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A B S T R A C T

Background: Quantitative magnetic resonance imaging (MRI) analysis has shown promise in differentiating 
neurodegenerative Parkinsonian syndromes and has significantly advanced our understanding of diseases like 
progressive supranuclear palsy (PSP) in recent years.
Objective: The aim of this study was to develop, implement and compare MRI analysis algorithms based on 
artificial intelligence (AI) that can differentiate PSP not only from healthy controls but also from Parkinson 
disease (PD), by analyzing changes in brain structure and microstructure. Specifically, this study focused on 
identifying regions of interest (ROIs) and tracts of interest (TOIs) that are crucial for the algorithms to provide 
clinically relevant performance indices for the distinction between disease variants.
Methods: MR data comprised diffusion tensor imaging (DTI – tractwise fractional anisotropy statistics (TFAS)) 
and T1-weighted (T1-w) data (texture analysis of the corpus callosum (CC)). One subject sample with 74 PSP 
patients and 63 controls was recorded at 3.0T at multiple sites. The other sample came from a single site, 
consisting of 66 PSP patients, 66 PD patients, and 44 controls, recorded at 1.5T. Four different machine learning 
algorithms (ML) and a deep learning (DL) neural network approach using Tensor Flow were implemented for the 
study. The training of the algorithms was performed on 80 % of the data, which included the entire single-site 
data and parts of the multiple-site data. The validation process was conducted on the remaining data, thereby 
consistently separating training and validation data.
Results: A random forest algorithm and a DL neural network classified PSP and healthy controls with accuracies 
of 92 % and 95 %, respectively. Particularly, DTI derived measures for the pons, midbrain tegmentum, superior 
cerebral peduncle, putamen, and CC contributed to high accuracies. Furthermore, DL neural network classifi
cation of PSP and PD with 86 % accuracy showed the importance of 19 structures. The four most important 
features were DTI derived measures for prefrontal white matter, the fasciculus frontooccipitalis, the midbrain 
tegmentum, and the CC area II. This DL network achieved a sensitivity of 88 % and specificity of 85 %, resulting 
in a Youden-index of 0.72.
Conclusion: The primary goal of the present study was to compare multiple ML-methods and a DL approach to 
identify the least necessary set of brain structures to classify PSP vs. controls and PSP vs. PD by ranking them in a 
hierarchical order of importance. That way, this study demonstrated the potential of AI approaches to MRI as 
possible diagnostic and scientific tools to differentiate variants of neurodegenerative Parkinsonism.
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1. Introduction

Progressive supranuclear palsy (PSP) is a 4R–tauopathy with pa
thology in neurons, astrocytes, and oligodendroglia [1] associated with 
different clinical phenotypes such as PSP-Richardson′s syndrome 
(PSP-RS) and PSP–parkinsonism (PSP-P) [2,3]. To capture the multi
faceted phenotypical presentations of PSP, four functional domains 
(ocular motor dysfunction, postural instability, akinesia, and cognitive 
dysfunction) have been identified as clinical predictors of PSP in the 
current MDS diagnostic criteria according to [2,4]). Still, PSP patients 
might not be diagnosed or might be misdiagnosed with Parkinson’s 
disease (PD) especially in the early stages after the first symptoms have 
been recognized [5]. Therefore, there is the need to use technical ap
proaches beyond clinical symptoms to identify early PSP. In recent 
years, neuroimaging has significantly improved our understanding and 
diagnosis of PSP [6].

Quantitative MRI analysis has been shown to be useful in differen
tiating atypical Parkinsonian syndromes from PD [7]. Several diagnostic 
methods and potential biomarkers using MRI have been described in the 
literature, including frontal brain atrophy, alterations of the frontal part 
of the corpus callosum (CC), and changes in the midbrain–pons area (e. 
g., superior cerebellar peduncle) as possible biomarkers for PSP–RS 
[8–12]. Methods such as MRPI (Magnetic resonance parkinsonism 
index), MRPI 2.0 [13], and the mesencephalon/pons ratio [14] have 
achieved promising results. Possible correlations have already been re
ported between the level of glial cell line-derived neurotrophic factor 
(GDNF) and neuroimaging parameters. GDNF in the CSF was negatively 
correlated with the midbrain-to-pons (M/P) ratio, and positively 
correlated with MRPI and MRPI 2.0 in PSP-RS [15]. Brain charts for the 
human lifespan have been recently proposed to build dynamic models of 
brain anatomy in normal aging and various neurological conditions. 
Planche and colleagues observed six major consecutive stages of atrophy 
progression in PSP-RS matching the neuropathological staging of tau
opathy progression [16].

From a computational perspective, artificial intelligence (AI)-based 
approaches [17] have been reported to enable earlier detection of PSP 
patients. Especially a current Deep Learning (DL) approach [18] 
combining an automated measurement and segmentation of specific 
brain regions has been suggested as a tool for the early diagnosis of PSP.

In addition to those previous works, the primary goal of the present 
study was to compare multiple machine learning (ML) algorithms and a 
DL neural network approach to identify the least necessary set of brain 
structures to classify PSP vs. controls, and PSP vs. PD. Thereby patho- 
anatomically informing brain structures were ranked in a hierarchical 
order of importance needed to provide clinically relevant performance 
indices (accuracy, sensitivity, specificity, and Youden index). Impor
tance of a parameter was defined relatively. This means that an 
"important" parameter can classify many data sets correctly and a 
parameter that is less important can only classify a few data sets 
correctly. Different parameters from T1-weighted (T1-w) and DTI data 
were derived from predefined brain structures.

2. Methods

2.1. Subjects and patient characteristics

This study consisted of two cohorts of PSP patients at different 
clinical stages who met the MDS diagnostic criteria for PSP [2] and the 
Multiple Allocations Extinction (MAX) rules [2,19] which were applied 
to all PSP subjects in both cohorts. The MDS-PSP criteria have been 
established in 2017 by the Movement Disorder Society-endorsed PSP 
Study Group as the international standard for the operationalization of 
clinical features for the diagnosis of PSP, stratified by predominance 
type and diagnostic certainty [2]. Since 2019, the application of the 
MAX rules - also established by the Movement Disorder 
Society-endorsed PSP Study Group - has been used as an amendment to 

the MDS diagnostic criteria to reduce the number of patients with 
multiple diagnostic allocations, i.e., to simplify and standardize the use 
of the MDS-PSP criteria for both research and clinical care [19].

Cohort A included initially 78 PSP patients (mean age 70.0 ± 7.4 
years, male/female = 38/40); of those, 21 PSP patients underwent a 
follow–up scan after 17.5 months on average (range 11.3–34.8 months), 
and 63 controls (mean age 68.6 ± 7.7 years, male/female = 30/33, with 
17 controls undergoing a follow–up scan after 17.0 months on average 
(range 10.0–37.4 months). Data were multi-centrically recorded with 
3.0T MRI, as part of the DESCRIBE and DANCER studies initiated by the 
DZNE (German Center for Neurodegenerative Diseases) across 9 sites. 
Cohort B comprised a single-site sample of 66 PSP patients (mean age 
70.5 ± 9.1 years, male/female = 38/28) 66 PD (mean age 71 ± 10 
years, male/female = 41/25) and 44 controls (mean age 68.5 ± 5.3 
years, male/female = 25/19), recorded at 1.5T at the Department of 
Neurology, University of Ulm, Germany [8]. These patients were char
acterized with respect to disease severity (PSP Rating Scale (PSPRS), 
[20]), clinical stage (according to the staging system by [21], and 
phenotype according to the MDS Diagnostic Criteria of PSP and the MAX 
rules [2,19]. In cohort A, 78 patients with a diagnosis of PSP (PSP-RS: 
55; PSP-P: 23) were initially included. Cohort B included 66 PSP pa
tients, with 46 of the phenotype PSP–RS and 20 of the phenotype PSP–P. 
In both cohorts, patients had the diagnosis of probable PSP. Only PSP 
patients who underwent MRI scans including MPRAGE and DTI without 
relevant artefacts and imaging abnormalities compromising the accu
rate assessment of the scans (e.g., extended vascular lesions) were 
considered for the study. All controls were well-matched volunteers 
without a history of neurological or psychiatric disease or other relevant 
medical conditions. Table 1 summarizes the demographic and clinical 
data of the participants.

This experimental study was conducted in compliance with the 
declaration of Helsinki. All subjects provided written informed consent 
according to institutional guidelines approved by the DZNE (for Cohort 
A: “Klinische Register–Studie neurodegenerativer Erkrankungen 
(DESCRIBE)” and “Vertiefte Phänotypisierung der Progressiven Supra
nukleären Parese (DESCRIBE–PSP)”, No. 311/14), and the Ethics Com
mittee of Ulm University, Germany (for Cohort B and PD, No. 279/19, 
No. 284/22).

2.2. Scan protocols

MRI scanning was performed using two different protocols in the two 
cohorts. The MRI protocol for Cohort A, as part of the multicentric DZNE 
studies DESCRIBE and DANCER, used the following sequences: high 
resolution T1-w scans consisting of 192 sagittal slices with a resolution 
of 256 × 256 pixels and a slice thickness of 1.0 mm and an in-plane pixel 
size of 1.0 mm × 1.0 mm. Echo time (TE) was 4.3 ms and repetition time 
(TR) was 2500 ms. DTI included 70 gradient directions (GD) with a b- 
value of 1000 s/mm2, and including 10 acquisitions with a b-value of b 
= 0 s/mm2. Each DTI volume consisted of 72 slices, a resolution of 
2.0x2.0x2.0 mm³ (matrix 120x120x72), TE was 88 ms, and TR was 
12100 ms. All participants of cohort A had the identical acquisition 
protocol; for details of the center distribution please refer to Supple
mentary Information I. The protocol for Cohort B at 1.5 T (Magnetom 
Symphony; Siemens Medical, Erlangen, Germany) used the following 
sequences: high resolution T1-w scans consisted of 144 sagittal slices 
with a resolution of 256 × 256 pixels and a slice thickness of 1.2 mm and 
an in-plane pixel size of 1.0 mm × 1.0 mm; TE was 4.2 ms and TR was 
1640 ms. DTI used 52 GD with a b-value of 1000 s/mm2, and including 4 
acquisitions with a b-value of 0 s/mm2). 64 slices were acquired with 
resolution of 2.0x2.0x2.8 mm³ (matrix 120x120x64), TE was 85 ms, and 
TR was 7600 ms.

2.3. Data analysis

Pre– and post–processing (Fig. 1) of the data was performed using 
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the Tensor Imaging and Fiber Tracking software (TIFT; [22]).

2.3.1. DTI data – fractional anisotropy
All DTI data were assessed for completeness and, following an 

established quality control protocol [23], DTI data with corrupted GD or 
relevant motion artefacts were excluded before correcting for eddy 
current induced geometric distortions. DTI data could not be corrected 
for susceptibility artefacts because acquisition was performed only in 
A-P direction. However, the susceptibility-induced field will (to first 

approximation) be constant for all the acquired images, which means 
that the set of images will be internally consistent [24]. DTI data were 
then transferred to a 1 mm iso-grid for subsequent analyses [25] – all 
referenced voxel sizes refer to 1 mm³ voxels. Non–linear spatial 
normalization to the Montreal Neurological Institute (MNI) stereotaxic 
standard space [26] was performed using study–specific templates (b0 
template as well as FA template) to ensure the preservation of direc
tional information [22,25]. This process applied to both baseline and 
follow–up data, incorporating a prior intra–subject alignment [27].

Table 1 
Subjects′ characteristics. PSP – progressive supranuclear palsy, PSP-P – progressive supranuclear palsy with predominant parkinsonism, PSP-RS – progressive 
supranuclear palsy with Richardson’s syndrome, PSPRS – Progressive supranuclear palsy rating scale, PD – Parkinson disease. (*a) [20]; (*b) [21]; (*c) [2]. Values of 
continuous variables are given in mean ± standard deviation and range.

N (m/f) 
(baseline)

N (m/f) 
(follow- 
up)

Time to follow-up/ 
months

Age/years 
(baseline)

Age/years 
(follow-up)

Disease duration/ 
years (baseline)

Disease duration/ 
years (follow-up)

Cohort A 
(3.0T)

PSP-RS patients 55 (24/ 
31)

13 (5/8) 17.6 ± 8.1 
(10.4–34.3)

71.0 ± 7.4 
(50.6–86.2)

72.3 ± 7.7 
(59.4–81.4)

4.3 ± 2.8 (0.6–14.4) 5.2 ± 2.2 (2.4–9.8)

PSP-P patients 23 (14/9) 8 (5/3) 16.0 ± 5.8 
(11.2–25.4)

68.2 ± 7.6 
(52.0–83.9)

70.0 ± 5.9 
(62.8–77.8)

3.8 ± 1.8 (0.5–6.9) 5.0 ± 1.6 (2.6–7.2)

p (t-test, PSP-RS 
vs. PSP-P)

– – – n.s. n.s. n.s. n.s.

all PSP patients 78 (38/ 
40)

21 (10/ 
11)

17.8 ± 7.2 
(11.3–34.8)

70.0 ± 7.4 
(50.6–86.2)

70.8 ± 6.5 
(59.4–81.4)

4.2 ± 2.7 (0.5–14.4) 5.2 ± 2.7 (2.4–9.8)

Controls 63 (30/ 
33)

17 (6/ 
11)

17.0 ± 7.5 
(10.0–37.4)

68.6 ± 7.7 
(51.2–89.4)

71.1 ± 8.7 
(53.1–82.2)

– –

p (t-test, controls 
vs PSP)

​ ​ ​ n.s. n.s. ​ ​

Cohort B 
(1.5T)

PSP-RS patients 46 (24/ 
22)

– – 70.0 ± 9.2 
(49.0–84.3)

– 2.9 ± 1.6 (0.5–6.9) –

PSP-P patients 20 (14/6) – – 70.9 ± 8.9 
(50.2–91.3)

– 3.4 ± 1.6 (1.1–8.7) –

p (t-test, PSP-RS 
vs. PSP-P)

– ​ ​ n.s. ​ n.s. ​

all PSP patients 66 (38/ 
28)

– – 70.5 ± 9.1 
(49.0–91.3)

– 3.1 ± 1.6 (0.5–8.7) –

Controls 44 (25/ 
19)

– – 68.5 ± 5.3 
(57.2–81.9)

– – –

PD patients 66 (41/ 
25)

– – 70.4 ± 10.4 
(52.0–93.5)

– 3.6 ± 2.6 (0.8–9.7) –

p (controls vs PSP 
vs PD)

– ​ ​ n.s. (Oone-way 
ANOVA)

​ n.s. (t-test) ​

PSPRS (*a) 
(baseline)

PSPRS (*a) 
(follow-up)

Golbe (*b) stage 
(baseline)

Golbe (*b) stage 
(follow-up)

PSP-RS/PSP-P (*c) 
(baseline)

PSP-RS/PSP-P (*c) 
(follow-up)

Cohort A (3.0T) PSP patients 36 ± 8 (21–52) 43 ± 17 (14–70) 2 ± 2 (1–4) 2 ± 1 (1–3) 55/23 13/8
Cohort B (1.5T) PSP patients 35 ± 11 (15–61) – 2 ± 1 (1–4) – 46/20 –

Fig. 1. Workflow of the categorization cascade. Initially, DTI and T1-weighted data underwent preprocessing, harmonization (or exclusion of data), and analysis 
as detailed in section 2.3. After that, parameters ROIs and TOIs were defined as described in section 2.3.3. Diverse training and validation datasets were then curated 
(3.1.1), initially engaging a random forest approach which subsequently led to the prioritization of specific parameters features for in-depth examination, as outlined 
in sections 3.1. These selected parameters were dynamically adjusted throughout training and validation, employing different AI algorithms.
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Fractional anisotropy (FA) maps were generated from the 
MNI–normalized DTI data, and a Gaussian smoothing filter of 8 mm full 
width at half maximum [28] was applied to these individual FA maps to 
optimize the balance between sensitivity and specificity. The final FA 
maps were corrected for age [29] but not for sex, since an effect of sex on 
FA has not yet been reported for PD and PSP patients – a detailed 
analysis showing the absence of a sex effect in the present data is pro
vided in Supplementary Information V. Data from protocol A were 
tested for harmony and small center contributions (independent of the 
controls/patient ratio) were eliminated from the study. For details of the 
handling of center-effects please refer to Supplementary Information 
II. It is generally well known that especially DTI metrics could be 
influenced by the scanner protocol and by the field strength (although 
they are physical metrics with the intrinsic property of being indepen
dent of the measurement device – despite device specific aspects). The 
residual contribution to variation, in e.g. FA, is the acquisition voxel 
size. In this study, we assumed the voxel size differences (2.0x2.0x2.0 
mm³ in protocol A, 2.0x2.0x2.8 mm³ in protocol B) to be negligible 
compared to disease-specific effects. Nevertheless, a protocol harmoni
zation of FA maps according to the acquisition protocols of cohorts A 
and B was performed according to a previously published algorithm 
[30]. Note: PSP–RS and PSP–P generally showed similar sequential 
disease progression (see disease duration in Table 1) so that, for statis
tical sample size considerations, PSP–RS and PSP–P were analyzed 
together.

2.3.2. Texture analysis
Details of the T1-w texture analysis cascade have been described 

previously [8,31]. In short, T1-w data were assessed for completeness 
and motion artefacts and, after isometric and affine alignment to the 
anterior commissure/posterior commissure line and adjustment of the 
intensity threshold to automatically segment the CC, a subdivision of the 
CC into areas I–V according to the Hofer and Frahm scheme [32] was 
performed. Finally, calculation of area sizes and texture parameters [33] 
was applied. In the current study, the parameters entropy and homo
geneity were analyzed.

2.3.3. Region of Interest (ROI) and Tract of Interest (TOI) analysis
Region of interest (ROI) analysis was performed by arithmetically 

averaging FA values within a given ROI for each subject, considering 
only voxels with an FA value greater than 0.2 [34]. An averaged DTI 
data was computed from the control group’s data by arithmetically 
averaging the MNI–transformed data. This averaged control DTI data 
was used to identify specific tracts and pathways through FT using a 
seed–to–target approach. The tracts of interest (TOIs) were defined as all 
potential tracts originating in the start region and terminating in the 
target region. A modified deterministic streamline tracking technique 
for FT was employed, which accounts for the directional information of 
adjacent tracts [35].

Multiple brain structures known to be affected in PSP were analyzed, 
as evidenced by imaging and neuropathological studies. Clinical MRI 
classically reveals midbrain atrophy [11,36], a finding supported by 
neuropathological studies [1,37]. In addition, reduced volumetric 
measurements of the putamen and globus pallidus have been reported 
[11,38], with the globus pallidus being one of the earliest structures 
affected [37]. Regarding the putamen and globus pallidus, we decided to 
analyze them as a single entity due to their close proximity on DTI im
aging so that we found it very difficult to separate these two structures 
accurately in order to analyze each of them entirely and exclusively. We 
realize that these two structures have different PSP pathology qualita
tively and quantitatively, however, we found that by analyzing them in 
the same ROI, the possible erroneous results would be mitigated. The 
pons, although less severely impacted, also shows involvement [11]. 
The cerebral peduncle, nigrostriatal tract, and subthalamopallidal tract 
which interconnect these early affected structures have been studied in 
recent PSP imaging research [39–41]. Additionally, the medial 

lemniscus was included to the study due to its course through the 
brainstem and observed involvement in PSP, despite its unclear role in 
clinical presentation [42].

Owing to anatomical connections and the results of previous DTI 
study findings in PSP [43], the thalamic anterior and posterior radia
tions were also included. Additionally, the caudate nucleus was selected 
which shows microscopic changes and imaging correlates of degenera
tion [1,11,37,44,45]. There is ample evidence for the involvement of 
frontal white matter (WM) in several imaging and histological studies 
[1,11,37,46–49], leading to our subdivision of the frontal WM into four 
ROIs (fronto–orbital, prefrontal, premotor, and precentral WM). 
Furthermore, several frontal lobe WM tracts which showed changes in 
DTI studies were included [45,50], such as the fronto-occipital fascicle, 
uncinate fascicle, and superior longitudinal fascicle. The CC, particu
larly its anterior part, has shown involvement in PSP in numerous 
studies [8,51–54], leading to the inclusion of its anterior three segments 
(areas I, II, and III according to the definition by Hofer and Frahm [32]). 
In addition, the anterior limb of the internal capsule [55,56] and the 
corticostriatal tract were included due to their connections with the 
thalamus, striatum, and frontal lobe. The cerebellar WM and the dentate 
nucleus, both noted for PSP involvement in imaging and histological 
studies [1,11,44,48,57], were also included. The superior and middle 
cerebellar peduncles were considered, with the former being a WM 
bundle important for PSP diagnosis [11,44,48,49,58]. Additionally, the 
CC in its different segments was examined focusing on homogeneity and 
entropy in T1-w data (Supplementary Information III).

2.3.4. Evaluation of center-effects
Before starting the classification analyses, the extent to which the 

PSP data of cohort A were homogeneously distributed across those five 
centers contributing at least four PSP cases was examined. To check for 
center effects, non-parametric Kruskal-Wallis analyses of variance were 
calculated, with center as a five-fold independent factor. The dependent 
variables were the FA values averaged for the predefined ROIs. Signif
icant effects of the factor center were found for two of the 49 ROIs: 
midbrain tegmentum (test statistic (h) = 19.0119; p-value = 0.0008) 
and substantia nigra (h = 18.6678; p-value = 0.0009). Pairwise com
parisons between centers using Dunn’s tests confirmed that one center in 
particular, which contributed four PSP cases to the study, was respon
sible for the abnormalities (Supplementary Information, Tables II–1). 
These four MRI data were therefore excluded from the study since the 
small sample was not suitable for numerical harmonization. The final 
sample size of PSP patients of cohort A was therefore 74.

3. Theory and calculation

3.1. Application of ML algorithms

The application of ML algorithms consisted of two steps. The initial 
first step involved the training of well-established and rather robust AI 
methods, such as support vector machines (SVM) [59], multilayer per
ceptrons (MLP) [60], decision trees [61], and random forests [62] 
(Fig. 1). The aim was twofold: first, to identify the most effective 
ML-method, and to determine the optimal set of parameters for the 
second step of the ML application using Gini importance information 
[62]. This process was integral in synthesizing the accumulated insights 
from the initial first step, specifically the selected classification meth
odology and the refined parameter list. With this prioritized parameter 
list, sensitivity and specificity of the ML-classification algorithms were 
optimized. Only after achieving results with highest accuracy by one of 
these ML algorithms, a DL approach was implemented which specifically 
aimed at further improving accuracy and validating pre–selected pa
rameters. Not only the parameter list but also the information about the 
structures of the associated classification method was used to build up 
different DL approaches aiming at the highest accuracy and 
Youden-index (sensitivity + specificity − 1).
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3.1.1. Data partitioning into training and validation
For the application of the AI algorithms, all data were randomly split 

into 80 % for training and 20 % for validation (Fig. 2). Two different 
distributions were set up. In distribution 1 (D1), the training dataset 
comprised 197 participants’ data sets consisting of all PSP patients’ and 
controls’ data from cohort B (N = 110), and additionally 45 randomly 
selected PSP patients and 42 randomly selected controls from cohort A 
(N = 87). Validation was performed on a set of 50 participants’ data 
consisting of further randomly selected 21 controls and 29 PSP patients 
from cohort A. Distribution 2 (D2) consisted again of all data from 
cohort B and in addition another randomly selected 23 PSP patients and 
41 controls from cohort A. Thus, in D2, 174 participants’ data were used 
for training, and 44 participants’ data from cohort A (22 PSP and 22 
controls) were used for validation. There was no further preselection of 
participants’ data for training or validation. Follow-up scans were 
pseudo-randomly allocated to either validation or training groups (see 
Section 3.2). For the classification of PSP vs PD, only 1.5 T MRI data 
from cohort B, consisting of 66 PSP and 66 PD patients, respectively, 
could be used (no PD data in cohort A).

3.1.2. SVM
An SVM [59] was included in the study because of a good perfor

mance with larger data samples and the ability to handle non-linear data 
through kernel transformation [63]. The SVM was trained and validated 
on all dataset distributions, using scikit-learn library [64] with the 
following configuration: kernel = ’rbf’, C = 1.0, degree = 3, gamma =
’scale’, coeff0 = 0.0, shrinking = true, probability = false, tol = 0.001, 
cache_size = 200 MB, class_weight = none, verbose = false, max_iter =
− 1, decision_function_shape = ’ovr’.

3.1.3. Decision Trees
This method was chosen because of its simple visualization, under

standability, and the well-controllable adjustments of parameters [61]. 
The scikit-learn library was used [64], and the decision tree was trained 
and validated on all dataset distributions with the following configura
tion: criterion set to ’gini’, splitter strategy as ’best’, no limit on 
maximum depth, a minimum of two samples required to split a node, at 
least one sample required at each leaf node. The tree had no maximum 
leaf node restriction, no minimum impurity decrease was required for 
splits, and no class weights or complexity pruning was applied.

3.1.4. Random forest models
The random forest model was included in the study because of its 

straightforward implementation, its versatility in being applied to 
various data structures, its ability to output results in probabilities, and 
its capability to perform variable feature importance measurement [62].

The random forest model was configured with the following pa
rameters using the scikit-learn library [64]: The number of trees was set 
to 100. No limit for the maximum depth of each tree was set, minimal 
samples split = 2, or until all leaves were pure. Minimal samples leaf =
1. Max features was set to ‘auto’, which means that the square root of the 

total number of features was used. Bootstrap sampling was used to build 
the trees.

The Gini importance coefficient was chosen as the criterion for 
measuring the quality of a split, favoring the selection of the most 
discriminating features at each node. These parameters features were 
carefully selected to optimize the performance of the random forest 
model in our analysis.

3.1.5. Multilayer perceptron (MLP)
MLPs are neural networks for a large range of applications, using the 

backpropagation algorithm for training [60]. This method was included 
in the study because of its strengths in several key areas: it can be 
applied to complex non-linear problems, works well on large datasets, 
and provides fast predictions after training [65].

In this study, MLP experiments were carried out on Distributions D1 
and D2 using the scikit-learn library [64]. The standard configuration 
for the MLPClassifier included a single hidden layer with 100 neurons, 
activation function = ’relu’. The ’adam’ solver was used for weight 
optimization, batch sizes = less than 200 samples or the total number of 
samples. Learning rate = 0.001, iteration number = 200. Regularization 
term (alpha) = 0.0001. The optimization would stop if the improvement 
were less than a tolerance of 0.0001. No specific random state was set.

3.1.6. DL neural networks
This classification method is built up from ‵neurons’ which in that 

case are mathematical functions often similar to XOR or OR functions 
and have a weight that can be interpreted as a threshold potential to be 
crossed by the input values [66]. The DL neural network enables com
plex, multidimensional classification. However, it was applied only in 
the second step of the study, to first identify important features using 
conventional ML techniques. Specifically, various configurations of DL 
neural networks were applied using TensorFlow [67], optimized on 
accuracy (Youden-index) (Table 2, Fig. 3).

The method of permutation importance [68] was used to evaluate 
the neural network designed to differentiate between PD and controls 
and for the neural network implemented to differentiate between PSP 
and PD. This technique involves systematically changing the order of the 
features (in the dataset) and observing the resulting effect on the accu
racy of the network. In detail, each feature is randomly shuffled while 
the other features are kept constant, and the change in the models ac
curacy is recorded. A significant drop in accuracy when a particular 
feature is shuffled indicates the high importance of that feature for the 
models accuracy. This approach is particularly effective in assessing the 
relative contribution of each feature in complex neural network archi
tectures, providing valuable insight into the model’s decision–making 
process and guiding further refinements in feature selection and model 
optimization.

3.2. Incorporation of longitudinal data

As we decided to also include longitudinal data (available in cohort 

Fig. 2. Different distributions of the training and validation set. The illustrations depict the data distributions employed for the classification techniques. 
Distribution 1 consisted of 247 data, i.e., 197 data for training (blueish background) and 50 data for validation (brownish background). Distribution 2 included a 
dataset of 218 data, i.e., 174 data for training (blueish background) and 44 data for validation (brownish background).
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A) into the two different distributions D1 und D2, special care was taken 
to ascertain different longitudinal data to be included in either distri
bution. The pseudorandomized allocation procedure resulted in the 
following selections: Twenty-seven longitudinal follow-up scans were 
included in D1, with 22 for training (5 healthy controls and 17 PSP), and 
5 for validation (4 healthy controls and 1 PSP). D2 comprised 26 follow- 
up scans, 17 (8 healthy controls and 9 PSP) for training, and 9 (1 healthy 
control and 8 PSP) for validation.

3.3. Association of MRI-based results to clinical stages

To align the DL neural network’s (PSP vs. controls) categorizations 
with the clinical assessments, the DL network’s confidence in its clas
sifications was stratified into five distinct levels, with each level repre
senting a 20 % probability interval, providing a gradation of the 

network’s certainty in its diagnostic categorization. The primary 
objective was to compare these probabilistically determined intervals 
with the (clinically determined) Golbe stages [20,21] (for details refer to 
Supplementary Information IV).

3.4. T-SNE representation (t-distributed stochastic neighbor embedding)

The t-SNE algorithm reduces the dimensionality by capturing the 
underlying structure and relationships between data points. The X-axis 
(T-SNE (X)) and Y-axis (T-SNE (Y)) depict the transformed coordinates 
in a two-dimensional space, where similar data points are positioned 
closer together, and dissimilar points are further apart [69], so that it is 
possible to depict multi-dimensional data on a two-dimensional coor
dinate system.

4. Results

4.1. Selection of features for PSP vs controls and performance of ML- 
algorithms

For the selection of parameters to classify PSP vs controls, a random 
forest method was implemented including all ROIs and TOIs of the study 
and was then trained and validated with distribution D1 (Fig. 4). This 
approach already resulted in an accuracy of 0.84 with sensitivity of 0.83, 
specificity of 0.86, and a Youden index of 0.69. The most important 
parameters according to the Gini importance were chosen for further 
implementations. Every change in the parameters used for the random 
forest led to different hierarchical outcomes considering the ROIs and 
TOIs. After excluding the least important parameters in every iteration, 
the random forest achieved its best accuracy with the following specific 
ROIs and TOIs: CC (T1-w -homogeneity index), pons, midbrain 
tegmentum, cerebral peduncles, and putamen; for the latter regions, 
read-out was FA.

During the parameter feature selection process the validation accu
racy was similar between random forest applications using either T1-w 
based data of the CC, or DTI based data of the CC. However, during 
training the random forest algorithms including parameters based on 
T1-w were slightly more prone to overfitting relative to DTI data. 
Therefore, only DTI data were selected for use in the following 
computations.

A random forest trial implemented on D1 yielded the most promising 
outcome, finally achieving a Youden index of 0.87, accuracy of 0.94, and 

Fig. 3. Layer structure of the neural networks. This figure shows the two different layer structures of the used deep learning (DL) neural networks. Left: Network 
used for the classification of progressive supranuclear palsy (PSP) vs (healthy) controls. For the input layer, a parametric rectified linear unit (PReLU) function was 
used, while the output layer was implemented with a sigmoid function Right: the layer architecture of the network used to discriminate Parkinson disease (PD) vs 
PSP. The input layer was implemented with a PReLU function and the output layer calculated with a sigmoid function.

Table 2 
Architecture of the implemented models. This table shows the specific build- 
up for each neural network used in the study. The model for the PSP vs. controls 
discrimination stopped at 3000 epochs. For the more complex classification to 
discriminate between PD vs. PSP, the number of epochs was increased by factor 
10, i.e. a maximum of 30,000 epochs was permitted.

Model for PSP vs. controls Model for PD vs. PSP

Network 
Architecture

Sequential Sequential

Layers - Dense: Output Shape (None, 
32), Parameters: 320

- Dense: Output Shape (None, 
200), Parameters: 6600

- Dense: Output Shape (None, 
2), Parameters: 402

- Dense: Output Shape 
(None, 3), Parameters: 63

- Dense: Output Shape 
(None, 6), Parameters: 24

- Dense: Output Shape 
(None, 2), Parameters: 14

Total Parameters 7322 101
Trainable 
Parameters

7322 101

Non-trainable 
Parameters

0 0

Activation 
Functions

- Dense Layer: PReLU - 
Dense_1 Layer: tanh

- Dense_2 Layer: sigmoid

- Dense Layer: PReLU - 
Dense_1 Layer: swish

- Dense_2 Layer: sigmoid
Loss Function Binary Crossentropy Binary Crossentropy
Optimizer Adam Adam
Batch Size 2 4
Number of 
Epochs

3000 30,000
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sensitivity and specificity of 0.97 and 0.90, respectively (Table 3A). This 
parameter feature selection was also used to implement a multilayer 
perceptron, a support vector machine and a decision tree. These results 
are summarized in Table 3A.

4.2. Selection of features for PSP vs PD and performance of ML- 
algorithms

For the selection of the features to differentiate PSP vs PD, an initial 
implementation of a random forest model on cohort B using all ROIs and 
TOIs yielded a Youden-index of 0.10. Repetitively pruning away less 
important features (Gini importance), this implementation yielded an 
hierarchically organized list of features which included: prefrontal WM, 
fasciculus frontooccipitalis, CC area II, midbrain tegmentum, sub
thalamopallidal tract, nigrostriatal pathway, caudate nucleus, medial 
lemniscus, precentral WM, dentatorubrothalamic tract, putamen, nu
cleus dentatus, anterior thalamus, cerebellar WM, premotor WM, fron
toorbital WM, anterior thalamic radiation, substantia nigra, and anterior 
limb of internal capsule. With this set of features in use, performance of 
the different ML algorithms are summarized in Table 3B.

4.3. DL neural networks in PSP vs controls and PSP vs PD

For the classification of PSP vs controls, a neural network was used to 
further improve the accuracy of the random forest algorithm, and finally 
leading to an accuracy of 95 %, sensitivity of 95 %, specificity of 97 %, 
and a Youden-index of 92 % (Table 3A). In order to arrive at that 

effective classification performance, features had again to be selected 
iteratively using the permutation method. The final set of features 
included four of the five 5 selected features from the random forest 
approach above, and three additional features: substantia nigra, 
nigrostriatal pathway, medial leminiscus, midbrain tegmentum, pons, 
cerebral peduncles, putamen, subthalamopallidal tract. The hierarchical 
ordering of those features’ importance is summarized in Fig. 5A.

For the differentiation of PSP vs PD, the final DL neural network 
model was using the selected parameters of the previous random forest 
model above (Table 3B). Here, the performance indices showed that PSP 
could be differentiated from PD with accuracy of 86 %, sensitivity of 88 
%, specificity of 85 %, and a Youden-index of 0.72. The hierarchically 
organized importance was again determined by using the permutation 
method, and is summarized in Fig. 5B.

For the association of Golbe stages and AI results refer to Supple
mentary Information IV.

5. Discussion

5.1. Application of AI approaches to MRI for the diagnostic classification 
of PSP

In this study, different traditional ML and less traditional DL neural 
network approaches were evaluated for their applicability in diagnos
tically relevant classification of PSP versus controls and PSP versus PD, 
respectively, based on FA indices derived from DTI data, and callosal 
texture parameters from T1-w data. The classification importance of 

Fig. 4. Random forest approach PSP vs controls. (A): This illustration depicts the Gini importance of the random forest approach using all ROIs and TOIs of this 
study, with highest Gini importance value on the left and with the lowest Gini importance values on the right. (B) Gini importance of the parameters of the best 
performing random forest approach. (C) Exemplary T -SNE representation of the validation datasets (D1).
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different features to obtain the best classification performance indices 
for each of the different algorithms applied was hierarchically defined. 
This study used a rather large multi-center setup, including 140 patients 
with PSP, 66 patients with PD, and 107 heathy controls. The differen
tiation of PSP versus controls was achieved with an accuracy of 92 % 
using a random forest model, and with 95 % accuracy using a DL neural 
network. The differentiation of PSP versus PD achieved an accuracy of 
86 % using a DL neural network and clearly outperformed each of the 
different ML approaches (see Table 3). The number of relevant features 
for the differentiation between PSP and controls using ML algorithms, 
and between PSP and PD using DL neural networks, respectively, were 
different. While this issue did not allow for direct comparisons between 
ML- and DL-based categorization performances, it allowed us to identify 
the least necessary set of features in order to achieve between-methods 
comparability (ML algorithms and DL) at diagnostically relevant higher 
levels of accuracy, specificity, sensitivity, and the Youden-index.

Previous studies based on atlas-based volumetry [4] of T1-w data or 
based on automated segmentation and measurement of specific brain 
regions (MRPI 2.0 [13,18], have already been successful in aiding for 
diagnosis of PSP, or quantitatively detecting disease progression in PSP. 
The FA-based microstructure analysis of this study could further in
crease the set of features and, with it, accuracy in the diagnosis of PSP.

5.2. Comparison with previous studies

Previous studies focused on the discrimination between PSP and 
controls as well as on the discrimination between PSP and other 
Parkinsonian syndromes. Using data from atlas-based volumetry (ABV), 
Huppertz and colleagues (2016) found the majority of binary SVM 
classifications between PD, PSP-RS, and multiple system atrophy (MSA) 
with balanced accuracies of >80 %; SVM classifications between PD, 
PSP, and MSA achieved sensitivities from 79 % to 87 % [70]. classified 

MSA and PD against healthy controls with 95 % accuracy. More recent 
studies [71] differentiated between PD and atypical neurodegenerative 
Parkinsonism (MSA and PSP) reaching 95 % accuracy with DTI data. 
Chougar and colleagues (2020) reviewed various imaging approaches to 
discriminate between PD and PSP with high accuracies; highest accu
racies (up to 100 %) were reported by combination of volumetry and 
DTI metrics using SVM [72].

Concerning MR imaging modalities, previous studies [73,74] 
showed that a combination of DTI and T1-w imaging achieved high 
accuracy in finding PSP-associated alterations that support classification 
and diagnostic accuracy. In contrast, another study [44] showed that 
diffusion parameters did not significantly contribute to the classifica
tion, perhaps due to scanner variability. It should be noted, however, 
that the present study was not intended as a systematic head-to-head 
comparison of both MRI modalities.

It should also be noted that while this is not the first study to address 
the differentiation of PSP versus controls and PD, previous studies often 
relied on smaller samples. In the study by [74], the authors did also not 
separate training and validation data completely [74], but used a 
leave-one-out approach which increases the risk of over-fitting [75]. 
Another previous study [58] performed comparisons among MRPI, 
MRPI 2.0, volumetric/thickness data and used traditional ML methods 
for the differentiation of PSP-RS and PSP-P. That study suggested that 
ML models using a combination of MRPI, and volumetric/thickness data 
achieve the best classification performance in distinguishing between 
these two PSP phenotypes. However, DTI data and DL-neural networks 
were not employed.

The present study highlights numerous brain regions, including 
those predominantly composed of white matter, which is specifically 
targeted by DTI, but also incorporated several grey matter structures. 
The most important structures for differentiating PSP from PD were 
prefrontal white matter, the fasciculus occipitalis, the CC area II (FA), 
and the midbrain tegmentum. This result is in agreement with the 
findings by [76] who reported reductions in FA within the prefrontal 
white matter of PD patients [76]. The outcomes from the random forest 
analysis revealed that particularly the grey matter regions midbrain 
tegmentum, pons, putamen and globus pallidus, previously identified as 
pathological by [1], are important for AI methods to differentiate be
tween PSP and controls at high performance indices. Furthermore, the 
contribution of the CC to the differentiation of PSP versus controls was 
demonstrated in the present study, confirming previous findings [8].

5.3. Limitations

The first limitation of our study was the difference of imaging pro
tocols between the cohorts. Cohort A consisted exclusively of 3.0 T MRI 
scans, whereas cohort B included 1.5 T scans only. To address the po
tential impact of these differences in image quality, we included 1.5 T 
images only at the training level and did not use them for validation. 
However, the inclusion of more 3.0 T scans might likely further improve 
the overall results. The AI models for differentiating between PSP and 
PD were trained and validated exclusively on 1.5 T data since no 3.0 T 
data were available for PD patients.

Even though this study used one of the largest DTI data samples for 
investigating classification of PSP vs controls and PD, the limitation to 
140 PSP data may still cause a significant challenge for the imple
mentation of AI methods. Nonetheless, it was ensured that the data used 
in the validation process were randomly selected, and one validation 
even used data from a different site that was entirely not involved in 
delivering training data.

Furthermore, longitudinal data were not excluded. While that data 
represented less than one third of baseline data, the ratios between 
healthy controls and PSP patients were rather alike, i.e., 0.85 for base
line and 0.81 for the follow up. Nevertheless, inclusion of longitudinal 
data might lead to overfitting in the ML methods However, all ML 
methods were validated across both distributions D1 and D2 and due to 

Table 3 
The best performance parameters for each of the different AI approaches for 
different distributions and classifications. (A) AI approaches for PSP vs controls 
(B) AI approaches for PSP vs. PD.

(A) PSP vs controls

Distribution AI approach accuracy sensitivity specificity Youden 
index

D1 Random 
forest

0.94 0.97 0.90 0.87

D2 Random 
forest

0.86 0.95 0.77 0.73

D1 Multilayer- 
perceptron

0.88 1.0 0.71 0.71

D2 Multilayer- 
perceptron

0.84 0.95 0.73 0.68

D1 Support 
vector 
machine

0.88 1.0 0.71 0.71

D2 Support 
vector 
machine

0.86 0.95 0.77 0.73

D1 Decision tree 0.84 0.93 0.71 0.64
D2 Decision tree 0.73 0.77 0.68 0.45
D1 Neural 

network
0.88 0.90 0.86 0.75

D2 Neural 
network

0.95 1.0 0.91 0.91

(B) PSP vs PD
Random 
forest

0.59 0.46 0.69 0.15

Multilayer- 
perceptron

0.48 0.84 0.19 0.03

Support 
vector 
machine

0.59 0.62 0.56 0.18

Neural 
network

0.86 0.85 0.88 0.72
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the random selection process, it happened, that D1 compromised just 
one PSP follow-up. The accuracy of the random forest algorithm of 0.94 
for D1 indicated a low risk of overfitting due to follow-up scans.

Furthermore, in the current study, we specifically focused on 
microstructural alterations. Structural alterations in PSP, e.g. e vacuo 
expansion of the third ventricle [4,18] were not addressed but can in 
combination with volumetric techniques, principally further improve 
accuracy. Similarly, a recent study investigated PSP patients and con
trols showing interconnections among different brain areas by multi
parametric MRI, providing a new perspective on the coordinated 
changes in structure and function in PSP pathogenesis and their re
lationships with the microstructural cellular structure hierarchy [77].

An important challenge in clinical routine is also to differentiate PD, 
MSA and PSP [70,71,73,78], but this study addressed the task to 
differentiate PSP and PD patients. A future task is to extend the devel
oped methodological approach to other neurodegenerative Parkinso
nian syndromes such as MSA.

Finally, as in many other current studies, the PSP diagnoses in our 
study were not verified post–mortem.

6. Conclusion

In conclusion, we demonstrated that AI applications to DTI data can 
be used to differentiate PSP from healthy controls and PD, respectively. 
These results highlight that the patho-anatomical complexity of PSP can 
be deduced by ML and DL neural network techniques. ML techniques 

appear already rather useful for classifying patients with PSP against 
controls. However, to achieve reliability at 100 % accuracy for auto
mated diagnostics while also acknowledging computational feasibility 
in clinical routines, further evaluation of DTI metrics other than FA in 
combination with informing brain structures seems to be a worthwhile 
task. More complex AI methods, such as DL neural networks are 
apparently necessary for distinguishing PSP from PD. Further research is 
needed to determine the most important combinations of affected brain 
structures and DTI metrics, providing the least necessary set of features 
that would inform DL neural networks to reliably solve this challenge at 
100 % accuracy.

CRediT authorship contribution statement

Heiko Volkmann: Writing – original draft, Formal analysis. Günter 
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[68] A. Altmann, L. Toloşi, O. Sander, T. Lengauer, Permutation importance: a corrected 
feature importance measure, Bioinformatics 26 (10) (2010) 1340–1347, https:// 
doi.org/10.1093/bioinformatics/btq134.

[69] L. van der Maaten, G. Hinton, Visualizing Data Using T-SNE, 2008, pp. 2579–2605.
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