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Abstract
Purpose  Dopamine transporter imaging is routinely used in Parkinson’s disease (PD) and atypical parkinsonian syndromes 
(APS) diagnosis. While [11C]CFT PET is prevalent in Asia with a large APS database, Europe relies on [123I]FP-CIT SPECT 
with limited APS data. Our aim was to develop a deep learning-based method to convert [11C]CFT PET images to [123I]
FP-CIT SPECT images, facilitating multicenter studies and overcoming data scarcity to promote Artificial Intelligence (AI) 
advancements.
Methods  A CycleGAN was trained on [11C]CFT PET (n = 602, 72%PD) and [123I]FP-CIT SPECT (n = 1152, 85%PD) 
images from PD and non-parkinsonian control (NC) subjects. The model generated synthetic SPECT images from a real 
PET test set (n = 67, 75%PD). Synthetic images were quantitatively and visually evaluated.
Results  Fréchet Inception Distance indicated higher similarity between synthetic and real SPECT than between synthetic 
SPECT and real PET. A deep learning classification model trained on synthetic SPECT achieved sensitivity of 97.2% and 
specificity of 90.0% on real SPECT images. Striatal specific binding ratios of synthetic SPECT were not significantly differ-
ent from real SPECT. The striatal left-right differences and putamen binding ratio were significantly different only in the PD 
cohort. Real PET and real SPECT had higher contrast-to-noise ratio compared to synthetic SPECT. Visual grading analysis 
scores showed no significant differences between real and synthetic SPECT, although reduced diagnostic performance on 
synthetic images was observed.
Conclusion  CycleGAN generated synthetic SPECT images visually indistinguishable from real ones and retained disease-
specific information, demonstrating the feasibility of translating [11C]CFT PET to [123I]FP-CIT SPECT. This cross-modality 
synthesis could enhance further AI classification accuracy, supporting the diagnosis of PD and APS.
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RMSE	� Root-Mean-Square Error
ROC	� Receiver Operating Characteristic
SBR	 �Striatal Specific Binding Ratio
SD	� Standard Deviation
SPECT	� Single Photon Emission Computed 

Tomography
SSIM	� Structural Similarity Index Measure
VGA	� Visual Grading Analysis
VGAS	� VGA Score

Background

Dopamine transporter (DAT) imaging, such as positron 
emission tomography (PET) with [11C]2β-carbomethoxy-
3β-(4-fluorophenyl) tropane ([11C]CFT) and single photon 
emission computed tomography (SPECT) with [123I]2β-
carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl) nor-
tropane ([123I]FP-CIT; DaTscan™, GE Healthcare), is a 
powerful tool in the differential diagnosis of idiopathic 
Parkinson’s disease (PD) from essential tremor or other 
secondary parkinsonism without nigrostriatal degenera-
tion. However, this imaging tool is currently unreliable 
for differentiating PD from atypical neurodegenerative 
parkinsonian syndromes (APS), such as multiple system 
atrophy (MSA) or progressive supranuclear palsy (PSP) 
[1]. In clinical practice, the use of visual interpretation and 
semi-quantitative analysis has demonstrated high diagnos-
tic accuracy [2–5] for PD and essential tremor differentia-
tion. In research, semi-quantitative methods are generally 
preferred as they provide more objective measurements of 
DAT density [6]. The striatal specific binding ratio (SBR) 
is the most commonly used semi-quantitative measure [6, 
7]. However, the lack of consistency in SBR measurements 
across different research sites, image acquisition techniques, 
reconstruction processes, and data analysis methods poses 
a challenge in longitudinal/multicenter studies. Recently, 
artificial intelligence (AI), higher, diagnostic accuracy than 
previous conventional methods [8], even in differentiating 
PD from APS [9, 10]. [11C]CFT PET is widely accessible in 
Asia and a substantial APS database was collected to sup-
port AI advancements [10]. [123I]FP-CIT SPECT is widely 
used in Europe [6, 11], however, limited APS data is avail-
able. A cross-modality synthesis between the two imaging 
techniques is appealing as it could allow better reproducibil-
ity of SBR and other quantitative measures and assist in AI 
diagnosis in modalities with a lack of sufficient data. Gen-
erative adversarial networks (GANs) [12] have remarkable 
capabilities in cross-modality medical image synthesis [13–
17]. Moreover, GANs tackle various other medical chal-
lenges, such as image quality recovery [18] or CT-free PET 
paradigm [19]. These methods can alleviate data scarcity 

in medical research, by generating substantial quantities of 
realistic data. Cycle-consistency GAN (Cycle GAN) [20] 
stand out in medical image-to-image synthesis, as it does 
not need paired data for training, due to its cycle-consis-
tency loss [21–24]. Cycle GAN has also been successfully 
used in multi-modality synthesis. In our case, although the 
same target is used (DAT), the modalities can differ due to 
different half-lives of the labels Carbon-11 and Iodine-123 
and the different acquisition times. Thus, as we are dealing 
with different modalities and no paired data is available, we 
aimed to develop a Cycle GAN-based approach for cross-
modality synthesis to improve interchangeability between 
[11C]CFT PET and [123I]FP-CIT SPECT.

Materials and methods

Data

This retrospective study included [11C]CFT PET brain 
images (DAT PET) from the Huashan Parkinsonian PET 
Imaging (HPPI) database and [123I]FP-CIT SPECT brain 
images (DAT SPECT) openly available from Parkinson’s 
Progression Markers Initiative (PPMI) database.

HPPI data

The Normal Controls (NC) cohort included 43 DAT PET 
scans from healthy subjects and 142 from subjects with nor-
mal DAT imaging, with a total of 185 subjects. In the PD 
cohort, we included 484 DAT PET from patients diagnosed 
with PD.

All included patients from the HPPI performed a DAT 
PET and an MRI to exclude structural brain abnormalities 
at Huashan Hospital. Patients with PD were diagnosed by 
movement disorder specialists on their return visits after 
PET examination, according to the current diagnostic cri-
teria [25]. The inclusion criteria for healthy controls and 
normal DAT subjects can be found in the supplementary 
materials.

DAT PET acquisition and reconstruction

DAT PET scans were were all acquired with a Biograph™ 
64 HD PET/CT (Siemens Medical Solutions USA, Inc., 
Molecular Imaging, Knoxville, TN), one hour after an intra-
venous injection of 333–407 MBq (9-11mCi) of [11C]CFT. 
The duration of acquisition was 15 min. Low dose CT was 
performed previously for attenuation correction. Iterative 
3D-ordered subset expectation maximization algorithm was 
used to reconstruct the images after corrections for scatter, 
dead time and random coincidences.
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PPMI data

The PPMI is a large, international multicenter clinical study 
that aims to identify various biomarkers for the progression 
of de novo PD.

We included 194 reconstructed [123I]FP-CIT SPECT 
(DaTscan™) scans from the Healthy Controls Cohort– NC 
group– and 1086 from the PD cohort– PD group– from the 
PPMI initiative (www.ppmi-info.org/data).

Participants in this study were individuals diagnosed with 
PD who were at least 30 years old, regardless of gender. The 
PPMI study had specific criteria for participant eligibility 
that can be found at ​h​t​t​​p​s​:​/​​/​w​w​​w​.​p​​p​m​i​​-​i​n​​f​o​.​o​​r​g​​/​s​t​u​d​y​-​d​e​s​i​g​
n​/​r​e​s​e​a​r​c​h​-​d​o​c​u​m​e​n​t​s​-​a​n​d​-​s​o​p​s​​​​​.​​

DAT SPECT acquisition and reconstruction

DAT SPECT scans are acquired four hours after injection of 
3–5 mCi (111–185 MBq) of DaTscan™. CT was performed 
for attenuation correction and the Hermes (Hermes Medi-
cal Solutions, Stockholm) iterative ordered-subsets-expec-
tation-maximization algorithm was used to reconstruct the 
images. The detailed PPMI [123I]FP-CIT SPECT protocol 
can be found at ​h​t​t​​p​s​:​/​​/​w​w​​w​.​p​​p​m​i​​-​i​n​​f​o​.​o​​r​g​​/​s​t​u​d​y​-​d​e​s​i​g​n​/​r​e​s​
e​a​r​c​h​-​d​o​c​u​m​e​n​t​s​-​a​n​d​-​s​o​p​s​​​​​.​​

Image preprocessing

Before inputting the images into the model, they were spa-
tially normalized into the Montreal Neurological Institute 
(MNI) brain space using SPM 5 ​(​​​h​t​​t​p​s​​:​/​/​w​​w​w​​.​f​i​l​.​i​o​n​.​u​c​l​.​a​
c​.​u​k​/​s​p​m​​​​​)​, implemented in Matlab 7.4.0 (Mathworks Inc, 
Sherborn, MA). To facilitate the Cycle GAN training the 
images were then smoothed by a 3D Gaussian filter of 
10 mm for PET and 6 mm for SPECT full width at half max-
imum (FWHM). Intensity normalization was performed by 
dividing each voxel by the maximum value of each training 
dataset (described below). We applied the SPM brain mask 
from the MNI brain space atlas before inputting the images 
into the CycleGAN.

Cycle GAN

Model

A 3D CycleGAN [20] was developed to make the image-to-
image translation between two domains, DAT PET imaging 
and DAT SPECT imaging. The CycleGAN model includes 
two generators (GPS - PET to SPECT- and GSP– SPECT to 
PET) and two associated adversarial discriminators (DP and 
DS). Each of the discriminators encourages its correspond-
ing generator to synthesize images similar to the original 

ones by minimizing an adversarial loss function. The synthe-
sized SPECT images are then translated back to the original 
PET domain, with the GSP (and vice-versa for the synthetic 
PET images). The cycle consistency loss helps ensure that 
the translated images are similar to the real ones. The PET 
scan is inputted into the GSP and vice-versa (SPECT to the 
GPS) and the output image is compared to the real PET (and 
SPECT) image, through the identity loss.

Detailed formulas and networks structures are shown in 
the supplementary material. Figure 1 shows a scheme of our 
cycle GAN model.

Training and image generation

We trained the CycleGAN with 90% of PPMI SPECT and 
HPPI PET and used the remaining 10% as testing datasets 
to evaluate the performance of the model. For these evalu-
ations, we generated synthetic SPECT images from the real 
PET images in the testing dataset. We applied the SPM 
brain mask in the MNI space and a Gaussian filter of 1.7 
FWHM before further analysis, to smooth the images with a 
grid-like texture (Supplementary Fig. 2). Table 1 shows the 
number of scans from each dataset in training and testing 
procedures.

The model was trained in a NVIDIA GeForce RTX 2080 
Ti GPU (NVIDIA Corporation, Santa Clara, CA, USA) for 
200 epochs with a batch size of 1 due to memory constrains. 
We used binary cross entropy loss for the adversarial loss 
and L1 loss for the cycle consistency and identity losses, 
with weights of 10 for the cycle consistency and 1 for the 
others. Adam optimizer was used with a learning rate of 
2e-4.

Evaluation of results

Fréchet inception distance

To assess the high-level perceptual image similarity between 
synthetic SPECT and real SPECT and PET, we calculated 
the Fréchet Inception Distance (FID). The FID, introduced 
by Heusel, M. et al. in 2017, is a widely adopted metric 
to compare the quality of images synthesized by generative 
models, particularly when paired data is not available and 
thus, methods such as root-mean-square error (RMSE) and 
structural similarity index (SSIM) cannot be used. A lower 
FID value suggests greater similarity between the two data-
sets in terms of their statistical properties. FID is calculated 
as the Wasserstein-2 distance between the multi-variate 
Gaussians fitted to data embedded into a feature space, 
employing a pre-trained Inception V3 network. We per-
formed bootstrapping with replacement to perform statisti-
cal comparison (Student’s t-test) between FIDs of synthetic 
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Semi-quantitative analysis

We calculated the striatum specific binding ratio (SBR), 
caudate specific binding ratio (CBR) and putamen specific 
binding ratio (PBR) for each already preprocessed image in 
the synthetic SPECT, real SPECT, and real PET test datas-
ets and then assessed the differences between test datasets. 
The regions of interest (ROI), including striatum, putamen 
or caudate, binding ratios were calculated as follows:

mean counts of ROI −mean counts of background region

mean counts of background region
,

where the background region corresponds to a region within 
the occipital lobe.

The ROI and occipital regions were obtained by applying 
the CerebrA template to each image after being registered to 
the MNI space [26].

We also calculate the absolute differences between left 
(SBRL) and right striatum (SBRR) as |SBRL − SBRR | .

Contrast-to-noise ratio

To measure the image quality, we also calculated the con-
trast-to-noise ratio (CNR) for each already preprocessed 
image in the synthetic SPECT, real SPECT, and real PET 
test datasets and then assessed the differences between test 
datasets. The CNR was calculated as follows:

SPECT with real SPECT and synthetic SPECT with real 
PET.

Deep-learning classification model

A classification network was trained using the synthetic 
SPECT data and tested on the real SPECT test set. A previ-
ously developed network, based on the ResNet architecture 
and validated for the differential diagnosis between PD and 
APS, was used [10]. The final linear layer of this network 
was modified to enable binary classification to differentiate 
between two classes (NC and PD) with log sigmoid activa-
tion. The highest log probability (NC or PD) determined the 
prediction for diagnostic evaluation. The model was trained 
for 50 epochs, with early stop if validation accuracy did not 
improve in 30 epochs. The initial learning rate was 1e-4 and 
was reduced by a factor of 0.5 when validation loss did not 
improve for 10 epochs. Adam optimizer and the negative 
log likelihood loss were used.

Table 1  Huashan Parkinsonian PET Imaging (HPPI) and Parkinson’s 
progression markers Initiative (PPMI) datasets’ size and correspond-
ing training and testing splits’ size per class/disease

HPPI PET data PPMI SPECT data
Training dataset NC 168 174

PD 434 978
Testing dataset NC 17 20

PD 50 108
Total 669 1280
NC: Normal controls; PD: Parkinson disease

Fig. 1  Scheme of our Cycle GAN model. GPS: Generator of PET to 
SPECT; GSP: Generator of SPECT to PET. DP: Discriminator of real 
and synthetic PET; DS: Discriminator of real and synthetic SPECT; 
Recon PET/SPECT: Reconstructed PET/SPECT back to original 

domain; Synth PET/SPECT: Synthetic PET/SPECT; id PET/SPECT: 
identity PET/SPECT that should be unchanged when passed through 
the GSP/GPS generators
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specificity, positive predictive value (PPV), and negative 
predictive value (NPV) were obtained to evaluate the per-
formance of the classification DL model. Differences in 
CNR were assessed by Mann-Whitney U test. CNR are pre-
sented as mean ± SD. Differences in VGAS were assessed 
by the Mann-Whitney U test. VGAS were presented as 
mean ± SD.

Results

Fréchet inception distance

The FID between real PET and synthetic SPECT test sets 
(152.3 ± 0.58) was higher than the FID between real SPECT 
and synthetic SPECT (142.6 ± 0.70; p < 0.001; 95%CI 
[-9.78, -9.53]).

Deep-learning classification

The ROC curve of the DL classification model is presented 
in Fig. 2. The model trained with synthetic SPECT achieved 
an AUC of 0.992, sensitivity of 97.2%, specificity of 90.0%, 
PPV of 98.1%, and NPV of 85.7% for the classification of 
the real SPECT test set into NC vs. PD.

Semi-quantitative analysis

As shown in Fig. 3a, the SBR values of the NC synthetic 
SPECT dataset (1.83 ± 0.17) were not significantly dif-
ferent from the SBRs of the NC real SPECT (2.05 ± 0.42; 
p = 0.05, 95%CI [0.00, 0.45]). Similar results were found 
for the PD synthetic SPECT (1.13 ± 0.29) versus the real 
SPECT dataset (1.10 ± 0.33; p = 0.31, 95%CI [-0.05, 0.16]). 
However, differences were significant (p < 0.001) between 
synthetic SPECT and real PET (NC: 1.57 ± 0.20; 95%CI 
[0.12, 0.39]; PD: 0.92 ± 0.30; 95%CI [0.09, 0.33]), in both 
NC and PD. Similarly, to real PET and SPECT data, sig-
nificant differences were found in striatal SBR in synthetic 
SPECT between NC and PD groups (p < 0.001; 95%CI 
[0.54, 0.84]).

In Fig. 3b, the caudate binding ratios (CBRs) of the NC 
synthetic SPECT dataset (1.74 ± 0.17) were significantly 
different from the CBRs of the NC real SPECT (2.02 ± 0.46; 
p = 0.02; 95%CI [0.05, 0.54]), with smaller differences than 
when comparing to NC real PET (1.17 ± 0.17; p < 0.001; 
95%CI [0.44, 0.69]). In the PD cohort, the CBRs were not 
significantly different in the synthetic SPECT (1.12 ± 0.31) 
compared to the real SPECT (1.19 ± 0.38; p = 0.26; 95%CI 
[-0.19, 0.05]). Significant differences were found in CBRs 
in synthetic SPECT between NC and PD groups (p < 0.001; 
95%CI [0.46, 0.77]).

CNR

=

mean counts of striatum

−mean counts of background region

standard deviation of counts of background region

Blind visual assessment

Four nuclear medicine physicians (T.P.: 5 years of experi-
ence; K.K.: 2 years of experience; J.G.: 6 years of experi-
ence F.J.: 7 years of experience) evaluated the quality of the 
synthetic images through absolute visual grading analysis 
(VGA) [27]. Ten synthetic SPECT images were generated 
from 10 real PET (5 NC and 5 PD) randomly selected from 
the HPPI test set. Additionally, 10 real SPECT images from 
the PPMI test set were chosen randomly. These 20 datasets 
were mixed and presented to the readers, who had no infor-
mation about data source (synthetic or original) or diagnosis 
(NC or PD).

Readers, untrained in detecting synthetic images, 
assessed images based on four criteria using a 3-point Lik-
ert scale: level of noise (1 = low, 2 = medium, 3 = high), 
presence of artifacts (1 = absent, 2 = uncertain, 3 = present), 
synthetic appearance (1 = real, 2 = uncertain, 3 = synthetic), 
and confidence in diagnosis (1 = insufficient, 2 = sufficient, 
3 = good/confident). VGA Scores (VGAS) for each of these 
four criteria were computed for each image dataset (real and 
synthetic SPECT) based on these assessments as:

V GAS =

∑
O, I Sc

Ni No
,

where Sc  are the given individual scores for observer (O) 
and image (I), Ni is the total number of images and No  is the 
total number of observers.

The physicians also made a diagnosis, as either NC or 
PD.

Statistical analysis

Statistical analysis was performed using Python 3.11.4 
with the libraries Scipy 1.11.1 and Scikit-learn 1.3.0. Cycle 
GAN was implemented using Keras 2.12.0 library and the 
DL classification model using Pytorch 1.13.0. Differences 
were considered significant for p < 0.05, using two-sided 
p-values. Effect size was calculated with Cohen’s d. Shap-
iro-Wilk test was used to assess sample normality, and sta-
tistical tests chosen accordingly. Differences in FID, SBR, 
CBR, PBR values and left-right striatum differences were 
assessed by the Student’s t-test and p-values and 95% confi-
dence intervals (95%CI) are shown. Values are presented as 
mean ± standard deviation (SD). The area under the receiver 
operating characteristic (ROC) curve (AUC), sensitivity, 
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As displayed in Table 2, the NC vs. PD diagnostic per-
formance of the majority of the readers is lower in synthetic 
SPECT images than in the real ones.

Examples of 2 cases of real and synthetic SPECT images 
from both NC and PD groups are shown in Fig. 6. Mean 
images are shown on Supplementary Fig. 1. An example of 
a synthetic SPECT with artifacts is shown in Supplementary 
Fig. 3.

Discussion

In this study, we explored for the first time the domain adap-
tation from DAT PET to DAT SPECT in the context of PD. 
Our results demonstrated the potential of Cycle GAN as a 
valuable tool for bridging the domain gap between these 
two modalities, improving AI-based diagnosis.

One of the key achievements of this study was the gen-
eration of visually indistinguishable synthetic DAT SPECT 
images from the DAT PET images. The FID of synthetic 
SPECT images compared to real SPECT was lower than 
that of synthetic SPECT compared to real PET. This sug-
gests that the synthetic SPECT images closely resemble real 
SPECT not only in visual appearance but also in high-level 
statistical features. This finding highlights the effectiveness 
of our approach in preserving essential characteristics of the 
original SPECT images during the translation process.

Furthermore, the deep learning classification model 
trained on these synthetic images demonstrated strong per-
formance in identifying PD in real SPECT data. This result 
highlights the potential of Cycle GAN in expanding the 
availability of training data for DL models, thereby reducing 

In Fig. 3c, the putamen binding ratios (PBRs) differences 
are significant in the PD cohort between synthetic SPECT 
(1.14 ± 0.27) and real SPECT (0.96 ± 0.31; p = 0.001; 
95%CI [0.07, 0.27]). PBR differences in the synthetic 
SPECT NC (1.93 ± 0.18) and PD cohorts are significant 
(p < 0.001; 95%CI [0.65, 0.93]).

As shown in Fig. 3d, absolute differences between right 
and left SBR are significant between PD synthetic SPECT 
(0.11 ± 0.09) and PD real SPECT (0.19 ± 0.15; p = 0.001; 
95%CI [-0.12, -0.03]) and between NC synthetic SPET 
(0.11 ± 0.03) and NC real PET (0.07 ± 0.07; p = 0.02; 95%CI 
[0.01, 0.08]).

Contrast-to-noise ratio

The CNR was higher in real PET of both NC (18.85 ± 17.56) 
and PD (11.34 ± 9.74) compared to Synthetic SPECT of NC 
(9.66 ± 1.64; p = 0.002) and PD (6.31 ± 1.67; p < 0.001), 
respectively. The CNR was also higher in NC (14.48 ± 3.49) 
and PD (8.16 ± 3.62) of real SPECT compared to NC 
(p < 0.001) and PD (p = 0.002) of Synthetic SPECT. Results 
are presented in Fig. 4.

Blind visual assessment

As shown in Fig. 5, Mann-Whitney U test showed no sig-
nificant differences between real and synthetic SPECT in 
VGAS of all criteria analyzed (Synthetic Appearance: 
p = 0.18; Level of Noise: p = 0.73; Artifacts: p = 0.86; Confi-
dence in diagnosis: p = 0.11). The results of individual read-
ers are presented in the Supplementary Table 1.

Fig. 2  Performance of the DL classification model in NC vs. PD classification in the real SPECT test set. (a) Receiver Operating Characteristics 
(ROC) Curve. (b) Confusion Matrix. NC: Normal controls; PD: Parkinson disease

 

1 3



European Journal of Nuclear Medicine and Molecular Imaging

the dependency on large, expensive datasets. The synthetic 
images maintained the necessary functional information 
for DL classification, showing that our approach could be 
a valuable tool in data-scarce environments, particularly for 
multi-center studies involving different imaging modali-
ties. As no real MSA or PSP SPECT data was available and, 
therefore, no tests could be performed on these data kinds, 
their synthetic counterparts were not generated.

At a semi-quantitative level, SBRs of synthetic DAT 
SPECT were not significantly different from the ones of 
the real DAT SPECT. Additionally, lower SBR values 
were found for the synthetic PD compared to synthetic NC 
images, confirming the preservation of disease-specific 
information in the image-to-image translation. SBR is a 
quantitative measure used in research and complements 
visual readings in clinical practice [5, 28–30]. However, the 
SBR values from different datasets are not consistent, due to 
subject-related physiological factors and different imaging 

Fig. 4  Average contrast-to-noise (CNR) of the synthetic SPECT, real 
SPECT, and real PET test datasets, both in NC and PD. Error bars 
represent the standard deviation. **p < 0.01, ****p < 0.0001 (Mann-
Whitney U test). NC: Normal controls; PD: Parkinson disease

 

Fig. 3  Average Specific Binding Ratios of the synthetic SPECT, real 
SPECT, and real PET test datasets, both in NC and PD, for striatum 
(a), caudate (b) and putamen (c) and left-right striatal differences 

(d). Error bars represent the standard deviation. ns: non-significant, 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 (Student’s t-test). 
NC: Normal controls; PD: Parkinson disease
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ratio and left-right striatal differences between synthetic and 
real SPECT, indicating that while the translation process 
preserves crucial diagnostic features, (such as decreased 
SBR, PBR and CBR in the PD cohort compared to NC) it 
is not yet perfect. Additionally, in terms of contrast-to-noise 
ratio, the synthetic SPECT have lower values than both real 
SPECT and synthetic SPECT, meaning a decrease in terms 
of contrast of striatum.

Blind visual assessment by the nuclear medicine physi-
cians confirmed structural similarity between real and syn-
thetic SPECT, with no differences in VGAS of analyzed 
categories (synthetic appearance, level of noise, presence of 
artifacts, and confidence in diagnosis). However, 3/4 physi-
cians had reduced diagnostic accuracy in synthetic images 
compared to real ones, possibly due to the attenuation of 
certain discriminative features during translation, enough 
for DL network to identify, but not the physicians. This is 

systems, including different acquisition hardware and dif-
ferent image reconstruction software [31–33]. Thus, it com-
plicates comparisons in multicenter/longitudinal studies. 
Other alternatives, such as phantom-based calibration and 
dedicated reconstruction algorithms attempted to mitigate 
this variability [33], but these approaches are not straight-
forward, as they involve addressing camera-specific factors. 
In our case, we have not just different subject populations, 
cameras, centers, but also different imaging modalities. 
As DAT SPECT is most used in European centers/studies 
[6, 11] and DAT PET is widely used in Asia, studies using 
both of these modalities can be of major importance, espe-
cially due to the limited APS data. Because Cycle GAN 
performed well in these different modality cases, we fore-
see that it can be used in simpler multi-system pipelines. 
However, there remain some areas for improvement. In the 
PD cohort, differences were noted in the putamen binding 

Table 2  Diagnostic performance in terms of AUC, sensitivity, specificity, PPV, and NPV of individual readers on real and synthetic SPECT images. 
Diagnostic performance corresponds to the ability to differentiate NC vs. PD cases
Reader Dataset AUC Sensitivity (%) Specificity (%) PPV (%) NPV (%)
#1 Real 0.90 100 80 83.3 100

Synthetic 0.90 100 80 83.3 100
#2 Real 0.90 100 80 83.3 100

Synthetic 0.80 60 100 100 71.4
#3 Real 0.70 100 40 62.5 100

Synthetic 0.50 80 20 50 50
#4 Real 0.90 100 80 83.3 100

Synthetic 0.60 40 80 66.6 57.1
 . 

Fig. 5  Differences in Visual 
Grading Analysis Score (VGAS) 
between real and synthetic 
SPECT images in all the catego-
ries analyzed– level of noise, 
presence of artifacts, confidence 
in diagnosis, and synthetic 
appearance. Error bars repre-
sent the standard deviation. ns: 
p > 0.05 (Mann-Whitney U test)
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mechanisms to enhance feature preservation, potentially 
offering more precise image translations but at the cost of 
increased complexity and computational demand. Diffusion 
models [16, 35, 36] are known for generating high-quality 
images through iterative noise reduction but require exten-
sive computational resources and long training times. In 
contrast, Cycle GAN strikes a balance between image qual-
ity and computational efficiency, making it more practical 
for medical imaging applications. However, it may struggle 
with fine-grained feature preservation, as indicated by the 
subtle discrepancies observed in our study. While Cycle 
GAN is effective for many tasks, integrating aspects of 
these advanced methods could further enhance translation 
quality in future research.

In terms of clinical relevance, our method could sig-
nificantly enhance AI-assisted diagnostic tools by increas-
ing the availability of training data, thereby making these 
tools more robust and generalizable. Several studies show 
that integrating deep learning-based data augmentation is an 
important strategy in this regard [17]. It could also provide 
additional resources for educating new physicians. Further-
more, the ability to translate PET to SPECT could facilitate 
clinical comparisons of patient scans—where PET imag-
ing was used—with existing standard databases of normal 
controls, which are predominantly SPECT-based in Europe 
[31]. However, for clinical adoption, it will be essential to 
address challenges such as meeting regulatory standards for 
synthetic images, integrating the method into existing clini-
cal workflows, and ensuring the interpretability and reliabil-
ity of AI-generated images.

It is important to acknowledge some other limitations. 
While our study focused on generating SPECT images from 
PET images due to current needs, generating PET images 
from SPECT could be a more advantageous approach given 
the higher spatial resolution of PET. However, translating 
from SPECT to PET presents additional challenges, espe-
cially with only limited and unpaired data are available. 
Future studies should consider exploring this approach to 
leverage the higher detail in PET images.

Although Cycle GAN has shown promise in domain 
adaptation for medical imaging [37, 38], challenges like 
data heterogeneity and the need for large-scale datasets 
for robust training still remain [20, 39, 40]. A common 
issue in synthetic image generation is hallucination, where 
the model generates artifacts in the synthetic image [41]. 
However, since our main goals is to enhance DL classifica-
tion, minor structural abnormalities in synthetic images are 
less problematic. Additionally, tuning the parameters and 
the training approach proved to be challenging, as minor 
adjustments in the hyperparameters affect training stability 
[39, 42]. An external dataset for testing would be a valuable 

also consistent with the differences in the putamen binding 
ratio and the left-right striatal differences, as well as with 
the low CNR.

When comparing Cycle GAN to other domain adaptation 
methods like AttentionGAN and diffusion models, several 
differences emerge. AttentionGAN [34] leverages attention 

Fig. 6  Example of images of (a) normal controls and (b) Parkinson’s 
disease from real PET (upper row), real SPECT (middle row) and syn-
thetic SPECT (bottom row)
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addition in future studies, to improve the robustness and 
generalizability of our results.

In the image quality quantitative metrics, CNR is low 
especially on the NC cohort, which can impair visual analy-
sis. Nevertheless, SBR are similar in the synthetic and real 
SPECT and DL classification has high accuracy, meaning 
that even if not ideal for visual assessment, the synthetic 
images are helpful for semi-quantitative and DL-based diag-
nosis. It is also noteworthy that the SBR difference between 
real SPECT and synthetic SPECT is bigger in the NC that 
in the PD, even though not significantly. This can be due to 
the unbalanced training dataset, which holds much more PD 
(80%) than NC (20%). A more balanced training set could 
improve this disparity. Another limitation is the use of Nor-
mal DAT imaging scans and not just NC and the different 
PD/NC proportions for PET and SPECT datasets.

In the visual assessment, there are also important limita-
tions. The interpretation and generalization of the results can 
be limited by the small sample size (n = 20) and the Gauss-
ian filters applied. As the spatial resolution of the PPMI 
SPECT images is already low, further reduction might have 
an impact on the diagnostic utility. Nonetheless, diagnos-
tic performance of the four readers on real SPECT images 
was good (AUC > 0.70). Moreover, some studies show that 
domain adaptation might be achieved by simply smoothing 
images [43]. Further studies should aim for larger samples 
and fewer preprocessing steps.

Lastly, the impact of domain adaptation on downstream 
tasks, such as disease classification, should be thoroughly 
investigated. Although quantitative metrics such as SBR 
and CNR offer some insight into the translation process and 
synthetic SPECT images appear realistic, they do not allow 
for direct evaluation of the synthetic images. We cannot 
know how comparable a real clinical SPECT image would 
be to the corresponding synthetic image, due to the absence 
of paired data. It is essential that next studies include paired 
datasets – as a more accurate and direct way to evaluate 
the synthetic images – and assess how well the synthetic 
data can improve the performance of existing AI models 
and clinical decision support systems in the context of DAT 
imaging.

Conclusion

Our study highlights the potential of Cycle GAN in DAT 
PET to DAT SPECT domain adaptation. This approach holds 
promise for more multicenter/longitudinal comparison stud-
ies and for expanding data availability needed to enhance 
the accuracy in diagnosing parkinsonian disorders. Future 
research is needed to address the remaining challenges and 
evaluate the clinical applicability of the proposed approach.
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