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Comparative neurofilament light chain
trajectories in CSF and plasma in autosomal
dominant Alzheimer’s disease
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Disease-modifying therapies for Alzheimer’s disease (AD) are likely to be most
beneficial when initiated in the presymptomatic phase. To track the benefit of
such interventions,fluidbiomarkers are of great importance,with neurofilament
light chain protein (NfL) showing promise for monitoring neurodegeneration
and predicting cognitive outcomes. Here, we update and complement previous
findings from theDominantly Inherited AlzheimerNetworkObservational Study
by usingmatched cross-sectional and longitudinal cerebrospinal fluid (CSF) and
plasma samples from 567 individuals, allowing timely comparative analyses of
CSF and blood trajectories across the entire disease spectrum. CSF and plasma
trajectories were similar at presymptomatic stages, discriminating mutation
carriers from non-carrier controls 10-20 years before the estimated onset of
clinical symptoms, depending on the statistical model used. However, after
symptom onset the rate of change in CSF NfL continued to increase steadily,
whereas the rate of change in plasma NfL leveled off. Both plasma and CSF NfL
changeswere associatedwithgrey-matter atrophy, but notwithAβ-PETchanges,
supporting a temporal decoupling of Aβ deposition and neurodegeneration.
These observations support NfL in both CSF and blood as an early marker of
neurodegeneration but suggest that NfL measured in the CSF may be better
suited for monitoring clinical trial outcomes in symptomatic AD patients.

The characteristic pathological features of Alzheimer’s disease
(AD) are Aβ and tau aggregates. These proteopathic changes are
thought to lead to neurodegeneration, which ultimately results in
cognitive and functional decline. The detection and monitoring of

pathological changes in vivo can be performed by positron
emission tomography (PET) and magnetic resonance imaging
(MRI) or by analysis of certain proteins in the cerebrospinal fluid
(CSF) or blood1–3.
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Biomarkers for neurodegeneration are especially important since
neurodegeneration is most proximal to the cognitive decline4,5. Neu-
rofilament light chain protein (NfL) is a cytoskeletal component that is
mainly found inmyelinated axons6. An increase inNfL in blood andCSF
is observed inADbut also inmany other neurodegenerative diseases7–9

and some non-neurodegenerative diseases10,11. It is assumed that NfL is
released from damaged neurons and then diffuses into the CSF and
blood, serving as a biomarker of neuronal damage.

Previous research has shown that NfL increases in blood and CSF
starting in the presymptomatic phase of AD and is a good predictor of
cognitive decline8,9,12,13. The ability of NfL to detect changes before
clinical manifestations makes it a promising biomarker for drug
response in trials of disease-modifying therapies in presymptomatic
phases3. Although cross-sectional NfL levels in AD show a robust cor-
relation between blood and CSF NfL levels14, it is uncertain to what
extent CSF and blood NfL trajectories differ over the 2–3 decade-long
period of AD pathogenesis. However, the latter is important for
understanding the dynamics and significance of this fluid biomarker
and to decide whether the more cumbersome and patient-burdening
CSF measurement can be replaced by blood measurements.

Here, we used data and biospecimens from the Dominantly
Inherited Alzheimer Network (DIAN) that longitudinally examines
individuals from families with highly penetrant autosomal dominant
AD (ADAD) mutations in the genes for APP, PSEN1, or PSEN215. Family
members who do not carry themutations (non-carriers; NC) serve as a
control group. Since the age at symptomonset is consistent for a given
pathogenic variant, an estimated years to symptomonset (EYO) can be
calculated for each participant (see “Methods” section) allowing data
to be normalized and individuals can be staged relative to their EYO.
Previously, we reported on serum NfL trajectories in the DIAN
cohort12,16, albeit based on a much smaller number of participants and
without longitudinal CSF data. Here, we performcomparative analyses
of trajectories of CSF and blood NfL in relation to MRI volume and Aβ-
PET changes in a large ADAD sample and examine the distinct features
of plasma and CSF NfL across the ADAD continuum.

Results
Association between CSF and plasma NfL
For participant characteristics see Table 1 and Supplementary Table 1.
Within the mutation carrier (MC) group, there was a positive correla-
tion between plasma and CSF NfL concentrations when using absolute
(cross-sectional; r2 = 0.71 and p < 2e-16; Fig. 1a) and longitudinal values
(rate of change: r2 = 0.57 and p < 2e-16; Fig. 1b). However, within the NC
group, plasma and CSF NfL concentrations were only moderately to
weakly correlated (cross-sectional: r2 = 0.30 and p = 2.33e-14; long-
itudinal: r2 = 0.25 and p = 5.65e-07; Fig. 1a, b).

In bothMCandNCgroups, higher age and lower bodymass index
(BMI) were associated with higher absolute plasma NfL levels, while
higher age and being male were associated with higher absolute CSF
NfL levels (Supplementary Table 2). We used AIC model selection to
distinguish among a set of possible models including the above
potential confounders. The best-fit model for cross-sectional and
rate of change in NfL, carrying 99% and 93% of the cumulative model
weight, respectively, included baseline age, baseline BMI, and sex as
covariates. After accounting for baseline age, baseline BMI, and sex,
the association between plasmaNfL andCSFNfL cross-sectionally (MC
group: r2 = 0.76 andNCgroup: r2 = 0.40) and longitudinally (MCgroup:
r2 = 0.65 and NC group: r2 = 0.39), particularly in the NC group,
remained moderately weak. Full models are reported in Supplemen-
tary Table 3. Age, sex, and BMI were included as covariates in all sub-
sequent analyses.

NfL trajectory over disease progression
Cross-sectionally, NfL levels in CSF and blood in the MC group began
to increase, compared to NC group, between 15-25 years prior to

expected symptom onset (Fig. 2a, b with the first difference between
MC and NC observed at an EYO of −24.6 years for CSF and −18.9 years
for plasma; Supplementary Fig. 1a, b). Similarly, when we examined
within-person rate of change, we observed increases in NfL, compared
to NC group, between 20-25 years prior to expected symptom onset
(Fig. 2c, d; withfirst differencebetweenMCandNCobserved at anEYO
of −21.1 years for CSF and −21.2 years for plasma; Supplementary
Fig. 2c, d). Supplementary analyses using a piece-wise regression
method also resulted in similar trajectories with within-person rate of
change diverging somewhat earlier compared to absolute levels
(Supplementary Fig. 2). Moreover, a bifurcation point for rate of
change in plasma NfL occurring at an EYO of +3.59 years for MC group
was found (Supplementary Fig. 2c) where the trajectory of plasma NfL
appears to plateau or even decrease after this point. While, compara-
tively, there appears to be a steady linear increase in the rate of change
in CSF NfL across the entire disease course (i.e., no bifurcation point
observed at later EYOs; Supplementary Fig. 2d). An alternative gen-
eralised additive model (GAM) resulted in overall similar trajectories,
but a discrimination of MC vs NC was seen only at ~10 years prior to
EYO (Supplementary Fig. 2e–h).

To examine howwithin-person rates of change in CSF and plasma
NfL levels differ as a function of cognitive status, we categorized the
MC group into presymptomatic, converters, and symptomatic sub-
groups based on their longitudinal Clinical Dementia Rating scale
scores (CDR®; see “Methods” section; Fig. 3a, b and Supplementary
Table 4). While the stepwise between-group increase in the within-
person rate of change in plasma NfL appears to plateau between
converter and symptomatic MC stages (Fig. 3a and Supplementary
Table 4), there was a stepwise increase in the within-person rate of
change in CSF NfL from presymptomatic MC to converter to symp-
tomatic MC stages (Fig. 3b and Supplementary Table 4).

Table 1 | Background characteristics of the baseline sample

Variable NC, n = 212a MC, n = 355a p-valueb

Age (yrs) 36.6 (10.8) 37.9 (11.0) 0.209

Sex 0.882

Female 119 (56%) 197 (55%) –

Male 93 (44%) 158 (45%) –

EYO (yrs) −11.4 (11.2) −8.9 (11.0) 0.011

BMI 27.9 (6.3) 27.6 (5.8) 0.928

MMSE 29.7 (6.7) 27.0 (7.5) 3.337e-09

CDR global 1.282e-17

CDR 0 204 (96%) 226 (64%) –

CDR 0.5 8 (3.8%) 84 (24%) –

CDR 1+ 0 (0%) 45 (13%) –

Family mutation 0.291

APP 37 (17%) 58 (16%) –

PSEN1 154 (73%) 274 (77%) –

PSEN2 21 (9.9%) 23 (6.5%) –

Precuneus
volume (mm3)

9710.9 (1295.1) 9215.2 (1705.0) 0.001

Precuneus PiB-
PET (SUVR)

1.2 (0.2) 2.4 (1.4) 4.720e-38

Plasma NfL (pg/ml) 5.8 (3.1) 9.4 (7.7) 1.398e-09

CSF NfL (pg/ml) 243.8 (150.5) 518.3 (542.7) 1.222e-10

The overall N is 212 for NC group and 355 for MC, except for precuneus volume (NC = 200 and
MC =327), precuneus PiB-PET (NC = 186 andMC = 284), plasma NfL (NC = 193 andMC = 314), and
CSF NfL (NC = 164 and MC = 278). Note that not all parameters could be collected from each
participant. Sex was self-reported as male or female.
MC mutation carrier, NC non-carrier family member, EYO estimated years to symptom onset,
MMSEMini Mental Status Examination, BMI body mass index, CDR Clinical Dementia Rating.
aMean (SD), n (%).
bWilcoxon rank-sum test (two-sided); Pearson’s χ2 test (two-sided).
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To explore this potential discordance between CSF and plasma
NfL further, we examined a ratio of plasma/CSF NfL across these
clinical stages. The symptomatic MC group showed a robust decrease
in plasma/CSF NfL ratio and could be clearly distinguished from NC
and presymptomatic groups (Fig. 3c and Supplementary Table 4).

NfL trajectory is associated with atrophy rate but less so with
amyloid burden
In the symptomaticMCgroups, but not theNCor presymptomaticMC
groups, thewithin-person rate of change inNfL in bothplasmaandCSF
was strongly associated with grey matter atrophy (Fig. 4a, b and

NC: r = 0.55, p = 2.3e−14
MC: r = 0.84, p < 2.2e−16
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Fig. 1 | Association between CSF and plasma NfL. Plasma log10(NfL) levels were
associated with CSF log10(NfL) at baseline (a) and longitudinally (b) in mutation
carriers (MC; red) but less so in the non-carriers (NC; grey). Therewere 274MC (149
Females; 125 Males) and 162 NC (90 Females; 72 Males) with concurrent baseline
CSF and plasmaNfLmeasurements.Within-person annualised rate of change inNfL
was extracted from linearmixed effectsmodels (see “Methods” section) for 146MC

and 88 NC with concurrent longitudinal CSF and plasma NfL available. Cross-
sectional and longitudinal associations are presented with scatteplot showing
unadjusted linear relationship (red and grey bolded lines) between plasma and CSF
log10(NfL). The shaded area around each unadjusted linear fit line represents the
95% confidence interval. See Supplementary Table 3 for associations between CSF
and plasma log10(NfL) levels after adjusting for baseline age, sex, and baseline BMI.
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Fig. 2 | CSF and plasma NfL trajectories across the disease course. Baseline
plasma (a) and CSF (b) log10(NfL) concentrations in mutation carriers (MC; red)
begin to increase, relative to non-carriers (NC; grey), around 10-15 years prior to
estimated symptomonset. Similarly, within-person rate of change inplasma (c) and
CSF (d) log10(NfL) levels inMCbegin to increase, relative to NC, around 15-20 years
prior to estimated symptom onset. The curves and credible intervals are drawn
from the actual distributionsofmodelfits derivedby theHamiltonianMarkov chain

Monte Carlo analyses (see “Methods” section). The shaded areas represent the 95%
credible intervals around the model estimates. The first point in the disease course
(using estimated years to symptom onset) where NC and MC differed was deter-
mined to be the first point where the 95% credible intervals around the difference
distribution between NC and MC did not overlap (see Supplementary Figs. 1 and 2
for corresponding longitudinal spaghetti plots and difference distribution plots).
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Supplementary Table 5). There was no significant association between
longitudinal amyloid-PET accumulation and longitudinal CSF or
plasma NfL (Fig. 4c, d and Supplementary Table 5).

Discussion
In AD, the accumulation of cerebral amyloid-β begins decades before
clinical onset and is followed by a decline in cortical metabolism and
increasing brain atrophy years later17,18. Disease-modifying therapies
are likely most beneficial when initiated in the presymptomatic phase
of disease3,19. Therefore, biomarkers for the various preclinical stages
suited for eligibility screening of patients and readouts in clinical trials
are of utmost importance. Blood-based measurements of NfL have
shown promise as a cost-effective, minimally-invasive biomarker to
track disease-associated neurodegeneration in certain neurological
diseases, including ADAD12,20,21. Our prior work has shown NfL to be
closely tied to neurodegeneration and white matter integrity16 and
established strong associations between cross-sectional CSF and
serum NfL within the ADAD cohort12. Here, with a much larger sample
size, we find similar associations between NfL measured in CSF and
plasmanotonly for the baseline visits, but also for longitudinal analysis
(i.e., within-person rate of change), suggesting elevations in blood NfL
may reflect disease-related changes throughout the central nervous
system in ADAD, particularly in the presymptomatic stage.

In comparison, within sporadic AD and healthy older adult
populations the correlation between NfL levels in CSF and blood is
heterogeneous, with some prior reports suggesting strong con-
cordance between NfL levels in the CSF and blood7,22,23, while others
suggesting large unexplained variability9,24. In the DIAN NC controls,
we observed a weaker correlation between CSF and plasma NfL con-
centrations compared to the association within MC. Physiologically,
both CSF NfL25,26 and blood NfL27,28 increasewith age, while plasmaNfL
seems to decrease with increasing BMI29. Accounting for baseline age,
BMI, and sex improved our models examining the cross-sectional and
longitudinal associations betweenCSF andplasmaNfL, in bothMCand
NC groups. However, there remained about 60% unexplained varia-
bility between CSF and plasma NfL in NC controls. While ADAD and
sporadic AD share a common pathophysiology and progression,

individuals with sporadic AD are typically older and have more
comorbidities, compared to those with ADAD. This complex depen-
dency on systemic factors in sporadic ADwill be important to consider
in future studies, and recent work supports the use of age- and sex-
adjusted reference values for NfL30,31.

Overall, the CSF andplasmaNfL trajectorieswere found to be very
similar at presymptomatic stages and discriminated MC from NC at
10–20 years before EYO, depending on the modeling used. Impor-
tantly, however, when examining the rate of change in NfL over the
disease course (EYO) and according to cognitive status, the rate of
change in plasma NfL appears to plateau at later disease stages in
symptomatic MC around two years after estimated symptom onset
whereas the rate of change in CSF NfL tends to continue to increase
even within symptomatic participants. Similar results have been
obtained in Huntington patients with higher fold change in CSF com-
pared with plasma NfL closer to symptom onset32. Consistently, we
observed a decrease in the ratio of plasma NfL/ CSF NfL within
symptomatic MC, which may indicate a hypothetical change in the
clearing mechanism of NfL from brain to blood with disease progres-
sion. An opposite change in the serum/CSF ratio of NfL in Guillain-
Barré Syndrome patients has been interpreted as a peripheral con-
tribution of NfL in this disease33. Overall, the underlying biological
mechanism for these different dynamics of NfL in CSF and plasma in
symptomatic phases of ADADare notwell understood. Assays allowing
quantification of NfL in body fluids from the central vs peripheral
nervous system sourcewould be very helpful aswell as the assessment
of changes in renal function. Moreover, it will be important to do
similar analyses in sporadic AD.

Lastly, NfL rate of changewas associatedwith grey-matter atrophy
rates in symptomatic disease stages but not with the cerebral accu-
mulation of amyloid-β measured via amyloid PET. In line with these
findings, a temporal uncoupling of amyloid deposition and neurode-
generation was previously reported: CSF NfL starts to increase after
amyloid deposition already reaches an obviously critical (half-max-
imal) level and afterwards continues to robustly increasewhile amyloid
deposition at later stages reaches a plateau34. Such a temporal
uncoupling of amyloid deposition and NfL is also in line with the
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Fig. 3 | Association between rate of change in NfL and AD clinical groupings.
Rate of change per year in plasma and CSF log10(NfL) across non-carriers (NC; grey,
plasma n = 88; CSF n = 89); Presymptomatic (Presym) mutation carriers (MC; yel-
low, plasman = 79; CSFn = 82; individualswithCDR =0 across all visits); Converters
(orange, plasma n = 13; CSF n = 13; MC with CDR =0 at baseline and CDR>0 at all
subsequent visits); Symptomatic (Sym)MC (red, plasman = 48; CSFn = 50;MCwith
CDR>0 across all visits). (a) Annualised rate of change of plasma log10(NfL). Pre-
symMC had a significantly higher rate of change compared to NC. Converters had
significantly higher rate of change compared to both NC and presymMC. SymMC
had significantly higher rates of change compared to NC, presym MC and con-
verters. (b) Annualised rate of change of CSF log10(NfL). Presym MC had a sig-
nificantly higher rate of change compared to NC. Converters had significantly

higher rate of change compared to both NC and presym MC. Sym MC had sig-
nificantly higher rates of change compared to NC, presym MC, and converters. (c)
Ratio of absolute plasma to CSF NfL levels. Sym MC had a significantly lower ratio
compared to NC and presym MC. NC, Presym MC, and Converters had similar
plasma/CSF ratios. The boxes map to the median, 25th and 75th quintiles, and the
whiskers extend to 1.5 × interquartile range (IQR). The violin plots illustrate kernel
probability density (i.e. the width of the shaded area represents the proportion of
the data located there). Comparisons were done with linear mixed effects models
adjusting for baseline age, baseline BMI, and sex. Corresponding unstandardized
beta estimates, standard errors, and multiple comparison corrected exact p-values
are reported in Supplementary Table 4. n.s. > 0.05; *p <0.05, **p <0.01, ***p <0.001.
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absence of a correlation between NfL levels in plasma and amyloid
plaque load post-mortem35.

The strengthof the current study is the availability of 567matched
longitudinal CSF and plasma samples, which allowed comparative
analyses of the NfL dynamics in both body fluids over the entire dis-
ease course, as never before reported. A limitation of the study is that
even with this large number or samples, there is limited information at
both extremes, i.e. more than 20 years before estimated disease onset
and in severely symptomatic patients. Additionally, there are currently
relatively few APP and PSEN2 pathogenic variant carriers within in the
symptomatic stages of the disease in DIAN, precluding the examina-
tion of the trajectories of NfL across different mutation types. As the
DIAN study continues to collect longitudinal assessments, future stu-
dieswill be able to better characterizehow these relationshipswithNfL
differ acrossmutation type and cognitive groups. Another limitation is
that the current analysis is restricted to the autosomal dominant form
of AD. Although the sporadic and genetic form of AD share similar
pathomechanisms, sporadic AD patients are on average 20–30 years
older at symptom onset and other age-related comorbidities may
impact NfL levels and dynamics31. It will be important to do similar

analysis with sporadic AD cohorts, in which most clinical trials are
conducted, and to evaluate them in the context of pharmacological
interventions.

Nevertheless, the current findings may have implications for
ongoing and future clinical AD trials. Currently, NfL is utilized as a
readout parameter for therapy success, although with conflicting
results36,37 potentially related to differing disease stages of individuals
in the trials19. Our findings support the notion that plasma and CSF NfL
concentrations are concordant in early disease stages of disease and
show similar utility to differentiate early pathophysiology in ADADMC
from NC. However, our observations suggest that in later stages of the
disease, CSF NfL changes may reflect the dynamic and ongoing neu-
rodegeneration better than plasma NfL, maybe rendering CSF NfL the
better read-out parameter in symptomatic stages of ADAD, compared
to plasmaNfL. Additionally, our results support previous findings of an
uncoupling of amyloid-β deposition and neurodegeneration, begin-
ning in the presymptomatic phases of ADAD, which may partially
explain the discordant results of NfL as a biomarker readout across
clinical trials that focus on different stages of the disease and AD
populations.
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Fig. 4 | Longitudinal association between NfL, brain atrophy, and amyloid
deposition. a, b Relationship between within-person rate of change in log10(NfL)
and precuneus greymatter volume for plasma (a) and CSF (b). Linearmixed effects
models were adjusted for baseline age*time, baseline BMI*time, and sex*time.
Results revealed a significant association between rate of change in precuneus grey
matter and rate of change in plasma and CSF log10(NfL) in the Sym MC group
(plasma: n = 58 and CSF: n = 60), but not in NC (plasma: n = 81 and CSF: n = 82) or
Presym MC (plasma: n = 76 and CSF: n = 78). c, d Relationship between within-
person rate of change in log10(NfL) and rate of change in precuneus PiB-PET. There
were no significant associations between longitudinal PiB-PETand log10(NfL) within

NC (plasma: n = 89 and CSF: n = 65), Presym MC (plasma: n = 81 and CSF: n = 60),
and Sym MC (plasma: n = 64 and CSF: n = 47). Shown are non-carrier (NC; grey
square), presymptomatic (Presym) mutation carriers (MC; yellow circle), and
symptomatic (Sym) MC (including converters to the symptomatic phase, red tri-
angle). The shaded area around each unadjusted linear fit line represents the 95%
confidence interval. Solid linear fit line represents a significant association
(p <0.05); dashed linear fit line represents non-significant association (p >0.05).
Corresponding unstandardized beta estimates, standard errors, and exact p-values
are reported in Supplementary Table 5. Note that not all participants with long-
itudinal NfL measurements had imaging parameters available.
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Methods
Participants
The institutional review board at Washington University in St. Louis
provided supervisory review and approval of the multi-site human
study (DIAN-Observational study). Each site’s institutional review
board approved all study procedures. Participants or their caregivers
provided informed consent in accordance with their local institutional
review boards. Individuals were compensated for their participation.
Standardized clinical and imaging assessments were obtained
according to The Dominantly Inherited Alzheimer’s Network Obser-
vational study protocols. Plasma andCSFNfL analysis was approvedby
the ethics committee at the medical faculty of the University of
Tübingen, Germany (project number 718/2014BO2).

DIAN-Observational study (https://dian.wustl.edu/; clinical trial no.
NCT00869817) enrolls individuals from familieswith a knowndominantly
inherited AD mutation in the APP, PSEN1, or PSEN2 genes. Family
members who do not carry the mutations serve as controls. We utilized
data freeze version 15. DIAN participants are assessed at baseline and
subsequent follow-upvisits (every secondyear or annually in case they are
symptomatic). Assessment includes the collection of body fluids (CSF
and blood), clinical and neuropsychological testing (including Clinical
Dementia Rating [CDR®] andMini-Mental State Examination [MMSE]) and
neuroimaging (structural MRI and PETwith Pittsburgh Compound B [PiB-
PET]) as described below. Sex was self-reported as male or female. The
detailed number of participants and samples for baseline and longitudinal
measurements are given in Table 1 and Supplementary Table 1.

Clinical assessment and EYO
The presence of dementia symptoms was assessed using the CDR®38.
Clinical evaluators were blinded to each participant’s mutation status.
For every visit a participant’s estimated years to symptom onset (EYO)
was calculated based on the participant’s age at the visit relative to
their ‘mutation-specific’ expected age at symptom onset. The
mutation-specific expected age of symptom onset was computed by
averaging the reported age of onset across individuals with the same
specific mutation39. If the mutation-specific expected age at symptom
onset was unknown, the EYO was calculated with the estimated age at
which thefirst-degree relative’s (parental) cognitive decline began. The
parental age of clinical symptom onset was determined by a semi-
structured interview with the use of all available historical data. The
EYOwas calculated identically for bothMC and NC. Data fromNCwith
an EYO> 15 years were excluded as there were no corresponding MC
with data in this later EYO range and showing these data have the
potential for unblinding.

CDR classification
Presymptomatic MC were defined as individuals who scored CDR
(global) = 0 across all visits. Converters are MC who scored CDR=0 at
baseline and CDR>0 at all subsequent visits. Reverters (those who
were CDR>0 at a visit and CDR=0 at any subsequent visit) were
excluded from analyses. Symptomatic MC are individuals who scored
as CDR>0 across all visits.

Genotyping
Mutation status was determined using PCR and Sanger sequencing.
Individuals with a Dutch-type CAA pathogenic variant (APP E693Q;
n = 10 MC and n = 11 NC family members) or variants believed to be
non-pathogenic or weakly pathogenic (n = 13 and n = 5 NC family
members) were excluded from this study.

NfL measurements in the CSF and blood
Blood and CSF samples were collected and initially processed with the
same methods described12. Specifically, for the current study, all
available DIAN plasma samples were shipped to the DIAN site in
Tübingen. CSF samples were first shipped to the DIAN site in Munich

and used for another analysis before being shipped to the DIAN site in
Tübingen. Thus, CSF samples had one additional freeze–thaw cycle in
Munich; however, prior work has indicated no significant effect of up
to four freeze–thaw cycles on NfL in CSF40. For NfL measurement, CSF
and plasma samples were thawed on wet ice for one hour. Afterwards
they were mixed for 30 s and centrifuged, either briefly (CSF) or for
5min at 10.000 x g and 4 °C (plasma). Measurements were done on a
Single-molecule arrayplatform (Simoa,HD-Xanalyzer;Quanterix) with
commercially available assay kits (NF-Light Advantage Kit Cat 103186).
All samples were measured in duplicates. Plasma samples were 1:4
auto-diluted with Simoa NfL sample diluent. CSF samples were diluted
1:100 with Simoa NfL sample diluent before analysis. Inter-assay
variability was evaluated with three specific human CSF samples. All
samples were measured blinded.

Remeasurement of a subset of the CSF samples was done in
24 samples (2.4%). In 17 of the CSF samples the coefficient of variation
(CV)was> 20%and in sevenof the samples only one technical replicate
measurement was obtained. The remeasured values were taken for the
analysis. For plasma, 20 samples had a CV > 20% (max. 36%) and 8 had
only one technical replicate. However, we did not perform a remea-
surement on these 28 samples (2.2%), as there was insufficient fluid to
perform assay. Thus, the initial measurement values were included in
the analysis.

Visual inspection of longitudinal CSF and plasma NfL identified
two NC and one MC who had extreme values for CSF and plasma NfL
for their given mutation status and/or EYO. Previous medical histories
revealed that these three individuals had competing neurological
disorders and were excluded from analyses (to maintain blinding the
specific causes are not mentioned here).

Imaging
A detailed description of the imaging in DIAN has been published41. In
brief, MRI Imaging data was screened for protocol compliance and
artifacts. All sites used a 3 T scanner that was qualified for use at study
initiation andwas required to pass regular quality control assessments.
Volumetric T1-weighted images were acquired for all participants and
were processed using FreeSurfer v 5.3 (http://surfer.nmr.mgh.harvard.
edu/) and the Desikan-Killany atlas to produce regional estimates of
greymatter volumewithin brain regions. As has been done previously,
analyses focused on the precuneus as the a priori region of interest
(ROI). Precuneus volumes were adjusted for total intracranial volume
prior to statistical analysis.

Amyloid PET imaging was performed with a bolus injection of
∼15mCi of [11C] PiB. Dynamic acquisition consisted of either a 70-min
scan starting at injection or a 30-min scan beginning 40min post
injection. For analysis, the PiB-PET data in the common time frame
between 40–70min was used. Using FreeSurfer ROIs, standardized
uptake value ratios (SUVRs) were calculated using the cerebellar grey
matter as a reference region (PET Unified Pipeline, https://github.com/
ysu001/PUP). To minimize the impact of partial volume effects on the
PET signal, an RSF-based approach for partial volume correction was
used for all regional PETmeasurements42.We chose a single precuneus
(average of both hemispheres) region, based on prior work in this and
other ADAD cohorts indicating this region as the earliest effected by a
number of different imaging measures.

Statistical analyses
Relating baseline CSF and plasma NfL
Absolute levels of plasma and CSF NfL were non-normally distributed.
Log10-transformation was done prior to all analyses, unless otherwise
noted. The relationship between baseline CSF and plasma NfL was
determined by using Pearson’s Correlation and linear regression
models implemented in R including covariates for age, sex, and body
mass index (BMI). Separate models were fitted for NC and MC. AIC
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model selection was performed to distinguish among a set of possible
models including the potential confounders of age, sex, and BMI. The
best-fit model was determined by cumulative model weight.

NfL trajectory over disease progression
The relationship between EYO and baseline CSF and plasmaNfL values
wasestimatedusing linearmixed effectsmodels (LMMs). As previously
done, to account for potential non-linear effects, EYO was modeled as
a restricted cubic spline with knots at the 0.10, 0.50, and 0.90 quan-
tiles. The LMMs for the baseline NfL values (CSF or plasma) included:
fixed effects for mutation status; the linear EYO component; the cubic
EYO component; the linear EYO by mutation status interaction; the
cubic EYO bymutation status interaction; age, sex, BMI, and a random
intercept for family. Model parameters were estimated using an open-
source package for Hamiltonian Markov chain Monte Carlo analyses,
Stan (http://mc-stan.org/) implemented using R. This resampling
approach leads to a distribution of parameter estimates across itera-
tions. From this distribution it is possible to estimate the 95% credible
intervals of themodelfits at every EYO forNC,MC, and thedistribution
of the difference between NC andMC. The first EYOwhere groups (NC
and MC) differed was determined to be the first point where the 95%
credible intervals around the differences distribution between NC and
MC did not overlap 0.

Longitudinal data were modeled using similar LMMs. The rate of
change in CSF and plasma NfL for each individual was modeled using
an LMM with fixed effects of time from baseline (in years) and a ran-
dom intercept for family, as well as random slope and intercept terms
for each participant. The rate of change in NfL for each individual was
extracted from the model estimates for subsequent analyses. This
model was also used for generating the rate of change for precuneus
grey-matter volume and PiB-PET, for each individual. As with the cross-
sectional estimates, the relationship between EYO and rate of change
in CSF and plasma NfL was estimated using an LMM. The EYO was
modeled as a restricted cubic spline with knots at the 0.10, 0.50, and
0.90 quantiles.

Additionally, piece-wise regressions (segmented package in R)
were fitted to examine estimated bifurcation points in the trajectories
of cross-sectional and longitudinal log10 plasma and CSF NfL across
the EYO spectrum for MC and NC groups. Furthermore, an alternative
approach using generalized additive models (GAMs; mgcv package in
R)43,44, to account for non-linear relationships between NfL and EYO,
were fitted for cross-sectional and longitudinal log10 plasma and CSF
NfL as a function of EYO between MC and NC groups.

To determine whether the extracted rate of change in CSF and
plasma NfL was significantly different across mutation status and
cognitive status we categorized mutation carriers based on cognitive
status, where presymptomatic mutation carriers were individuals who
scored as CDR=0 across all visits (n = 65), converters were mutation
carriers who scored as CDR=0 at baseline and CDR>0 at all sub-
sequent visits (n = 13), and symptomatic mutation carriers were indi-
viduals who scored as CDR>0 across all visits (n = 55). We used LMMs,
including a random intercept for family and fixed effects for baseline
age, sex, baseline BMI, and group (that is, NC, presymptomatic MC,
converters, or symptomatic MC), where group was the term of inter-
est, and the extracted rate of change in CSF or plasma NfL was the
dependent variable. Models were computed using lme4 in R.

A ratio of plasma NfL/CSF NfL was generated to explore the
potential within-person discordance between CSF and plasma NfL
further. This ratio was examined across clinical stages. Absolute NfL
values, instead of log-transformed or rate-of-change NfL values, were
used to aid in interpretation of the ratio.

Relating NfL rate of change to imaging rate of change
The longitudinal relationship between the rate of change in CSF and
plasma NfL and concurrent rate of change in grey matter volume and

Aβ accumulation was determined within NC and MC (within pre-
symptomatic MC and symptomatic MC subgroups). Therefore, sepa-
rate models were run for each NC, all MC, presymptomatic MC, and
symptomatic MC groups. The dependent term for each model was a
time-varying imaging biomarker with fixed effect terms for baseline
age*time, sex*time, baseline BMI*time, and interaction between
extracted rate of change in CSF or plasma NfL and time. Models con-
tained random slope and intercept terms for participants and random
intercepts for family. The primary term of interest was the interaction
between the rate of change in CSF or plasma NfL and time. Models
werefittedusing lme4 inR. Theunstandardized regression coefficients
(B), standard error of the mean (SE), and P values from the LMMs and
linear regression models are reported in the supplementary tables.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Individual-level data from the Dominantly Inherited Alzheimer’s Net-
work observational study (DIAN-Observational study) cannot be
sharedpublicly owing to the need for participant anonymity. However,
DIAN-Observational study data included in this analysis can be acces-
sed by qualified researchers upon request submitted at https://dian.
wustl.edu/our-research/for-investigators/dian-observational-study-
investigator-resources/data-request-form/.

Code availability
All analyses were performed in R. Source code available, with pub-
lication, at https://github.com/stephaschultz/DIAN_plasma_CSF_NfL45.
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