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Abstract
Purpose Dopamine transporter imaging is routinely used in Parkinson’s disease (PD) and atypical parkinsonian syndromes 
(APS) diagnosis. While [11C]CFT PET is prevalent in Asia with a large APS database, Europe relies on [123I]FP-CIT SPECT 
with limited APS data. Our aim was to develop a deep learning-based method to convert [11C]CFT PET images to [123I]
FP-CIT	SPECT	images,	facilitating	multicenter	studies	and	overcoming	data	scarcity	to	promote	Artificial	Intelligence	(AI)	
advancements.
Methods A CycleGAN was trained on [11C]CFT PET (n = 602, 72%PD) and [123I]FP-CIT SPECT (n = 1152, 85%PD) 
images from PD and non-parkinsonian control (NC) subjects. The model generated synthetic SPECT images from a real 
PET test set (n = 67, 75%PD). Synthetic images were quantitatively and visually evaluated.
Results Fréchet Inception Distance indicated higher similarity between synthetic and real SPECT than between synthetic 
SPECT	and	real	PET.	A	deep	learning	classification	model	trained	on	synthetic	SPECT	achieved	sensitivity	of	97.2%	and	
specificity	of	90.0%	on	real	SPECT	images.	Striatal	specific	binding	ratios	of	synthetic	SPECT	were	not	significantly	differ-
ent	from	real	SPECT.	The	striatal	left-right	differences	and	putamen	binding	ratio	were	significantly	different	only	in	the	PD	
cohort. Real PET and real SPECT had higher contrast-to-noise ratio compared to synthetic SPECT. Visual grading analysis 
scores	showed	no	significant	differences	between	real	and	synthetic	SPECT,	although	reduced	diagnostic	performance	on	
synthetic images was observed.
Conclusion CycleGAN generated synthetic SPECT images visually indistinguishable from real ones and retained disease-
specific	information,	demonstrating	the	feasibility	of	translating	[11C]CFT PET to [123I]FP-CIT SPECT. This cross-modality 
synthesis	could	enhance	further	AI	classification	accuracy,	supporting	the	diagnosis	of	PD	and	APS.
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RMSE  Root-Mean-Square Error
ROC  Receiver Operating Characteristic
SBR	 	Striatal	Specific	Binding	Ratio
SD  Standard Deviation
SPECT  Single Photon Emission Computed 

Tomography
SSIM  Structural Similarity Index Measure
VGA  Visual Grading Analysis
VGAS  VGA Score

Background

Dopamine transporter (DAT) imaging, such as positron 
emission tomography (PET) with [11C]2β-carbomethoxy-
3β-(4-fluorophenyl)	 tropane	([11C]CFT) and single photon 
emission computed tomography (SPECT) with [123I]2β-
carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl)	 nor-
tropane ([123I]FP-CIT; DaTscan™, GE Healthcare), is a 
powerful	 tool	 in	 the	 differential	 diagnosis	 of	 idiopathic	
Parkinson’s disease (PD) from essential tremor or other 
secondary parkinsonism without nigrostriatal degenera-
tion. However, this imaging tool is currently unreliable 
for	 differentiating	 PD	 from	 atypical	 neurodegenerative	
parkinsonian syndromes (APS), such as multiple system 
atrophy (MSA) or progressive supranuclear palsy (PSP) 
[1]. In clinical practice, the use of visual interpretation and 
semi-quantitative analysis has demonstrated high diagnos-
tic accuracy [2–5]	for	PD	and	essential	tremor	differentia-
tion. In research, semi-quantitative methods are generally 
preferred as they provide more objective measurements of 
DAT density [6].	The	striatal	 specific	binding	ratio	 (SBR)	
is the most commonly used semi-quantitative measure [6, 
7]. However, the lack of consistency in SBR measurements 
across	different	research	sites,	image	acquisition	techniques,	
reconstruction processes, and data analysis methods poses 
a challenge in longitudinal/multicenter studies. Recently, 
artificial	intelligence	(AI),	higher,	diagnostic	accuracy	than	
previous conventional methods [8],	even	in	differentiating	
PD from APS [9, 10]. [11C]CFT PET is widely accessible in 
Asia and a substantial APS database was collected to sup-
port AI advancements [10]. [123I]FP-CIT SPECT is widely 
used in Europe [6, 11], however, limited APS data is avail-
able. A cross-modality synthesis between the two imaging 
techniques is appealing as it could allow better reproducibil-
ity of SBR and other quantitative measures and assist in AI 
diagnosis	in	modalities	with	a	lack	of	sufficient	data.	Gen-
erative adversarial networks (GANs) [12] have remarkable 
capabilities in cross-modality medical image synthesis [13–
17]. Moreover, GANs tackle various other medical chal-
lenges, such as image quality recovery [18] or CT-free PET 
paradigm [19]. These methods can alleviate data scarcity 

in medical research, by generating substantial quantities of 
realistic data. Cycle-consistency GAN (Cycle GAN) [20] 
stand out in medical image-to-image synthesis, as it does 
not need paired data for training, due to its cycle-consis-
tency loss [21–24]. Cycle GAN has also been successfully 
used in multi-modality synthesis. In our case, although the 
same	target	is	used	(DAT),	the	modalities	can	differ	due	to	
different	half-lives	of	the	labels	Carbon-11	and	Iodine-123	
and	the	different	acquisition	times.	Thus,	as	we	are	dealing	
with	different	modalities	and	no	paired	data	is	available,	we	
aimed to develop a Cycle GAN-based approach for cross-
modality synthesis to improve interchangeability between 
[11C]CFT PET and [123I]FP-CIT SPECT.

Materials and methods

Data

This retrospective study included [11C]CFT PET brain 
images (DAT PET) from the Huashan Parkinsonian PET 
Imaging (HPPI) database and [123I]FP-CIT SPECT brain 
images (DAT SPECT) openly available from Parkinson’s 
Progression Markers Initiative (PPMI) database.

HPPI data

The	Normal	Controls	 (NC)	 cohort	 included	43	DAT	PET	
scans	from	healthy	subjects	and	142	from	subjects	with	nor-
mal DAT imaging, with a total of 185 subjects. In the PD 
cohort,	we	included	484	DAT	PET	from	patients	diagnosed	
with PD.

All included patients from the HPPI performed a DAT 
PET and an MRI to exclude structural brain abnormalities 
at Huashan Hospital. Patients with PD were diagnosed by 
movement disorder specialists on their return visits after 
PET examination, according to the current diagnostic cri-
teria [25]. The inclusion criteria for healthy controls and 
normal DAT subjects can be found in the supplementary 
materials.

DAT PET acquisition and reconstruction

DAT PET scans were were all acquired with a Biograph™ 
64	 HD	 PET/CT	 (Siemens	 Medical	 Solutions	 USA,	 Inc.,	
Molecular Imaging, Knoxville, TN), one hour after an intra-
venous	injection	of	333–407	MBq	(9-11mCi)	of	[11C]CFT. 
The duration of acquisition was 15 min. Low dose CT was 
performed previously for attenuation correction. Iterative 
3D-ordered subset expectation maximization algorithm was 
used to reconstruct the images after corrections for scatter, 
dead time and random coincidences.
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PPMI data

The PPMI is a large, international multicenter clinical study 
that aims to identify various biomarkers for the progression 
of de novo PD.

We	 included	 194	 reconstructed	 [123I]FP-CIT SPECT 
(DaTscan™) scans from the Healthy Controls Cohort– NC 
group– and 1086 from the PD cohort– PD group– from the 
PPMI initiative (www.ppmi-info.org/data).

Participants in this study were individuals diagnosed with 
PD who were at least 30 years old, regardless of gender. The 
PPMI	 study	had	 specific	 criteria	 for	 participant	 eligibility	
that can be found at  h t t  p s : /  / w w  w . p  p m i  - i n  f o . o  r g  / s t u d y - d e s i g 
n / r e s e a r c h - d o c u m e n t s - a n d - s o p s     .  

DAT SPECT acquisition and reconstruction

DAT SPECT scans are acquired four hours after injection of 
3–5 mCi (111–185 MBq) of DaTscan™. CT was performed 
for attenuation correction and the Hermes (Hermes Medi-
cal Solutions, Stockholm) iterative ordered-subsets-expec-
tation-maximization algorithm was used to reconstruct the 
images. The detailed PPMI [123I]FP-CIT SPECT protocol 
can be found at  h t t  p s : /  / w w  w . p  p m i  - i n  f o . o  r g  / s t u d y - d e s i g n / r e s 
e a r c h - d o c u m e n t s - a n d - s o p s     .  

Image preprocessing

Before inputting the images into the model, they were spa-
tially normalized into the Montreal Neurological Institute 
(MNI) brain space using SPM 5  (  	h	t		t	p	s		:	/	/	w		w	w		.	fi		l	.	i	o	n	.	u	c	l	.	a	
c . u k / s p m 				)	,	 implemented	 in	Matlab	 7.4.0	 (Mathworks	 Inc,	
Sherborn, MA). To facilitate the Cycle GAN training the 
images	 were	 then	 smoothed	 by	 a	 3D	 Gaussian	 filter	 of	
10 mm for PET and 6 mm for SPECT full width at half max-
imum (FWHM). Intensity normalization was performed by 
dividing each voxel by the maximum value of each training 
dataset (described below). We applied the SPM brain mask 
from the MNI brain space atlas before inputting the images 
into the CycleGAN.

Cycle GAN

Model

A 3D CycleGAN [20] was developed to make the image-to-
image translation between two domains, DAT PET imaging 
and DAT SPECT imaging. The CycleGAN model includes 
two generators (GPS - PET to SPECT- and GSP– SPECT to 
PET) and two associated adversarial discriminators (DP and 
DS). Each of the discriminators encourages its correspond-
ing generator to synthesize images similar to the original 

ones by minimizing an adversarial loss function. The synthe-
sized SPECT images are then translated back to the original 
PET domain, with the GSP (and vice-versa for the synthetic 
PET images). The cycle consistency loss helps ensure that 
the translated images are similar to the real ones. The PET 
scan is inputted into the GSP and vice-versa (SPECT to the 
GPS) and the output image is compared to the real PET (and 
SPECT) image, through the identity loss.

Detailed formulas and networks structures are shown in 
the supplementary material. Figure 1 shows a scheme of our 
cycle GAN model.

Training and image generation

We	trained	the	CycleGAN	with	90%	of	PPMI	SPECT	and	
HPPI PET and used the remaining 10% as testing datasets 
to evaluate the performance of the model. For these evalu-
ations, we generated synthetic SPECT images from the real 
PET images in the testing dataset. We applied the SPM 
brain	mask	 in	 the	MNI	space	and	a	Gaussian	filter	of	1.7	
FWHM before further analysis, to smooth the images with a 
grid-like texture (Supplementary Fig. 2). Table 1 shows the 
number of scans from each dataset in training and testing 
procedures.

The model was trained in a NVIDIA GeForce RTX 2080 
Ti GPU (NVIDIA Corporation, Santa Clara, CA, USA) for 
200 epochs with a batch size of 1 due to memory constrains. 
We used binary cross entropy loss for the adversarial loss 
and L1 loss for the cycle consistency and identity losses, 
with weights of 10 for the cycle consistency and 1 for the 
others. Adam optimizer was used with a learning rate of 
2e-4.

Evaluation of results

Fréchet inception distance

To assess the high-level perceptual image similarity between 
synthetic SPECT and real SPECT and PET, we calculated 
the Fréchet Inception Distance (FID). The FID, introduced 
by Heusel, M. et al. in 2017, is a widely adopted metric 
to compare the quality of images synthesized by generative 
models, particularly when paired data is not available and 
thus, methods such as root-mean-square error (RMSE) and 
structural similarity index (SSIM) cannot be used. A lower 
FID value suggests greater similarity between the two data-
sets in terms of their statistical properties. FID is calculated 
as the Wasserstein-2 distance between the multi-variate 
Gaussians	 fitted	 to	 data	 embedded	 into	 a	 feature	 space,	
employing a pre-trained Inception V3 network. We per-
formed bootstrapping with replacement to perform statisti-
cal comparison (Student’s t-test) between FIDs of synthetic 
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Semi-quantitative analysis

We	 calculated	 the	 striatum	 specific	 binding	 ratio	 (SBR),	
caudate	specific	binding	ratio	(CBR)	and	putamen	specific	
binding ratio (PBR) for each already preprocessed image in 
the synthetic SPECT, real SPECT, and real PET test datas-
ets	and	then	assessed	the	differences	between	test	datasets.	
The regions of interest (ROI), including striatum, putamen 
or caudate, binding ratios were calculated as follows:

mean counts of ROI −mean counts of background region

mean counts of background region
,

where the background region corresponds to a region within 
the occipital lobe.

The ROI and occipital regions were obtained by applying 
the CerebrA template to each image after being registered to 
the MNI space [26].

We	also	 calculate	 the	 absolute	differences	between	 left	
(SBRL) and right striatum (SBRR) as |SBRL − SBRR | .

Contrast-to-noise ratio

To measure the image quality, we also calculated the con-
trast-to-noise ratio (CNR) for each already preprocessed 
image in the synthetic SPECT, real SPECT, and real PET 
test	datasets	and	then	assessed	the	differences	between	test	
datasets. The CNR was calculated as follows:

SPECT with real SPECT and synthetic SPECT with real 
PET.

Deep-learning classification model

A	 classification	 network	 was	 trained	 using	 the	 synthetic	
SPECT data and tested on the real SPECT test set. A previ-
ously developed network, based on the ResNet architecture 
and	validated	for	the	differential	diagnosis	between	PD	and	
APS, was used [10].	The	final	linear	layer	of	this	network	
was	modified	to	enable	binary	classification	to	differentiate	
between two classes (NC and PD) with log sigmoid activa-
tion. The highest log probability (NC or PD) determined the 
prediction for diagnostic evaluation. The model was trained 
for 50 epochs, with early stop if validation accuracy did not 
improve	in	30	epochs.	The	initial	learning	rate	was	1e-4	and	
was reduced by a factor of 0.5 when validation loss did not 
improve for 10 epochs. Adam optimizer and the negative 
log likelihood loss were used.

Table 1 Huashan Parkinsonian PET Imaging (HPPI) and Parkinson’s 
progression markers Initiative (PPMI) datasets’ size and correspond-
ing training and testing splits’ size per class/disease

HPPI PET data PPMI SPECT data
Training dataset NC 168 174

PD 434 978
Testing dataset NC 17 20

PD 50 108
Total 669 1280
NC: Normal controls; PD: Parkinson disease

Fig. 1 Scheme of our Cycle GAN model. GPS: Generator of PET to 
SPECT; GSP: Generator of SPECT to PET. DP: Discriminator of real 
and synthetic PET; DS: Discriminator of real and synthetic SPECT; 
Recon PET/SPECT: Reconstructed PET/SPECT back to original 

domain; Synth PET/SPECT: Synthetic PET/SPECT; id PET/SPECT: 
identity PET/SPECT that should be unchanged when passed through 
the GSP/GPS generators
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specificity,	 positive	 predictive	 value	 (PPV),	 and	 negative	
predictive value (NPV) were obtained to evaluate the per-
formance	 of	 the	 classification	 DL	 model.	 Differences	 in	
CNR were assessed by Mann-Whitney U test. CNR are pre-
sented as mean ±	SD.	Differences	in	VGAS	were	assessed	
by the Mann-Whitney U test. VGAS were presented as 
mean ± SD.

Results

Fréchet inception distance

The FID between real PET and synthetic SPECT test sets 
(152.3 ± 0.58) was higher than the FID between real SPECT 
and	 synthetic	 SPECT	 (142.6	± 0.70; p <	0.001;	 95%CI	
[-9.78,	-9.53]).

Deep-learning classification

The	ROC	curve	of	the	DL	classification	model	is	presented	
in Fig. 2. The model trained with synthetic SPECT achieved 
an	AUC	of	0.992,	sensitivity	of	97.2%,	specificity	of	90.0%,	
PPV	of	98.1%,	and	NPV	of	85.7%	for	the	classification	of	
the real SPECT test set into NC vs. PD.

Semi-quantitative analysis

As shown in Fig. 3a, the SBR values of the NC synthetic 
SPECT dataset (1.83 ±	0.17)	 were	 not	 significantly	 dif-
ferent from the SBRs of the NC real SPECT (2.05 ±	0.42;	
p =	0.05,	 95%CI	 [0.00,	 0.45]).	 Similar	 results	were	 found	
for the PD synthetic SPECT (1.13 ±	0.29)	 versus	 the	 real	
SPECT dataset (1.10 ± 0.33; p =	0.31,	95%CI	[-0.05,	0.16]).	
However,	differences	were	significant	 (p < 0.001) between 
synthetic SPECT and real PET (NC: 1.57 ±	0.20;	 95%CI	
[0.12,	0.39];	PD:	0.92	±	0.30;	95%CI	[0.09,	0.33]),	in	both	
NC and PD. Similarly, to real PET and SPECT data, sig-
nificant	differences	were	found	in	striatal	SBR	in	synthetic	
SPECT between NC and PD groups (p <	0.001;	 95%CI	
[0.54,	0.84]).

In Fig. 3b, the caudate binding ratios (CBRs) of the NC 
synthetic	 SPECT	 dataset	 (1.74	±	0.17)	 were	 significantly	
different	from	the	CBRs	of	the	NC	real	SPECT	(2.02	±	0.46;	
p =	0.02;	95%CI	[0.05,	0.54]),	with	smaller	differences	than	
when comparing to NC real PET (1.17 ± 0.17; p < 0.001; 
95%CI	[0.44,	0.69]).	In	the	PD	cohort,	the	CBRs	were	not	
significantly	different	in	the	synthetic	SPECT	(1.12	± 0.31) 
compared	to	the	real	SPECT	(1.19	± 0.38; p =	0.26;	95%CI	
[-0.19,	0.05]).	Significant	differences	were	found	in	CBRs	
in synthetic SPECT between NC and PD groups (p < 0.001; 
95%CI	[0.46,	0.77]).

CNR

=

mean counts of striatum

−mean counts of background region

standard deviation of counts of background region

Blind visual assessment

Four nuclear medicine physicians (T.P.: 5 years of experi-
ence; K.K.: 2 years of experience; J.G.: 6 years of experi-
ence F.J.: 7 years of experience) evaluated the quality of the 
synthetic images through absolute visual grading analysis 
(VGA) [27]. Ten synthetic SPECT images were generated 
from 10 real PET (5 NC and 5 PD) randomly selected from 
the HPPI test set. Additionally, 10 real SPECT images from 
the PPMI test set were chosen randomly. These 20 datasets 
were mixed and presented to the readers, who had no infor-
mation about data source (synthetic or original) or diagnosis 
(NC or PD).

Readers, untrained in detecting synthetic images, 
assessed images based on four criteria using a 3-point Lik-
ert scale: level of noise (1 = low, 2 = medium, 3 = high), 
presence of artifacts (1 = absent, 2 = uncertain, 3 = present), 
synthetic appearance (1 = real, 2 = uncertain, 3 = synthetic), 
and	confidence	in	diagnosis	(1	=	insufficient,	2	=	sufficient,	
3 =	good/confident).	VGA	Scores	(VGAS)	for	each	of	these	
four criteria were computed for each image dataset (real and 
synthetic SPECT) based on these assessments as:

V GAS =

∑
O, I Sc

Ni No
,

where Sc  are the given individual scores for observer (O) 
and image (I), Ni is the total number of images and No  is the 
total number of observers.

The physicians also made a diagnosis, as either NC or 
PD.

Statistical analysis

Statistical analysis was performed using Python	 3.11.4	
with the libraries Scipy 1.11.1 and Scikit-learn 1.3.0. Cycle 
GAN was implemented using Keras 2.12.0 library and the 
DL	classification	model	using	Pytorch	1.13.0.	Differences	
were	 considered	 significant	 for	 p < 0.05, using two-sided 
p-values.	Effect	size	was	calculated	with	Cohen’s	d.	Shap-
iro-Wilk test was used to assess sample normality, and sta-
tistical	tests	chosen	accordingly.	Differences	in	FID,	SBR,	
CBR,	PBR	values	and	 left-right	 striatum	differences	were	
assessed by the Student’s t-test	and	p-values	and	95%	confi-
dence	intervals	(95%CI)	are	shown.	Values	are	presented	as	
mean ± standard deviation (SD). The area under the receiver 
operating characteristic (ROC) curve (AUC), sensitivity, 
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As displayed in Table 2, the NC vs. PD diagnostic per-
formance of the majority of the readers is lower in synthetic 
SPECT images than in the real ones.

Examples of 2 cases of real and synthetic SPECT images 
from both NC and PD groups are shown in Fig. 6. Mean 
images are shown on Supplementary Fig. 1. An example of 
a synthetic SPECT with artifacts is shown in Supplementary 
Fig. 3.

Discussion

In	this	study,	we	explored	for	the	first	time	the	domain	adap-
tation from DAT PET to DAT SPECT in the context of PD. 
Our results demonstrated the potential of Cycle GAN as a 
valuable tool for bridging the domain gap between these 
two modalities, improving AI-based diagnosis.

One of the key achievements of this study was the gen-
eration of visually indistinguishable synthetic DAT SPECT 
images from the DAT PET images. The FID of synthetic 
SPECT images compared to real SPECT was lower than 
that of synthetic SPECT compared to real PET. This sug-
gests that the synthetic SPECT images closely resemble real 
SPECT not only in visual appearance but also in high-level 
statistical	features.	This	finding	highlights	the	effectiveness	
of our approach in preserving essential characteristics of the 
original SPECT images during the translation process.

Furthermore,	 the	 deep	 learning	 classification	 model	
trained on these synthetic images demonstrated strong per-
formance in identifying PD in real SPECT data. This result 
highlights the potential of Cycle GAN in expanding the 
availability of training data for DL models, thereby reducing 

In Fig. 3c,	the	putamen	binding	ratios	(PBRs)	differences	
are	significant	in	the	PD	cohort	between	synthetic	SPECT	
(1.14	±	0.27)	 and	 real	 SPECT	 (0.96	± 0.31; p = 0.001; 
95%CI	 [0.07,	 0.27]).	 PBR	 differences	 in	 the	 synthetic	
SPECT	 NC	 (1.93	±	0.18)	 and	 PD	 cohorts	 are	 significant	
(p <	0.001;	95%CI	[0.65,	0.93]).

As shown in Fig. 3d,	absolute	differences	between	right	
and	left	SBR	are	significant	between	PD	synthetic	SPECT	
(0.11 ±	0.09)	 and	 PD	 real	 SPECT	 (0.19	± 0.15; p = 0.001; 
95%CI	 [-0.12,	 -0.03])	 and	 between	 NC	 synthetic	 SPET	
(0.11 ± 0.03) and NC real PET (0.07 ± 0.07; p =	0.02;	95%CI	
[0.01, 0.08]).

Contrast-to-noise ratio

The CNR was higher in real PET of both NC (18.85 ± 17.56) 
and	PD	(11.34	±	9.74)	compared	to	Synthetic	SPECT	of	NC	
(9.66	±	1.64;	 p = 0.002) and PD (6.31 ± 1.67; p < 0.001), 
respectively.	The	CNR	was	also	higher	in	NC	(14.48	±	3.49)	
and PD (8.16 ± 3.62) of real SPECT compared to NC 
(p < 0.001) and PD (p = 0.002) of Synthetic SPECT. Results 
are presented in Fig. 4.

Blind visual assessment

As shown in Fig. 5, Mann-Whitney U test showed no sig-
nificant	 differences	 between	 real	 and	 synthetic	 SPECT	 in	
VGAS of all criteria analyzed (Synthetic Appearance: 
p = 0.18; Level of Noise: p = 0.73; Artifacts: p =	0.86;	Confi-
dence in diagnosis: p = 0.11). The results of individual read-
ers are presented in the Supplementary Table 1.

Fig. 2	 Performance	of	the	DL	classification	model	in	NC	vs.	PD	classification	in	the	real	SPECT	test	set.	(a) Receiver Operating Characteristics 
(ROC) Curve. (b) Confusion Matrix. NC: Normal controls; PD: Parkinson disease
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the dependency on large, expensive datasets. The synthetic 
images maintained the necessary functional information 
for	DL	classification,	showing	 that	our	approach	could	be	
a valuable tool in data-scarce environments, particularly for 
multi-center	 studies	 involving	 different	 imaging	 modali-
ties. As no real MSA or PSP SPECT data was available and, 
therefore, no tests could be performed on these data kinds, 
their synthetic counterparts were not generated.

At a semi-quantitative level, SBRs of synthetic DAT 
SPECT	 were	 not	 significantly	 different	 from	 the	 ones	 of	
the real DAT SPECT. Additionally, lower SBR values 
were found for the synthetic PD compared to synthetic NC 
images,	 confirming	 the	 preservation	 of	 disease-specific	
information in the image-to-image translation. SBR is a 
quantitative measure used in research and complements 
visual readings in clinical practice [5, 28–30]. However, the 
SBR	values	from	different	datasets	are	not	consistent,	due	to	
subject-related	physiological	factors	and	different	 imaging	

Fig. 4 Average contrast-to-noise (CNR) of the synthetic SPECT, real 
SPECT, and real PET test datasets, both in NC and PD. Error bars 
represent the standard deviation. **p < 0.01, ****p < 0.0001 (Mann-
Whitney U test). NC: Normal controls; PD: Parkinson disease

 

Fig. 3	 Average	Specific	Binding	Ratios	of	 the	synthetic	SPECT,	real	
SPECT, and real PET test datasets, both in NC and PD, for striatum 
(a), caudate (b) and putamen (c)	 and	 left-right	 striatal	 differences	

(d).	 Error	 bars	 represent	 the	 standard	 deviation.	 ns:	 non-significant,	
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 (Student’s t-test). 
NC: Normal controls; PD: Parkinson disease
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ratio	and	left-right	striatal	differences	between	synthetic	and	
real SPECT, indicating that while the translation process 
preserves crucial diagnostic features, (such as decreased 
SBR, PBR and CBR in the PD cohort compared to NC) it 
is not yet perfect. Additionally, in terms of contrast-to-noise 
ratio, the synthetic SPECT have lower values than both real 
SPECT and synthetic SPECT, meaning a decrease in terms 
of contrast of striatum.

Blind visual assessment by the nuclear medicine physi-
cians	confirmed	structural	similarity	between	real	and	syn-
thetic	 SPECT,	 with	 no	 differences	 in	VGAS	 of	 analyzed	
categories (synthetic appearance, level of noise, presence of 
artifacts,	and	confidence	in	diagnosis).	However,	3/4	physi-
cians had reduced diagnostic accuracy in synthetic images 
compared to real ones, possibly due to the attenuation of 
certain discriminative features during translation, enough 
for DL network to identify, but not the physicians. This is 

systems,	 including	different	 acquisition	hardware	 and	dif-
ferent image reconstruction software [31–33]. Thus, it com-
plicates comparisons in multicenter/longitudinal studies. 
Other alternatives, such as phantom-based calibration and 
dedicated reconstruction algorithms attempted to mitigate 
this variability [33], but these approaches are not straight-
forward,	as	they	involve	addressing	camera-specific	factors.	
In	our	case,	we	have	not	just	different	subject	populations,	
cameras,	 centers,	 but	 also	 different	 imaging	 modalities.	
As DAT SPECT is most used in European centers/studies 
[6, 11] and DAT PET is widely used in Asia, studies using 
both of these modalities can be of major importance, espe-
cially due to the limited APS data. Because Cycle GAN 
performed	well	 in	these	different	modality	cases,	we	fore-
see that it can be used in simpler multi-system pipelines. 
However, there remain some areas for improvement. In the 
PD	cohort,	differences	were	noted	in	the	putamen	binding	

Table 2	 Diagnostic	performance	in	terms	of	AUC,	sensitivity,	specificity,	PPV,	and	NPV	of	individual	readers	on	real	and	synthetic	SPECT	images.	
Diagnostic	performance	corresponds	to	the	ability	to	differentiate	NC	vs.	PD	cases
Reader Dataset AUC Sensitivity (%) Specificity	(%) PPV (%) NPV (%)
#1 Real 0.90 100 80 83.3 100

Synthetic 0.90 100 80 83.3 100
#2 Real 0.90 100 80 83.3 100

Synthetic 0.80 60 100 100 71.4
#3 Real 0.70 100 40 62.5 100

Synthetic 0.50 80 20 50 50
#4 Real 0.90 100 80 83.3 100

Synthetic 0.60 40 80 66.6 57.1
 . 

Fig. 5	 Differences	in	Visual	
Grading Analysis Score (VGAS) 
between real and synthetic 
SPECT images in all the catego-
ries analyzed– level of noise, 
presence	of	artifacts,	confidence	
in diagnosis, and synthetic 
appearance. Error bars repre-
sent the standard deviation. ns: 
p > 0.05 (Mann-Whitney U test)
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mechanisms to enhance feature preservation, potentially 
offering	more	precise	image	translations	but	at	 the	cost	of	
increased	complexity	and	computational	demand.	Diffusion	
models [16, 35, 36] are known for generating high-quality 
images through iterative noise reduction but require exten-
sive computational resources and long training times. In 
contrast, Cycle GAN strikes a balance between image qual-
ity	and	computational	efficiency,	making	 it	more	practical	
for medical imaging applications. However, it may struggle 
with	fine-grained	 feature	preservation,	as	 indicated	by	 the	
subtle discrepancies observed in our study. While Cycle 
GAN	 is	 effective	 for	 many	 tasks,	 integrating	 aspects	 of	
these advanced methods could further enhance translation 
quality in future research.

In terms of clinical relevance, our method could sig-
nificantly	enhance	AI-assisted	diagnostic	 tools	by	 increas-
ing the availability of training data, thereby making these 
tools more robust and generalizable. Several studies show 
that integrating deep learning-based data augmentation is an 
important strategy in this regard [17]. It could also provide 
additional resources for educating new physicians. Further-
more, the ability to translate PET to SPECT could facilitate 
clinical comparisons of patient scans—where PET imag-
ing was used—with existing standard databases of normal 
controls, which are predominantly SPECT-based in Europe 
[31]. However, for clinical adoption, it will be essential to 
address challenges such as meeting regulatory standards for 
synthetic images, integrating the method into existing clini-
cal	workflows,	and	ensuring	the	interpretability	and	reliabil-
ity of AI-generated images.

It is important to acknowledge some other limitations. 
While our study focused on generating SPECT images from 
PET images due to current needs, generating PET images 
from SPECT could be a more advantageous approach given 
the higher spatial resolution of PET. However, translating 
from SPECT to PET presents additional challenges, espe-
cially with only limited and unpaired data are available. 
Future studies should consider exploring this approach to 
leverage the higher detail in PET images.

Although Cycle GAN has shown promise in domain 
adaptation for medical imaging [37, 38], challenges like 
data heterogeneity and the need for large-scale datasets 
for robust training still remain [20, 39, 40]. A common 
issue in synthetic image generation is hallucination, where 
the model generates artifacts in the synthetic image [41]. 
However,	since	our	main	goals	is	to	enhance	DL	classifica-
tion, minor structural abnormalities in synthetic images are 
less problematic. Additionally, tuning the parameters and 
the training approach proved to be challenging, as minor 
adjustments	in	the	hyperparameters	affect	training	stability	
[39, 42]. An external dataset for testing would be a valuable 

also	consistent	with	the	differences	in	the	putamen	binding	
ratio	and	 the	 left-right	 striatal	differences,	as	well	as	with	
the low CNR.

When comparing Cycle GAN to other domain adaptation 
methods	 like	AttentionGAN	and	diffusion	models,	several	
differences	emerge.	AttentionGAN	[34] leverages attention 

Fig. 6 Example of images of (a) normal controls and (b) Parkinson’s 
disease from real PET (upper row), real SPECT (middle row) and syn-
thetic SPECT (bottom row)
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addition in future studies, to improve the robustness and 
generalizability of our results.

In the image quality quantitative metrics, CNR is low 
especially on the NC cohort, which can impair visual analy-
sis. Nevertheless, SBR are similar in the synthetic and real 
SPECT	and	DL	classification	has	high	accuracy,	meaning	
that even if not ideal for visual assessment, the synthetic 
images are helpful for semi-quantitative and DL-based diag-
nosis.	It	is	also	noteworthy	that	the	SBR	difference	between	
real SPECT and synthetic SPECT is bigger in the NC that 
in	the	PD,	even	though	not	significantly.	This	can	be	due	to	
the unbalanced training dataset, which holds much more PD 
(80%) than NC (20%). A more balanced training set could 
improve this disparity. Another limitation is the use of Nor-
mal	DAT	imaging	scans	and	not	just	NC	and	the	different	
PD/NC proportions for PET and SPECT datasets.

In the visual assessment, there are also important limita-
tions. The interpretation and generalization of the results can 
be limited by the small sample size (n = 20) and the Gauss-
ian	 filters	 applied.	As	 the	 spatial	 resolution	 of	 the	 PPMI	
SPECT images is already low, further reduction might have 
an impact on the diagnostic utility. Nonetheless, diagnos-
tic performance of the four readers on real SPECT images 
was good (AUC > 0.70). Moreover, some studies show that 
domain adaptation might be achieved by simply smoothing 
images [43]. Further studies should aim for larger samples 
and fewer preprocessing steps.

Lastly, the impact of domain adaptation on downstream 
tasks,	 such	as	disease	classification,	 should	be	 thoroughly	
investigated. Although quantitative metrics such as SBR 
and	CNR	offer	some	insight	into	the	translation	process	and	
synthetic SPECT images appear realistic, they do not allow 
for direct evaluation of the synthetic images. We cannot 
know how comparable a real clinical SPECT image would 
be to the corresponding synthetic image, due to the absence 
of paired data. It is essential that next studies include paired 
datasets – as a more accurate and direct way to evaluate 
the synthetic images – and assess how well the synthetic 
data can improve the performance of existing AI models 
and clinical decision support systems in the context of DAT 
imaging.

Conclusion

Our study highlights the potential of Cycle GAN in DAT 
PET to DAT SPECT domain adaptation. This approach holds 
promise for more multicenter/longitudinal comparison stud-
ies and for expanding data availability needed to enhance 
the accuracy in diagnosing parkinsonian disorders. Future 
research is needed to address the remaining challenges and 
evaluate the clinical applicability of the proposed approach.
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