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Abstract

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease, which still lacks effective disease-modifying therapies.
Similar to other neurodegenerative disorders, such as Alzheimer and Parkinson disease, ALS pathology is presumed to propagate over
time, originating from the motor cortex and spreading to other cortical regions. Exploring early disease stages is crucial to understand
the causative molecular changes underlying the pathology. For this, we sampled human postmortem prefrontal cortex (PFC) tissue
from Brodmann area 6, an area that exhibits only moderate pathology at the time of death, and performed a multiomic analysis of
51 patients with sporadic ALS and 50 control subjects. To compare sporadic disease to genetic ALS, we additionally analyzed PFC
tissue from 4 transgenic ALS mouse models (C90rf72-, SOD1-, TDP-43-, and FUS-ALS) using the same methods. This multiomic data
resource includes transcriptome, small RNAome, and proteome data from female and male samples, aimed at elucidating early and

sex-specific ALS mechanisms, biomarkers, and drug targets.
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Context

Amyotrophic lateral sclerosis (ALS) is a devastating motor neu-
ron disease characterized by progressive paralysis and a short-
ened life span following symptom onset [1]. While the majority
of ALS cases are sporadic (sALS) and lack a clear genetic predis-
position, approximately 10% are associated with known genetic
mutations (gALS) [2]. Among the most common genetic causes
are mutations in the genes C9orf72, SOD1, TARDBP, and FUS. Inter-
estingly, a subset of sALS patients also harbors disease-causing
mutations [2—4]. Despite considerable research efforts, the exact
etiology of SALS remains elusive, and effective disease-modifying
treatments are currently unavailable [1, 5, 6]. Understanding the
early mechanisms of ALS pathology is paramount for identify-
ing diagnostic biomarkers and uncovering more effective thera-
peutic targets. Many investigations into ALS pathology have fo-
cused on end-stage disease by using postmortem central nervous
system (CNS) tissue, which may obscure insights into earlier dis-
ease mechanisms that could offer more promising therapeutic
avenues [7-9]. In contrast to the motor cortex, which is affected

early in the disease and therefore often shows end-stage alter-
ations at the death of the patients [7], the prefrontal cortex (PFC)
is affected only later in the disease and thus presents a unique
opportunity to explore earlier ALS pathology [10, 11]. Histologi-
cal studies have revealed that while the motor cortex exhibits se-
vere pathology in later stages of the disease [7-9], the PFC demon-
strates intermediate TDP-43 pathology, suggesting its relevance
in elucidating earlier disease-mediated alterations [10, 12]. A re-
cent study employed multiomics to profile the molecular alter-
ations in the spinal cord, another region heavily affected in ALS
[13]. Other studies employed multiomic strategies in postmortem
tissue from patients with ALS, but they included only a limited
number of techniques, focusing on transcriptome- or genome-
based technologies [14, 15]. Studies focusing on early alterations
in ALS-affected brains in a comprehensive multiomic setting are
still lacking [16].

In this context, the availability of omics datasets and robust
analytical workflows is critical for advancing ALS research. Build-
ing upon our previous work [12], with this Data Note, we improved
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Figure 1: Overview of the bioinformatics workflow for RNA-seq, small RNA-seq, and proteomics data. Methods and processing scripts are shown in
orange diamonds, high-throughput technologies depicted in blue rectangles with round edges, datasets available on disk in green rectangles with
round edges, and Nextflow pipelines in red parallelograms. For the Nextflow pipelines, only a few steps are named here. The RNA-seq pipeline (v3.0)

and the small RNA-seq SmRNA-seq pipeline (v1.0) were used.

the accessibility of raw and processed data, alongside detailed
descriptions of bioinformatics methodologies, as well as new data
resources based on the original multiomic data. This includes
extensive documentation of bioinformatics workflows and the
provision of code to facilitate reproducibility and transparency in
data analysis.

We provide a broad multiomic high-throughput sequencing
data set of a cohort of 101 human samples from 4 different

brain banks (n = 51 patients with sporadic ALS; n = 50 control
subjects, males and females). The omic layers encompass mR-
NAomics, small RNAomics, and proteomics. Additionally, we pro-
vide corresponding data for 4 distinct ALS mouse models based
on mutations in the genes SOD1, C9orf72, FUS, and TARDBP. Each
mouse model includes both male and female samples, with trans-
genic and wild-type groups represented in each omic layer (co-
hort numbers balanced for sex and condition), ensuring a robust
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Table 1: Summary of the cohort numbers and demographics for
the human cohort

Human cohort Control ALS
Subjects 50 51
Age at death (in years) 75 (43-94) 67 (44-83)
Sex (F/M) 28 F/22 M 16 F/35 M
Disease duration (years) - 3 (1-28)
Unprecise/unknown - 39.2%
Brain bank origin
NBB 18.0% 17.6%
Oxford BB 20.0% 27.5%
ICL MS and PD TB 38.0% 0.0%
London NDBB 24.0% 54.9%

ALS: amyotrophic lateral sclerosis; ICL MS and PD TB: Imperial College
London—Multiple Sclerosis and Parkinson’s Tissue Bank; London NDBB: Lon-
don Neurodegenerative Diseases Brain Bank; NBB: The Netherlands Brain Bank;
OBB: Oxford Brain Bank. Sex: male = M; female = F. A full description of the clin-
ical features for the human cohort can be accessed within the supplementary
data from our main publication [12].

Table 2: Summary of the cohort numbers for the ALS mouse
models

Mouse cohorts TDP-43

Condition (WT/TG) 10WT 10 TG

Sex (F/M) S5F/5M SF/5M
SOD1

Condition (WT/TG) 11WT 9TG

Sex (F/M) SEF/6 M 5 F/4 M

C9orf72

Condition (WT/TG) 10 WT 10 TG

Sex (F/M) 6 F/4M 6 F/4M
FUS

Condition (WT/TG) 10 WT 10 TG

Sex (F/M) 5F/5 M SF/5M

Condition: wild type = WT; transgenic = TG. Sex: male = M; female = F.

comparative analysis across species. Human PFC samples were
provided by 4 different European brain banks (London Neurode-
generative Diseases Brain Bank, the Imperial College London—
Multiple Sclerosis and Parkinson’s Tissue Bank, the Oxford Brain
Bank, and the Netherlands Brain Bank). Subjects composing the
control cohort did not present any signs of neurodegenerative
diseases. Clinical features provided include age at death, post-
mortem interval (until the brains were sampled), disease onset,
disease duration, and brain bank.

In brief, in our initial study [12], we identified distinct molec-
ular subclusters within patients with ALS that showed varying
patterns in gene, protein, and miRNA expression. This suggested
the presence of different underlying disease mechanisms and un-
derscored the need for personalized therapeutic approaches. An-
other important aspect of our study was the identification of pro-
nounced sex differences captured in the molecular profiles of pa-
tients with ALS, with male patients exhibiting more pronounced
alterations overall. Furthermore, our study emphasized and fo-
cused on the MAPK pathway as a critical therapeutic target. The
involvement of this pathway suggests it could be a focal point for
developing targeted treatments, which could improve the prog-
nosis for patients with ALS. Other important pathways identified
in our initial study were the activation of immune response, ex-
tracellular matrix composition, mitochondrial function, and RNA
processing. The results from human analyses were corroborated
in the selected ALS mouse models, which exhibited similar molec-
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ular patterns, and partially resembled the human subclusters re-
vealed through the analysis of human brain tissue. The findings
summarized here were validated across multiple datasets, rein-
forcing the significance of the identified molecular subclusters
and pathways.

In summary, we describe here a findable, accessible, interopera-
ble, and reproducible (FAIR) multiomics analysis workflow, includ-
ingintegration steps and accompanying data that are freely avail-
able. For this, we used standardized and versioned docker contain-
ers provided by Nextflow [17] for the preprocessing steps and doc-
umented the data-specific statistical and machine-learning anal-
yses. An overview of this workflow can be found in Fig. 1.

Methods

Experimental data acquisition and preparation
Sample data description

This study investigates the molecular mechanisms underly-
ing ALS using samples from human PFC and from 4 trans-
genic mouse models. The human cohort includes 51 pa-
tients with sALS and 50 control (CTR) subjects (Table 1). The
ALS animal models include 4 genetically modified mouse
strains: B6;12956-Gt(ROSA)26Sortm1(TARDBP+«M337V/Ypet)Tlbt/J
mice (here simply referred to as TDP-43 mice) [18], B6SJL-
Tg(SOD1xG93A)1Gur/] mice [19] (here referred to as SOD1
mice), (Poly)GA-NES/C9orf72(R26(CAG-Isl-175GA)-29x Nes-Cre)
mice (here referred to as C9orf72 mice) [20], and Tg (Prnp-
FUS)WT3Cshw/] mice (hereafter referred to as FUS mice) [21].
Each animal model cohort consists of 10 transgenic and 10
nontransgenic mice, balanced for sex (Table 2).

Sample acquisition methods

Data collection and handling are reported in Caldi Gomes et al.
[12]. All experimental data presented here comply with the rele-
vant ethical regulations. Consent for the donation of brain mate-
rial for the subjects who compose the human cohorts was han-
dled individually by the brain banks involved in this study. Eth-
ical approval was obtained from the Ethics Committees of the
University Medical Center Gottingen (2/8/18 AN) and the Tech-
nical University Munich (145/19 S-SR). All animal experiments
complied with international and local animal welfare laws and
were approved by the respective regulatory organs for each in-
volved research center. Experiments with transgenic SOD1 and
FUS mice were prospectively approved by the Mario Negri Insti-
tutional Animal Care and Use Committee and the Italian Ministry
of Health (Prot. No. 9F5F5.143/Prot. No. 9F5F5.250). Experiments
with C9orf72 transgenic mice followed the regulations from
the German Animal Welfare Act (Tierschutzgesetz/Tierschutz-
Versuchstierverordnung, Regierungsbezirke Oberbayern, Prot. No.
TV 55.2-2532.Vet_02-17-106). Experiments with TDP43 transgenic
animals were approved by the Centrale Commissie Dierproeven
(CCD) of Utrecht University (CCD license: AVD 1150020171565),
in accordance with Dutch animal welfare laws (Wet op de Dier-
proeven 2014) and European regulations (guideline 2010/63/EU).

Human postmortem PFC samples

Human PFC samples were sourced from 4 brain banks: the Nether-
lands Brain Bank, London Neurodegenerative Diseases Brain
Bank, Imperial College London Multiple Sclerosis and Parkinson’s
Tissue Bank, and the Oxford Brain Bank. Samples were shipped
on dry ice and stored at —80°C upon arrival at the rechts der
Isar Hospital Department of Neurology, Technical University of
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Figure 2: Demonstration of overall quality of reads on the transcriptome level. Mean phred quality scores, as reported by FastQC of the RNA-seq data,
are displayed. Regions are colored according to FastQC’s quality definitions (greed: good, orange: okay, red: bad). Overall all reads show a good quality.

Munich. PFC samples were sectioned using a cryostat at —20°C
and processed to collect approximately 20 mg of tissue per sam-
ple, which was stored at —80°C until further use.

Four transgenic mouse models were used to represent the most
frequent ALS-causing genes. The mice were kept in pathogen-free
facilities with a 12-hour light/dark cycle and unrestricted access
to food and water. Each mouse model was euthanized at specific

presymptomatic or early symptomatic stages for biomaterial col-
lection. Euthanization times were TDP-43 (26 weeks), SOD1 (14
weeks), C9orf72 (4.5 weeks), and FUS (4 weeks). Mice were perfused
with ice-cold phosphate-buffered saline (PBS) before microdissec-
tion. The prefrontal cortex was isolated, transferred to nuclease-
free tubes, and stored at —80°C until RNA and protein isolation.
For each model, a total of 20 transgenic and control (wild-type)
mice were selected and balanced for condition/sex (TDP-43: 5
females and 5 males for transgenic and control cohorts; SOD1:
5 females and 6 males for the control cohort, 5 females and 4
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Figure 3: Demonstration of overall quality of reads on small RNA data level. Mean phred quality scores as reported by FastQC are displayed. Regions
are colored according to FastQC'’s quality definitions (greed: good, orange: okay, red: bad). For SOD1 and TDP43, the expected length after trimming is
indicated by the gray-dotted line; for the others, only the expected length of reads was provided. Overall all reads show a good quality.

Table 3: Number of mapped entities for human and mouse data

Gzoz Aenuer zo uo 3senb Aq ££//267/00 1 9e1b/eouaiosebib/es0 L 0 L/1o0p/alomue/aousiosebib/uod dno-olwapede//:sdiy woly papeojumoq

Transcriptomics Proteomics miRNA (mature/hairpin)

Human 19,641 2,363 736 (224/512)
SOD1-Mouse 16,583 2,854 893 (526/367)
TDP43-Mouse 16,801 2,802 907 (534/373)
C9orf72-Mouse 17,465 2,866 754 (271/483)
FUS-Mouse 17,230 2,522 812 (468/344)
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Figure 4: Verification of sex on the transcriptome level. VST-transformed XIST expression in human and mouse RNA-seq experiments colored by sex.

XIST expression confirms the correct sex annotation.

males for the transgenic cohort; C9orf72: 6 females and 4 males
for the control cohort, 4 females and 6 males for the transgenic
cohort; FUS: 5 females and 5 males for transgenic and control
cohorts).

RNA isolation

Total RNA from human and animal PFC samples was isolated us-
ing TRIzol Reagent. RNA was precipitated, washed with ethanol,
reconstituted in nuclease-free water, and treated with DNase to
remove DNA contamination. Nucleic acid concentration and pu-
rity were assessed using a NanoDrop One spectrophotometer and
an Agilent 6000 NanoKit for RNA integrity.

RNA sequencing

mRNA and small RNA sequencing (RNA-seq) experiments were
conducted as single end at the Functional Genomics Center
Zurich. For mRNA sequencing, the TruSeq Stranded mRNA Kit
and the SMARTer Stranded Total RNA-Seq Kit v2 Pico Input Mam-
malian were used. The RealSeq-AC miRNA was used for small
RNA-seq experiments. After library preparation, normalization
was done using Tris—Cl (pH 8.5) containing 0.1% Tween 20 (at
10 nM for the TruSeeq kit, 5 nM for the SMARTer Stranded kit, and
2nM for the RealSeq-AC miRNA kit). Sequencing was performed in
the Illumina NovaSeq 6000 platform (for RNA-seq) and the HiSeq
2500 platform (for small RNA-seq).
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(v2.15.0) in C9orf72 transgenic animals.

Proteins from human and mouse PFC tissue samples were ex-
tracted with a biosmasher using 350 pL MeOH:H,O (4:1), resus-
pended in 200 pL Laemmli buffer (10% sodium dodecyl sulfate
[SDS], Tris 1 M, pH 6.8, glycerol) and then centrifuged at 11.135 rpm
at 4°C for 5 minutes. Then, 100 pg of protein lysate was dena-
tured by heating at 95°C for 5 minutes and stacked in an in-house
prepared 5% acrylamide SDS-polyacrylamide gel electrophoresis
(PAGE) stacking gel. Gel bands were reduced and alkylated. Di-
gestion was performed overnight at 37°C using modified porcine
trypsin (Mass Spec Grade, Promega; enzyme/protein ratio of 1:80).
The peptides were extracted by sequential application of 60% ace-
tonitrile and 100% acetonitrile (ACN). Peptides were resuspended
in 30 pL Hy0, 2% ACN, and 0.1% FA, and iRT peptides (Biognosys)
were added according to the manufacturer’s instructions. The
generated samples were analyzed using nanoLC-MS/MS (nanoAc-
quity UltraPerformance LC; Waters), coupled to a Q-Exactive Plus
Mass Spectrometer (Thermo Fisher Scientific). Data were further
processed using MaxQuant [22].

In addition, an open modification search was performed. MGF
files from the mouse and human proteomics data were loaded
into IonBot [23] software (v. 0.11.0). Provided databases were used,
either human (9,606 entries) or Mus musculus (10,090 entries), with
a K|R cleavage pattern. Error tolerances were set on default val-
ues: mass spectrometry (MS) precursor tolerance at 20 ppm and
MS/MS fragment tolerance at 0.02 Da. Methionine oxidation and
protein N-term acetylation were set as variable modifications,
while cysteine carbamidomethylation was set as a fixed modifi-
cation. Open modification search option was enabled.

MRNA-seq and small RNA-seq data processing

RNA-seq data were processed using the Nextflow [17] Core
RNA-seq pipeline version 3.0 with the following parame-
ters: —igenomes_ignore true —fasta <version>.genome.fa.gz —gtf
gencode.<version>.annotation.gtf.gz —pseudo_aligner salmon -
gencode —deseq?2_vst. Quality checks were conducted with FastQC
[24] (Fig. 2), and preprocessing steps included adapter trimming
and quality filtering to remove low-quality reads and artifacts.
Salmon [25] was used for pseudo-alignment and quantitation,

with indices built from GENCODE [26] annotations GRCm39 for
mouse and GRCh38 for human. Small RNA-seq data were pro-
cessed using the Nextflow [17] Core smRNA-seq pipeline ver-
sion 1.0 with the parameters —genome <genome> -mirna_gtf
mirbase_<species>.gff3. FastQC [24] (Fig. 3) and miRTrace [27]
were used for quality checks, followed by adapter trimming and
quality filtering. Alignment was performed with Bowtie [28], and
feature counting utilized samtools [29] using miRBase [30] anno-
tations (version 22.1).

Filtering and transformation

For RNA-seq and small RNA-seq, count matrices were filtered
to retain features with at least 10 counts in 50% of samples for
any condition or sex. For the small RNA-seq data, normalization
was performed using quantile normalization implemented in the
preprocessCore [31] R package. For RNA-seq, variance-stabilizing
transformation (VST) implemented in DESeq2 [32] was used for
normalization, ensuring consistent and comparable expression
values across samples. The total number of detected genes and
small RNAs (sRNAs) for each dataset can be found in Table 3.

Proteomics

Proteomics data were processed with MaxQuant [22] software.
Protein peaks were assigned using trypsin/P specificity against an
in-house-generated protein sequence database containing mouse
entries from UniProtKB-SwissProt. The “match between runs” op-
tion facilitated protein quantification. Only Swiss-Prot proteins
were retained, and low-abundance proteins detected in less than
50% of samples were filtered out. Missing values were imputed
using the missForest [33] algorithm and intensities were log,-
transformed for variance stabilization. A maximum false discov-
ery rate (FDR) of 1% was applied at both peptide and protein lev-
els. The total number of detected proteins for each dataset can be
found in Table 3.

Differential expression and enrichment analyses

Downstream analyses of the RNA-seq and small RNA-seq data in-
cluded differential expression analysis using DESeq2 [32] to iden-
tify differentially expressed genes/miRNAs between experimental
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conditions. Principal component analysis (PCA) was used for di-
mensionality reduction and visualization of sample relationships
using VST-normalized RNA-seq data and quantile-normalized
small RNA-seq data.

Proteomics data analysis

Linear modeling for differential abundance analysis was per-
formed using the limma [34] package, with P values adjusted for
multiple testing using the Benjamini-Hochberg correction. PCA
was used for visualization.

Bioinformatics workflow

To allow for reproducible and interpretable bioinformatics work-
flow, we will describe the construction of our workflow here. Our
workflow consists of multiple stages, equivalent to single scripts
executed for 1 or multiple datasets with multiple parameters.
We used Data Version Control (DVC) as a workflow management
tool, because it allows the use of any script as stages in our
computational workflow, automatically takes care of dependen-
cies between these stages, and executes only stages that changed
compared to the last execution. Furthermore, it provides the
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option to share raw and processed data between multiple users.
The executed code for each stage is provided as script files writ-
ten in bash, R, and Python. The execution of the scripts, their
outputs, and their dependencies are defined in dvc.yaml files,
with all important parameters found in params.yaml files. All
scripts can be automatically executed using DVC. Since the ex-
ecution of scripts depends on the package versions used, in R
as well as in Python, proper maintenance of package versions is
important.

Therefore, we containerized all applications by providing a
docker image. In other instances, we used readily available docker
images. This allows the automatic execution of our workflow us-

ing docker, if available, and prevents users from struggling to in-
stall the correct package versions. Furthermore, we value commu-
nity efforts in providing reproducible workflows for the analysis of
RNA-seq and small RNA-seq data implemented in Nextflow. These
pipelines were integrated into our workflow as well, allowing us
to easily adapt to recent developments in the workflow without
much user effort.

All outputs of our workflow will be structured by mouse model
and can be used for other applications, integrated into the work-
flow or not. However, we recommend integrating further analysis
into the DVC workflow, as not to break the reproducibility princi-
ple of the extended workflow. In this case, also newly added scripts
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will automatically be executed if the underlying data or scripts are
changing in any way.

Data Validation and Quality Control
RNA-seq data

In addition to the quality checks mentioned above, the quality of
the dataset was evaluated. To verify the annotation of sex, the ex-
pression of XIST was investigated in each sample (Fig. 4). XIST is a
long noncoding RNA, involved in X chromosome inactivation and

therefore highly expressed in females [35]. We could not detect
any mismatched sex annotation in the human or mouse samples
(Fig. 4).

Furthermore, we validated the expression of the transgenic
variant for the FUS, SOD1, and TDP43 mouse models. The trans-
genic mouse models were generated by including the mutated hu-
man gene (SOD1 and TDP43) or overexpressing the wild-type hu-
man gene (FUS) in the mouse genome. Therefore, the fraction of
reads aligning against this region of interest was compared to the
total number of reads in that region (Fig. 5). The region of inter-
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est was defined as +200 bp around the gene’s coding region. It is
expected that control samples do not show any expression of hu-
man reads, while the mutated samples show a significant expres-
sion of the human variant. Thus, we could verify the expression
of the transgene in these 3 mouse models (Fig. 5A).

The C9orf72 mouse model was generated by introducing a re-
peat expansion in the intronic region of C9orf72, which cannot
be detected using the approach used for the other mouse models.
Therefore, we used an indirect approach to detect the GFP expres-
sion of the construct used for integrating the repeat expansion
[20]. We were able to detect the expression of the construct only

in transgenic animals, thus indicating that the introduced repeat
expansion is likely present as well in these animals (Fig 5B). Fur-
thermore, the expression data were visualized using a histogram
for each sample, showing no distinct pattern for individual sam-
ples (Fig. 6). Therefore, we consider the RNA-seq data good quality
matching with the provided annotations.

small RNA-seq data

The quality of the small RNA-seq data was additionally evaluated
using miRTrace [27] as part of the Nextflow smrnaseq pipeline.
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miRTrace detected 17.07% reads as originating from miRNAs on
average across the models (human: 10.12%, SOD1 29.05%, FUS:
13.37%, TDP43: 32.29%, C90rf72: 28.01%) and only a low percent-
age of artifacts (mean <6%). We could also not observe any large
difference in the detected RNA types across samples (Fig. 7). How-
ever, the human samples showed a lower number of reads as-
signed to any class compared to the mouse samples.

Similar to the RNA-seq data, also a histogram of the miRNA
expression was visualized (Fig. 8). The mouse models show a con-
sistent expression pattern across samples, with only minor differ-

ences between the mouse models, conditions, and sexes. For the
human samples, we observed a consistent expression pattern for
most samples (Fig. 8).

Proteomics data

The quality of the proteomics data was evaluated by calculat-
ing the fraction of measured zero values and the histogram of
protein abundance values. We could not observe any significant
difference between the fraction of zero measurements in the
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Figure 12: Top modifications found by the open modification search using ionbot for the 4 mouse models and human samples. For each model, the top
10 modifications were selected and the number of occurrences of the union of those (17 modifications) is displayed. Fixed modifications
(Carbamidomethyl, Oxidation, Acetyl[N-term]) and sequence variations (Glu—Ser, Arg—Orn, Ser— Ala, Gln—pyro-Glu, Xle—Pro, Tyr—Phe,

Delta:H(2)C(2)[N-term]) were removed for display.

proteomics data (Fig. 9), indicating that there is no systematic bias
impacting the sample quality. Furthermore, no systematic differ-
ence between the samples could be detected in the histograms
of the normalized protein abundances (Fig. 10). Differential pro-
tein abundance analysis was conducted, and a calibration analy-
sis was performed to verify that the obtained P values followed the
assumptions of classical FDR control [37]. We detected a high dif-
ferential protein abundance concentration (differential concen-
tration >83%) and a low uniformity underestimation (<0.02) in all
models (Fig. 11). This indicates that there are likely no violations of
the FDR control assumptions. In addition, we performed an open
modification search but did not detect any striking differences be-
tween the mouse models and human samples (Fig. 12). Overall, we
detected no systematic biases, low intersample intramodel vari-
ability (especially for the mouse samples), and proven expression

of the transgenes. Therefore, in our opinion, the dataset provides
a unique resource for the (re)analysis of ALS considering multiple
known ALS mouse models and human samples.

Batch effects

To assess the possibility of batch effects in transcriptomics and
proteomics data, PCA and sample distance heatmaps were used.
Specifically, batch effects related to the factors brain bank, sex,
case/control condition, and age at death were investigated. As
reported in the previous publication (Fig. 13; Figure 1b of Caldi
Gomes et al. [12]), sex-related differences were found, and all anal-
yses were performed separately for each sex. For the other fac-
tors, there is no evidence that they influenced the results (Fig. 13;
Supplementary Figure 1 of Caldi Gomes et al. [12]). For instance,
if batch effects had been present, they would likely have caused
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Figure 13: Evaluation of batch effects using PCA. PCA of human transcriptomics (A) and proteomics (B) data. The 500 most variable genes for the

transcriptomics data and all proteins for the proteomics data were used.

distinct clustering or separation of samples. However, our analy-
sis showed no such patterns, indicating that these factors did not
introduce systematic biases into our data.

Results Summary

In brief, in our initial study [12], this dataset revealed distinct
molecular subclusters within patients with ALS. These subclus-
ters showed varying patterns in gene, protein, and miRNA ex-
pression, suggesting the presence of different underlying disease
mechanisms. One of these identified mechanisms was the MAPK
pathway as a putative therapeutic target. Another important as-
pect of our study was the pronounced sex differences captured
in the molecular profiles of patients with ALS, with male patients
exhibiting more pronounced alterations overall.

The findings summarized here were validated across multiple
models, reinforcing the significance of the identified molecular
subclusters and pathways. This validation suggests that future
ALS research should consider these frequently reported molec-
ular differences and focus on developing personalized medicine
approaches tailored to specific patient subgroups.

Reuse potential

Our complex cross-species and sex-specific data can serve as a
basis for future computational and experimental studies. Fur-
ther, the stratification of patients with ALS into specific subtypes
through our multiomics data could help with developing person-
alized, sex-specific, and efficient treatment approaches. Further-
more, newly found treatment candidates can be directly investi-
gated in the 4 available mouse models to detect the potentially
best mouse model for in vivo testing. Furthermore, this rich re-
source of human sALS and mouse models for gALS could be uti-
lized to detect subtle differences between sALS and gALS (e.g., on
splicing level), which are currently not well understood and can

provide new biomarkers or treatment options in the early stages
of ALS.

To facilitate future usage, intermediate files are saved in a
format that is readable using most common programming lan-
guages, mainly in CSV format, allowing for flexible integration of
new methods at every step of the existing pipeline. Several down-
stream applications, such as differential gene expression analysis,
are already implemented and can be executed using DVC. Further-
more, these methods are highly configurable using the parameter
files and allow for a multitude of different analyses. To achieve
continuous high reproducibility, we recommend the implementa-
tion of executable scripts, which can be automatically executed
by DVC.

In addition, the repository provides code for the analysis of
transcription factor activity, RNA stability, and possible RNA vari-
ants. Further details can be found in the 3 following sections.

Transcription factor activity

Transcription factor activity was estimated using decoupleR [38]
with default settings. For activity estimation, a univariate linear
model, a weighted sum, and a multivariate linear model were used
as recommended by decoupleR. The DoRothEA [39] database was
used for potential transcription factor targets. Only targets of at
least category C were used (category A = high confidence, category
E = low confidence).

RNA stability analysis

RNA stability analysis was performed using REMBRANDTS [40].
Exon and intron regions, as required for the analysis with REM-
BRANDTS, were extracted from GENCODE v37 annotations for
the human data and GENCODE vM26 for the mouse data. The
quantification of exon and intron abundance was performed us-
ing htseq (v1.99.2) as described in Alkallas et al. [40] and the REM-
BRANDTS manual. REMBRANDTS was run using default argu-
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ments with a linear bias mode, a stringency of 0.99, and no further
batch information.

Variant analysis

To analyze variations in the mRNA, we performed variant calling
on the RNA-seq data. Bcftools (v1.14) was used for variant calling
based on the STAR alignments, as provided by the NextFlow Core
RNA-seq pipeline, version 3.0, described in Ewels et al. [17].

Conclusion

In summary, our study provides a valuable data resource, includ-
ing sex-specific and cross-species datasets. The stratified multi-
omics data from ALS prefrontal cortices highlights male and fe-
male differences, with implications for future personalized treat-
ment approaches. Additionally, we offer a robust analysis pipeline
and high-quality data for investigating early ALS mechanisms.

Our methods ensure robust comparability and reproducibility
of the analysis across all generated datasets, both within omics
layers for the analyzed cohorts and also across species. Overall,
these datasets can help with the understanding of ALS pathogen-
esis and assist in identifying new and personalized therapeutic
targets for this devastating neurodegenerative disease.

Data Availability

The workflow contains scripts for the automatic download of all
mouse sequencing data from SRA to be used as input to the
workflow. However, the workflow can also be used with manu-
ally downloaded files, which is required for human samples, due
to the restricted access. Details about how to access the human
data deposited in European Genome Phenome Archive are avail-
able online [41]. All supporting data and materials are available in
the GigaScience database, GigaDB [42] and in WorkflowHub [43].

Mouse RNA-seq data

Raw RNA-seq data (FASTQ format) and processed data (CSV for-
mat) were deposited to the National Center for Biotechnology In-
formation Gene Expression Omnibus database (GSE234245) and
are openly available.

Mouse small RNA-seq data

Raw small RNA-seq data (FASTQ format) and processed data (CSV
format) were deposited to the National Center for Biotechnology
Information Gene Expression Omnibus database (GSE234243) and
are openly available.

Human RNA-seq and small RNA-seq data

Human raw data (FASTQ format) are encrypted and stored
at the European Genome Phenome Archive (registered study:
EGAS00001007318). These data are available upon request to the
European Genome Phenome Archive. Details about how to access
the human data deposited in European Genome Phenome Archive
are available online [41].

Proteomics data

Human and mouse proteomics data were deposited to the Pro-
teomeXchange Consortium database (PXD043300) and are openly
available. The results from the open modification search are avail-
able via Figshare [44].

Availability of Source Code and
Requirements

Project name: MAXOMOD

Project homepage: https://github.com/imsb-uke/MAXOMOD_
Pipeline

Operating system(s): Platform independent

Programming language: Python, R, Bash, Nextflow

Other requirements: DVC (https://dvc.org/), Docker

License: MIT

Workflowhub.eu:
workflow.1191.1.

All code for preprocessing and analyzing the data is available
online [45]. The workflow consists of multiple scripts R and Python
(src/directory), which can be executed in a dockerized environ-
ment, which is provided on GitHub as well. The execution order is
provided as a Data Version Control workflow, which can be auto-
matically executed with DVC. All parameters are provided in the
params/directory. Further information can be found in the README
file in the GitHub repository.

https://doi.org/10.48546/workflowhub.
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ALS: amyotrophic lateral sclerosis; CTR: control; DVC: Data Ver-
sion Control; FDR: false discovery rate; gALS: genetic amyotrophic
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