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Abstract

Background. Diagnostic criteria for major depressive disorder allow for heterogeneous symp-
tom profiles but genetic analysis of major depressive symptoms has the potential to identify
clinical and etiological subtypes. There are several challenges to integrating symptom data
from genetically informative cohorts, such as sample size differences between clinical and
community cohorts and various patterns of missing data.
Methods. We conducted genome-wide association studies of major depressive symptoms in
three cohorts that were enriched for participants with a diagnosis of depression (Psychiatric
Genomics Consortium, Australian Genetics of Depression Study, Generation Scotland) and
three community cohorts who were not recruited on the basis of diagnosis (Avon
Longitudinal Study of Parents and Children, Estonian Biobank, and UK Biobank). We fit a
series of confirmatory factor models with factors that accounted for how symptom data
was sampled and then compared alternative models with different symptom factors.
Results. The best fitting model had a distinct factor for Appetite/Weight symptoms and an
additional measurement factor that accounted for the skip-structure in community cohorts
(use of Depression and Anhedonia as gating symptoms).
Conclusion. The results show the importance of assessing the directionality of symptoms
(such as hypersomnia versus insomnia) and of accounting for study and measurement design
when meta-analyzing genetic association data.

Introduction

Major depressive disorder (MDD) is a mood disorder characterized by low mood, loss of inter-
est or pleasure (anhedonia), irritable affect, biological symptoms (psychomotor agitation/slow-
ing, altered sleep patterns, changes in appetite or weight), negative thought content, and
associated loss of function. To qualify for a diagnosis of major depression, the standard diag-
nostic classification systems (American Psychiatric Association, 2000, 2013; World Health
Organization, 1992) require one of two cardinal symptoms plus at least four other symptoms
to be present. Although conceptualized as a single disorder, the diagnostic criteria for MDD
can be met with any combination of these other symptoms, which entails the potential of hun-
dreds or thousands of symptom profiles (Fried & Nesse, 2015a; Zimmerman, Ellison, Young,
Chelminski, & Dalrymple, 2015). A single categorical phenotype – that might mask a multi-
tude of separate disorder types – stymies the testing of correlates and treatments. However,
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heterogeneity within the MDD diagnosis does have an upper
bound: only around one quarter of the potential symptom profiles
are actually observed (Fried & Nesse, 2015a; Zimmerman et al.,
2015).

Analyzing individual symptoms is one way to unwrap the het-
erogeneity of MDD (Cai, Choi, & Fried, 2020; Fried & Nesse,
2015b). Phenotypic studies have derived and tested factor struc-
tures of MDD symptoms (Elhai et al., 2012; Krause,
Bombardier, & Carter, 2008; Krause, Reed, & McArdle, 2010)
and twin models have been used to separate genetic from envir-
onmental sources of symptom covariance (Kendler, Aggen, &
Neale, 2013) and identify the low genetic concordance between
symptoms assessed inside and outside of a depressive episode
(Kendler & Aggen, 2023). These models grouped symptoms
together in two or three factors, which broadly contrast psycho-
logical v. somatic symptoms. Clinical subtypes are also part of
diagnostic criteria and these have been used to classify depression
profiles that are differentially associated with specific clinical,
behavioral, and biological correlates (Milaneschi, Lamers, Berk,
& Penninx, 2020; Penninx, Milaneschi, Lamers, & Vogelzangs,
2013). The context of symptom expression is an additional part
of heterogeneity. For example, symptoms like sleep changes can
have many causes unrelated to depression.

More recently, genetic studies of depressive symptoms have
updated the findings from twin models using data from genome-
wide association studies (GWAS). A confirmatory factor analysis
of genetic covariance estimates obtained from GWAS results on
current depressive symptoms showed that a psychological and som-
atic factor had the best fit to the data (Thorp et al., 2020). The detec-
tion of genetic correlates specific to each symptom implies that
symptoms may have differing genetic causes and consequences,
even if the symptoms themselves are highly genetically correlated.

Understanding the genetic architecture of MDD symptoms is
complicated by symptom ascertainment. In clinically ascertained
samples, symptom data is often only available on affected partici-
pants, and is thus conditioned on having been diagnosed with
depression. Conditioning data presence on a diagnosis can induce
downward bias in correlations amongst the symptoms comprising
that diagnosis, removing any shared genetic component. In com-
munity and biobank cohorts, participants are typically screened
for the presence of cardinal symptoms (depressed mood and
anhedonia) and only participants who report at least one cardinal
symptom are assessed for other symptoms of depression, which
also leads to high levels of missing symptom data in these cohorts.
Because community samples often contain symptom but not
diagnostic information, many GWAS purporting to investigate
MDD may actually be better characterized as investigating a
broader dysphoria continuum rather than MDD specifically
(Flint, 2023). However, the use of cardinal symptom screening
also potentially enhances the suitability of community cohorts
to add to the understanding of non-cardinal symptom dimen-
sions in the context of depression (Huang et al., 2023).

In this study we sought to uncover the genetic structure of
depression symptoms while accounting for how samples were
recruited and how symptoms were assessed. We did this by con-
ducting GWAS of individual symptoms of depression, testing fac-
tor models to investigate genetic heterogeneity as a function of
sample ascertainment (Case v. Community cohorts) and meas-
urement (with or without screening based on cardinal/gating
symptoms). Finally, we assessed the validity of the identified
latent factors of depression by estimating genetic correlations
with external traits.

Specifically, we conducted GWAS of symptom data in six
cohorts and meta-analyzed them in groups based on sample
ascertainment. The first group (the ‘Case-enriched’ cohorts) con-
sisted of clinical cases from the Psychiatric Genomics Consortium
MDD cohorts, participants from the Australian Genetics of
Depression study who were recruited based on depression diagno-
sis, and participants from Generation Scotland who met DSM cri-
teria for depression. The second group (the ‘Community’ cohorts)
consisted of the Avon Longitudinal Study of Parents and
Children, Estonian Biobank, and UK Biobank, and thus contained
data on participants who were not recruited with respect to
depression status. Using the two sets of meta-analyzed symptom
GWASs, we tested factor models that accounted for how the sam-
ples were ascertained (Case v. Community) and how symptoms
were assessed (with or without skip structure based on cardinal
symptoms). After understanding the measurements structure of
the symptom GWASs, we then compared alternative factor mod-
els for the symptoms based on previous literature and diagnostic
specifiers for depressive disorders. Using the best fitting overall
models, we tested for shared and specific genetic correlates with
other psychiatric, behavioral, and metabolic phenotypes that
have known genetic links to MDD.

Methods

Samples and assessments of depression symptoms

We analyzed depression symptom data in six studies: the
Psychiatric Genomics Consortium (PGC) (Major Depressive
Disorder Working Group of the Psychiatric GWAS Consortium,
2013; Wray et al., 2018), the Australian Genetics of Depression
Study (AGDS) (Byrne et al., 2020; Mitchell et al., 2022),
Generation Scotland: Scottish Family Health Study (GS:SFHS)
(Smith et al., 2012), the Avon Longitudinal Study of Parents
and Children (ASLPAC) (Boyd et al., 2013; Fraser et al., 2013),
Estonian Biobank (EstBB) (Leitsalu et al., 2015), and UK
Biobank (UKB) (Sudlow et al., 2015). We selected participants
from the PGC and GS:SHFS cohorts who met DSM criteria for
MDD based on structured diagnostic interviews or clinical assess-
ments of their current or lifetime worst episode. Participants from
AGDS were recruited based on history of receiving treatment for
depression and were assessed for symptoms during their worst
episode using an online questionnaire. The PGC, GS:SHFS, and
AGDS samples were enriched for depression cases and were
grouped together as ‘Case-enriched’ cohorts. In ALSPAC, current
depressive symptoms were prospectively collected by interview in
the original children sample. In EstBB and UKB, depression
symptoms from worst episode were assessed retrospectively
using online surveys. Symptom data in these two cohorts had a
skip-structure, where all participants were asked about mood
and anhedonia symptoms while only participants who endorsed
at least one cardinal symptom were asked about the other DSM
symptoms. In addition, in UKB we also used retrospective assess-
ments of prolonged low mood and/or anhedonia from the
Touchscreen questionnaire. Data from ALSPAC, EstBB, and
UKB samples were included regardless of depression diagnosis
and were grouped together as ‘Community cohorts’. Table 1
describes the effective sample size of number of participants
with each symptom for each grouping of studies that were ana-
lyzed. Effective sample size was calculated within each study as
NEff = 4/(1/NCases + 1/NControls) and then summed to get total
effective sample size for each meta-analysis (Grotzinger, de la
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Fuente, Privé, Nivard, & Tucker-Drob, 2022). See Supplementary
Material for additional information on study design, phenotyping,
genotyping, and imputation.

Genome-wide association symptom meta-analysis

Genome-wide association study (GWAS) analyses were conducted
on each symptom separately in the cohorts (PGC, AGDS, GS:
SFHS, ALSPAC, EstBB, UKB-Mental Health Questionnaire) on
participants who had genetic similarity with each other and
with the 1000 Genomes European reference. Participants in
UKB who clustered with other reference populations were not
analyzed because sample sizes did not meet the threshold for
LD score estimation (N > 5000). We also included GWAS of sep-
arate measures of depressed mood and anhedonia symptoms
from the UK Biobank (UKB-Touchscreen). See Supplementary
Material for more information on the individual study GWASs.
We meta-analyzed the GWAS summary statistics for each symp-
tom into ‘Case-enriched’ (PGC, AGDS, and GS:SFHS) and
‘Community’ (ALSPAC, EstBB, and UKB-MHQ) groups. We per-
formed the meta-analyses using Ricopili (Lam et al., 2020) and cal-
culated SNP-based heritability using LD Score Regression (LDSC)
(Bulik-Sullivan et al., 2015). We assessed significant associations in
the meta-analyzed summary statistics at p < 5 × 10−8/22 (the num-
ber of meta-analyses conducted) or at p < 5 × 10−8 with prior asso-
ciation or biological evidence at the locus.

Confirmatory factor analysis of genetic covariance structure

We fit confirmatory genetic factor analysis models to the
meta-analyzed cohort (i.e. Case-enriched and Community) and
UKB Touchscreen summary statistics for each symptom using
Genomic SEM (Grotzinger et al., 2019). This method uses
LDSC to estimate genetic variances of and covariances among
all the summary statistics. It then uses this matrix to condition
structural equation models fit in lavaan (Rosseel, 2012). We first
fit a common factor model, where all symptoms load on a single

factor as a baseline, using symptoms with a non-negative LDSC
heritability (Model ‘Depr’). To explore how sample ascertainment
influenced the genetic correlations among the symptoms, we fit a
series of models that captured various aspects of the sampling,
measurement, and missing data processes. We then used these
results to inform the construction of models that grouped the
symptoms based on previous findings and diagnostic criteria.
We assessed relative model fit using Akaike Information
Criterion (AIC) to pick the best model and absolute model fit
with Standardized Root Mean Square Residual (SRMR) to
determine how well the model was capturing the genetic correla-
tions among symptoms. We examined residual correlations to
understand what aspects of symptom structure were not being
captured. Factor structures are listed in online Supplementary
Table S4 and illustrated in Fig. 2 and online Supplementary
Figure S1.

Ascertainment/measurement models
The most pertinent measurement difference among the symp-
toms was based on the type of recruitment, so we created a two-
factor model where all symptoms from the same cohorts
(Case-enriched or Community) loaded together (Model
‘Case-Comm’). The next model considered the effect of the car-
dinal symptoms as gating items responsible for missing data pat-
terns in UK Biobank and posited a general MDD factor that all
the symptoms loaded on alongside an uncorrelated Gating factor
with loadings from just the Community and UKB Touchscreen
low mood and anhedonia symptoms (Model ‘Depr-Gate’).
The Gating factor would therefore isolate variation associated
with differences across the full non-clinical to clinical (dysphoria)
spectrum. Symptoms not loading on the gating factor (i.e. those
for which data are conditional on the presence of the two gating
symptoms) represent variation within the more severe region of the
spectrum and are thus more directly comparable to analyses of data
from cases only. We then combined the Case-Community and
Gating models to create a three-factor model (Model ‘Case-
Comm-Gate’).

Table 1. Effective sample size of number of participants with each symptom and symptom prevalences of genome-wide association studies

Cohort
N effective symptom present (Sample prevalence)

Symptom Abbr. Case-enriched cohorts meta Community cohorts meta UKB Touchscreen

1. Depressed mood Dep 2471 (93%) 102 071 (52%) 63 695 (56%)

2. Anhedonia Anh 4494 (90%) 98 458 (39%) 59 274 (37%)

3a. Weight loss/decrease in appetite AppDec 10 119 (39%) 35 837 (52%) 0

3b. Weight gain/increase in appetite AppInc 9259 (38%) 26 681 (38%) 0

4a. Insomnia SleDec 9418 (74%) 28 741 (79%) 0

4b. Hypersomnia SleInc 10 031 (49%) 18 377 (50%) 0

5a. Psychomotor agitation MotoInc 10 380 (46%) 218 (3%) 0

5b. Psychomotor slowing MotoDec 11 130 (53%) 543 (9%) 0

6. Fatigue Fatig 3907 (91%) 25 790 (84%) 0

7. Feelings of worthlessness/guilt Guilt 5503 (85%) 46 694 (59%) 0

8. Diminished concentration Conc 3793 (91%) 32 827 (76%) 0

9. Recurrent thoughts of death or suicide Sui 10 545 (65%) 50 035 (44%) 0

Case-enriched (PGC, AGDS, GenScot) and Community (ALSPAC, EstBB, UKB-MHQ) cohorts meta-analyses and UKB Touchscreen.
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Symptom models
Based off the best measurement model, we then fit models that
grouped symptoms into two or three factors based on previous
findings from phenotypic, twin, and Genomic SEM models; and
from diagnostic criteria. The first set of models grouped symptoms
into Psychological and Somatic (Model ‘Psyc-Soma’);
Psychological and Neurovegetative (Model ‘Psyc-Neur’); or
Affective and Neurovegetative (Model ‘Affc-Neur’) factors (Elhai
et al., 2012; Krause et al., 2008, 2010; Thorp et al., 2020).We further
tested a model (Model ‘Cog-Mood-Neur’) with cognitive, mood,
and neurovegetative symptom factors (Kendler et al., 2013).

We also fit factor models that disaggregated symptoms that
involved an increasing or decreasing change (appetite/weight,
sleep, or psychomotor). One such model (Model ‘CogMood-
App-Leth’) was based on previous findings that identified factors
for Cognitive/Mood, Appetite, and Lethargy symptoms (van Loo,
Aggen, & Kendler, 2022). Finally, we considered a three-factor
model (Model ‘AffCog-Melc-Atyp’) based on diagnostic criteria
of melancholic and atypical depression, with the remaining symp-
toms loading on an Affective/Cognitive factor.

Genetic multivariable regression

Using the best fitting symptom model, we tested how the factors
were related to correlates of depression. We selected phenotypes
that are known to genetically correlate with depression, including
psychiatric disorders (anxiety disorder, bipolar disorder, PTSD,
schizophrenia); depression defined through clinical ascertainment
(MDD) and through broader or more minimal definitions (major
depression); and other health, behavioral, and social phenotypes
(see Supplementary Materials for list of studies). We tested
whether the other phenotypes genetic correlations with each
symptom factor changed after adjusting for the other factors.
We did this by first fitting single regressions of a phenotype on
each symptom factor. We then compared this to a multivariable
regression of the phenotype on all symptom factors simultan-
eously. We used Benjamini–Yekutieli FDR adjustment to correct
for multiple testing (Benjamini & Yekutieli, 2001).

Results

Genome-wide association and meta-analyses

We conducted GWAS for each symptom separately in all cohorts
and meta-analyzed within sample ascertainment groups
(Case-enriched cohorts: PGC, AGDS, GS:SFHS; Community
cohorts: ALSPAC, EstBB, UKB-MHQ). We also supplemented
the symptoms data with GWAS of cardinal symptoms collected
at baseline in UKB (UKB-Touchscreen). (Table 1 and online
Supplementary Table S1). Two associations met the stringent
multiple testing burden ( p < 5 × 10−8/22 = 2.27 × 10−9). One
(rs1421085, p = 1.97 × 10−16) was an intron in FTO
(ENSG00000140718, alpha-ketoglutarate dependent dioxygenase,
a gene involved in food intake) associated with Weight gain in the
Community cohorts. The other (rs30266, p = 1.94 × 10−9) was
associated with Anhedonia in the Community cohorts and was
an intron variant in an uncharacterized non-coding RNA gene
(LOC105379109/ENSG00000251574) and previously associated
with depression (Howard et al., 2019), and loneliness (Day,
Ong, & Perry, 2018) (online Supplementary Table S2).

There were three additional associations that were supported
by prior association studies and met the genome-wide signifi-
cance threshold ( p < 5 × 10−8). Two of the associations were
with Depressed mood in the Community cohorts: rs55780333
( p = 1.78 × 10−8), an intron inCOMP(ENSG00000105664, cartilage
oligomeric matrix protein) also near CRTC1 (ENSG00000105662,
CREB regulated transcription coactivator 1), a gene that regulates
metabolism and results in social withdrawal behaviors when
knocked out in a mouse model (Breuillaud et al., 2012); and
rs28665026 ( p = 2.13 × 10−8) in an intron in an uncharacterized
gene (LOC107986777) and associated with schizophrenia
(Trubetskoy et al., 2022). An upstream variant (rs6884321, p =
4.27 × 10−8) for an uncharacterized long intergenic non-protein
coding RNA (LINC01938) was associated with Community
Anhedonia while this region was previously associated with neur-
oticism and MDD (Turley et al., 2018).

LDSC-estimated heritabilities were primarily in the 0.025–0.1
range. Many of the symptoms in the Case-enriched cohorts had

Figure 1. LDSC-estimated heritabilities.
Heritably (h2SNP) calculated on the liability scale for sum-
mary statistics that met inclusion criteria (NEff > 5000,
h2SNP > 0). Depression symptoms abbreviations are listed
in Table 1. Case-enriched = PGC + AGDS + GS:SFHS meta-
analysis, Community = ALSPAC + EstBB + UKB-MHQ meta-
analysis, UK Biobank = UKB-Touchscreen GWAS.
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negative heritabilities which is potentially an indication of inad-
equate power due to low variation. The psychomotor symptoms
from the Community cohorts did not meet the sample size inclu-
sion criteria (NEff > 5000). Out of the 12 total symptoms (taking
into account directionality), 8/12 from Case-enriched
meta-analysis and 10/12 from the Community meta-analysis
were taken forward. The two additional cardinal symptoms
from the UKB Touchscreen sample also met inclusion criteria.

Confirmatory factor analysis

We brought forward symptoms from the Case-enriched and
Community cohorts’ meta-analyses and the UKB Touchscreen
assessment that had a h2SNP greater than 0 and sample sizes
>5000 (Fig. 1, online Supplementary Table S3) for confirmatory
factor analysis (Fig. 2, online Supplementary Tables S4-6,
Figures S1a–n).

A common factor model (‘Depr’) of the symptoms showed
poor fit (CI, 0.932, SMR = 0.169, AIC = 5355). A model

(‘Case-Comm’) with separate factors for Case-enriched and
Community cohort symptoms had slightly poorer fit (AIC =
5369) and yielded a genetic correlation between the two factors
of rg = 0.63 ± 0.14, p = 1.3 × 10−5. An alternative model
(‘Depr-Gate’) that only split off the Community and
UKB-Touchscreen Mood and Anhedonia symptoms into an
orthogonal factor, capturing these symptoms use as gating
items in EstBB and UKB-MHQ showed substantially improved
fit (AIC = 3317). A model (‘Case-Comm-Gate’) combining the
sample factors with the orthogonal Gating factor showed slightly
poorer fit (AIC = 3375) compared with ‘Case-Comm’ model.
Therefore, we investigated the factor structure of MDD symptoms
and included a gating factor accounting for symptom skip-
structure in subsequent analyses.

We tested whether models that grouped symptoms together
across cohorts fit better than the factor models based on sampling
methodology. The best fitting of the symptom models was the
‘CogMood-App-Leth’ model which included factors capturing
Cognitive/Mood (Depressed mood, Anhedonia, Feelings of guilt,

Figure 2. Structure and loadings of confirmatory factor models.
Points representing loadings of each symptom (columns) onto each factor (rows) for confirmatory models and for the multivariate meta-analysis of well-powered
GWASs to illustrate model structure, for Case-enriched (red), Community (green), and UKB Touchscreen (blue) GWASs. Size of points scaled to absolute value of
factor loadings. Symptoms arranged in order so that symptoms (Affective/cognitive: Sui, Dep, :Anh, Guilt, Conc; typical somatic: MotoInc, SleDec, AppDec; and
atypical somatic: AppInc, MotoDec, Fatig, SleInc) that tend to load onto the same factor are listed next to each other.
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Insomnia, Psychomotor agitation, and Suicidality), Appetite
(Appetite/Weight increase and decrease), and Lethargy
(Psychomotor slowing, Hypersomnia, Fatigue) symptoms.
Because of a high correlation (rg = 0.91) between the Cognitive/
Mood and Lethargy factors, we made a model that merged
these two factors (model ‘CogMoodLeth-App’; CFI = 0.968;
SRMR = 0.147). The correlation between the Cognitive/Mood/
Lethargy and the Appetite factors was rg = 0.53 and we brought
this model forward for subsequent analysis (Fig. 3).

An inspection of the residual genetic correlations (online
Supplementary Figure S3) indicated correlations between the
same symptoms across the two cohorts (e.g. Case cohorts
Appetite decrease with Community cohorts Appetite decrease)
were not fully represented by the factor structure. We thus tested
how adding residual correlations between symptoms that were
well-powered enough to have been included from both cohorts
(Appetite decrease, Appetite increase, Insomnia, Hypersomnia,
and Suicidality) improved absolute model fit (model ‘CogMood-
App-Leth [Res]’). The addition of these residual correlations
lowered SRMR to 0.139 (online Supplementary Figure S1N).

Genetic multivariable regression

We used genetic multivariable regression to test the genetic corre-
lations of each MDD symptom factor with twelve clinically rele-
vant phenotypes, using genome-wide summary statistics.
For each external phenotype, we used Genomic SEM to fit single
regressions of the phenotype onto each MDD symptom factor
separately. We then fitted a multiple regression of each phenotype
onto all factors to test whether a phenotype’s association with
each factor changed after adjusting for the other factors. We tested
phenotypes against the Cognitive/Mood/Lethargy, Appetite, and
Gating factors (model ‘CogMoodLeth-App’).

In the single regression (unadjusted) analysis, the genetic rela-
tionship of each phenotype with all the factors were significant
and in the same direction, apart from educational attainment
which had a negative relationship with most of the factors (at
p < 0.0005) but a positive yet non-significant relationship with
the Gating factor (Fig. 4, online Supplementary Table S7).
When adjusting for the Cognitive/Mood/Lethargy and Gating
factors, Appetite symptoms factor had a larger magnitude genetic

correlation with BMI and educational attainment and an
unchanged correlation with smoking. After adjustment, the gen-
etic correlation of the Appetite factor with the other phenotypes
was close to 0, with the exception of pain, which decreased only
slightly. Adjusting for the Cognitive/Mood/Lethargy factor for
the other factors did not change its genetic correlation with alco-
hol dependence, anxiety, bipolar disorder, major depression and
MDD, neuroticism, PTSD, or long sleep duration. Genetic corre-
lations for the Gating factor were mostly attenuated (decreasing
substantially or going to 0), except that it increased for educa-
tional attainment and flipped sign for BMI.

Discussion

We used genome-wide association data to analyze the genetic rela-
tionships among symptoms of depression based on cohort sam-
pling and symptom content and to estimate whether the genetic
factors had specific correlates with other phenotypes. We analyzed
data from two sets of cohorts: Clinical cohorts that were ascertained
to have depression through clinical or interviewassessments orwere
recruited preferentially on a history of treatment for depression; and
Community cohorts that were not recruited based on disease status
(but for which symptom data was typically conditioned based on
endorsement of cardinal gating symptoms). We conducted
GWAS of major depression symptoms in each cohort then
meta-analyzed within the Clinical and Community groups.

We identified loci associated with individual major depression
symptoms and with a multivariate meta-analysis of a subset of
well-powered symptom GWASs. Several associations from the
individual symptoms meta-analysis (rs7515828, rs30266,
s6884321) have been identified previously in GWAS of or uni-
polar depression (EFO |ID EFO_0003761) (Sollis et al., 2023) or
in meta-analyses of MDD (Als et al., 2023; Howard et al., 2019;
Levey et al., 2021; Wray et al., 2018). SNPs associated with
Appetite / weight increase have primarily come up in GWAS of
body mass index and related traits (Elsworth et al., 2020;
Hoffmann et al., 2018; Howe et al., 2022; Yengo et al., 2018)
but another SNP in the FTO gene has also been associated with
atypical subtypes (Milaneschi et al., 2014).

While the low heritabilities of symptoms from the
Case-enriched cohorts limited the comprehensiveness of

Figure 3. Model structural diagram.
Standardized loadings (standard errors) of factors on symptoms and genetic correlations among factors for the model (CogMoodLeth-App) used for further analysis.
Symptom abbreviations are listed in Table 1.
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alternative factor models that could be tested, the best fitting
model did not have a separation between Case-enriched and
Community cohort symptoms. The lower power in some of the
symptom GWASs also do not allow for their inclusion in a multi-
variate meta-analysis of the ascertainment or symptom factors, as
only the psychological symptoms and data from the Community
cohorts were sufficiently powered for such an analysis. We also
showed that model fit was substantially improved by modeling
the use of cardinal symptoms (Low mood and Anhedonia) as gat-
ing items for surveys of depression symptoms. Among the models
that grouped symptoms together without consideration for symp-
tom direction, such as a split between psychological and somatic
symptoms identified in previous phenotypic (Elhai et al., 2012)

and genetic (Thorp et al., 2020) analyses, had worse fit than
Case-enriched/Community factor models. When directional
symptoms were portioned out based on diagnostic specifiers, we
found that a model capturing Cognitive/Mood, Appetite, and
Lethargy symptoms (van Loo et al., 2022) had the best fit
among all models considered. The correlations among the factors
indicated that the Cognitive/Mood and Lethargy symptoms
should be grouped together, with only the Appetite symptoms
making up a possibly different dimension of depression.

For the symptoms suitable for inclusion in the models that
were available from both sets of cohorts (Appetite, Sleep,
Feelings of guilt, and Suicidality), the Case-enriched cohorts con-
tributed between 10 and 35% of the total effective sample size.

Figure 4. Genetic multivariable regression.
(a) Model diagrams for single regressions and (b) multiple regressions of a phenotype Y on Appetite/Weight, Cognitive/Mood/Lethargy, and Gating symptom factors
(symptom indicator variables omitted for clarity). (c) Single genetic regression standardized beta coefficients (green triangles) and multiple genetic regression (red
circles) coefficients (point estimates plotted with 95% confidence intervals). FDR correction indicated for significant (darker shading) and non-significant (lighter
shading) coefficients. Multiple regression models adjust for the other factors. AlcDep, alcohol dependence; Anxiety, anxiety disorder; BIP, bipolar disorder; BMI,
body-mass index; EA, educational attainment; MD, major depression; MDD, major depressive disorder; Neu, neuroticism; Pain, chronic pain; PTSD, post-traumatic
stress disorder; Sleep, long sleep duration; Smoking, cigarettes per day.
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However, the Case-enriched cohort symptoms had low loadings
in both the sample-based and symptom-based models (except
for the Case-enriched Appetite/Weight and Suicidality symptoms),
and thus the model fit was driven primarily by capturing the
structure among the Community cohort symptoms. This observa-
tion is consistent with the fact that the Clinical cohorts are more
selected than the community cohorts, and that conditioning data
presence on a diagnosis can induce downward bias in correlations
amongst the symptoms that aggregate to form the diagnosis.
Similar attenuation, albeit to a lesser degree, may be expected
for items in community samples whose presence was conditioned
on endorsement of cardinal symptoms. Like many recent genetic
studies of depression, there is thus a need to increase the propor-
tion of severely affected participants included in the analysis and,
more specifically for understanding heterogeneity, to score symp-
toms in such a way as to capture more variation in severity.

A multivariable genetic regression analysis showed discrimina-
tive validity between the symptom factors, with the Appetite fac-
tor still being genetically correlated with BMI and smoking after
adjusting for the other factors, and a similar pattern being
observed for the Cognitive/Mood/Lethargy factor with other psy-
chiatric phenotypes. The increase in magnitude of the genetic cor-
relation of BMI and educational attainment with Appetite
symptoms combined with the sign flip for the Gating symptom
could be a part of study participation bias. However, a positive
genetic correlation between increase in appetite/weight with
BMI has previously been shown with PGC cohorts (Milaneschi
et al., 2017) and in UKB (Badini et al., 2022), and our findings
show that this result holds even when adjusting for genetic over-
lap with other symptoms. Yet the reliability of these findings is lim-
ited by the poor absolute fit of the models considered, which can be
attributed to the proposed models all missing some aspect of the
genetic structure as well as to small sample size in some of the con-
tributing GWAS, particularly from the Case-enriched cohorts.

Our results demonstrate the challenges and insights associated
with considering symptoms of depression separately. Substantial
care must be taken to consider how samples are ascertained (clin-
ical v. community recruitment), how symptoms are measured (the
use of gating items in symptom inventories), and whether assess-
ments of item direction (e.g. insomnia v. hypersomnia) are
included when modeling the genetic structure of depression
symptoms. However, the evaluation of direction was limited to
a small subset of symptoms and did not include distinctions
such as low v. irritable mood, or included only partial assess-
ments, such as weight but not appetite changes being assessed
in UKB. The symptoms also did not cover all diagnostic features
of the atypical specifier or other sources of heterogeneity such as
onset, life event exposure, or treatment outcomes (Harald &
Gordon, 2012) which may have a differential biological and gen-
etic basis (Beijers, Wardenaar, van Loo, & Schoevers, 2019;
Milaneschi et al., 2020; Nguyen et al., 2022). Even the best fitting
model that we tested had poor absolute fit, and thus the search for
alternative models, girded by more complete data, will continue.
The strongest genetic associations were between symptoms of
weight/appetite change and genes linked to satiety and metabol-
ism. This highlights the need to phenotype somatic symptoms
(weight or sleep changes and fatigue) outside of the context of
mental health assessments, so that their specific role in depression
can be better isolated, and mirrors the larger need consider how
symptoms are expressed inside and outside of a depressive epi-
sode (Kendler & Aggen, 2023). Likewise, the use of gating symp-
toms makes it difficult to fully capture the range of genetic risk

between everyday dysphoria and differences among affected indi-
viduals. While the results support the idea that depression is het-
erogeneous, the genetic liability for symptom profiles and
comorbidities can be captured in relatively few dimensions.
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