Supplementary Table 3.

In addition, we used gene-based statistics to test asso-
ciation for two genes, NQO1 and GSTP1 on chromosome 
16 and 11, respectively, encoding for detoxification 
enzymes, whose nonsynonymous polymorphisms have 
been identified as associated with the response to NTZ 
in a candidate study [9]. Although we could not replicate 
findings at single-variant level for the two polymorphisms 
(rs1800566 in NQO1 and rs1695 in GSTP1), our data 
from gene-based meta-analysis revealed nominal associa-
tion for both genes (pNQO1 = 0.056, pGSTP1 = 0.029), indi-
cating a possible role for them in the response to NTZ.

Gene‑set analysis

Gene-set analysis from meta-analysed genes under the 
competitive hypothesis did not yield significant results 
after multiple testing correction. Nevertheless, several GO 
terms that point to immune-related processes, in particu-
lar T helper cell differentiation, in response to NTZ were 
observed, like Regulation of CD4 positive alpha beta T-cell 
differentiation (p = 0.0009), T helper 17 cell lineage com-
mitment (p = 0.0033749), Positive regulation of adaptive 
immune response (p = 0.00399), Regulation of alpha beta 
T-cell differentiation (p = 0.00435), Negative regulation of 
type 2 immune response (p = 0.0079), and Regulation of T 
helper cell differentiation (p = 0.00848). The complete set 
of nominally associated GO terms is reported in Supple-
mentary Table 4.

Network analysis

We searched for subnetworks with enriched genetic signals 
of response to NTZ, conducting dense module searching on 
the STRING high-confidence reference interactome, which 
consisted of 10,698 nodes, matched to meta-analysed genes, 
connected by 121,565 edges. The nodes were weighted by 
gene-based summary statistics from GWAS meta-analysis 
(z-score), aggregating the scores at the module level (see 
Methods). The algorithm identified 6,766 modules, and we 
prioritized those residing in the top-1% of the distribution 
of z-scores (N = 68), which exhibited extensive overlap. The 
minimum and maximum size of the top-ranking modules 
was 6 and 10 nodes, and the largest connected component Ta
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obtained by merging them was a subnetwork of 135 nodes 
and 290 edges.

The top-associated genes in the module were TH 
(p = 1.31 ×  10–3) and SP100 (p = 1.33 ×  10–3): by construc-
tion, not all genes which are part of the merged module were 
associated with response to NTZ: nevertheless, there were 
many of them which are directly or indirectly connected with 
associated genes (Fig. 4). From the detected module, we 
produced the most topologically important nodes prioritiz-
ing genes with values in the top 5% of the distribution of 
three node centrality metrics (Supplementary Table 5). The 
top-ranked genes like PPP2CB and PPP4R2, encode for part 
of protein complexes and thus shared high values of graph 
centrality metrics (degree, betweenness, and eigenvector 
centrality), Among other genes with topological relevance 
that were also significantly associated with response to NTZ, 
we identified two genes like LRP6 (p = 0.045) and GRB2 
(p = 0.023) which have been already implicated in MS (see 
Discussion). Regional plots illustrating the overall pattern of 
association for the two genes are reported in Supplementary 
Fig. 2.

Functional gene-set over-representation analysis was per-
formed to yield possible biological mechanisms of module 
interacting genes. From GO BP terms, 75 terms were signifi-
cant at FDR < 5% (Fig. 5a). Many of these terms were seman-
tically related due to GO hierarchical structure. Among 
them, according to semantic similarity estimated with Jac-
card similarity coefficient, four themes emerged (Fig. 5b): 
Canonical WNT signaling pathways (padjust = 7.08 ×  10–6); 
Protein dephosphorilation (padjust = 1.42 ×   10–3); mRNA 
stabilization (padjust = 0.0144); Regulation of calcium ion 
transmembrane activity (padjust = 0.0161). The complete list 
of over-represented GO BP terms is reported in Supplemen-
tary Table 6, together with the annotated module genes.

Discussion

Identification of genetic markers, together with other bio-
markers, that associate with response to DMTs is a crucial 
clinical need for MS patients’ stratification and their tailored 
management. In the case of a highly effective treatment such 
as Natalizumab, to date, only a few candidate gene studies 
have been performed to elicit such markers [9, 10], mainly 
due to reduced sample size caused by the relatively low 
number of non-responders to the drug.

Here, we conducted a multi-centric GWAS of response to 
NTZ, to our knowledge the largest in pharmacogenomics of 
this DMT, that we pursued at multiple analytical levels. Our 
study could not identify any locus at genome-wide signifi-
cance: nevertheless, the top-associated SNP  rs11132400T, an 
intronic variant in F11-AS1 gene, was found to have eQTL 

effects on multiple genes with biological plausibility, such 
as KLKB1, F11, and FAT1.

The gene KLKB1 encodes prekallikrein, a protein which 
modulates the integrity of BBB, whereas F11 encodes 
the coagulation factor XI. Notably, both proteins can act 
as important mediators of the adaptive immune response 
during neuroinflammation. Specifically, in the contact acti-
vation pathway, three proenzymes in blood (plasma factor 
XII “FXII”, factor XI “FXI”, prekallikrein “PK”, and high-
molecular-weight kininogen “HK”) bind to a surface and 
cause blood coagulation and inflammation by activating 
their respective enzymes (FXIIa, FXIa and α-kallikrein). 
Several lines of evidence show that F11 and KLKB1 are 
also implied in MS aetiology. Indeed, targeting of factor FXI 
improves neurological function and attenuates CNS damage 
in Experimental Autoimmune Encephalomyelitis (EAE), the 
animal model of MS [28]. Moreover, a deficiency of plasma 
prekallikrein, the precursor of kallikrein which is found to 
be upregulated in EAE, leads to decreased immune cell traf-
ficking in the course of neuroinflammation rendering mice 
less susceptible to the disease [29, 30].

As of FAT1 gene, its product functions as an adhesion 
molecule and as signaling receptor, and its importance in 
developmental processes and cell communication is well 
assessed. Several lines of evidence show that FAT1 acti-
vates a variety of signaling pathways through protein–pro-
tein interactions, including the Wnt/β-catenin and MAPK/
ERK signaling pathways, which affect cell proliferation, 
migration, and invasion [31].

Interestingly, other intronic variants in F11-AS1 have 
been identified as associated with neuroimaging measure-
ments, such as brain morphology, subcortical volume, corti-
cal surface area, and cortical thickness [32, 33].

The second most associated variant from our meta-analy-
sis  (rs12885261T) exerted eQTL effect on ARG2 gene, with 
subjects carrying T allele having higher expression level of 
the gene, as of QTLbase resource. ARG2 encodes for an 
enzyme ubiquitously expressed at low level within the mito-
chondria, having arginine as substrate. This arginase isoform 
appears to play important roles in regulation of inflammation 
and pathogenesis of immune-mediated diseases, thus induc-
ing changes in intracellular levels of arginine, whose metab-
olism is a critical regulator of innate and adaptive immune 
responses [34]. A recent study showed the beneficial effect 
of ARG2 deletion in suppressing retinal neurodegeneration 
and inflammation in an experimental model of MS [35]. In 
another study, there was evidence of a significant reduction 
of Th17 cells and IL-23 + cells in relevant draining lymph 
nodes associated with Arg II knockout in murine model [36]. 
This is in line with our findings, which show that patients 
carrying T allele, possibly having higher transcriptional 
level of ARG2, also have a higher risk of relapsing and being 
non-responders to NTZ.
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Given the increasing awareness of the importance of 
molecular interactions in shaping complex traits [37], we 
then integrated human interactome data with our gene-
based association statistics using a module search algo-
rithm, with further investigation of topological properties 
of nodes/genes. The network-based approach, as a comple-
mentary strategy, can enhance understanding of molecular 
mechanisms: the module detected from overlapping our 
meta-analyzed statistics onto STRING interactome pointed 
to multiple enriched GO terms. Among these, we found 
a significant enrichment of terms semantically related to 
Wnt/β-catenin signaling. It is known that this pathway 
plays important roles in oligodendrocyte development and 
myelin formation [38] and its dysregulation may hamper 
BBB formation. Once the barrier is fully formed, this path-
way is also essential to maintain its properties in the adult 
CNS. Furthermore, it was found that inducible inhibition 
of this pathway in endothelial cells resulted in clinically 

exacerbated EAE, thus suggesting that reactivation of 
Wnt/β-catenin signaling might be beneficial to limit BBB 
leakage and immune cell infiltration into the CNS [39].

The network approach could then also highlight key play-
ers involved in response to treatment: central genes in the 
network, which would go undetected due to their milder 
association level, can in fact gain relevance because of 
their sharing many functional links with other response-
associated genes. We focused our attention on two genes, 
GRB2 and LRP6, which were topologically relevant nodes 
within our detected module, while being also associated with 
response and that already showed prior evidence of associa-
tion with MS from multiple studies.

The LRP6 gene (lipoprotein receptor-related protein 6) 
encodes a transmembrane cell surface protein. It plays a key 
role in the Wnt/β-catenin signaling pathway, being a member 
of the transmembrane receptor complex to which the Wnt 
ligand binds, allowing cytosolic β-catenin accumulation and 
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translocation to the nucleus through transcription and regu-
lations of target genes. β-catenin mediates negative effect 
on differentiation of oligodendrocytes progenitor cells, thus 
affecting the process of myelin sheath formation: this was 
confirmed by experimental studies in which expression lev-
els of LRP6 were markedly increased in RRMS patients and 
in cuprizone-induced demyelination mice [40, 41]. Further-
more, additional evidence inferred from murine model indi-
cates that enhanced β-catenin expression in T cells leads to 
aberrant and Th1-biased T-cell activation, infiltration of acti-
vated T cells into the spinal cord, and enhanced expression 
of integrin α4β1 through regulation of Itgb1 and Itga4 genes 
that encode for α4β1/VLA-4 subunits β1 and α4, α4β1/
VLA-4 being one of the main two targets of Natalizumab, 
preventing migration of autoreactive leukocytes through the 
blood-brain barrier and preventing inflammation [7, 42].

The GRB2 gene, which encodes for the growth factor 
receptor bound protein, was found associated in the gene-
based meta-analysis and detected as a central gene in the 
top-ranking module (top 5% percentile in betweenness). 
The gene is ubiquitously expressed and encodes an adap-
tor protein, which facilitates the formation of complexes to 

integrate signals from a wide array of binding partners to 
inner signaling pathways [43].

The gene acts as a modifier of Wnt/β-catenin signal-
ing, synergizing with multiple components of this path-
way, including LRP6, to amplify β-catenin dependent tran-
scription. Both in silico and in vivo evidence demonstrate 
that GRB2 operates either downstream of, or in parallel 
with, β-catenin to drive LEF/TCF-mediated transcription 
of specific genes, including ITGB1 and ITGA4. GRB2 
itself acts downstream of external growth factor receptors 
and integrins thus providing a way for cells to fine-tune 
Wnt/β-catenin signaling depending on the extracellular 
context [44]. Moreover, in mouse, Grb2-deficient T cells 
are impaired in their development and maturation and were 
found to favor the induction of EAE [45].

Notably, the gene has already been reported as one of 
the most topologically relevant genes in another network-
based study, which jointly investigated two MS GWAS 
susceptibility cohorts [46]. Further, the intronic variant 
rs9900529 in GRB2 was one of the 200 non-MHC loci 
identified in the to date largest multi-centric study of MS 
genetic risk from the IMSGC [2] and it has been identified 

Fig. 4  Detected network module. The final subnetwork resulting from 
the merge of modules, residing in top 1% of graph scores assigned by 
dmGWAS search algorithm, associated with response to NTZ. Color 
coding of nodes represents meta-analytic gene-level p values from 

MAGMA analysis, as indicated by the legend. Nodes/genes with 
association p > 0.05 were left white. Two genes which showed high 
level of centrality metrics and have already been implicated with MS 
(GRB2 and LRP6) are highlighted
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as associated with the response to interferon-beta in MS 
[47].

More generally, we did not identify significant association 
of the 200 non-MHC loci from IMSGC study of susceptibil-
ity, after Bonferroni correction [2], nor of the genome-wide 
significant variant rs10191329 in the DYSF–ZNF638 locus, 
emerged from the IMSGC study on progression [12] (data 
not shown).

There are some limitations that must be acknowledged 
regarding our study. The first concerns the fact that it is 
under-powered for a genome-wide scan. This is particularly 
true for the two smaller Italian and German cohort, for which 
effect estimates exhibited as expected high standard errors 
with wide confidence intervals. This of course impacted in 
the fixed-effects meta-analysis, in which contribution of 
estimates from the two smaller cohorts was down-weighted 
given their lower precision.

We sought to partially mitigate this issue by complement-
ing GWAS with pathway and network level of analysis. In 
doing so, given the importance of regulatory information 
demonstrated by the enrichment of GWAS signals in eQTL 

loci [48], we also tried to boost signals integrating with 
SNP–gene assignment information derived from robustly 
established eQTLs and sQTLs from tissues that are relevant 
for MS.

Another limitation, which is typical of network-based 
studies, refers to the fragmented interactome information, 
since the current knowledge of protein and gene interac-
tions is incomplete and static. We decided, however, to only 
retain high-confidence links, drawn from the most reliable 
sources of evidence of STRING repository, such as PPI, co-
expression, and functional databases.

Finally, we are aware of the limited sensitivity of relapses, 
compared to MRI parameters, for the assessment of response 
to Natalizumab. We considered relapses as clinical outcome 
of response to maximize the number of patients that could 
be included in the study. To increase the chance for detect-
ing clinical relapses, we used a period of observation up to 
4 years, to obtain data on a medium-term follow-up.

In conclusion, by investigating a multi-centric cohort of 
MS patients treated with NTZ, we were able to highlight a 
variant with a putative role in response to drug, rs11132400, 
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Fig. 5  Enriched terms from over-representation analysis of genes in 
the detected network module against Gene Ontology Biological Pro-
cess database. a Dotplot displaying the first 30 associated GO terms. 
p values were calculated from hypergeometric test, with adjust-
ment for multiple testing with Benjamini–Hochberg procedure at 
FDR < 5%. The Count parameter in the legend illustrates the number 
of genes annotated to GO term and belonging to module. On x-axis, 
Gene Ratio reports the ratio between the number of genes in the mod-
ule annotated to the term and the overall number of genes in the mod-

ule (N = 135). b Enrichment map, reporting a graph-based represen-
tation of semantic similarity measures between GO terms enriched 
at FDR < 5% (N = 75, see Supplementary Table 3). Terms with high 
similarity tend to cluster together: the stronger the similarity, the 
shorter and thicker the edges. The color of nodes is coded according 
to p.adjust from hypergeometric test, as reported in the legend. Simi-
larity between terms was computed with Jaccard correlation coeffi-
cient
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and two genes already implicated in MS pathogenesis, GRB2 
and LRP6. In addition, from the network module perspec-
tive, we report an enrichment of Wnt/β-catenin signaling 
pathway, which is an essential component for BBB forma-
tion and maintenance. A replication study of these findings 
in an independent cohort would be desirable to support 
future clinical applications.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00415- 024- 12608-6.
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