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Abstract

Originally rooted in game theory, the Shapley Value (SV) has recently become an
important tool in machine learning research. Perhaps most notably, it is used for
feature attribution and data valuation in explainable artificial intelligence. Shapley
Interactions (SIs) naturally extend the SV and address its limitations by assigning
joint contributions to groups of entities, which enhance understanding of black
box machine learning models. Due to the exponential complexity of computing
SVs and SIs, various methods have been proposed that exploit structural assump-
tions or yield probabilistic estimates given limited resources. In this work, we
introduce shapiq, an open-source Python package that unifies state-of-the-art
algorithms to efficiently compute SVs and any-order SIs in an application-agnostic
framework. Moreover, it includes a benchmarking suite containing 11 machine
learning applications of SIs with pre-computed games and ground-truth values to
systematically assess computational performance across domains. For practitioners,
shapiq is able to explain and visualize any-order feature interactions in predictions
of models, including vision transformers, language models, as well as XGBoost
and LightGBM with TreeSHAP-IQ. With shapiq, we extend shap beyond feature
attributions and consolidate the application of SVs and SIs in machine learning
that facilitates future research. The source code and documentation are available at
https://github.com/mmschlk/shapiq.

1 Introduction

Assigning value to entities collectively performing a task is essential in various real-world applications
of machine learning (ML) [62, 73]. For instance, when reimbursing data providers based on the value
of data [30, 78], or justifying a model’s prediction based on value of feature information [13, 18, 19,
54, 75]. The fair distribution of value among a group of entities is a central aspect of cooperative
game theory, where the Shapley Value (SV) [74] defines a unique allocation scheme based on intuitive
axioms. The SV is applicable to any game, i.e. a function that specifies the worth of all possible groups
of entities, called coalitions. In ML, application-specific games were introduced [5, 30, 73, 78, 82],
which typically require a definition of the overall worth and a notion of entities’ absence [19]. The
SV fairly distributes the overall worth among individuals by evaluating the game for all coalitions.
However, it does not give insights on synergies or redundancies between entities. For instance, while
two features such as latitude and longitude convey separate information, only their joint consideration
reveals the synergy of encoding an exact location. The value of such a group of entities is known as
an interaction [33], or in this context feature interaction [29], and is crucial to understand predictions
of complex ML models [20, 47, 48, 60, 65, 76, 80, 84], as illustrated in Figure 1.
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Package Overview

(a) Explain Models with Shapley Interactions

# get your data and model
X, model = ...
from shapiq import Explainer
# create an explainer object
explainer = Explainer(model=model, data=X, max_order=2)
# get the feature interactions for the first observation
interaction_values = explainer.explain(X[0], budget=1024)
# visualize the 2-order feature interactions
interaction_values.force_plot(feature_names=...)

(b) Domain-Independent Game Theory

import shapiq
class CountGame(shapiq.Game):

def __init__(self, n_players): ...
def value_function(coalitions):

# define the worth of a coalition
return np.sum(coalitions, axis=1)

game = CountGame(n_players=12)
# approximate SIs with KernelSHAP-IQ
approx = shapiq.KernelSHAPIQ(n=12)
si = approx(game=game, budget=1000)
# compute the Moebius transform exactly
exact = shapiq.ExactComputer(game, 12)
mi = exact(index='Moebius')
print(si[(3, 7)], mi[(3,)]) # get values

> > 0.00, 1.00

Figure 1: The shapiq Python package facilitates research on game theory for machine learning,
including state-of-the-art approximation algorithms and pre-computed benchmarks. It also provides a
simple interface for explaining predictions (a) of machine learning models beyond feature attributions,
enabling researchers to explore higher-order interactions or domain-independent game theory (b).

Shapley Interactions (SIs) [10, 33, 76, 79] distribute the overall worth to all groups of entities up
to a maximum explanation order. They satisfy axioms similar to the SV, to which they reduce
for individuals, i.e. the lowest explanation order. In contrast, for the highest explanation order,
which comprises an interaction for every coalition, the SIs yield the Möbius Interaction (MI), or
Möbius transform [27, 35, 71]. The MIs are a fundamental concept in cooperative game theory
that captures the isolated joint contribution, which allows to additively describe every coalition’s
worth by a sum of the contained MIs. With an increasing explanation order, the SIs comprise more
components that finally yield the MIs as the most comprehensive explanation of the game at the
cost of highest complexity [10, 79]. While the SV and SIs provide an appealing theoretical concept,
computing them without structural assumptions on the game requires exponential complexity [22].
For tree-based models, it was shown that SVs [53, 85] and SIs [60, 86] can be efficiently computed
by exploiting the architecture. Moreover, game-agnostic stochastic approximators estimate the
SV [11, 17, 44, 54, 56, 63, 67] and SIs [28, 29, 46, 76, 79] with a limited budget of game evaluations.

Diverse applications of the SV have led to various techniques for its efficient computation [13].
Recently, extensions to any-order SIs addressed limitations of the SV and complemented interpretation
of model predictions with higher-order feature interactions [10, 29, 76, 79, 80]. While stochastic
approximators are applicable to any game, their evaluation is typically performed in an isolated
application [29, 49], such as feature interactions. Moreover, implementing such algorithms requires
a strong mathematical background and specific design choices. Existing Python packages, such as
shap [54], provide a relatively small number of approximators, which are limited to the SV and
feature attributions.
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Contribution. In this work, we present shapiq, an open-source Python library for any-order SIs
that consolidates research for computing SVs and SIs across ML domains. Our core contributions are
summarized in Figure 1 and include,

(1) a general approximation and computation interface for state-of-the art SI algorithms and
methods without focus on a specific application like explanations or data valuation,

(2) an explanation API for using SIs to explain ML models and visualizing interactions,

(3) a benchmarking suite to evaluate SI approximators across several real-world scenarios,

(4) and a cross-domain empirical evaluation of approximators guiding practitioners.

Related software tools and benchmarks. shapiq extends the popular shap [54] Python package
beyond feature attributions aiming to fully embrace the application of SVs and SIs in ML. While
shap implements a single index for 2-order feature interactions to explain the predictions of tree-
based models, shapiq implements a dozen approximators for any-order SIs (Table 2) and offers a
benchmarking suite for these algorithms across 10 different domains (Table 3). Related software
such as aix360 [4], alibi [41] and dalex [6] are general toolboxes offering the implementation
and visualization of the most popular ML explanations for end-users. We specify in SIs to provide a
comprehensive tool facilitating research in game theory for ML, including the exact computation of
20 interaction indices and game-theoretic concepts (Table 1). Notably, the innvestigate [3] and
captum [43] Python packages offer feature attribution methods specific to (deep) neural networks.
Most recently, quantus [36] implements evaluation metrics for these explanation methods.

We build upon recent advances in benchmarking explainable artificial intelligence (XAI) methods
such as feature attributions [2, 50, 52, 62] and algorithms for data valuation [38]. XAI-Bench [52]
focuses on synthetic tabular data. OpenXAI [2] provides 7 real-world tabular datasets with pre-trained
neural network models, 7 feature attribution methods and 8 metrics to compare them. M4 [50]
extends OpenXAI to benchmark feature attributions of deep neural networks for image and text
modalities. In [62], the authors benchmark several algorithms for approximating SVs based on the
conditional feature distribution. OpenDataVal [38] provides 9 real-world datasets, 11 data valuation
methods and 4 metrics to compare them. shapiq puts more focus on benchmarking higher-order
SI algorithms and provides an interface to state-of-the-art explanation methods that base on SIs, e.g.
TreeSHAP-IQ [60]. While open data repositories such as OpenML [9] offer easy access to datasets for
ML, we pre-compute and share ground-truth SIs for various games (i.e. dataset–model pairs) that
saves considerate time and resources when benchmarking approximation algorithms.

2 Theoretical Background

In ML, various concepts are based on synergies of entities to optimize performance in a given task.
For example, weak learners construct powerful model ensembles [72], collected data instances and
features are used to train supervised ML models [16, 30], where feature values collectively predict
outputs. To better understand such processes, XAI quantifies the contributions of these entities to the
task, most prominently for feature values in predictions (local feature attribution [54, 75]), features in
models (global feature importance [16, 17, 68]), and data instances in model training (data valuation
[30]). Assigning such contributions is closely related to the field of cooperative game theory [73],
which studies the notion of value for players that collectively obtain a payout. To adequately assess
the impact of individual players, it is necessary to analyze the payout for different coalitions. More
formally, a cooperative game ν : P(N) → R with ν(∅) = 0 is defined by a value function on the
power set of N := {1, . . . , n} entities, which describes such payouts for all possible coalitions of
players. We later summarize such prominent examples in the context of ML in Table 3. Here, we
summarize existing contribution concepts for individuals and groups of entities, outlined in Table 1.

The SV [74] and Banzhaf Value (BV) [8] are instances of semivalues [23]. Semivalues assign contri-
butions to individual players and adhere to intuitive axioms: Linearity enforces linearly composed
contributions for linearly composed games; Dummy requires that players without impact receive
zero contribution; Symmetry enforces that entities contributing equally to the payout receive equal
value. The SV [74] is the unique semivalue that additionally satisfies efficiency, i.e. the sum of all
contributions yields the total payout ν(N). In contrast, the BV [8] is the unique semivalue that
additionally satisfies 2-Efficiency, i.e. the contributions of two players sum to the contribution of a
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Table 1: Available concepts in the ExactComputer class in shapiq with SIs in bold.

Setting Interaction Index (II) [27] Base Semivalue [23] Generalized Value (GV) [57]

Machine
Learning

k-Shapley Values (k-SII) [10]

Shapley (SV) [74] Joint SV [34]Shapley Taylor II (STII) [76]
Faithful Shapley II (FSII) [79]
kADD-SHAP [67]
Faithful Banzhaf II (FBII) [79] Banzhaf (BV) [8] –

Game
Theory

Möbius (MI) [27, 35, 71] – Internal GV (IGV) [57]
Co-Möbius (Co-MI) [32] External GV (EGV) [57]
Shapley II (SII) [33] Shapley (SV) [74] Shapley GV (SGV) [58]
Chaining II (CHII) [59] Chaining GV (CHGV) [57]
Banzhaf II (BII) [33] Banzhaf (BV) [8] Banzhaf GV (BGV) [59]

joint player in a reduced game, where both players are merged. The SV and BV are represented as a
weighted average over marginal contributions ∆i(T ) := ν(T ∪ {i})− ν(T ) for i ∈ N as

ϕSV(i) :=
∑

T⊆N\{i}

1

n
(
n−1
|T |

)∆i(T ) and ϕBV(i) :=
∑

T⊆N\{i}

1

2n−1
∆i(T ) .

In ML applications, the SV is typically preferred over the BV due to the efficiency axiom [73]. For
instance, in local feature attribution, the SV is utilized to fairly distribute the model’s prediction to
individual features [54, 75]. However, it was shown that the SV is limited when explaining complex
decision systems, and feature interactions, i.e. the joint contributions of features’ groups, are required
to understand such processes [20, 29, 47, 48, 60, 65, 76, 79, 80, 84].

The Generalized Value (GV) [57] and Interaction Index (II) [27] are two paradigms to extend
the notion of value to groups of entities. The GVs are based on weighted averages over (joint)
marginal contributions ν(T ∪ S) − ν(T ) for S ⊆ N given T ⊆ N \ S. In contrast, IIs are based
on discrete derivatives that account for lower-order effects of subsets of S. For instance, for two
players i, j ∈ N , the discrete derivative ∆{i,j}(T ) is defined as the joint marginal contribution
ν(T ∪{i, j})−ν(T ) minus the individual marginal contributions ∆i(T ) and ∆j(T ). More generally,
the discrete derivative ∆S(T ) for S ⊆ N in the presence of T ⊆ N \ S is defined as

∆S(T ) :=
∑
L⊆S

(−1)|S|−|L|ν(T ∪ L) with ∆S(T ) = ν(T ∪ S)− ν(T )︸ ︷︷ ︸
joint marginal contribution

−
∑

∅̸=L⊂S

∆L(T )︸ ︷︷ ︸
lower-order effects

.

A positive value indicates synergy, whereas a negative value indicates redundancy of S given T .
Lastly, a zero value indicates (additive) independence, i.e. the joint marginal contribution is equal to
the sum of all lower-order effects. GVs and IIs are uniquely represented [27, 57] by

ϕGV(S) :=
∑

T⊆N\S

p
|S|
|T |(n) (ν(T ∪ S)− ν(T )) and ϕII(S) :=

∑
T⊆N\S

p
|S|
|T |(n)∆S(T ) .

The most prominent examples are the Shapley GV (SGV) [58] and the Shapley II (SII) [33] with
pst (n) =

(
(n− s+ 1)

(
n−s
t

))−1
, which naturally extend the SV (cf. Appendix A.1). While the SGV

and SII are natural extensions to the SV, they are not suitable for interpretability, since they are
defined on the powerset and comprise an exponential number of components. Moreover, neither GVs
nor IIs satisfy the efficiency axiom for higher-orders, which is desirable for ML applications.

Shapley Interactions (SIs) for Machine Learning assign joint contribution Φk up to an expla-
nation order k, i.e. for all coalitions S ⊆ N with |S| ≤ k, which satisfy generalized efficiency
ν(N) =

∑
S⊆N,|S|≤k Φk(S) . The k-SVs (k-SIIs) [10] are the unique SIs that coincide with SII

for the highest order. The Shapley Taylor II (STII) [76] puts a stronger emphasis on the top-order
interactions, and Faithful SII (FSII) [79] optimizes Shapley-weighted faithfulness

L(ν,Φk) :=
∑
T⊆N

µ(t)

ν(T )−
∑

S⊆T,|S|≤k

Φk(S)

2

with µ(t) :=

{
µ∞ if t ∈ {0, n}

1

(n−2
t−1)

else .
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Table 2: Overview of methods in shapiq and applicable SIs. Explainers rely on approximators or
model assumptions. (✓) indicates only top-order approximation.

Class Implementation Source SV (k-)SII STII FSII

Approximator

SHAP-IQ [29] ✓ ✓ ✓ (✓)
SVARM-IQ [46] ✓ ✓ ✓ (✓)
Permutation Sampling (SII) [79] ✓ ✓ – –
Permutation Sampling (STII) [76] ✓ – ✓ –
KernelSHAP-IQ [28] ✓ ✓ – –
Inconsistent KernelSHAP-IQ [28] ✓ ✓ – –
FSII Regression [79] ✓ – – ✓

KernelSHAP [54] ✓ – – –
kADD-SHAP [67] ✓ – – –
Unbiased KernelSHAP [17] ✓ – – –
SVARM [44] ✓ – – –
Permutation Sampling [11] ✓ – – –
Owen Sampling [63] ✓ – – –
Stratified Sampling [56] ✓ – – –

Explainer

Agnostic (Marginal) – ✓ ✓ ✓ ✓
Agnostic (Conditional) – ✓ ✓ ✓ ✓
TreeSHAP-IQ [60] ✓ ✓ ✓ (✓)
Linear TreeSHAP [53, 85] ✓ – – –

Computer Möbius Converter – ✓ ✓ ✓ ✓
Exact Computer – ✓ ✓ ✓ ✓

FSII is thus ΦFSII
k := argminΦk

L(ν,Φk), where µ∞ ≫ 1 ensures efficiency. It was recently shown
that pairwise SII and consequently k-SII with k = 2 optimize a faithfulness metric with slightly
different weights [28]. For k = 1, all SIs reduce to the SV Φ1 ≡ ϕSV, which minimizes faith-
fulness L(ν,Φ1) [12] with the efficiency constraint, or equivalently µ∞ → ∞ [28, 54]. Finally,
for k = n, all SIs Φn are the MIs (cf. Appendix A.2), which are faithful to all game values, i.e.
L(ν,Φn) = 0. Notably, all SIs can be uniquely represented by the MIs [31]. In this context, SIs yield
a complexity-accuracy trade-off, ranging from the least complex (SV) to the most comprehensive
(MI) explanation. Other extensions include kADD-SHAP [67] of the SV and Faithful BII (FBII) [79] of
the BV, which do not satisfy efficiency, as well as Joint SVs [34], a GV with efficiency. However, in
the context of feature interactions and ML, SIs are preferred over GV-based (Joint SVs) or BV-based
IIs (FBII), as they account for lower-order interactions and adhere to the SV and MI as edge cases.

3 Overview of the shapiq Python package

The shapiq package accelerates research on SIs for ML, and provides an intutitve interface for
explaining any-order feature interactions in predictions of ML models. Its code is open-source on
GitHub at https://github.com/mmschlk while the documentation with notebook examples and
API reference is available at https://shapiq.readthedocs.io.

3.1 shapiq Facilitates Research on Shapley Interactions for Machine Learning

While SVs have been predominantly applied to explanation use cases by leveraging the shap [54]
library, shapiq provides a more abstract perspective on cooperative games and allows researchers
from various fields to interact with and extend the framework to incorporate SIs and SVs.

Approximators. We implement 7 algorithms for approximating SIs across 4 different interaction
indices, and another 7 algorithms for approximating SVs. Table 2 provides a comprehensive overview
of this effort, where the shapiq.Approximator class is extended with each implementation. We
unify common approximation methods by including a general shapiq.CoalitionSampler interface
offering approximation performance increases through sampling procedures like the border- and
pairing-tricks introduced in [17, 29].
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X, model = ...
import shapiq
# create an explainer object
explainer = shapiq.Explainer(model=model, data=X, max_order=3)
# choose a sample point to be explained
x = X[0]
# approximate feature interactions given the specificed budget
interaction_values = explainer.explain(x=x, budget=1024)
# retrieve 3-order feature interactions
interaction_values.get_n_order_values(3)
# visualize 1-order and 2-order feature interactions on a graph
interaction_values.plot_network(feature_names=...)

k-SII values of orders k = 1 & 2
explained class: dog (p=0.67)

Figure 2: Left: Exemplary code for locally explaining a single model’s prediction with shapiq.
Right: Local feature interactions visualized on a network plot.

X, model = ...
import shapiq
# create an explainer object
explainer = shapiq.Explainer(model=model, data=X, max_order=3)
# approximate feature interactions for multiple sample points
interaction_values_list = explainer.explain_X(X, budget=1024)
# retrieve 3-order feature interactions for the first point
interaction_values_list[0].get_n_order_values(3)
# visualize the global feature interaction importance
shapiq.plot.bar_plot(interaction_values_list, feature_names=...)

Figure 3: Left: Exemplary code for globally explaining multiple model’s predictions with shapiq.
Right: Global feature interaction importance visualized as a bar plot.

Exact computer. A key functionality of shapiq lies in computing the SIs exactly, which is feasible
for smaller games, but reaches its limit for growing player numbers. The shapiq.ExactComputer
class provides an interface for computing 20 interaction indices and game-theoretic concepts, includ-
ing the MI, BV, SGV, among others (see Table 1).

Games. Approximators and computers require the specification of a cooperative game. Games make
up a central level of abstraction in shapiq, and specifying a game only requires the implementation
of a domain-specific value function. Table 3 describes in detail 11 benchmark games implemented in
shapiq. Beyond synthetic games, our benchmark spans the 5 most prominent domains where SIs
can be applied for ML. The shapiq.Game class can be easily extended to include future benchmarks
in the package. We pre-compute and share exact SIs for 2 042 benchmark game configurations in
total (see Appendix B), facilitating future work on improving the approximators, which we elaborate
on further in Section 4.

3.2 Explaining Machine Learning Predictions with shapiq

In addition to facilitating theoretical advancements, shapiq also provides practical tools for applying
SIs in ML. These tools streamline the process of explaining feature interactions in model predictions,
allowing researchers and practitioners to easily compute and visualize interaction effects across a
range of models and data types.

Explainer. The shapiq.Explainer class is a simplified interface to explain any-order feature
interactions in ML models. Figure 2 goes through exemplary code used to approximate SIs for a
single prediction and visualize them on a graph plot. Currently two classes are further distinguished
within the API, but we envision extending shapiq.Explainer to include more data modalities
and model algorithms. shapiq.TabularExplainer allows for model-agnostic explanation based
on feature marginalization with either marginal or conditional imputation (refer to Appendix C
for details). shapiq.TreeExplainer implements TreeSHAP-IQ [60] for efficient explanations
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Table 3: Overview of the available benchmark games and domains in shapiq. Each benchmark
can be instantiated with different datasets, models, player sizes, or benchmark-specific configuration
parameters. This results in 2 042 pre-computed individual configurations (see Tables 4 and 5).

Domain Benchmark (Game) Source Players Coalition Worth

XAI
Local Explanation [54, 75] Features Model Output
Global Explanation [18] Features Model Loss
Tree Explanation [53, 60] Features Model Output

Uncertainty Uncertainty Explanation [82] Features Prediction Entropy

Model
Selection

Feature Selection [16, 68] Features Performance
Ensemble Selection [72] Weak Learners Performance
RF Ensemble Selection [72] Tree Models Performance

Valuation Data Valuation [30] Data Points Performance
Dataset Valuation [78] Data Subsets Performance

Unsupervised
Learning

Cluster Explanation – Features Cluster Score
Unsupervised Feature Importance [5] Features Total Correlation

Synthetic Sum of Unanimity Model [28, 79] Players Sum of Unanimous Votes

specific to decision tree-based models, e.g. random forest or gradient boosting decision trees, with
native support for scikit-learn [66], xgboost [15], and lightgbm [39]. Figure 3 goes through
exemplary code for explaining a set of predictions and visualizing their aggregation in a bar plot,
which represents the global feature interaction importance.

Visualizing interactions. shapiq supports the plotting and analysis of interaction values with
different visualizations techniques. shapiq.plot offers custom visualizations including our custom
network and SI graph plot, but also wraps established visualizations from shap [54] like the force
and bar plots. For a detailed guide and summary of the visualizations, we kindly refer to Appendix D.

Utility functions. shapiq offers additional useful tools that are described in detail in the docu-
mentation. Interaction values are stored and processed using the shapiq.InteractionValues
data class, which is rich in utility functions. Notably, useful set-based operators and generators
exist for handling player sets S ⊆ N or iterating over power sets P(N) of certain sizes with
shapiq.powerset. Finally, shapiq.datasets loads datasets used for testing and examples.

4 Benchmarking Analysis

The shapiq library enables computation of various SIs for a broad class of application domains. To
illustrate its versatility, we conduct benchmarks across a wide variety of traditional ML-based SV
application scenarios. The ML benchmark demonstrates how higher-order SIs enable an accuracy–
complexity trade-off for model interpretability (Section 4.1) and highlights that different approxi-
mation techniques in shapiq achieve the state-of-the-art performance depending on the application
domains (Section 4.2). Tables 3, 4 and 5 present an overview of different application domains and
associated benchmarks. Depending on the benchmark, it can be instantiated with different datasets,
models, player numbers or benchmark-specific configuration parameters, e.g. uncertainty type: epis-
temic for Uncertainty Explanation or imputer: conditional for Local Explanation. In total, shapiq
offers 100 unique benchmark games, i.e. applications times dataset–model pairs.

For all games that include n ≤ 16 players, the value functions have been pre-computed by evaluating
all coalitions and storing the games to file. Reading a pre-computed game from file, instead of
performing up to 216 = 65 536 value function calls with each new experiment run, saves valuable
computational time and contributes to reproducibility as well as sustainability. This is particularly
beneficial for tasks that involve remove-and-refit strategies [19], such as Data Valuation or Feature
Selection. For n > 16, where pre-computing a game and ground truth values becomes computation-
ally prohibitive, we rely on analytical solutions to compute the ground truth like TreeSHAP-IQ [60]
for tree-based ensembles or the MI representation of Sum of Unanimity Models [28, 29, 79]. For
details regarding the experimental setting and reproducibility, we refer to Appendix E.
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Indices: k-SII FSII FBII STII
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(a) Single synthetic interaction
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(b) ML applications

Figure 4: Shapley-weighted R2 of interaction indices by explanation order for (a) single synthetic
interactions and (b) ML applications. FSII is optimized for this metric, and increases faithfulness
with each order. Interactions improve faithfulness over SHAP and yield an exact decomposition for
the highest order. However, increasing interaction size negatively affects faithfulness.

4.1 Accuracy – Complexity Trade-Off of Shapley Interactions for Interpretability

In this experiment, we empirically assess how faithfully lower-order SIs representations capture
higher-order effects for varying explanation orders k and choice of interaction index. To this end,
we rely on the Shapley-weighted faithfulness L(ν,Φk) introduced in Section 2. The complexity of
SIs ranges from SVs (least complex) to MIs (most complex), where SVs minimize L(ν,Φ1) for
k = 1 [12, 54], while MIs perfectly capture all game values with L(ν,Φn) = 0 for k = n [10, 79].
To quantify the faithfulness of SIs across different domains, we calculate interaction values for a
given index Φk and explanation order k. We then approximate the game values for each subset
T ⊆ N of players as ν̂k(T ) :=

∑
S⊆T :|S|≤k Φk(S) and compare them to the ground truths using

L(ν,Φk) through a Shapley-weighted R2 (ν(T ), ν̂k(T )) for all T ⊆ N . For context, a game with no
interactions (a 1-additive game) will be perfectly reproduced by a 1-additive explanation, yielding
L(ν,Φ1) = 0 and R2 = 1. Conversely, games with substantial higher-order interactions will result
in larger errors for lower-order explanations, with L(ν,Φk) ≫ 0 and R2 < 1.

Figure 4 shows the Shapley-weighted R2 value for k = 1, . . . , n for a synthetic game with a
single interaction of varying size (a) and real-world ML applications (b). Here, we used µ∞ = 1
instead of µ∞ ≫ 1, which affects FBII that violates efficiency. The results show that in general
SIs become more faithful with higher explanation order. Notably, the difference between pairwise
SIs and SVs (SHAP textbox) is remarkable, where pairwise interactions (k = 2) already yield a
strong improvement in faithfulness. If higher-order interactions dominate, then SIs require a larger
explanation order to maintain faithfulness. While FSII and FBII are optimized for faithfulness, STII
and k-SII do not necessarily yield a strict improvement in this metric. In fact, it was shown that SII
and k-SII optimize a slightly different faithfulness metric, which changes for every order [28]. Yet,
we observe a consistent strong improvement of pairwise k-SII over the SV (SHAP). While FSII and
FBII optimize faithfulness, k-SII and STII adhere to strict structural assumptions, where STII projects
all higher-order interactions to the top-order SIs, and k-SII is consistent with SII. Practitioners may
choose SIs tailored to their specific application, where k-SII is a good default choice for shapiq.

4.2 Comparison of Approximation Methods

Various approximation methods for computing SIs are included in shapiq for a variety of SIs (cf.
Table 2). The possibility of attributing (domain-specific) state-of-the-art performance to a single
algorithm has been investigated empirically by multiple works [28, 29, 44–46, 56, 63, 67, 79, 81, 87].
We use the collection of 100 unique benchmark games in shapiq to evaluate the performance of
different SV and SI approximation methods on a broad spectrum of ML applications. For each
domain and configuration (see Table 4 and 5 in Appendix B), we compute ground truth SVs, 2-SIIs,
and 3-SIIs and compare them with estimates provided by all approximators from Table 2. The
approximators are run with a wide range of budget values and assessed by their achieved mean
squared error (MSE) or precision at five (Precision@5). Figure 5 summarizes the approximation
results.

Most notably, the ranking of approximators varies strongly between the different applications domains,
which is depicted in Figure 5 (a) and (b). This observation holds for both SVs and SIs. In general,
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Figure 5: Overview of the benchmark results containing (a) budget-dependent MSE approximation
curves on different benchmark settings, (b) a summary of the best performing approximators per
setting over all 100 benchmark games measured by MSE (left) and Precision@5 (right), and
(c) exemplary MIs for ten games of Data Valuation (top) and Local Explanation (bottom).

two types of approximation methods dominate the application landscape in terms of MSE and
Precision@5. First, kernel-based approaches including KernelSHAP, kADD-SHAP, KernelSHAP-IQ
and Inconsistent KernelSHAP-IQ perform best for Local Explanation, Uncertainty Explanation, and
Unsupervised Feature Importance. Second, the two stratification-based estimators SVARM and
SVARM-IQ achieve state-of-the-art performance for Data Valuation, Dataset Valuation, or Ensemble
Selection. Traditional mean-estimation methods including Permutation Sampling (SV and SII),
Unbiased KernelSHAP, SHAPIQ, and Owen Sampling achieve moderate estimation qualities in
comparison. Our findings give rise to the conclusion that stratification-based estimators perform
superior in settings where the size of a coalition naturally impacts its worth (e.g. training size for
Dataset Valuation), which is plausible as these methods group coalitions by size and thus leverage
this dependency. Meanwhile, kernel-based estimators achieve state-of-the-art in settings where the
dependency between size and worth of a coalition is less pronounced (e.g. sudden jumps of model
predictions in Local Explanation).

Interestingly, the settings where stratified-sampling outperforms kernel-based variants exhibit differ-
ent internal structures in the games’ MIs. Generally, MIs disentangle a game into all of its additive
components (cf. Section 2) and can be computed exactly with shapiq’s pre-computed games. The
accuracy of kernel-based estimators drops when higher-order interactions dominate the games’ struc-
ture instead of lower-order interactions. This is depicted by Figure 5 (c) where the MIs for Local
Explanation are of lower order than the Data Valuation games.

5 Conclusion

As SIs are increasingly employed to analyze ML models, it becomes pivotal to ensure that these are
accurately and efficiently approximated. To this end, we contributed shapiq, an open-source toolbox
that implements state-of-the-art algorithms, defines a dozen of benchmark games, and provides
ready-to-use explanations of any-order feature interactions. shapiq contains a comprehensive
documentation and is designed to be extendable by contributors.
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Limitations and future work. We identify three main limitations of shapiq that provide natural
opportunities for future work. First, the TreeSHAP-IQ algorithm is currently implemented in Python,
but by-design requires no access to model inference, which allows for a more efficient implementation
in C++ alike TreeSHAP [53, 85]. Second, SIs can be misinterpreted based on choosing the wrong
index for the application scenario, which we comment on across Sections 2 and 4.1. The selection of
a particular SI index, enabled by shapiq, offers great opportunities for application-specific research.
We also acknowledge that visualization of higher-order feature interactions is itself challenging and a
potential research direction in human-computer interaction. Certainly, a human-centric evaluation of
explanations may be required for their broader adoption in practical applications [70].

Broader impact. A potential negative societal implication of visualizing higher-order feature
interactions may be an information overload [7, 69] that leads to users misinterpreting model
explanations. Nevertheless, we hope our contribution sparks the advancement of game-theoretical
indices motivated by various applications in ML. Specifically in the context of explainability, shapiq
may impact the way users interact with ML models when having access to previously inaccessible
information, e.g. higher-order feature interactions.
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A Extended Theoretical Background

In this section, we introduce further theoretical background. Specifically, we discuss in more detail
the class of GVs and IIs in Appendix A.1, and the MIs in Appendix A.2.

A.1 Probabilistic and Cardinal-Probabilistic GVs and IIs

Probabilistic GVs [57] extend semivalues with a focus on monotonicity, i.e. games that satisfy
ν(S) ≤ ν(T ), if S ⊆ T ⊆ N . GVs satisfy the positivity axiom, which requires non-negative joint
contributions, i.e. ϕGV(S) ≥ 0, for all S ⊆ N in monotone games [57]. It was shown that GVs are
uniquely represented as weighted averages over (joint) marginal contributions ν(T ∪ S) − ν(T ).
On the other hand, cardinal-probabilistic IIs [27] are centered around synergy, independence and
redundancy between entities. IIs are based on discrete derivatives, which extend (joint) marginal
contributions by accounting for lower-order effects. IIs focus on k-monotonicity, i.e. games that have
non-negative discrete derivatives ∆S(T ) ≥ 0 for S ⊆ U ⊆ N with 2 ≤ |S| ≤ k. IIs satisfy the
k-monotonicity axiom, i.e. non-negative interactions ϕII(S) ≥ 0 for k-monotone games. Both, GVs
and IIs are uniquely represented [27, 57] as

ϕGV(S) :=
∑

T⊆N\S

p
|S|
|T |(n) · (ν(T ∪ S)− ν(T )) and ϕII(S) :=

∑
T⊆N\S

p
|S|
|T |(n) ·∆S(T ),

where pst (n) are index-specific weights based on the sizes of S, T and N . The SGV [58] and the SII
[33] with

Shapley: pst (n) =
1

n− s+ 1

(
n− s

t

)−1

naturally extend the SV. An alternative extension for the SV is the Chaining GV (CHGV) [57] and
Chaining II (CHII) [59] with

Chaining: pst (n) =
s

s+ t

(
n

s+ t

)−1

.

The main difference of the SGV/SII and the CHGV/CHII is the quantification of so-called partnerships
[27, 57], i.e. coalitions that only influence the value of the game if all members of the partnership
are present. The CHGV and CHII adhere to the partnership-allocation axiom [27, 57], which states
that the contribution of an individual member of the partnership and the interaction of the whole
partnership are proportional. In contrast, the SGV and SII satisfy the reduced partnership consistency
axiom [27, 57], which states that the interaction of the whole partnership is equal to the contribution
of the partnership in a game, where the partnership is a single player.

On the other hand, the Banzhaf GV (BGV) [58] and Banzhaf II (BII) [33] extend the BV with

Banzhaf: pst (n) :=
1

2n−s
.

A.2 Möbius Interactions (MIs)

The MIs Φn are a prominent concept in discrete mathematics, which appears in many different forms.
In discrete mathematics, it also known as the Möbius transform [71]. In cooperative game theory, the
concept is known as Harsanyi dividend [35] or internal II [27]. The MI for S ⊆ N is defined as

Φn(S) :=
∑
T⊆S

(−1)|S|−|T |ν(T ).

In this context, the MIs are the unique measure that satisfy the recovery property

ν(T ) =
∑
S⊆T

Φn(S) for every T ⊆ N.

The MIs are a basis of the vector space of cooperative games, and thus every game can be uniquely
represented in terms of its MIs. The Co-Möbius transform (Co-MI) [32] is another fundamental
concept linked to the MIs of the conjugate game, i.e. ν̄(T ) := ν(N \ T ) [31].
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B Detailed Overview of all Benchmark Games and Configurations

B.1 Benchmark Overview

We list in Table 4 and 5 all configurations available within our benchmark. Depending on the
application task, a configuration represents a combination of multiple parameters which specify the
generated cooperative games. For ML games such a combination includes at least the used dataset
and number of features or datapaoints. If a prediction model or imputer for feature values is employed,
as for example for Local XAI games, these are also specified.

Table 4: Overview of all Benchmark Configurations: Each configuration is assigned a distinctive
identifier (ID), has a name (Benchmark) indicating dataset and application if available, is pre-
computed (P.) if the player number n does not exceed 16, consists of |P(N)| many coalitions
to be evaluated, is iterated over multiple game instances (g), and has a set of parameters (Game
Configuration).

ID Benchmark Data P. n |P(N)| g Game Configuration
1 Data Valuation AD ✓ 15 32768 10 model_name=decision_tree, n_data_points=15
2 Data Valuation AD ✓ 15 32768 10 model_name=random_forest, n_data_points=15

3 Data Valuation AD ✓ 10 1024 30 model_name=decision_tree, player_sizes=increasing, n_players=10
4 Data Valuation AD ✓ 10 1024 30 model_name=random_forest, player_sizes=increasing, n_players=10
5 Data Valuation AD ✓ 10 1024 30 model_name=gradient_boosting, player_sizes=increasing, n_players=10
6 Data Valuation AD ✓ 14 16384 5 model_name=decision_tree, player_sizes=increasing, n_players=14

7 Ensemble Selection AD ✓ 10 1024 30 loss_function=accuracy_score, n_members=10

8 Feature Selection AD ✓ 14 16384 30 model_name=decision_tree
9 Feature Selection AD ✓ 14 16384 30 model_name=random_forest

10 Feature Selection AD ✓ 14 16384 30 model_name=gradient_boosting

11 Global Explanation AD ✓ 14 16384 30 model_name=decision_tree, loss_function=accuracy_score
12 Global Explanation AD ✓ 14 16384 30 model_name=random_forest, loss_function=accuracy_score
13 Global Explanation AD ✓ 14 16384 30 model_name=gradient_boosting, loss_function=accuracy_score

14 Local Explanation AD ✓ 14 16384 30 model_name=decision_tree, imputer=marginal
15 Local Explanation AD ✓ 14 16384 30 model_name=random_forest, imputer=marginal
16 Local Explanation AD ✓ 14 16384 30 model_name=gradient_boosting, imputer=marginal
17 Local Explanation AD ✓ 14 16384 30 model_name=decision_tree, imputer=conditional
18 Local Explanation AD ✓ 14 16384 30 model_name=random_forest, imputer=conditional
19 Local Explanation AD ✓ 14 16384 30 model_name=gradient_boosting, imputer=conditional

20 RF Ensemble Selection AD ✓ 10 1024 30 loss_function=accuracy_score, n_members=10

21 Uncertainty Explanation AD ✓ 14 16384 30 uncertainty_to_explain=total, imputer=marginal
22 Uncertainty Explanation AD ✓ 14 16384 30 uncertainty_to_explain=total, imputer=conditional
23 Uncertainty Explanation AD ✓ 14 16384 30 uncertainty_to_explain=aleatoric, imputer=marginal
24 Uncertainty Explanation AD ✓ 14 16384 30 uncertainty_to_explain=aleatoric, imputer=conditional
25 Uncertainty Explanation AD ✓ 14 16384 30 uncertainty_to_explain=epistemic, imputer=marginal
26 Uncertainty Explanation AD ✓ 14 16384 30 uncertainty_to_explain=epistemic, imputer=conditional

27 Unsupervised FI. AD ✓ 14 16384 1 -

28 Cluster Explanation BS ✓ 12 4096 1 cluster_method=kmeans, score_method=silhouette_score
29 Cluster Explanation BS ✓ 12 4096 1 cluster_method=agglomerative, score_method=calinski_harabasz_score

30 Data Valuation BS ✓ 15 32768 10 model_name=decision_tree, n_data_points=15
31 Data Valuation BS ✓ 15 32768 10 model_name=random_forest, n_data_points=15

32 Data Valuation BS ✓ 10 1024 30 model_name=decision_tree, player_sizes=increasing, n_players=10
33 Data Valuation BS ✓ 10 1024 30 model_name=random_forest, player_sizes=increasing, n_players=10
34 Data Valuation BS ✓ 10 1024 30 model_name=gradient_boosting, player_sizes=increasing, n_players=10
35 Data Valuation BS ✓ 14 16384 5 model_name=decision_tree, player_sizes=increasing, n_players=14

36 Ensemble Selection BS ✓ 10 1024 30 loss_function=r2_score, n_members=10

37 Feature Selection BS ✓ 12 4096 30 model_name=decision_tree
38 Feature Selection BS ✓ 12 4096 30 model_name=random_forest
39 Feature Selection BS ✓ 12 4096 30 model_name=gradient_boosting

40 Global Explanation BS ✓ 12 4096 30 model_name=decision_tree, loss_function=r2_score
41 Global Explanation BS ✓ 12 4096 30 model_name=random_forest, loss_function=r2_score
42 Global Explanation BS ✓ 12 4096 30 model_name=gradient_boosting, loss_function=r2_score

43 Local Explanation BS ✓ 12 4096 30 model_name=decision_tree, imputer=marginal
44 Local Explanation BS ✓ 12 4096 30 model_name=random_forest, imputer=marginal
45 Local Explanation BS ✓ 12 4096 30 model_name=gradient_boosting, imputer=marginal
46 Local Explanation BS ✓ 12 4096 30 model_name=decision_tree, imputer=conditional
47 Local Explanation BS ✓ 12 4096 30 model_name=random_forest, imputer=conditional
48 Local Explanation BS ✓ 12 4096 30 model_name=gradient_boosting, imputer=conditional

49 RF Ensemble Selection BS ✓ 10 1024 30 loss_function=r2_score, n_members=10

50 Unsupervised FI. BS ✓ 12 4096 1 –
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Table 5: Overview of all Benchmark Configurations: Each configuration is assigned a distinctive
identifier (ID), has a name (Benchmark) indicating dataset and application if available, is pre-
computed (P.) if the player number n does not exceed 16, consists of |P(N)| many coalitions
to be evaluated, is iterated over multiple game instances (g), and has a set of parameters (Game
Configuration).

ID Benchmark Data P. n |P(N)| g Game Configuration
51 Cluster Explanation CH ✓ 8 256 1 cluster_method=kmeans, score_method=silhouette_score
52 Cluster Explanation CH ✓ 8 256 1 cluster_method=agglomerative, score_method=calinski_harabasz_score

53 Data Valuation CH ✓ 15 32768 10 model_name=decision_tree, n_data_points=15
54 Data Valuation CH ✓ 15 32768 10 model_name=random_forest, n_data_points=15

55 Data Valuation CH ✓ 10 1024 30 model_name=decision_tree, player_sizes=increasing, n_players=10
56 Data Valuation CH ✓ 10 1024 30 model_name=random_forest, player_sizes=increasing, n_players=10
57 Data Valuation CH ✓ 10 1024 30 model_name=gradient_boosting, player_sizes=increasing, n_players=10
58 Data Valuation CH ✓ 14 16384 5 model_name=decision_tree, player_sizes=increasing, n_players=14

59 Ensemble Selection CH ✓ 10 1024 30 loss_function=r2_score, n_members=10

60 Feature Selection CH ✓ 8 256 30 model_name=decision_tree
61 Feature Selection CH ✓ 8 256 30 model_name=random_forest
62 Feature Selection CH ✓ 8 256 30 model_name=gradient_boosting

63 Global Explanation CH ✓ 8 256 30 model_name=decision_tree, loss_function=r2_score
64 Global Explanation CH ✓ 8 256 30 model_name=random_forest, loss_function=r2_score
65 Global Explanation CH ✓ 8 256 30 model_name=gradient_boosting, loss_function=r2_score
66 Global Explanation CH ✓ 8 256 30 model_name=neural_network, loss_function=r2_score

67 Local Explanation CH ✓ 8 256 30 model_name=decision_tree, imputer=marginal
68 Local Explanation CH ✓ 8 256 30 model_name=random_forest, imputer=marginal
69 Local Explanation CH ✓ 8 256 30 model_name=gradient_boosting, imputer=marginal
70 Local Explanation CH ✓ 8 256 30 model_name=neural_network, imputer=marginal
71 Local Explanation CH ✓ 8 256 30 model_name=decision_tree, imputer=conditional
72 Local Explanation CH ✓ 8 256 30 model_name=random_forest, imputer=conditional
73 Local Explanation CH ✓ 8 256 30 model_name=gradient_boosting, imputer=conditional
74 Local Explanation CH ✓ 8 256 30 model_name=neural_network, imputer=conditional

75 RF Ensemble Selection CH ✓ 10 1024 30 loss_function=r2_score, n_members=10

76 Unsupervised FI. CH ✓ 8 256 1 –

77 Local Explanation IC ✓ 14 16384 30 model_name=resnet_18, n_superpixel_resnet=14
78 Local Explanation IC ✓ 9 512 30 model_name=vit_9_patches
79 Local Explanation IC ✓ 16 65536 30 model_name=vit_16_patches

80 Sum of Unanimity Model Syn ✓ 15 32768 10 n=15, n_basis_games=30, min_interaction_size=1, max_interaction_size=5
81 Sum of Unanimity Model Syn ✓ 15 32768 10 n=15, n_basis_games=30, min_interaction_size=1, max_interaction_size=15
82 Sum of Unanimity Model Syn ✓ 15 32768 10 n=15, n_basis_games=150, min_interaction_size=1, max_interaction_size=5
83 Sum of Unanimity Model Syn ✓ 15 32768 10 n=15, n_basis_games=150, min_interaction_size=1, max_interaction_size=15
84 Sum of Unanimity Model Syn X 30 > 216 10 n=30, n_basis_games=30, min_interaction_size=1, max_interaction_size=5
85 Sum of Unanimity Model Syn X 30 > 216 10 n=30, n_basis_games=30, min_interaction_size=1, max_interaction_size=15
86 Sum of Unanimity Model Syn X 30 > 216 10 n=30, n_basis_games=30, min_interaction_size=1, max_interaction_size=25
87 Sum of Unanimity Model Syn X 30 > 216 10 n=30, n_basis_games=150, min_interaction_size=1, max_interaction_size=5
88 Sum of Unanimity Model Syn X 30 > 216 10 n=30, n_basis_games=150, min_interaction_size=1, max_interaction_size=15
89 Sum of Unanimity Model Syn X 30 > 216 10 n=30, n_basis_games=150, min_interaction_size=1, max_interaction_size=25
90 Sum of Unanimity Model Syn X 50 > 216 10 n=50, n_basis_games=30, min_interaction_size=1, max_interaction_size=5
91 Sum of Unanimity Model Syn X 50 > 216 10 n=50, n_basis_games=30, min_interaction_size=1, max_interaction_size=15
92 Sum of Unanimity Model Syn X 50 > 216 10 n=50, n_basis_games=30, min_interaction_size=1, max_interaction_size=25
93 Sum of Unanimity Model Syn X 50 > 216 10 n=50, n_basis_games=150, min_interaction_size=1, max_interaction_size=5
94 Sum of Unanimity Model Syn X 50 > 216 10 n=50, n_basis_games=150, min_interaction_size=1, max_interaction_size=15
95 Sum of Unanimity Model Syn X 50 > 216 10 n=50, n_basis_games=150, min_interaction_size=1, max_interaction_size=25

96 Local Explanation MR ✓ 14 16384 30 mask_strategy=mask

97 Tree Explanation Syn X 30 > 216 10 model_name=decision_tree, classification=True, n_features=30
98 Tree Explanation Syn X 30 > 216 10 model_name=random_forest, classification=True, n_features=30
99 Tree Explanation Syn X 30 > 216 10 model_name=decision_tree, classification=False, n_features=30
100 Tree Explanation Syn X 30 > 216 10 model_name=random_forest, classification=False, n_features=30
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B.2 Datasets and Models Used

Our benchmark games are based on five datasets. All of these datasets are publicly available. The
following contains a small description of all datasets:

AC: The AdultCensus [42, CC BY 4.0 license] dataset is a tabular classification dataset contain-
ing n = 14 features. The dataset was obtained from openml [25] (id: 1590) and is avail-
able at https://github.com/mmschlk/shapiq/blob/v1/data/adult_census.csv
for reproducibility.

BS: The BikeSharing [24, CC BY 4.0 license] dataset is a tabular regression dataset contain-
ing n = 12 features. The dataset was obtained from openml [25] (id: 42712) and is
available at https://github.com/mmschlk/shapiq/blob/v1/data/bike.csv for re-
producibility.

CH: The CaliforniaHousing [40, CC0 public domain] dataset is a tabular regression dataset
containing n = 8 features. The target of this dataset is to predict property prices. The
dataset was obtained from scikit-learn [66] and is available at https://github.com/
mmschlk/shapiq/blob/v1/data/california_housing.csv for reproducibility.

MR: The MovieReview is also known as the IMBD dataset [55, custom research license] contains
moview review excerpts. We simplifiy the dataset to only contain sentences parts containing
n ≤ 14 words. The simplified dataset can be found at https://github.com/mmschlk/
shapiq/blob/v1/benchmark/data/simplified_imdb.csv for reproducibility.

IC: The ImageClassification data contains test images from Imagenet [21, custom research
license]. The example images can be found at https://github.com/mmschlk/shapiq/
tree/v1/shapiq/games/benchmark/imagenet_examples for reproducibility.

All models used for the benchmark games are defined in the code repository. We use decision
tree, random forest, k-nearest neighbour, linear/logistic regression models from scikit-learn [66].
Moreover, we use gradient-boosted tree classifiers and regressors from xgboost [15]. We train small
neural networks with PyTorch [64] and use PyTorch’s ResNet18 architecture. The movie review
language model and the vision transformer is derived from the transformers API [83].
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B.3 Benchmarking Approximators of SIs with shapiq

Listing 1 shows an API for benchmarking 4 approximation algorithms on an Dataset Valuation game
based on the AdultCensus dataset and a gradient boosting decision tree model.2

import shapiq
from shapiq.games.benchmark.benchmark_config import (

load_games_from_configuration,
print_benchmark_configurations

)
from shapiq.games.benchmark.plot import plot_approximation_quality, add_legend
# print all available games and benchmark configurations
print_benchmark_configurations()
>> Game: AdultCensusDatasetValuation
>> Player ID: 0
>> Number of Players: 10
>> Number of configurations: 3
>> Is the Benchmark Pre-computed: True
>> Iteration Parameter: random_state
>> Configurations:
>> Configuration 1: {'model_name': 'decision_tree', 'player_sizes': 'increasing', 'n_players': 10}
>> Configuration 2: {'model_name': 'random_forest', 'player_sizes': 'increasing', 'n_players': 10}
>> Configuration 3: {'model_name': 'gradient_boosting', 'player_sizes': 'increasing', 'n_players': 10}
>> ...
# load the game files from disk / or download
games = load_games_from_configuration(game_class="AdultCensusDataValuation", n_player_id=0, config_id=2)
games = list(games) # convert to list (the generator is consumed)
n_players = games[0].n_players
# define the approximators to benchmark
sv_approximators = [

shapiq.PermutationSamplingSII(n=n_players, index="k-SII", random_state=0),
shapiq.SHAPIQ(n=n_players, random_state=0),
shapiq.SVARMIQ(n=n_players, random_state=0),
shapiq.KernelSHAPIQ(n=n_players, random_state=0)

]
# run the benchmark with the chosen parameters
results = shapiq.games.benchmark.run_benchmark(

index="k-SII",
order=2,
games=games,
approximators=sv_approximators,
save_path="benchmark_results.json",
budget_steps=[500, 1000, 2000, 4000],
n_jobs=8

)
# plot the results
plot_approximation_quality(results)

Listing 1: Exemplary code for benchmarking approximators with shapiq.

2For details, refer to the notebook example at https://shapiq.readthedocs.io/en/latest/
notebooks/benchmark_approximators.html.
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C Marginal and Conditional Imputers

When computing SVs and SIs, especially for structured tabular data that has a natural interpretation
of feature distribution, there is a choice for marginalizing feature influence over either a marginal or a
conditional distribution [1, 14, 18, 51, 53, 54, 61, 62, 77].

For a concrete example [51], consider a supervised learning task where a model f : X → R is used to
predict the response variable given an input x, which consists of individual features (x1,x2, . . . ,xn).
Let p(x) to represent the data distribution with support on X ⊆ Rn. We use bold symbols x to
denote random variables and normal symbols x to denote values. Let xS and xS denote a subset of
features, i.e. players in a game, and values for different S ⊆ N , respectively. Then, a cooperative
game ν : P(N) → R for estimating Shapley-based feature attributions and interactions is defined as

ν(S) := fS(xS) := Eq(xS̄)

[
f(xS ,xS̄)

]
=

∫
f(xS , xS̄)q(xS̄)dxS̄ ,

where S̄ = N \ S denotes the set complement. The feature distribution q(xS̄) most often considered
in the literature is either a marginal distribution when q(xS̄) := p(xS̄) [18, 54], or a conditional
distribution when q(xS̄) := p(xS̄ | xS) [1, 26, 61].

In general, empirical estimation of a conditional feature distribution is challenging [1, 18, 54, 61].
Most recently in [62], the authors benchmark several methods for approximating SVs based
on marginalizing features with a conditional distribution p(xS̄ | xS), without a clear best, i.e.
different methods are appropriate in different practical situations. Thus, we combine the deci-
sion tree-based and sampling approaches [62] to implement a baseline conditional imputer in
shapiq.ConditionalImputer. The class can be easily extended to include more algorithms, which
we leave as future work. The rather standard imputation with a marginal distribution p(xS̄) is imple-
mented in shapiq.MarginalImputer. Both imputers are used by the appropriate game benchmarks,
and available for approximating feature interaction explanations in shapiq.TabularExplainer via
the imputer parameter.

Listing 2 shows a more advanced API for setting a specific imputer and approximator in shapiq.3

X, model = ...
import shapiq
# create an imputer object
imputer = shapiq.ConditionalImputer(model=model, data=X, sample_size=100)
# create an approximator object
approximator = shapiq.KernelSHAPIQ(n=X.shape[1], index="SII", max_order=3)
# create an explainer object
explainer = shapiq.Explainer(model, X, imputer=imputer, approximator=approximator)
# choose a sample point to be explained
x = X[0]
# approximate feature interactions given the specificed budget
interaction_values = explainer.explain(x=x, budget=1024)
# retrieve 3-order feature interactions
interaction_values.get_n_order_values(3)
# visualize 1-order and 2-order feature interactions on a graph
interaction_values.plot_network(feature_names=...)

Listing 2: Exemplary code for defining an imputer and approximator for explanation with shapiq.

3For details, refer to the notebook example at https://shapiq.readthedocs.io/en/latest/
notebooks/conditional_imputer.html.
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D Guide for Interpreting Shapley Interaction Visualizations

This section provides information for interpreting visual representations of SIs, offering insights
into how interactions between players—such as features in XAI or individual observations for data
valuation—are depicted in network and SI graph plots. We propose two types of visualizations: the
network plot [37, 60] and the SI graph plot, with the latter generalizing the former.

General description. In both visualizations, players are represented as nodes, while explanations
in the form of interactions are depicted as edges linking these nodes. The network plot is limited
to second-order interactions, meaning it only displays edges between two nodes, whereas the SI
graph plot accommodates interactions of any order, with interactions involving more than two players
represented as hyper-edges connecting three or more nodes. Single-order interactions are represented
by the size of the nodes, with larger nodes indicating stronger main effects. The strength and direction
of these interactions are encoded through the color, transparency, and thickness of the edges; stronger
interactions are shown as thicker and more opaque edges, while weaker interactions are represented
by thinner and more transparent edges. Consistent with established conventions from shap [54]
visualizations, red indicates positive interactions and blue indicates negative interactions. In both
visualizations, nodes are drawn in a circular layout by default, but can be positioned also based
on a predefined graphical structure. The network plot originates in [37] to illustrate second-order
interactions for global effects. It was further adapted for local SIs in [60], whereas the SI graph plot
extends this concept by allowing for the visualization of higher-order interactions, thus providing a
more comprehensive view of the cooperative game structure.

Network:

SI Graph:

2-SII values MIs

Figure 6: Network plots (top row) and SI graph plots (bottom row) for 2-SII scores (left) and MIs
(right) as explanations for an observation from the CaliforniaHousing dataset and a random forest.
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Interpretation of the example visualizations. Figure 6 shows example network and SI graph plots.
We divide the CaliforniaHousing dataset into train and test splits. A RandomForestRegressor
from scikit-learn [66] is fitted to the training data, achieving an R2 score of 80%. We select an
observation from the test set and compute 2-SII scores and MIs using shapiq’s implementation of
TreeSHAP-IQ [60]. For further details regarding the dataset, training, and comparison with other
visualizations, we refer to the accompanying notebook on “Visualizing Shapley Interactions” in
shapiq’s documentation. The observation to be explained has a ground truth property value of 1.575
(in 100, 000 USD) and is predicted to be worth 1.62 (in 100, 000 USD). The baseline prediction of
the model is around 2.071 (in 100, 000 USD). This means that with all features provided, the model
predicts the property to be worth less than the average house in the dataset. From both the network
plots and SI graph plots in Figure 6, it is clear that the AveOccup (AO) feature has a strong negative
influence on the prediction compared to the baseline, as indicated by the large blue node. However,
some features and interactions have positive effects (red edges). Specifically, the interaction between
Latitude (Lat.) and Longitude (Lon.), which encodes the exact location of the property, has a positive
influence on the property’s valuation. The MI graph plot further reveals that higher-order interactions
exist, as shown by hyperedges connecting more than two features. For example, there is a sizable
positive third-order interaction between Longitude (Lon.), Latitude (Lat.), and MedianIncome (MI).
A positive fourth-order interaction involving the same three features and the HouseAge (HA) feature
also exists.
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E Details of the Experimental Setting and Reproducibility

This section contains additional information regarding the experimental setup and definition of the
cooperative games. For further information we refer to the benchmark configuration as part of
shapiq.benchmark.

E.1 Generated Cooperative Games

The game-theoretical quantification of interaction demands a formal cooperative game specified by a
player set N and value function ν : P(N) → R. The players for each benchmark game are already
given in Table 3, leaving the value functions left open to be specified, with what we catch up here.

Local Explanation. For a specified datapoint x, the worth of a coalition of features S is given
by the model’s predicted value h(xS) using only the features in S. The features outside of S are
made absent in xS by imputing them with a surrogate value in order to remove their information. For
tabular datasets such as AdultCensus, BikeSharing, and CaliforniaHousing this is done by marginal
or conditional imputation. For the language model predicting the sentiment of movie review excerpts,
missing words are set to the masked token. Missing pixels (patches) for the vision transformer image
classifier are also set to the masked token. For the ResNet image classifier removed superpixels are
collectively set to a mean value (gray).

Global Explanation. Instead of specifying a single datapoint and considering the model’s output,
the model’s loss is averaged over a number of fixed datapoints x1, . . . , xM . The model’s loss for a
coalition S and datapoint xm is computed by comparing its prediction h(xmS) with the ground truth
target value. The imputation of absent features is done as for local explanations.

Tree Explanation. This is a specialization of local explanations for tree models, made feasible
by the capabilities of TreeSHAP-IQ to compute ground-truth SVs and SIs values, which allows
the evaluation games with substantially more features. Features are imputed according to the tree
distribution [53, 60]. Consequently, the worth of the empty coalition containing no features is the
tree’s average prediction, e.g. baseline value.

Uncertainty Explanation. Similar to local explanations, the model’s prediction with missing
features imputed to a fixed datapoint is evaluated. Instead of referring to the predicted value, the
value function is given by the prediction’s uncertainty for which three measures are available: total,
epistemic, and aleatoric uncertainty. Hence, the Shapley values of the features attribute their individual
contribution to the decrease in uncertainty caused by their information.

Feature Selection. The available data is split into a training set DTrain and test set DTest. Given
a learning algorithm A, a coalitions worth ν(S) is given by the generalization performance of
the model hS on DTest that results from applying A on DTrain using only features in S, known as
remove-and-refit. The worth of the empty coalition is set to 0.

Ensemble Selection. Replacing features in feature selection by weak learners, and adapting the
learning algorithm to construct an ensemble out of those, leads to ensemble selection. Each coalition
S of base learners is evaluated by the performance of the resulting ensemble on a separate test set,
known as remove-and-re-evaluate. Likewise, we set ν(∅) = 0.

Data Valuation. Continuing in the spirit of remove-and-refit, a new model is fitted to each coalition
of datapoints. The generalization performance of the resulting model on a separate test set is set to be
the coalition’s worth. The value of the empty coalition is set to 0.

Dataset Valuation. The setup is analogous to data valuation, where instead of single datapoints are
being understood as players, the available data is partioned and each subset is viewd as a player.

Cluster Explanation. Similar to feature selection, remove-and-refit is applied. Instead of fitting a
model, a clustering algorithm forms multiple clusters on the dataset using only the available features
of a coalition S. The worth ν(s) is given by a cluster evaluation score (see Tables 4 and 5 for details).
A cluster score of 0 is assigned to the empty coalition.
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Unsupervised Feature Importance. Given a coalition of features S, a set of datapoints can be
understood as observations generated by a joint distribution of S and used to estimate this distribution
by measuring the frequencies of feature values. This in turn allows to measure entropy and thus also
total correlation of a subset of features which is used as the worth of S. Since the total correlation
measures the amount of shared information, each feature’s assigned Shapley value quantifies its
contributed information to the group. The total correlation of the empty set is naturally 0.

Sum of Unanimity Models (SOUMs). A unanimity game is a synthetic game for a coalition
U ⊆ N with νU (T ) := 1T⊇U , i.e. outputs one, if all players of U are present, and zero otherwise.
The sum of unanimity model (SOUM) is a linear combination of randomly sampled unanimity games.
For uniformly sampled coefficients a1, . . . , am ∈ [−1, 1] and subsets U1, . . . , Um ⊆ N uniformly
sampled by size, where we restrict the SOUM to specific maximum subset sizes. The value function
then reads as

ν(T ) :=

m∑
ℓ=1

aℓνUℓ
(T ).

For SOUMs, the MIs as well as all SIs can be efficiently computed in linear time, cf. [28, Ap-
pendix B.7].

E.2 Computational Resources

This section contains additional information regarding the computational resources required for the
empirical evaluation of this work. The main computational burden stems from pre-computing the
benchmark games for n ≤ 16 players and from running all of shapiq’s SV and 2-SII approximation
methods. Still, the experiments require only a modest range of computational resources. The games
are pre-computed on a “11th Gen Intel(R) Core(TM) i7–11800H 2.30GHz” machine requiring around
240 CPU hours. The approximation experiments have been run on a compute cluster using 80 CPUs
of four “AMD EPYC 7513 32–Core Processor” units for 24 hours resulting in about 1920 CPU hours.

E.3 Data Availability and Reproducability

The data to the pre-computed games is available at https://github.com/mmschlk/shapiq/
tree/v1. Utility functions exist in shapiq that automatically download and instantiate the games.
The code for reproducing the experimental evaluation can be found at https://github.com/
mmschlk/shapiq/tree/v1/benchmark and https://github.com/mmschlk/shapiq/tree/
v1/complexity_accuracy.
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F Additional Benchmark Approximation Results

This section contains additional experimental results. Mainly, this section contains exemplary MSE
and Precision@5 approximation curves for a benchmark game of each application domain. These
results can be found in Figures 9 to 11. The dataset names used to for the benchmark games are
abbreviated as described in Appendix B. Figure 7 shows the overview of the benchmark results
additionally to Figure 5 for the mean absolute error (MAE).
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Figure 7: Benchmark overview approximation results for MSE (top), Precision@5 (middle), and
MAE (bottom).
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Figure 8: Approximation qualities in terms of MSE (top) and Precision@5 (bottom) for 3-SII higher-
order interactions for three benchmark settings based on the AdultCensus (AC) dataset including
Local Explanation (left), Global Explanation (middle), and Data Valuation (right).
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Figure 9: Additional SV (column one and two) and SI (column three and four) approximation results
for different benchmark games from the Local Explanation (first row, vision transformer image
classifier with n = 16 patches), Local Explanation (second row, language model predicting movie
review sentiment with n = 14 words), Local Explanation (third row, dataset CaliforniaHousing with
n = 8 features) and Global Explanation (fourth row, dataset AdultCensus with n = 14 features)
domain.
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Figure 10: Additional SV (column one and two) and SI (column three and four) approximation results
for different benchmark games from the Data Valuation (first row, BikeSharing with n = 12 features),
Dataset Valuation (second row, CaliforniaHousing with n = 8 features), Ensemble Selection (third
row, dataset BikeSharing with n = 12 features) and Random Forest Ensemble Selection (fourth row,
dataset CaliforniaHousing with n = 8 features) domain.
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Figure 11: Additional SV (column one and two) and SI (column three and four) approximation
results for different benchmark games from the Uncertainty Explanation (first row, AdultCensus
with n = 14 features), Cluster Explanation (second row, BikeSharing with n = 12 features), and
Unsupervised Feature Importance (third row, dataset AdultCensus with n = 14 features) domain.
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G Glossary of Acronyms

k-SII k-SV. 4, 5, 8

BGV Banzhaf GV. 17
BII Banzhaf II. 17
BV Banzhaf Value. 3–6, 17

CHGV Chaining GV. 17
CHII Chaining II. 17

FBII Faithful BII. 5, 8
FSII Faithful SII. 4, 5, 8

GV Generalized Value. 4, 5, 17

II Interaction Index. 4, 5, 17

MAE mean absolute error. 27
MI Möbius Interaction. 2, 5–9, 17, 23, 24, 26
ML machine learning. 1, 3–10, 18
MSE mean squared error. 8, 9, 27, 28

Precision@5 precision at five. 8, 9, 27, 28

SGV Shapley GV. 4, 6, 17
SI Shapley Interaction. 1–10, 22–26, 29–31
SII Shapley II. 4, 8, 17
STII Shapley Taylor II. 4, 8
SV Shapley Value. 1–5, 7, 8, 17, 22, 25, 26, 29–31

XAI explainable artificial intelligence. 3, 23
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section 1.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 5, Limitations.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 5, Broader impact.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes] We read the ethics review guidelines.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] We ran
experiments. All of the experimental data is available online at https://github.
com/mmschlk/shapiq/tree/v1 (directories benchmark & complexity accuracy),
and described in Appendix E.3.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We train a collection of off-the-shelve models with mostly default
parameters. All parameters are described in the technical supplement and or in the
aformentioned code repository.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Experimental evaluations show also error bars.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We use no GPUs in the experiments.
Compute resources used are outlined in Appendix E.2.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite all datasets

used in Appendix B.2.
(b) Did you mention the license of the assets? [Yes] We mention the licenses of all datasets

used for which we could directly locate them in Appendix B.2.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We included URLs to the source code and documentation in Section 3.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...
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(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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