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Abstract 

Background For over three decades, the concomitance of cortical neurodegeneration and white matter hyperinten‑
sities (WMH) has sparked discussions about their coupled temporal dynamics. Longitudinal studies supporting this 
hypothesis nonetheless remain scarce.

Methods We applied global and regional bivariate latent growth curve modelling to determine the extent to which 
WMH and cortical thickness were interrelated over a four‑year period. For this purpose, we leveraged longitudinal 
MRI data from 451 cognitively unimpaired participants (DELCODE; median age 69.71 [IQR 65.51, 75.50] years; 52.32% 
female). Participants underwent MRI sessions annually over a four‑year period (1815 sessions in total, with roughly 
four MRI sessions per participant). We adjusted all models for demographics and cardiovascular risk.

Results Our findings were three‑fold. First, larger WMH volumes were linked to lower cortical thickness (σ = ‑0.165, 
SE = 0.047, Z = ‑3.515, P < 0.001). Second, individuals with higher WMH volumes experienced more rapid cortical thin‑
ning (σ = ‑0.226, SE = 0.093, Z = ‑2.443, P = 0.007), particularly in temporal, cingulate, and insular regions. Similarly, those 
with lower initial cortical thickness had faster WMH progression (σ = ‑0.141, SE = 0.060, Z = ‑2.336, P = 0.009), with this 
effect being most pronounced in temporal, cingulate, and insular cortices. Third, faster WMH progression was associ‑
ated with accelerated cortical thinning (σ = ‑0.239, SE = 0.139, Z = ‑1.710, P = 0.044), particularly in frontal, occipital, 
and insular cortical regions.
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Conclusions Our study suggests that cortical thinning and WMH progression could be mutually reinforcing rather 
than parallel, unrelated processes, which become entangled before cognitive deficits are detectable.

Trial registration German Clinical Trials Register (DRKS00007966, 04/05/2015).

Keywords White Matter Hyperintensities, Cortical Thickness, Latent Growth Curve Model, Longitudinal Modelling, 
Structural Magnetic Resonance Imaging

Introduction
Cortical thinning and white matter hyperintensities 
(WMH) progression are well-known ageing processes 
that take place throughout middle and late adult-
hood [1–9]. Both processes appear to be influenced by 
genetic and lifestyle factors [2, 10–15] as well as by the 
onset and progression of neurodegenerative and cer-
ebrovascular diseases [1, 2, 9, 16–20]. Although over-
lapping risk factors may offer an initial explanation for 
their concomitance [3, 6, 11, 21, 22], their persistent 
association after controlling for demographics and tra-
ditional cardiovascular risk factors [3, 6, 10, 23–25] has 
sparked more than three decades of research into cou-
pled temporal dynamics [3, 26].

Coupled temporal dynamics between WMH and cor-
tical atrophy are currently discussed from two non-
exclusive perspectives: the cerebrovascular and the 
neurodegenerative hypotheses [17, 26]. The cerebro-
vascular hypothesis posits that ischaemic and hypoxic 
damages—operationalised as WMH [15, 27–29]—may 
initially result in the depletion of oxygen, nutrients, and 
trophic support in perilesional regions [16, 28]. Subse-
quently, these damages may also disrupt the function 
and metabolic demands of compromised white matter 
tracts and associated cortical regions, leading to cortical 
atrophy [6, 9, 17, 27, 30]. On the other hand, the neuro-
degenerative hypothesis proposes that cortical neurode-
generation could contribute to WMH formation [17, 26, 
29, 31–34], especially in conjunction with tau pathologies 
[26, 29, 34]. Excessive tau phosphorylation could pro-
mote microtubule destabilisation, thereby causing axonal 
transport dysfunction, energy depletion, and calcium 
imbalance—a hallmark of Wallerian degeneration [34]. In 
the light of the posterior dominance of WMH in Alzhei-
mer’s disease (AD) [26, 35–38], both hypotheses would 
require effects of cortical neurodegeneration and WMH 
to be particularly pronounced in parietooccipital brain 
regions. Longitudinal evidence and multivariate model-
ling substantiating these two hypotheses remain none-
theless scarce, especially in cognitively unimpaired older 
adults [1].

Here, we leveraged bivariate latent growth curve mod-
elling (BLGCM) to examine the bidirectional relation-
ship between WMH and regional cortical thickness over 
four years in older individuals without objective cognitive 

impairment. We specifically sought to answer four main 
research questions:

Q1. Upon study entry, do individuals with larger total 
WMH volumes have lower cortical thickness? (inter-
cept-intercept covariance)
Q2. Do individuals with larger total WMH volumes 
at study entry experience faster cortical thinning? 
(cerebrovascular hypothesis; intercept-slope covari-
ance)
Q3. Do individuals with thinner cortices at study 
entry exhibit a faster increase in total WMH vol-
umes? (neurodegenerative hypothesis; intercept-slope 
covariance)
Q4. Do individuals exhibiting faster total WMH vol-
ume increases also undergo faster cortical thinning 
over time? (slope-slope covariance)

Methods
Study participants
We used baseline and annual follow-up data for up to 
48  months from participants of the observational lon-
gitudinal multicentre DELCODE (DZNE Longitudinal 
Cognitive Impairment and Dementia) Study [39]. DEL-
CODE is a memory-clinic-based observational multicen-
tre study from the German Centre for Neurodegenerative 
Diseases (DZNE) that uses multimodal assessment of 
preclinical, prodromal, and clinical stages of AD, with a 
particular focus on subjective cognitive decline. Study 
participants were either referred to the university-affil-
iated memory centres, including self-referrals, or were 
recruited through standardised public advertisements 
[39]. In this paper, we focused on cognitively unimpaired 
participants who underwent at least three MRI scanning 
sessions and whose follow-up MRI sessions took place 
within four months prior or after their yearly compre-
hensive examination. We followed the recommendation 
of conducting at least three assessments per subject to 
reliably estimate linear trends [40].

During the baseline visit, participants underwent 
a thorough evaluation at their local study site, which 
included medical history checks, a psychiatric and neu-
rological examination, neuropsychological testing, blood 
and cerebrospinal fluid (CSF) collection, and MRI in 
accordance with local standards. All DELCODE sites 
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used the Consortium to Establish a Registry for AD 
(CERAD-plus) neuropsychological test battery to assess 
cognitive function. Cognitively unimpaired participants 
performed better than -1.5 standard deviations of the 
age-, sex-, and education-adjusted normal performance 
on all subtests of the test battery [39].

The primary inclusion criteria for all groups were being 
aged 60 or older, fluency in German, the ability to pro-
vide informed consent, and having a study partner avail-
able [39]. The main exclusion criteria for all groups were 
conditions that clearly interfered with participation in 
the study or its procedures, including significant sen-
sory impairment. The following medical conditions were 
considered exclusion criteria: current or history of major 
depressive episode and major psychiatric disorders either 
at baseline (e.g., psychotic disorder, bipolar disorder, sub-
stance abuse), neurodegenerative diseases other than AD, 
vascular dementia, history of stroke with residual clini-
cal symptoms, history of disseminated malignant disease, 
severe or unstable medical conditions, and clinically sig-
nificant vitamin B12 deficiency at baseline. Prohibited 
drugs included chronic use of psychoactive compounds 
with sedative or anticholinergic effects, use of anti-
dementia agents, and investigational drugs for the treat-
ment of dementia or cognitive impairment one month 
before study entry and throughout the duration of the 
study [39].

All participants provided their written informed 
consent in accordance with the Declaration of Hel-
sinki at baseline. DELCODE has been registered within 
the German Clinical Trials Register (DRKS00007966, 
04/05/2015). Ethics committees of the medical facul-
ties of all participating sites (i.e., Berlin (Charité—Uni-
versitätsmedizin Berlin), Bonn, Cologne, Göttingen, 
Magdeburg, Munich (Ludwig-Maximilians-University), 
Rostock, and Tübingen) approved the DELCODE study 
protocol before inclusion of the first participants. The 
ethics committee of the medical faculty of the University 
of Bonn led and coordinated the process [39].

Total cardiovascular risk score
We established a total cardiovascular risk score for each 
participant by tallying their dichotomised (y/n) history 
of smoking, presence of obesity, hyperlipidemia, arterial 
hypertension, and diabetes, as reported in their medi-
cal records. We corrected the sum of present risk factors 
by the amount of available information. For example, if 
an individual had a history of arterial hypertension and 
diabetes but we did not have data on smoking, obesity, 
or hyperlipidemia, the final score would be 1.00. The cor-
rected total cardiovascular risk scores ranged from 0.00 
to 1.00, where the lowest and highest values denoted 

the absence or presence of all available risk factors, 
respectively.

MRI
MRI data were acquired at nine DZNE sites or associ-
ated university medical centres equipped with 3  T Sie-
mens MR scanners. In the present study, we leveraged 
the following structural sequences: T1w MPRAGE (full 
head coverage, 3D acquisition, GRAPPA factor 2, 1 
 mm3 isotropic, 256 × 256 px, 192 sagittal slices, TR/TE/
TI 2500/4.33/1100 ms, FA 7°) and T2w FLAIR (full head 
coverage, 3D acquisition, 1  mm3 isotropic, 256 × 256 
px, 192 sagittal slices, TR/TE/TI 5000/394/1800  ms). 
The DZNE imaging network oversaw operating proce-
dures, as well as quality assurance and assessment (iNET, 
Magdeburg) [39].

MRI‑based measurements
Cortical thickness
We used the CAT12 longitudinal pipeline [41] (neuro-
jena.github.io) to reconstruct cortical thickness surfaces 
for each subject and for each time point (ageing work-
flow; default parameters, except for final resolution, 
which we set to 1  mm3). We then estimated mean thick-
ness throughout the whole brain cortex, cerebral lobes, 
and cingulate and insular cortices.

WMH segmentation
We segmented WMH using the AI-augmented version of 
the Lesion Segmentation Toolbox (LST-AI) [42–44] and 
based the segmentation on both T1w MPRAGE and T2w 
FLAIR imaging data. We then calculated total WMH 
volumes.

Statistical analyses
We conducted all data analyses in RStudio (v1.3.1073; R 
v4.0.2) using lavaan (v0.6–16). We created figures using 
ggplot2 (v3.4.3) and the ENIGMA toolbox [45].

We applied LGCM to determine the extent to which 
WMH and cortical thickness were interrelated over time. 
(B)LGCMs [46] are a powerful class of structural equa-
tion models (SEM) to describe sample average trajec-
tories of one or two constructs over time through the 
specification of latent intercepts and latent slopes (i.e., 
initial levels and rates of change). The primary advan-
tage of BLGCM over linear mixed-effect (LME) models 
is its ability to simultaneously and symmetrically model 
changes in two outcome variables. BLGCM allows for the 
simultaneous estimation of growth trajectories for two 
latent constructs, facilitating the examination of their 
interrelationships over time [46–49]. In contrast, LME 
modelling deals with a single construct at a time, requir-
ing separate models for each and post-hoc analyses to 
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establish the association between individual intercepts 
and slopes.

We carried out univariate and bivariate LGCMs. We 
first used univariate LGCMs for contextualisation pur-
poses, to examine which covariates were associated with 
the baseline measurements and potential changes over 
repeated measures. We then focused on BLGCMs to 
assessed interrelationships between WMH and cortical 
thickness over time, by assessing the covariance between 
these four latent growth parameters [49] (Fig. 1).

We conducted global and regional analyses to identify 
associations at two levels of granularity. In the global 
analysis—with no spatial specificity—we focused on 
the interrelationship between mean cortical thickness 
and total WMH volume. In order to elucidate potential 
region-specific and cross-domain relationships, we addi-
tionally examined the relationship between total WMH 
volume and regional cortical thicknesses. Note that our 
approach is similar to a mass-univariate analysis scheme, 
with the difference being that we investigated region-spe-
cific effects through LGCM rather than through GLM. 
To reduce the dimensionality and thereby improve the 
feasibility of our multivariate SEM analysis, we consid-
ered (corresponding) bilateral regions jointly. We present 
the completely standardised solutions and include both 

standardised and unstandardised solutions in the supple-
mentary material (see Additional File 2).

Adjusting for covariates and confounders
We adjusted latent intercepts and slopes for effects of age, 
sex, years of education, total cardiovascular risk factor 
score, and total intracranial volume (TICV) in all models.

Data transformation
We applied a Box-Cox transformation to WMH volumes 
and exponential transformation cortical thickness to 
address skewness [50]. We z-scored all variables (pooled 
across timepoints) prior to model fitting. For the purpose 
of contextualisation and plotting, we back-transformed 
the fitted growth curve parameters afterwards.

Model fitting
We employed the maximum likelihood robust estimator 
to fit the model. We used the full information maximum 
likelihood estimation to handle missing values. To check 
for compliance with the assumption of missingness at 
random, we tested whether missingness in one column 
(1: missing; 0: not missing) could be predicted from the 
remaining ones. In all instances, the resulting p-values 
exceeded 0.05.

Fig. 1 BLGCM to probe the coupling of cortical thickness and WMH over repeated measures. Illustration of the longitudinal structural equation 
modelling (SEM) model. We employed the conventional notation with squared variables indicating observed and measured variables (manifest 
variables) and circular ones referring to latent (unobserved) variables. Single‑headed solid arrows illustrate a modelled relationship between two 
variables, with the arrow pointing towards the dependent variable. Single‑headed dashed arrows signify a relationship between two variables, 
where the weight is fixed. Double‑headed arrows represent the covariance (hyperparameter) between two variables. Grey triangles represent latent 
intercept estimates. We further adjusted latent intercepts and slopes for age, sex, years of education, total cardiovascular risk factors, and TICV. We 
omitted these paths for visualisation purposes
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Prior to model fitting and solely to ensure model fit, 
we used Tukey’s fences to identify and remove outli-
ers in all data points (threshold of 1.5) [51]. The num-
ber of individual data points that were removed can be 
retrieved from Supplementary Table 1 in Additional File 
1. We evaluated the fit of global and regional models by 
analysing their root mean square error of approximation 
(RMSEA; values ≤ 0.05 indicate good fit), comparative fit 
index (CFI; values exceeding 0.95 indicate good fit), and 
standardised root mean residual (SRMR; values < 0.08 
suggest good fit) [52]. For the sake of transparency, when 
discussing the models, we disclosed their convergence 
and compliance with the aforementioned thresholds.

Correction for multiple comparisons
We employed the False Discovery Rate (FDR) correction 
[53] method to account for the issue of multiple compari-
sons on all region-wise analyses.

Results
Study participants
Among the 722 cognitively unimpaired participants 
enrolled in the DELCODE study, 451 attended a mini-
mum of three annual visits (1815 MRI sessions; median 
age 69.71 [IQR 65.51, 74.50] years; 52.32% females; 
median years of education 14 [IQR 13, 17]). The aver-
age number of scans per participant was approximately 
four (4.192 [95%-CI 4.118, 4.264]), with 191, 155, and 105 
participants attending exactly five, four, and three of the 
five annual visits, respectively. Aside from obesity, which 
had missing records for seven cognitively unimpaired 
participants, we had complete information for all other 
cardiovascular risk variables included in the total cardio-
vascular risk score.

Univariate findings
WMH volumes

Model fit The univariate LGCM on WMH volumes 
converged and provided good model fit (RMSEA = 0.000, 
CFI = 1.000, SRMR = 0.009).

Do covariates explain the variability in WMH vol-
umes? WMH volumes were larger in older indi-
viduals (βAge = 0.374, SE = 0.042, Z = 8.932, P < 0.001) 
and in those with higher total cardiovascular risk fac-
tor scores (βVascular Risk = 0.102, SE = 0.044, Z = 2.303, 
P = 0.021). Females had larger WMH volumes than males 
(βFemale = 0.189, SE = 0.060, Z = 3.161, P = 0.002), despite 
females in our sample being on average younger (covari-
ance between female sex and age = -0.165, SE = 0.046, 
Z = -3.607, P < 0.001) and having lower total cardiovascu-
lar risk scores than males (covariance between female sex 

and cardiovascular risk = -0.184, SE = 0.045, Z = -4.128, 
P < 0.001). In addition, females had on average fewer years 
of education than males (covariance between female sex 
and years of education = -0.238, SE = 0.043, Z = -5.569, 
P < 0.001).

Do WMH volumes change over time, and which covari-
ates relate to change rates? WMH volumes gener-
ally increased over the follow-up period of four years 
(Fig.  2A; intercept of WMH slope = 1.117, SE = 0.110, 
Z = 10.177, P < 0.001). On average, individuals expe-
rienced an increase in WMH volumes of about 0.536 
[95%-CI 0.442, 0.630] ml/year. WMH progression rates 
varied substantially among individuals (Fig. 2B; variance 
of WMH slope = 0.987, SE = 0.015, Z = 67.281, P < 0.001) 
and, even though most individuals experienced consist-
ent increases in WMH volumes over time, a few (10%) 
showed decreases during the same period. The most evi-
dent case of WMH volume regression was observed in a 
female participant in her 60 s, with a total cardiovascular 
risk score of 0.0, and 15 years of education (higher educa-
tion). Regression in this participant was most noticeable 
in occipital brain regions and could be attributed to a loss 
of periventricular tissue caused by a substantial enlarge-
ment of the occipital horns of the lateral ventricles over 
time (Supplementary Figure S1 in Additional File 1).

Cortical thickness
Model fit
All univariate LGCM fitted to cortical thickness con-
verged and had good fit indices (RMSEA ≤ 0.05, 
CFI ≥ 0.95, SRMR ≤ 0.05).

Do covariates explain the variability in cortical thickness?
Mean cortical thickness values were generally lower in 
older individuals (βAge = -0.334, SE = 0.048, Z = -6.964, 
P < 0.001). We did not find sex, years of education, or 
cardiovascular risk factors to relate to baseline cortical 
measurements.

Does cortical thickness change over time, and which 
covariates relate to change rates?
The thickness of cerebral cortex generally decreased over 
the course of four years at an average rate of approxi-
mately -0.002 [95%-CI -0.003, -0.001] mm/year (Fig. 2C; 
intercept of mean cortical thickness slope = -0.206, 
SE = 0.096, Z = -2.152, P = 0.031). On average, this reduc-
tion was distributed across the cingulate, temporal, and 
parietal cortices, with average annual thinning rates of 
0.008 [95%-CI 0.007, 0.009] mm/year, 0.003 [95%-CI 
0.002, 0.004] mm/year, and 0.003 [95%-CI 0.002, 0.003] 
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mm/year, respectively (Fig.  2D). Frontal, occipital, and 
insular cortices showed, on average, no significant 
changes over the four-year period ( PFDR > 0.05).

Cortical thinning rates varied substantially across indi-
viduals (variance of mean cortical thickness slope = 0.902, 
SE = 0.051, Z = 17.837, P < 0.000). The age of the patient 
accounted for part of this inter-individual variability, 
with annual cortical thinning rates generally slowing 
with advancing age (βAge = -0.275, SE = 0.082, Z = -3.338, 
P = 0.001). Other covariates, including sex, years of edu-
cation, and cardiovascular risk score, did not show a clear 
relationship with cortical thinning.

Bivariate findings
Model fit All BLGCMs also converged and had a satisfac-
tory model fit (RMSEA ≤ 0.05, CFI ≥ 0.95, SRMR ≤ 0.05).

Q1. Upon study entry, do  individuals with  larger total 
WMH volumes have lower cortical thickness? At base-
line, individuals with larger total WMH volumes had 
lower mean cortical thickness values (Fig. 3A Q1; global 
model, σ = -0.165, SE = 0.047, Z = -3.515, P < 0.001). With 
the exception of the parietal cortex, this association was 
generally present across cortical regions (Fig.  3B Q1; 
regional model).

Q2. Do individuals with  larger total WMH volumes 
at study entry experience faster cortical thinning? Indi-
viduals with larger baseline WMH volumes had faster 
thinning of the cerebral cortex (Fig. 3A Q2; global model, 
σ = -0.226, SE = 0.093, Z = -2.443, P = 0.007), especially 

across temporal, cingulate, and insular cortices (Fig.  3B 
Q2; regional model, temporal σ = -0.180, SE = 0.082, 
Z = -2.197, PFDR = 0.028; cingulate σ = -0.217, SE = 0.074, 
Z = -2.953, PFDR = 0.008; insular σ = -0.280, SE = 0.101, 
Z = -2.773, PFDR = 0.008). The relative loss in cortical thick-
ness in the temporal, cingulate, and insular cortices was, 
on average, 1.46% higher in individuals with the highest 
25% of WMH volumes compared to those in the lowest 
25% (Fig. 4A Q2.1-Q2.3).

Q3. Do individuals with  thinner cortices at  study entry 
exhibit a  faster increase in  total WMH volumes? Indi-
viduals who experienced faster progression of WMH had 
lower mean cortical thickness values at baseline (Fig. 3A 
Q3; global model, σ = -0.141, SE = 0.060, Z = -2.336, 
P = 0.009). Closer examination of this relationship 
revealed that it was particularly evident in those with 
thin temporal, cingulate, and insular cortices (Fig.  3B 
Q3; regional model, temporal σ = -0.135, SE = 0.064, 
Z = -2.122, PFDR = 0.034; cingulate σ = -0.148, SE = 0.063, 
Z = -2.366, PFDR = 0.034; insular σ = -0.154, SE = 0.070, 
Z = -2.202, PFDR = 0.034). To put into perspective, the rela-
tive increase in WMH volumes over a four-year period 
was, on average, at least 11.01% higher in individuals with 
the thinnest temporal, cingulate, or insular cortices com-
pared to those with the thickest cortices (thinnest 25% vs 
thickest 25%) (Fig. 4A Q3.1-Q3.3).

Q4. Do individuals exhibiting faster total WMH vol-
ume increases also  undergo faster cortical thinning 
over time? Over time, individuals who underwent faster 

Fig. 2 Changes in WMH volumes and cortical thickness over four years. We obtained latent intercepts and slopes for each individual 
through the application of univariate LGCM to WMH volumes and cortical thickness (separate models for each neuroimaging feature). We 
used them to compute latent growth curve parameters and predict individual trajectories, corrected for age, sex, years of education, total 
cardiovascular risk scores, and TICV. Prior to plotting and to enhance interpretability, we back‑transformed all predicted measurements. A Total 
WMH volume trajectories, as predicted by the model. Light blue lines represent the predicted trajectories and the dark blue one the average 
one. B Back‑transformed individual factor scores of latent slopes for WMH, summarised in the density plots, indicate that WMH volumes generally 
increased over time. We adjusted density plots such that the modes attain the highest value, irrespective of the actual frequency. The rate 
of change varied substantially across individuals in both cases. C Mean cortical thickness trajectories, as predicted by the model. Light purple lines 
represent the predicted trajectories and the dark purple one the average one. D Back‑transformed individual factor scores of cortical thicknesses 
across the considered brain regions. The variability in change rates indicated significant inter‑individual differences in regional cortical thinning
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WMH progression simultaneously experienced faster 
cortical thinning (Fig.  3A Q4; global model, σ = -0.239, 
SE = 0.139, Z = -1.710, P = 0.044). This association was 
evident in frontal, occipital and insular regions (Fig.  3B 
Q4, Fig.  4B; global model, frontal σ = -0.261, SE = 0.132, 
Z = -1.982, PFDR = 0.047, occipital σ = -0.315, SE = 0.140, 
Z = -2.255, PFDR = 0.047, insular σ = -0.274, SE = 0.131, 
Z = -2.097, PFDR = 0.047). Other cortical regions did not 
show significant evidence of this association.

Discussion
We studied the interrelationships between WMH and 
cortical thickness over a four-year period in 451 older 
adults without objective cognitive impairment (1815 
MRI sessions in total) using a longitudinal modelling 
approach. We made both methodological and clinical 
contributions to the ongoing efforts to understand the 
relationship between cerebrovascular dysfunction and 
neurodegeneration. First, our study demonstrates the 
potential of integrating surface-based morphometry and 
BLGCM to investigate interrelationships between neuro-
imaging markers over time. Second, our findings support 
the notion that cortical thinning and WMH progres-
sion might be mutually reinforcing processes, entangled 
over a four-year period in a complex and region-specific 

manner. Our results suggest that this coupling takes place 
even among individuals with a low vascular risk, given 
DELCODE’s inclusion and exclusion criteria.

WMH progression
WMH generally progressed over the course of four years, 
reiterating that ageing is associated with WMH increase 
and constitutes a major risk factor for white matter 
pathology [2, 14, 15, 28, 54]. Significant individual differ-
ences in WMH volume changes suggest, however, that 
there are numerous other factors that were not accounted 
for in our study that might contribute to subject-specific 
progression of WMH in ageing. For example, heteroge-
neity of WMH volumes and progression rates could be 
reflective of the brain’s ability to respond to and heal 
from white matter injuries. By extension, heterogeneity of 
WMH volumes and progression rates could be reflective 
of past and current socioeconomic status and cardiovas-
cular risk factors, as well as the adoption of an unhealthy 
lifestyle [2, 55, 56]. This might explain why greater cardi-
ovascular risk scores was associated with higher baseline 
WMH volumes in our sample.

Interestingly, even though, in our study sample, males 
were generally older than females and had higher cardio-
vascular risk factor scores than females, females showed 

Fig. 3 Relationship between latent growth parameters from global and regional BLGCMs. We employed longitudinal BLGCMs to characterise 
the spatiotemporal interrelation between WMH volumes and cortical thickness over the span of four years. We adjusted latent intercepts and slopes 
for age, sex, years of education, total cardiovascular risk scores, and TICV. (A) Relationship between latent growth curve parameters obtained 
from the global model. At baseline, individuals with larger WMH volumes had lower cortical thickness. Over time, those experiencing rapid cortical 
thinning initially had large total WMH volumes. Similarly, those with rapid WMH progression had thinner cortices at baseline. In general, faster WMH 
progression was linked to more rapid cortical thinning (Q4). (B) Regional analyses suggest cross‑domain associations have regional specificities. 
We applied FDR correction to account for multiple comparisons. In regions highlighted in red, we found a statistically significant covariance 
between latent growth curve parameters after FDR correction ( PFDR < 0.05)
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significantly larger WMH volumes at baseline compared 
to males even after accounting for TICV. WMH progres-
sion rates over the course of four years between sexes 
were nonetheless comparable. For these two scenarios to 
be compatible, WMH would clearly need to evolve faster 
in females than in males before the age of 70 years (i.e., 
the median age in this study). Menopause may constitute 
a potential explanation for this sex-specific susceptibil-
ity to WMH. A relatively recent work in the Rhineland 
study, a large population-based German cohort, found 
that while pre-menopausal women and men of similar 
age did not differ in WMH volumes, post-menopausal 
women did have significantly larger WMH volumes com-
pared to men of similar age [57]. This finding suggests 
that indeed menopause and accompanying hormonal and 
physiological changes might be behind this sex-difference 
[57]. Another explanation could be that elderly women 
in this ageing cohort had, on average, lower educational 
attainment, which could also contribute to their vulner-
ability to CSVD. The likely multifactorial nature of this 
finding requires careful consideration during model-
ling and reporting as well as dedicated analysis shedding 

light on the mechanisms potentially mediating such a 
vulnerability.

Albeit less commonly, a small number of participants 
exhibited clear and consistent WMH volume regression 
throughout the study period, as reported in previous lit-
erature [14, 58]. The case with the most regression coin-
cided with the progression of ventricular enlargement. 
While frequently discussed in the context of a radiologi-
cal or technical issue [58], our finding suggests that gen-
uine changes in one neuroimaging marker can directly 
influence another (e.g., enlargement of lateral ventricles). 
This finding strongly highlights the need for multimodal 
longitudinal strategies to gain a more comprehensive 
understanding of the synergistic role of cerebrovascular 
and neurodegenerative processes.

Cortical thinning
The thickness of the cerebral cortex decreased over the 
course of four years, corroborating that ageing also drives 
cortical thinning [7, 59]. The rate at which thinning 
occurred was nonetheless subject- and region-specific. 
The cingulate cortex underwent the fastest thinning over 

Fig. 4 Cross‑domain intercept‑slope and slope‑slope associations.A Predicted four‑year changes in cortical thickness and WMH trajectories, 
stratified by baseline WMH volumes and cortical thickness, respectively. We categorised individuals based on whether their latent intercepts were 
below the 25th or above the 75th percentile, respectively. B Relationship between predicted changes in cortical thickness and WMH volumes 
over four years. We back‑transformed all predicted measurements to plotting for interpretability purposes. We adjusted latent intercepts and slopes 
for age, sex, years of education, total cardiovascular risk scores, and TICV
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four years, with an average rate of 0.008 [95%-CI 0.007, 
0.009] mm/year. This apparent ageing-related vulnerabil-
ity is consistent with previous research indicating that 
both the caudal anterior and posterior cingulate cortex 
shrink during normal ageing [60]. The behavioural conse-
quences of the rate of thinning in terms of decline in cog-
nitive control and integrating behavioural, affective, and 
cognitive processes [61] remain to be elucidated.

Cortical thinning showed considerable heterogeneity 
across subjects. Somewhat surprisingly, such inter-sub-
ject variability could not be fully explained by age, sex, 
years of education, or cardiovascular risk factors. This 
finding ultimately suggests that other factors, such as 
genetics and lifestyle factors beyond cardiovascular risk 
factors [10–13], might influence cortical thinning dur-
ing late life, possibly to a larger extent than demograph-
ics and established cardiovascular risk factors. Given that 
the rate of thinning might affect cognitive performance 
and activities of daily living, future research should deter-
mine the contribution of brain resilience and (modifiable) 
lifestyle factors to abnormal cortical thinning, as such 
findings could advance the development of novel inter-
ventions [62].

Co‑occurrence beyond common risk factors
Even after adjusting for shared risk factors, we found 
evidence for a negative correlation between the initial 
thickness of the cerebral cortex and the initial volume 
of WMH, in line with previous work [3, 6, 10, 23–25]. 
While other factors may contribute to this relationship—
which we did not include in our analysis (e.g., genet-
ics and lifestyle)—this observation, found in a relatively 
healthy sample, suggests shared underlying pathological 
mechanisms.

WMH and cortical thinning
WMH volumes partially accounted for the rate of cortical 
thinning across the entire brain over the course of four 
years, particularly in the temporal, cingulate, and insular 
cortices. This observation is consistent with the cerebro-
vascular hypothesis [1, 63–65] and supports the notion 
that WMH are the visible tip of the iceberg [1], a sign of 
widespread rather than focal cerebrovascular and meta-
bolic impairment [66, 67].

The apparent region-specific nature of the coupling 
between WMH volume and regional cortical thickness 
raises the possibility that white matter fibres could be 
involved in the downstream effects of WMH. Potential 
secondary effects of WMH along the inferior fronto-
occipital fasciculus may, for instance, explain why indi-
viduals could experience rapid thinning concurrently 
across the temporal, cingulate, and insular cortical 
regions. Mounting data indeed suggests that abnormal 

tissue characteristics can be found in intra- and per-
ilesional white matter regions, but also in white matter 
fibres traversing WMH [1, 27, 67, 68]. Also, cross-sec-
tional investigations conducted in CSVD cohorts have 
demonstrated that cortical regions connected to incident 
lacunes, subcortical lacunar infarcts, and WMH through 
white matter fibres exhibit significantly reduced thick-
ness than those that are not [30, 63–65]. Despite the 
overall compelling evidence for a contribution of WMH 
to cortical thinning, additional research leveraging imag-
ing techniques like white matter tractography as well 
as animal models is needed to shed light on the role of 
white matter fibres in the long-term and remote effects of 
WMH in the brain.

Cortical thickness and WMH progression
The progression of WMH over four years was partly 
explained by the thickness of the cerebral cortex, with 
slower WMH progression occurring in individuals with 
thicker global, temporal, cingulate, and insular corti-
cal thicknesses at baseline. This simultaneous associa-
tion may indicate potentially higher brain maintenance 
as a mechanism of healthy ageing [69] and may be mul-
tifaceted. Neuronal loss in these cortical regions may be 
linked to lifestyle adaptations stemming from ageing that 
contribute to a decline in social interactions, emotional 
responses, and the integration of sensory information 
[70–72]. Considering the involvement of the insular cor-
tex in the regulation of autonomic functions, a decline in 
this region could also result in blood pressure dysregu-
lation [73, 74], a condition which has been extensively 
shown to be associated with increased progression of 
WMH, and with more severe manifestations of CSVD 
[28, 55, 75].

The association between baseline cortical thickness 
and WMH progression has a fundamental ramification: 
it supports the multi-factorial origin of WMH, with neu-
rodegeneration contributing to the progression of WMH. 
Since cortical neurodegeneration accelerates with the 
pathophysiology of AD, this would explain why posterior 
WMH appear in subjects with minimal vascular pathol-
ogy across the AD spectrum and why WMH in deep and 
periventricular posterior regions appear characteristics 
of AD [26, 36, 38, 76]. It is also possible that an early (pre-
clinical) increase in biomarkers indicative for AD may 
cause changes in the insular cortex, which then affects 
the cardiovascular system [73, 74, 77] and ultimately 
speeds up the progression of WMH in the brain—a pos-
sible explanation for Fig.  3B Q3. While promising, fur-
ther research in other cohorts—especially with available 
amyloid- or tau- positron emission tomography [78]—are 
needed to determine how age- and AD-driven cortical 
neurodegeneration influences WMH [76].
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WMH progression and cortical thinning
WMH progression and cortical thinning were associ-
ated with one another, suggesting a rather consistent 
and predictable relationship between the two processes, 
wherein changes in one marker are accompanied by cor-
responding changes in the other and vice versa. In our 
group of cognitively unimpaired participants, this slope-
slope association was particularly evident across frontal, 
occipital, and insular brain regions. This pattern seems 
even more widespread with advanced stages of AD, as 
highlighted in a recent work with autosomal dominant 
AD and late-onset AD [33]. Further application of our 
methodology to cohorts at various stages of AD could, 
for example, provide further information on the mecha-
nisms underlying the simultaneous progression of both 
processes.

Strengths and contextualisation
Longitudinal studies with cognitively unimpaired 
elderly participants exploring cross-domain associations 
between WMH and cortical thickness are scarce [1, 4, 
79]. Whenever this kind of research has been done, the 
evidence supporting any kind of coupling has generally 
been lacking. In septuagenarian community-dwelling 
participants, Dickie et al. [4] could not find enough evi-
dence supporting the relationship between total WMH 
volumes and cortical thickness of cortical grey mat-
ter structures neighbouring the Sylvian fissures over a 
three-year period. In a cohort of cognitively unimpaired 
participants, Hotz et  al. [79] investigated cross-domain 
associations between total WMH volume and thin-
ning of the entorhinal cortex over a duration of seven 
years using BLGCM. The authors found no evidence for 
cross-domain coupling and this absence of association 
was evident both at the study’s baseline and throughout 
its duration. Evidence supporting cross-domain associa-
tions has nonetheless been growing in participants symp-
tomatic or more severe presentations of cerebrovascular 
[63–65, 78, 80] and neurodegenerative pathologies [33, 
78], as well as in those with neuroinflammatory condi-
tions, such as multiple sclerosis [81, 82].

A potential explanation for such contradictory results 
may well lie in the stage of dysfunction at which each 
participant is situated, i.e., coupling only becomes evi-
dent at advanced, symptomatic stages of cerebrovascu-
lar and neurodegenerative disease. On the other hand, 
as emphasised by our study, there are regional nuances 
to these cross-domain relationships that analyses with 
a lower level of granularity might fail to capture. This 
underscores the significance of employing multimodal 
and regional approaches to gain a more comprehensive 
understanding of the local and distant effects of one pro-
cess on the other.

Limitations
Our research has four main limitations. First, even 
though our BLGCM aligns with the data, causality 
remains elusive due to model equivariance. Latent change 
score models might be promising for further study of 
specific interactions over discrete time intervals [83]. 
The mass-univariate application of the BLGCM could 
be streamlined by using extended measurement mod-
els [84]. We can state, however, that our data supports 
a specific and partial spatiotemporal coupling between 
cortical neurodegeneration and cerebrovascular dysfunc-
tion. The specific circumstances that might lead to such 
coupling often remain undetermined and likely require 
the inclusion of more extensive biological parameters 
including complementary imaging modalities, such as 
diffusion tensor imaging [27, 78, 81]. If a Wallerian-like 
degeneration is responsible for the observed coupling—
as also discussed in the literature [3, 5, 9, 17, 26, 34, 85]—
there should be evidence within the white matter fibres 
themselves that mediate the interrelationships between 
cortical thickness and WMH. Second, we considered 
a relatively healthy sample from a study in which cer-
ebrovascular dysfunction is under-represented and took 
into account a relatively short time span (48 months, i.e., 
4  years). This may have prevented a few cross-domain 
associations to become more evident. The dynamics over 
longer time periods, as well as in other cohorts remain 
elusive, but will be a matter of future investigation. 
Third, this work did not consider subcortical structures, 
such as the hippocampus, which may also be affected by 
ischaemic or hypoxic damage indicated by the presence 
of WMH. The BLGCM can be easily expanded to inves-
tigate the relationship between WMH and atrophy in 
subcortical structures, and this will be explored in future 
research. Fourth, we have, thus far, not assessed potential 
cognitive sequelae of WMH progression, cortical thin-
ning, or their coupling in this study. Because these two 
processes appear to be coupled prior to any observable 
objective cognitive deficiencies, it could be that cognitive 
consequences are not detectable at this asymptomatic 
stage or that cognitive reserve is still able to compensate 
for the ongoing pathology or, as a recent study suggests, 
that cortical measurements predict well chronological 
age but not memory performance [86]. A trivariate latent 
change score model with WMH, cortical thickness, and 
cognitive performance could be used in the future to 
address this limitation.

Conclusion
Our work provides longitudinal evidence that cortical 
thinning and WMH progression could be mutually rein-
forcing as opposed to parallel, disassociated processes. 
The coupling between these two neuroradiological 
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features appears to be entangled prior to the onset of any 
detectable cognitive deficits. Our findings support the 
ongoing discussion on perilesional and remote impacts 
of WMH, but, at the same time, provide evidence for 
the effects of cortical neurodegeneration on white mat-
ter integrity. Comprehensive, multimodal approaches, 
such as the one applied in this study, have the potential to 
facilitate the detection of downstream damage associated 
with the synergistic interaction among ageing, CSVD, 
and neurodegeneration in the brain.
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