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Abstract 

Background  As previously published, the MMPOWER-3 clinical trial did not demonstrate a significant benefit 
of elamipretide treatment in a genotypically diverse population of adults with primary mitochondrial myopathy 
(PMM). However, the prespecified subgroup of subjects with disease-causing nuclear DNA (nDNA) pathogenic 
variants receiving elamipretide experienced an improvement in the six-minute walk test (6MWT), while the cohort 
of subjects with mitochondrial DNA (mtDNA) pathogenic variants showed no difference versus placebo. These pub-
lished findings prompted additional genotype-specific post hoc analyses of the MMPOWER-3 trial. Here, we present 
these analyses to further investigate the findings and to seek trends and commonalities among those subjects who 
responded to treatment, to build a more precise Phase 3 trial design for further investigation in likely responders.

Results  Subjects with mtDNA pathogenic variants or single large-scale mtDNA deletions represented 74% 
of the MMPOWER-3 population, with 70% in the mtDNA cohort having either single large-scale mtDNA dele-
tions or MT-TL1 pathogenic variants. Most subjects in the nDNA cohort had pathogenic variants in genes required 
for mtDNA maintenance (mtDNA replisome), the majority of which were in POLG and TWNK. The mtDNA repli-
some post-hoc cohort displayed an improvement on the 6MWT, trending towards significant, in the elamipretide 
group when compared with placebo (25.2 ± 8.7 m versus 2.0 ± 8.6 m for placebo group; p = 0.06). The 6MWT results 
at week 24 in subjects with replisome variants showed a significant change in the elamipretide group subjects who 
had chronic progressive external ophthalmoplegia (CPEO) (37.3 ± 9.5 m versus − 8.0 ± 10.7 m for the placebo group; 
p = 0.0024). Pharmacokinetic (exposure–response) analyses in the nDNA cohort showed a weak positive correlation 
between plasma elamipretide concentration and 6MWT improvement.
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Background
As a diverse group of genetically confirmed disor-
ders, primary mitochondrial myopathies (PMMs) pre-
dominantly, but not exclusively, affect skeletal muscle, 
adversely impacting physical function and quality of life 
[1]. Although individual mitochondrial diseases are rare, 
PMMs are a common manifestation of primary mito-
chondrial diseases, with an estimated prevalence of 1–2 
in 10,000 [2, 3]. PMM patients often display muscular 
weakness, muscle atrophy, limited exercise capacity, and 
fatigue [1, 4, 5], with no currently approved therapies.

The largest Phase 3 clinical trial to date in patients 
with PMM, the MMPOWER3 trial, was recently com-
pleted [6]. This trial evaluated the efficacy and safety of 
daily elamipretide, a mitochondria-targeting peptide, as a 
treatment for patients with genetically confirmed PMM 
[6]. The trial enrolled a highly heterogeneous popula-
tion of myopathic patients with a variety of pathogenic 
variants in either nuclear (nDNA) or mitochondrial 
(mtDNA) genes [6]. Mitochondria require the coordi-
nated translation of genes encoded by both nDNA and 
mtDNA, and PMMs can be caused by alterations in 
either genome. mtDNA encodes a handful of lipophilic 
electron transport chain subunits, and ribosomal/trans-
fer RNAs used in mtDNA translation. Almost all (~ 99%) 
of the mitochondrial proteome is encoded by nDNA, 
including all proteins responsible for replicating mtDNA 
(the mtDNA replisome). Alterations in these proteins, 
caused by nuclear gene defects, are collectively referred 
to as mtDNA maintenance disorders, or mtDNA deple-
tion and deletions syndrome (MDDS), with myopathy 
being a common clinical occurrence [7].

Although MMPOWER-3 did not meet its primary end-
points assessing changes in the Six-Minute Walk Test 
(6MWT) and fatigue in the total population, a post hoc 
subgroup analysis revealed that subjects with nDNA 
pathogenic variants experienced an improvement in 
6MWT compared with placebo [6]. Based on these find-
ings, further in-depth analysis was warranted to better 
understand the genotype-specific responses in the trial, 
and to enhance the likelihood of success for future clini-
cal trials in individuals with nuclear primary mitochon-
drial disease (nPMD).

Methods
Trial design
Full details of MMPOWER-3 have been previously 
described [6]. In brief, MMPOWER-3 was a 24-week, 
randomized (1:1), double-blind, parallel-group, placebo-
controlled clinical trial for adult patients with PMM, in 
which subjects received elamipretide 40  mg subcutane-
ously once daily or placebo [6]. In the original analysis 
of MMPOWER-3, subjects were stratified by the type of 
pathogenic DNA variant (nDNA vs mtDNA) determined 
to be the primary cause of PMM as approved by the adju-
dication committee [6]. Pathogenic DNA variants caus-
ing PMM were subclassified as causing mtDNA or nDNA 
disorders [6]. The prespecified exploratory analysis was 
conducted to further examine the effects of elamipretide 
on the change from baseline to week 24 in the 6MWT 
by genetic subgroups. Subject demographics at baseline 
have been previously published in detail [6].

Standard protocol approvals, registrations, and patient 
consents
MMPOWER-3 was conducted in accordance with inter-
national ethics guidelines, including the Declaration 
of Helsinki, Council for International Organizations of 
Medical Sciences International Ethical Guidelines, ICH 
GCP guidelines, and all applicable laws and regulations 
[6]. The trial was approved by institutional review boards, 
and all subjects provided written informed consent [6].

Statistical analysis
In the original analysis of MMPOWER-3, the efficacy of 
elamipretide was analyzed by genetic pathogenic vari-
ant subclass (mtDNA vs. nDNA) utilizing a mixed model 
repeated measures (MMRM) [6]. In the new exploratory 
analysis, the effect of elamipretide on the least squares 
(LS) mean change from baseline in distance walked on 
the 6MWT at 4 weeks, 12 weeks, and end of treatment 
(week 24) was examined as a function of gene variants 
using subjects from the MMPOWER-3 per-protocol 
population who successfully completed the trial. The 
analysis evaluated 6MWT results by specific mtDNA 
and nDNA genotypes. Efficacy in the mtDNA replisome 
subgroup was further assessed by the presence of the 

Conclusions  Post hoc analyses indicated that elamipretide had a beneficial effect in PMM patients with mtDNA repli-
some disorders, underscoring the importance of considering specific genetic subtypes in PMM clinical trials. These 
data serve as the foundation for a follow-up Phase 3 clinical trial (NuPOWER) which has been designed as described 
in this paper to determine the efficacy of elamipretide in patients with mtDNA maintenance-related disorders.
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chronic progressive external ophthalmoplegia (CPEO) as 
a phenotype.

A pharmacokinetic/pharmacodynamic analy-
sis was also performed in the nDNA population to 
assess the absolute change in the 6MWT as a func-
tion of steady-state elamipretide area under the plasma 

concentration–time curve (AUC). Regression analysis, 
with corresponding r (correlation coefficient) and p val-
ues, and Loess smoothing were performed [8].

Results
Genetic subtype data
The mtDNA and nDNA variants within the entire trial 
population, as well as the finding that subjects with 
nDNA pathogenic variants who received elamipretide 
performed significantly better on the 6MWT compared 
with placebo, have previously been published [6]. Among 
the nDNA cohort, almost all subjects had pathogenic 
variants associated with mtDNA maintenance, depicted 
in Fig.  1. Most of these subjects had POLG pathogenic 
variants, followed by pathogenic variants in TWNK 
that encodes the mtDNA helicase Twinkle, and a hand-
ful of other genes encoding replisome-related enzymes, 
including DGUOK, TYMP, TK2, RRM2B, RNASEH1 (see 
Fig. 1).

As was previously published [6], in a post-hoc analysis, 
the nDNA cohort (n = 59) displayed a significantly greater 
improvement in the 6MWT between elamipretide and 
placebo (25.2 m versus 0.3 m, respectively, p = 0.03). The 
most robust of improvements, however, was observed in 
the post-hoc cohort of subjects who had an mtDNA repli-
some genotype and a CPEO phenotype (Fig. 2). Subjects 
with CPEO experienced ptosis, ophthalmoplegia, fatigue 
and some also exhibited proximal muscle weakness. 
Baseline functional characteristics of these patients is 
described elsewhere [6]. At week 24, subjects in the repli-
some CPEO subgroup who received elamipretide (n = 18) 
experienced a mean increase from a baseline (mean of 

Fig. 1  Genotype breakdown of the mtDNA Replisome cohort 
from MMPOWER-3 (percentage of the cohort [N = 51])

Fig. 2  6MWT change from baseline (subgroup replisome pathogenic variants and chronic progressive external ophthalmoplegia [CPEO]) 
phenotype. 6MWT, 6-min Walk Test; CPEO, chronic progressive external ophthalmoplegia; mtDNA, mitochondrial DNA; nDNA, nuclear DNA
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316.5 ± 17.5) of 37.3 ± 9.5  m in the 6MWT, compared 
with a mean decrease from baseline (324.0 ± 23.4) of 
− 8.0 ± 10.7 m for the placebo group (n = 14) (p = 0.0024).

The analysis conducted in this trial also increased 
understanding of genotype differences relating to elami-
pretide response within the mtDNA population, as pre-
sented in Fig. 3. Here, in this post-hoc analysis, the Least 
Square Means (LS Means) standard error (SE) change 
from baseline in distance walked on the 6MWT at week 
24 was 14.9 ± 6.4  m in subjects with mtDNA patho-
genic variants who received elamipretide (n = 73) and 
24.1 ± 6.3  m for patients receiving placebo (n = 73), rep-
resenting a 9.2  m between-group difference in favor of 
placebo. The difference in favor of placebo was heavily 
influenced by individuals with MT-TL1 pathogenic vari-
ants (week 24, n = 49). In this cohort, placebo-treated 
subjects (n = 28) experienced a mean improvement of 
42.4  m in the 6MWT compared to baseline (subjects 
receiving elamipretide [n = 21] walked 25.3 m greater at 
24  weeks compared to baseline) (see Fig.  3). Individu-
als with low heteroplasmy in MT-TL1 pathogenic vari-
ants trended towards having walked significantly farther 
at week 24 (Fig. 4). Given the high number of individu-
als in the trial with MT-TL1 pathogenic variants, this 
placebo effect heavily influenced the overall results of 
the MMPOWER-3 Phase 3 trial. Individuals with single 
mtDNA deletions (week 24, n = 49) also represented a 
large portion of the mtDNA cohort (week 24, n = 146), 
with no observable differences at week 24 between elami-
pretide and placebo-treated subjects.

Considering the encouraging signal seen in the nDNA 
cohort, we conducted exposure–response regression 
analyses to better understand the pharmacokinetic-phar-
macodynamic relationship from the Phase 3 trial. These 
data are presented in Fig.  5. There was a weak correla-
tion between plasma elamipretide exposure (expressed 
as AUC) and 6MWT improvement in this cohort when 
evaluated as the change from baseline to Week 24 
(r = 0.308; p = 0.0262).

Fig. 3  6MWT Change from baseline in the overall mtDNA population and among the mtDNA subgroups. Other tRNA pathogenic variants, 
as depicted in the graph on the far right, included those found in the transfer tRNAs that encode for the following amino acids: tyrosine (Y), valine 
(V), glutamic acid (E), isoleucine (I), serine (S), and threonine (T). ETC, electron transport chain; 6MWT, 6-Minute Walk Test; mtDNA, mitochondrial 
DNA; tRNA, transfer RNA

Fig. 4  Effect of low heteroplasmy in MT-TL1 placebo subjects 
on 6MWT



Page 5 of 12Karaa et al. Orphanet Journal of Rare Diseases          (2024) 19:431 	

Discussion
Elamipretide is the first experimental therapeutic 
compound progressing to a Phase 3 clinical trial in 
patients with PMM (MMPOWER-3) [6]. This trial fol-
lowed the Phase 1/2 (MMPOWER-1) [9] and Phase 2 
(MMPOWER-2) [10] clinical trials, in which treatment 
with elamipretide was analyzed in patients with PMM. 
Genetic variants within the MMPOWER-3 trial popu-
lation (i.e., both mtDNA and nDNA) have previously 
been published, along with the finding that subjects with 
nDNA pathogenic variants who received elamipretide 
performed significantly better on the 6MWT in the trial 
compared with placebo [6]. Although MMPOWER-3 
trial did not meet its primary endpoints, post hoc anal-
ysis of results by genetic subtype have emphasized the 
importance of considering specific disease genotypes 
and phenotypical presentation in the design of interven-
tional clinical trials. As previously published, the post-hoc 
genetic subgroup analysis on the co-primary endpoint in 
MMPOWER3, Total Fatigue Score on the Primary Mito-
chondrial Myopathy Symptom Assessment (PMMSA 
TFS), did not demonstrate a differential effect when the 
nDNA and mtDNA cohorts were compared [6]. The rea-
son a significant differential effect with daily elamipretide 
was seen between the nDNA and mtDNA cohorts in 
6MWT and not with the PMMSA TFS outcome measure 
is not known. Fatigue is known to be a significant bur-
den for many patients with PMM; however, the different 
types or components of fatigue contributing to overall 
fatigue in patients is not well understood and was not dif-
ferentiated in the trial.

This manuscript presents new analyses and highlights 
novel findings of interest to the field. First, there was 
significant improvement and a differential response in 
6MWT in subjects with mtDNA replisome pathogenic 
variants, an exciting finding that may help enrich future 
interventional studies in PMM. Second, the significant 
placebo effect in individuals with MT-TL1 pathogenic 
variants profoundly influenced the overall results of the 
MMPOWER-3 trial given the relatively high propor-
tion of subjects with this mtDNA genotype in the trial. 
Although the factors that led to this placebo effect are 
not fully understood, variability among this mtDNA 
cohort appears to have contributed. A number of individ-
uals with low heteroplasmy in MT-TL1 and randomized 
to placebo walked farther at this timepoint, which greatly 
contributed to the observed placebo effect. Third, an 
exposure–response relationship in the nDNA cohort 
suggested a weak (albeit significant) positive correlation 
between plasma elamipretide levels and pharmacody-
namic response in the 6MWT. These data were used as 
a partial justification for increasing to a 60  mg dose in 
NuPOWER. Finally, based on these data, a follow-up trial 
has been designed and initiated with a more specific trial 
population, an enrichment strategy that may increase the 
likelihood for success in treating PMM [11].

The mtDNA replisome pathogenic variant subgroup 
contained genes responsible for mtDNA replication and 
maintaining the mitochondrial nucleotide pool. Our 
analyses revealed no placebo effect in this cohort, which 
was reassuring and consistent with placebo arms from 
earlier trials using elamipretide [9, 10].

The majority of subjects in the mtDNA replisome 
cohort had pathogenic variants in POLG, the most 
commonly affected nuclear gene in the North Ameri-
can Mitochondrial Disease Consortium Registry [12]. 
Although still rare, POLG is a nuclear gene that encodes 
the sole mitochondrial DNA polymerase enzyme. POLG 
pathogenic variants are among the more common causes 
of inherited mitochondrial diseases [13]. The POLG 
enzyme contains proof-reading, polymerase, and linker 
domains, making this enzyme important for both repli-
cation and fidelity of mtDNA copies [14]. Our analyses 
revealed that individuals with POLG pathogenic variants 
responded similarly to the mtDNA replisome cohort as 
a whole, and elamipretide did not appear to discriminate 
between the locus of POLG pathogenic variants and the 
improvement in 6MWT in the trial (data not shown). 
POLG pathogenic variants were seen across the endo-
nuclease, linker, and polymerase regions of the enzyme, 
and represented similarly between the elamipretide and 
placebo-treated groups.

The prevalence of POLG pathogenic variants in the 
overall Phase 3 MMPOWER-3 trial was roughly 13% 

Fig. 5  Exposure–response analysis (nDNA cohort at week 
24). Change in 6MWT nDNA pathogenic variants as a function 
of elamipretide steady-state AUC. Placebo subjects are shown 
with AUC = 0. Symbols indicate sex; colors indicate age bracket. 
A regression line (and the corresponding P and r values) 
and a smoother (Loess) are displayed for the elamipretide group. The 
green smoother excludes values below the limit of quantification
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of the population (majority being monoallelic, causing 
dominant disease), within the previously-reported range 
of 4% to 26% across various studies [13, 15, 16]. POLG 
pathogenic variants lead to a continuum broad spectrum 
of clinical features that can present at any age; however, 
age at disease onset can provide information regard-
ing diagnosis and outcome. For example, the onset of 
CPEO dominates the POLG clinical spectrum in older 
patients (> 40 years); occipital epilepsy tends to occur in 
younger patients (< 12 years); and peripheral neuropathy 
and ataxia most often occurs between 12 and 40 years of 
age [17]. Notably, our results suggest that CPEO involve-
ment was associated with greater clinical benefit of 
elamipretide, suggesting certain nDNA phenotypes (i.e., 
adult-onset myopathies in patients > 40 years of age) may 
be more likely to respond to treatment with elamipretide. 
Similar improvements were observed in individuals with 
TWNK pathogenic variants, all of whom had CPEO.

Interestingly, the clinical trial results may also advance 
our mechanistic insight of targeting cardiolipin with 
elamipretide in PMM. mtDNA replication is essential 
for maintaining energy homeostasis, and there is a direct 
correlation between mtDNA copy number and the bio-
synthesis of the mitochondrial respiratory chain enzyme 
complexes [18]. As previously described, all of the 
enzymes responsible for mtDNA maintenance encoded 
by nDNA are synthesized in the cytoplasm [6], and there-
fore must be transported across the inner mitochondrial 
membrane, which is enriched with cardiolipin [6, 19–21]. 
Metabolite and nucleotide transporters depend on cardi-
olipin, the signature phospholipid of the mitochondrial 
inner membrane, for their assembly and activity [6, 22]. 
Cardiolipin is also known to stabilize mtDNA packag-
ing into nucleoids, providing maintenance of mtDNA 

integrity and respiratory function [23]. Elamipretide is 
hypothesized to affect the mtDNA replisome, at least 
partly, via a reduction in the leak of reactive oxygen 
species (ROS) by helping to colocalize electron trans-
port complexes. Since mtDNA replisome components 
are packaged into mitochondrial nucleoids that are in 
close proximity to the electron transport chain [24], the 
mtDNA replisome is likely susceptible to ROS produced 
in close proximity to the electron transport chain [25]. 
In addition, since elamipretide stabilizes cardiolipin [26], 
elamipretide may enhance cardiolipin-dependent func-
tions including inner mitochondrial membrane protein 
import/assembly, metabolite/nucleotide transport, and 
mtDNA stability. These presumptions are supported by 
preclinical work in which elamipretide improved various 
aspects of mitochondrial function and morphology [23, 
27–30].

Pharmacokinetic analyses in the nDNA cohort also 
showed a trend among subjects with higher elamipretide 
exposure (measured in plasma) and improved 6MWT. 
These data are encouraging and implicate a possible 
pharmacokinetic-pharmacodynamic relationship in this 
cohort.

Taken together, these data have provided the founda-
tion for a subsequent Phase 3 clinical trial enriched with 
this population and using a 60  mg dose of elamipretide 
(depicted in supplemental Fig.  6), which has been initi-
ated and fully enrolled at this time (NuPOWER Clinical 
Trial, SPIMD-301, NCT05162768) [11]. NuPOWER was 
designed to evaluate the efficacy and tolerability of elami-
pretide in nPMD subjects, with the primary efficacy end-
point being distance walked (meters) on the 6MWT [11]. 
Elamipretide was also studied in subjects with Barth Syn-
drome (TAZPOWER, SPIBA-201, NCT03098797), which 

Fig. 6  Phase 3 trial design of NuPOWER enrolling subjects with replisome-related nDNA pathogenic variants and CPEO10
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is an X-linked mitochondrial disease caused by defects in 
TAZ, a gene responsible for cardiolipin remodeling [31]. 
After approximately 36-weeks in the 168-week open-
label phase, elamipretide was associated with significant 
and consistent improvements in 6MWT (n = 8, 95.9  m, 
p = 0.02) and BTHS–SA TFS [31]. There were also sig-
nificant improvements in secondary endpoints including 
knee extensor strength (skeletal muscle), patient global 
impression of symptoms, and some cardiac parameters 
(specifically stroke volume and cardiac output) [31].

Another consequence of the analyses presented here is 
a better understanding of the genotype-specific responses 
in the mtDNA alteration cohort. The prominent placebo 
effect in the MMPOWER-3 trial [6] was unexpected and 
not predicted by the Phase 2 trial (MMPOWER-2) [9]. 
The mtDNA cohort accounted for about three-quarters 
of the subjects within the overall Phase 3 trial [6]. The 
majority of these subjects (approximately 70%) had either 
single large-scale mtDNA deletions or pathogenic vari-
ants in MT-TL1.

There are several limitations that must be acknowl-
edged. Primary mitochondrial disease is both genetically 
and phenotypically heterogenous. We have previously 
acknowledged that “basket” trial designs may induce 
insurmountable heterogeneity in rare disease clinical 
trials [6], leading to cautious optimism from our post 
hoc genotype analysis in this small cohort of individu-
als. Furthermore, the 6MWT was the primary endpoint 
examined in the subgroup analysis and the only meas-
ure to demonstrate a strong differential effect relative to 
the nDNA and mtDNA cohorts. The lack of differences 
in other endpoints and the existence of helpful (but not 
definitive) and universally accepted biomarkers in adults 
with PMM also leave room for caution. The ongoing 
work to further understand the genotype/phenotype 
relationship within the heterogeneous family of mito-
chondrial disease, the emergence of additional objec-
tive endpoints (eg, Mitochondrial Myopathy-Composite 
Assessment Tool [32]), reliable biomarkers, and predic-
tive pre-clinical models will all strengthen the design of 
interventional clinical trials and bolster PMM treatments 
in the years ahead.

Conclusions
This analysis suggests that elamipretide has a beneficial 
effect on ambulatory exercise capacity in patients with 
PMM with nuclear gene-encoded mtDNA replisome dis-
orders. The data highlight the importance of considering 
genetic subtypes in PMM. The benefit was particularly 
relevant in those with replisome pathogenic variants and 
CPEO. These findings emphasize the challenge of devel-
oping therapies for the broadly heterogeneous class of 
mitochondrial diseases and reinforce the importance of 

focusing on genetic subgroups when developing treat-
ments for individuals with PMM, as well as provid-
ing insights into various genetic abnormalities and the 
likelihood of responding to elamipretide for patients 
with PMM. Based on the observations from this post 
hoc analysis, a trial to evaluate the efficacy and safety of 
elamipretide in subjects with primary mitochondrial dis-
ease resulting from nDNA mutations (NuPOWER) was 
designed and is now fully enrolled [11].

Appendix 1
See Table 1.
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