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Abstract 

Am y otrophic later al sclerosis (ALS) is the most common motor neuron disease , whic h still lac ks effecti v e disease-modifying therapies. 
Similar to other neurode gener ative disorders, suc h as Alzheimer and Parkinson disease, ALS pathology is presumed to propagate over 
time, originating from the motor cortex and spreading to other cortical regions. Exploring early disease stages is crucial to understand 

the causati v e molecular changes underlying the pathology. For this, we sampled human postmortem pr efr ontal cortex (PFC) tissue 
fr om Br odmann ar ea 6, an ar ea that exhibits only moderate pathology at the time of death, and performed a multiomic analysis of 
51 patients with sporadic ALS and 50 control subjects. To compare sporadic disease to genetic ALS , w e additionall y anal yzed PFC 

tissue from 4 transgenic ALS mouse models (C9orf72-, SOD1-, TDP-43-, and FUS-ALS) using the same methods. This multiomic data 
resour ce includes tr anscriptome , small RN Aome , and pr oteome data fr om female and male samples, aimed at elucidating early and 

sex-specific ALS mechanisms, biomarkers, and drug targets. 

Ke yw or ds: am y otrophic later al scler osis, m ultiomics anal ysis, neur ode gener ation, pr efr ontal cortex, earl y disease mechanisms 
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Context 
Amyotr ophic later al scler osis (ALS) is a de v astating motor neu- 
ron disease characterized by progressive paralysis and a short- 
ened life span following symptom onset [ 1 ]. While the majority 
of ALS cases are sporadic (sALS) and lack a clear genetic predis- 
position, a ppr oximatel y 10% are associated with known genetic 
mutations (gALS) [ 2 ]. Among the most common genetic causes 
ar e m utations in the genes C9orf72 , SOD1 , TARDBP , and FUS. Inter- 
estingly, a subset of sALS patients also harbors disease-causing 
m utations [ 2–4 ]. Despite consider able r esearc h efforts, the exact 
etiology of sALS remains elusive, and effective disease-modifying 
tr eatments ar e curr entl y unav ailable [ 1 , 5 , 6 ]. Understanding the 
earl y mec hanisms of ALS pathology is par amount for identify- 
ing diagnostic biomarkers and uncovering more effective thera- 
peutic tar gets. Man y inv estigations into ALS pathology have fo- 
cused on end-stage disease by using postmortem central nervous 
system (CNS) tissue , which ma y obscure insights into earlier dis- 
ease mechanisms that could offer more promising therapeutic 
av enues [ 7–9 ]. In contr ast to the motor cortex, whic h is affected 
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arly in the disease and ther efor e often shows end-sta ge alter-
tions at the death of the patients [ 7 ], the pr efr ontal cortex (PFC)
s affected only later in the disease and thus presents a unique
pportunity to explore earlier ALS pathology [ 10 , 11 ]. Histologi-
al studies have revealed that while the motor cortex exhibits se-
 er e pathology in later stages of the disease [ 7–9 ], the PFC demon-
trates intermediate TDP-43 pathology, suggesting its r ele v ance
n elucidating earlier disease-mediated alterations [ 10 , 12 ]. A re-
ent study emplo y ed m ultiomics to pr ofile the molecular alter-
tions in the spinal cord, another region heavily affected in ALS
 13 ]. Other studies emplo y ed m ultiomic str ategies in postmortem
issue from patients with ALS, but they included only a limited
umber of techniques, focusing on transcriptome- or genome- 
ased technologies [ 14 , 15 ]. Studies focusing on earl y alter ations

n ALS-affected brains in a compr ehensiv e m ultiomic setting ar e
till lacking [ 16 ]. 

In this context, the availability of omics datasets and robust
nalytical w orkflo ws is critical for adv ancing ALS r esearc h. Build-
ng upon our pr e vious work [ 12 ], with this Data Note, we impr ov ed
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Figure 1: Ov ervie w of the bioinformatics w orkflo w for RN A-seq, small RN A-seq, and proteomics data. Methods and pr ocessing scripts ar e shown in 
or ange diamonds, high-thr oughput tec hnologies depicted in blue r ectangles with r ound edges , datasets a v ailable on disk in gr een r ectangles with 
round edges, and Nextflow pipelines in red parallelograms. For the Nextflow pipelines, only a few steps are named here . T he RNA-seq pipeline (v3.0) 
and the small RNA-seq smRNA-seq pipeline (v1.0) were used. 
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he accessibility of raw and processed data, alongside detailed
escriptions of bioinformatics methodologies, as well as new data
esources based on the original multiomic data. This includes
xtensive documentation of bioinformatics w orkflo ws and the
rovision of code to facilitate r epr oducibility and tr anspar ency in
ata analysis. 

We provide a broad multiomic high-throughput sequencing
ata set of a cohort of 101 human samples from 4 different
rain banks ( n = 51 patients with sporadic ALS; n = 50 control
ubjects, males and females). The omic layers encompass mR-
 Aomics, small RN Aomics, and pr oteomics. Additionall y, we pr o-
ide corresponding data for 4 distinct ALS mouse models based
n mutations in the genes SOD1 , C9orf72 , FUS , and TARDBP . Each
ouse model includes both male and female samples, with trans-

enic and wild-type groups represented in each omic layer (co-
ort numbers balanced for sex and condition), ensuring a robust
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Table 1: Summary of the cohort numbers and demogr a phics for 
the human cohort 

Human cohort Control ALS 

Subjects 50 51 
Age at death (in years) 75 (43–94) 67 (44–83) 
Sex (F/M) 28 F/22 M 16 F/35 M 

Disease dur a tion (years) – 3 (1–28) 
Unprecise/unknown – 39.2% 

Brain bank origin 
NBB 18.0% 17.6% 

Oxford BB 20.0% 27.5% 

ICL MS and PD TB 38.0% 0.0% 

London NDBB 24.0% 54.9% 

ALS: amyotrophic lateral sclerosis; ICL MS and PD TB: Imperial College 
London—Multiple Sclerosis and Parkinson’s Tissue Bank; London NDBB: Lon- 
don Neur odegener ativ e Diseases Br ain Bank; NBB: The Netherlands Br ain Bank; 
OBB: Oxford Brain Bank. Sex: male = M; female = F. A full description of the clin- 
ical features for the human cohort can be accessed within the supplementary 
data from our main publication [12]. 

Table 2: Summary of the cohort numbers for the ALS mouse 
models 

Mouse cohorts TDP-43 

Condition (WT/TG) 10 WT 10 TG 

Sex (F/M) 5 F/5 M 5 F/5 M 

SOD1 
Condition (WT/TG) 11 WT 9 TG 

Sex (F/M) 5 F/6 M 5 F/4 M 

C9orf72 
Condition (WT/TG) 10 WT 10 TG 

Sex (F/M) 6 F/4 M 6 F/4 M 

FUS 
Condition (WT/TG) 10 WT 10 TG 

Sex (F/M) 5 F/5 M 5 F/5 M 

Condition: wild type = WT; transgenic = TG. Sex: male = M; female = F. 
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compar ativ e anal ysis acr oss species. Human PFC samples wer e 
provided by 4 different European brain banks (London Neurode- 
gener ativ e Diseases Br ain Bank, the Imperial College London—
Multiple Sclerosis and Parkinson’ s T issue Bank, the Oxford Brain 

Bank, and the Netherlands Brain Bank). Subjects composing the 
control cohort did not present any signs of neurodegenerative 
diseases. Clinical features provided include age at death, post- 
mortem interval (until the brains were sampled), disease onset,
disease duration, and brain bank. 

In brief, in our initial study [ 12 ], we identified distinct molec- 
ular subclusters within patients with ALS that sho w ed varying 
patterns in gene, protein, and miRNA expression. This suggested 

the presence of different underlying disease mechanisms and un- 
derscored the need for personalized therapeutic approaches. An- 
other important aspect of our study was the identification of pro- 
nounced sex differ ences ca ptur ed in the molecular profiles of pa- 
tients with ALS, with male patients exhibiting more pronounced 

alter ations ov er all. Furthermor e, our study emphasized and fo- 
cused on the MAPK pathway as a critical ther a peutic tar get. The 
involvement of this pathway suggests it could be a focal point for 
de v eloping tar geted tr eatments, whic h could impr ov e the pr og- 
nosis for patients with ALS. Other important pathways identified 

in our initial study were the activation of immune response, ex- 
tracellular matrix composition, mitochondrial function, and RNA 

pr ocessing. The r esults fr om human anal yses wer e corr obor ated 

in the selected ALS mouse models, which exhibited similar molec- 
lar patterns, and partiall y r esembled the human subclusters re-
 ealed thr ough the anal ysis of human brain tissue . T he findings
ummarized here were validated across multiple datasets, rein- 
orcing the significance of the identified molecular subclusters 
nd pathwa ys . 

In summary, we describe here a findable , accessible , inter oper a-
le, and r epr oducible (FAIR) m ultiomics anal ysis w orkflo w, includ-

ng integration steps and accompanying data that are freely avail-
ble . For this , w e used standar dized and v ersioned doc ker contain-
rs provided by Nextflow [ 17 ] for the pr epr ocessing steps and doc-
mented the data-specific statistical and machine-learning anal- 
ses . An o v ervie w of this w orkflo w can be found in Fig. 1 . 

ethods 

xperimental data acquisition and preparation 

ample data description 

 his study in v estigates the molecular mec hanisms underl y-
ng ALS using samples from human PFC and from 4 trans-
enic mouse models . T he human cohort includes 51 pa-
ients with sALS and 50 control (CTR) subjects (Table 1 ). The
LS animal models include 4 genetically modified mouse 
trains: B6;129S6-Gt(ROSA)26Sortm1(TARDBP ∗M337V/Ypet)Tlbt/J 
ice (here simply referred to as TDP-43 mice) [ 18 ], B6SJL-

g(SOD1 ∗G93A)1Gur/J mice [ 19 ] (here referred to as SOD1
ice), (P oly)GA-NES/C9orf72(R26(C AG-Isl-175GA)-29 ×Nes-Cre) 
ice (here referred to as C9orf72 mice) [ 20 ], and Tg (Prnp-

US)WT3Cshw/J mice (her eafter r eferr ed to as FUS mice) [ 21 ].
ach animal model cohort consists of 10 transgenic and 10
ontransgenic mice, balanced for sex (Table 2 ). 

ample acquisition methods 
ata collection and handling are reported in Caldi Gomes et al.

 12 ]. All experimental data presented here comply with the rele-
 ant ethical r egulations. Consent for the donation of brain mate-
ial for the subjects who compose the human cohorts was han-
led individually by the brain banks involved in this study. Eth-

cal a ppr ov al was obtained fr om the Ethics Committees of the
niversity Medical Center Göttingen (2/8/18 AN) and the Tech- 
ical University Munich (145/19 S-SR). All animal experiments 
omplied with international and local animal welfare laws and 

er e a ppr ov ed by the r espectiv e r egulatory or gans for eac h in-
olv ed r esearc h center. Experiments with transgenic SOD1 and
US mice were prospectively approved by the Mario Negri Insti-
utional Animal Care and Use Committee and the Italian Ministry
f Health (Pr ot. No. 9F5F5.143/Pr ot. No. 9F5F5.250). Experiments 
ith C9orf72 transgenic mice follo w ed the regulations from

he German Animal Welfare Act (T ierschutzgesetz/T ierschutz- 
ersuc hstierv er ordn ung, Regierungsbezirk e Oberbayern, Prot. No.
V 55.2–2532.Vet_02–17-106). Experiments with TDP43 transgenic 
nimals were approved by the Centrale Commissie Dierproeven 

CCD) of Utr ec ht Univ ersity (CCD license: AVD 1150020171565),
n accordance with Dutch animal welfare laws (Wet op de Dier-
r oe v en 2014) and European regulations (guideline 2010/63/EU). 

uman postmortem PFC samples 

uman PFC samples were sourced from 4 brain banks: the Nether-
ands Brain Bank, London Neurodegenerative Diseases Brain 

ank, Imperial College London Multiple Sclerosis and Parkinson’s 
issue Bank, and the Oxford Brain Bank. Samples were shipped
n dry ice and stored at −80 ◦C upon arrival at the rechts der
sar Hospital Department of Neur ology, Tec hnical Univ ersity of
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Figure 2: Demonstration of ov er all quality of reads on the transcriptome level. Mean phred quality scores, as reported by FastQC of the RNA-seq data, 
are displayed. Regions are colored according to FastQC’s quality definitions (greed: good, orange: okay, red: bad). Overall all reads show a good quality. 
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unic h. PFC samples wer e sectioned using a cryostat at −20 ◦C
nd processed to collect approximately 20 mg of tissue per sam-
le, which was stored at −80 ◦C until further use. 

LS animal models 

our transgenic mouse models were used to represent the most
requent ALS-causing genes . T he mice were k e pt in pathogen-free
acilities with a 12-hour light/dark cycle and unrestricted access
o food and water. Each mouse model was euthanized at specific
r esymptomatic or earl y symptomatic sta ges for biomaterial col-
ection. Euthanization times were TDP-43 (26 weeks), SOD1 (14
 eeks), C9orf72 (4.5 w eeks), and FUS (4 w eeks). Mice w ere perfused
ith ice-cold phosphate-buffered saline (PBS) before microdissec-

ion. The pr efr ontal cortex was isolated, tr ansferr ed to nuclease-
ree tubes, and stored at −80 ◦C until RNA and protein isolation.
or each model, a total of 20 transgenic and control (wild-type)
ice were selected and balanced for condition/sex (TDP-43: 5

emales and 5 males for transgenic and control cohorts; SOD1:
 females and 6 males for the control cohort, 5 females and 4
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Figure 3: Demonstration of ov er all quality of reads on small RNA data level. Mean phred quality scores as reported by FastQC are displayed. Regions 
ar e color ed according to FastQC’s quality definitions (gr eed: good, or ange: okay, r ed: bad). For SOD1 and TDP43, the expected length after trimming is 
indicated by the gray-dotted line; for the others, only the expected length of reads was provided. Overall all reads show a good quality. 

Table 3: Number of mapped entities for human and mouse data 

Transcriptomics Proteomics miRN A (ma ture/hairpin) 

Human 19,641 2,363 736 (224/512) 
SOD1–Mouse 16,583 2,854 893 (526/367) 
TDP43–Mouse 16,801 2,802 907 (534/373) 
C9orf72–Mouse 17,465 2,866 754 (271/483) 
FUS–Mouse 17,230 2,522 812 (468/344) 
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Figure 4: Verification of sex on the transcriptome level. VST-transformed XIST expression in human and mouse RNA-seq experiments colored by sex. 
XIST expression confirms the correct sex annotation. 
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ales for the transgenic cohort; C9orf72: 6 females and 4 males
or the control cohort, 4 females and 6 males for the transgenic
ohort; FUS: 5 females and 5 males for transgenic and control
ohorts). 

N A isola tion 

otal RNA from human and animal PFC samples was isolated us-
ng TRIzol Reagent. RN A w as precipitated, w ashed with ethanol,
econstituted in nuclease-free water, and treated with DNase to
 emov e DNA contamination. Nucleic acid concentration and pu-
ity were assessed using a NanoDrop One spectrophotometer and
n Agilent 6000 NanoKit for RNA integrity. 
NA sequencing 

RN A and small RN A sequencing (RN A-seq) experiments w ere
onducted as single end at the Functional Genomics Center
ürich. For mRNA sequencing, the TruSeq Stranded mRNA Kit
nd the SMARTer Stranded Total RNA-Seq Kit v2 Pico Input Mam-
alian were used. The RealSeq-AC miRNA was used for small

NA-seq experiments. After library preparation, normalization
as done using Tris–Cl (pH 8.5) containing 0.1% Tween 20 (at
0 nM for the TruSeeq kit, 5 nM for the SMARTer Stranded kit, and
 nM for the RealSeq-AC miRN A kit). Sequencing w as performed in
he Illumina NovaSeq 6000 platform (for RNA-seq) and the HiSeq
500 platform (for small RNA-seq). 
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Model

C9orf72 model
A B

Figure 5: Verification of the transgenic animals. (A) Fraction of reads from the RNA-seq experiments aligning against the human genome in the region 
of the Fus , Sod1 , and Tardbp genes ( ±200 bp) in the corresponding mouse model. Reads aligning against the human genome confirm that the 
corresponding samples express the transgenic transcript correctly. (B) Number of reads mapping to the pEGFP construct (U76561.1) using blastn [ 36 ] 
(v2.15.0) in C9orf72 transgenic animals. 
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Proteomics 

Pr oteins fr om human and mouse PFC tissue samples wer e ex- 
tracted with a biosmasher using 350 μL MeOH:H 2 O (4:1), resus- 
pended in 200 μL Laemmli buffer (10% sodium dodecyl sulfate 
[SDS], Tris 1 M, pH 6.8, gl ycer ol) and then centrifuged at 11.135 rpm 

at 4 ◦C for 5 minutes . T hen, 100 μg of pr otein l ysate was dena- 
tured by heating at 95 ◦C for 5 minutes and stacked in an in-house 
pr epar ed 5% acrylamide SDS–polyacrylamide gel electr ophor esis 
(PAGE) stacking gel. Gel bands were reduced and alkylated. Di- 
gestion was performed overnight at 37 ◦C using modified porcine 
trypsin (Mass Spec Gr ade, Pr omega; enzyme/pr otein r atio of 1:80).
The peptides were extracted by sequential application of 60% ace- 
tonitrile and 100% acetonitrile (ACN). P eptides w er e r esuspended 

in 30 μL H 2 O, 2% ACN, and 0.1% FA, and iRT peptides (Biognosys) 
were added according to the manufacturer’s instructions . T he 
gener ated samples wer e anal yzed using nanoLC-MS/MS (nanoAc- 
quity UltraPerformance LC; Waters), coupled to a Q-Exactive Plus 
Mass Spectrometer (Thermo Fisher Scientific). Data were further 
processed using MaxQuant [ 22 ]. 

In addition, an open modification search was performed. MGF 
files from the mouse and human proteomics data were loaded 

into IonBot [ 23 ] software (v. 0.11.0). Provided databases were used,
either human (9,606 entries) or Mus musculus (10,090 entries), with 

a K | R cleav a ge pattern. Err or toler ances wer e set on default v al- 
ues: mass spectr ometry (MS) pr ecursor toler ance at 20 ppm and 

MS/MS fr a gment toler ance at 0.02 Da. Methionine oxidation and 

protein N-term acetylation were set as variable modifications, 
while cysteine carbamidomethylation was set as a fixed modifi- 
cation. Open modification search option was enabled. 

Da ta Prepar a tion 

mRNA-seq and small RNA-seq data processing 

RNA-seq data were processed using the Nextflow [ 17 ] Core 
RNA-seq pipeline version 3.0 with the following parame- 
ters: –igenomes_ignore true –fasta < version > .genome.fa.gz –gtf 
gencode. < version > .annotation.gtf .gz –pseudo_aligner salmon –
gencode –deseq2_vst. Quality c hec ks wer e conducted with FastQC 

[ 24 ] (Fig. 2 ), and pr epr ocessing steps included ada pter trimming 
and quality filtering to r emov e low-quality r eads and artifacts.
Salmon [ 25 ] was used for pseudo-alignment and quantitation,
ith indices built from GENCODE [ 26 ] annotations GRCm39 for
ouse and GRCh38 for human. Small RNA-seq data were pro-

essed using the Nextflow [ 17 ] Core smRNA-seq pipeline ver-
ion 1.0 with the parameters –genome < genome > –mirna_gtf 
irbase_ < species > .gff3. FastQC [ 24 ] (Fig. 3 ) and miRTrace [ 27 ]
ere used for quality checks, follo w ed b y adapter trimming and
uality filtering. Alignment was performed with Bowtie [ 28 ], and
eature counting utilized samtools [ 29 ] using miRBase [ 30 ] anno-
ations (version 22.1). 

iltering and transformation 

or RNA-seq and small RNA-seq, count matrices were filtered 

o r etain featur es with at least 10 counts in 50% of samples for
ny condition or sex. For the small RNA-seq data, normalization
as performed using quantile normalization implemented in the 
r epr ocessCor e [ 31 ] R pac ka ge. For RNA-seq, v ariance-stabilizing
ransformation (VST) implemented in DESeq2 [ 32 ] was used for
ormalization, ensuring consistent and comparable expression 

 alues acr oss samples . T he total number of detected genes and
mall RNAs (sRNAs) for each dataset can be found in Table 3 . 

roteomics 
roteomics data were processed with MaxQuant [ 22 ] software.
rotein peaks were assigned using trypsin/P specificity against an 

n-house–gener ated pr otein sequence database containing mouse 
ntries fr om UniPr otKB-SwissPr ot. The “matc h between runs” op-
ion facilitated pr otein quantification. Onl y Swiss-Pr ot pr oteins
er e r etained, and low-abundance pr oteins detected in less than
0% of samples were filtered out. Missing values were imputed
sing the missForest [ 33 ] algorithm and intensities were log 2 -
r ansformed for v ariance stabilization. A maxim um false discov-
ry rate (FDR) of 1% was applied at both peptide and protein lev-
ls . T he total number of detected proteins for each dataset can be
ound in Table 3 . 

igher-le vel da ta anal ysis and machine learning 

iffer ential expr ession and enrichment analyses 
ownstr eam anal yses of the RNA-seq and small RNA-seq data in-
luded differ ential expr ession anal ysis using DESeq2 [ 32 ] to iden-
ify differ entiall y expr essed genes/miRN As betw een experimental
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Figure 6: Ov er all quality of tr ansformed tr anscriptomic data. Histogr am of VST-tr ansformed expr ession v alues with samples on the x-axis color ed by 
sex and condition. No strong difference between the sexes and conditions could be observed. 
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onditions. Principal component analysis (PCA) was used for di-
ensionality reduction and visualization of sample relationships

sing VST-normalized RNA-seq data and quantile-normalized
mall RNA-seq data. 

roteomics data analysis 
inear modeling for differential abundance analysis was per-
ormed using the limma [ 34 ] pac ka ge, with P v alues adjusted for

ultiple testing using the Benjamini–Hochberg correction. PCA
as used for visualization. 
c  
ioinformatics workflow 

o allow for r epr oducible and inter pr etable bioinformatics work-
o w, w e will describe the construction of our w orkflo w here. Our
 orkflo w consists of multiple stages, equivalent to single scripts

xecuted for 1 or multiple datasets with multiple parameters.
e used Data Version Control (DVC) as a w orkflo w management

ool, because it allows the use of any script as stages in our
omputational w orkflo w, automaticall y takes car e of dependen-
ies between these stages, and executes only stages that changed
ompared to the last execution. Furthermor e, it pr ovides the
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Figure 7: Evaluation of batch effects (sex and condition). Bar chart of miRTrace quality checks with samples on the x-axis colored by detected RNA 

type . T he fraction of reads that could not be assigned to any of the RNA types is not displayed. No strong difference between the sexes or conditions 
could be observed. 
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option to shar e r aw and processed data between multiple users.
The executed code for each stage is provided as script files writ- 
ten in bash, R, and Python. The execution of the scripts, their 
outputs, and their dependencies are defined in dvc.yaml files,
with all important parameters found in params.yaml files. All 
scripts can be automatically executed using D VC . Since the ex- 
ecution of scripts depends on the pac ka ge v ersions used, in R 

as well as in Python, proper maintenance of pac ka ge v ersions is 
important. 

Ther efor e, we containerized all applications by providing a 
doc ker ima ge . In other instances , we used r eadil y av ailable doc ker 
images . T his allows the automatic execution of our workflow us- 
ng docker, if a vailable , and prevents users from struggling to in-
tall the correct package versions . Furthermore , we value commu-
ity efforts in providing reproducible w orkflo ws for the analysis of
NA-seq and small RNA-seq data implemented in Nextflow. These 
ipelines were integrated into our w orkflo w as w ell, allo wing us
o easily adapt to recent developments in the w orkflo w without
 uc h user effort. 
All outputs of our w orkflo w will be structured by mouse model

nd can be used for other a pplications, integr ated into the work-
o w or not. Ho w e v er, we r ecommend integr ating further anal ysis

nto the DVC w orkflo w, as not to break the reproducibility princi-
le of the extended w orkflo w. In this case, also ne wl y added scripts
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Figure 8: Ov er all quality of tr ansformed small RNA-seq data. Histogr am of normalized matur e miRNA expr ession v alues with samples on the x-axis 
colored by sex and condition. No strong difference between the sexes and conditions could be observed. 
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ill automatically be executed if the underlying data or scripts are
hanging in any way. 

a ta Valida tion and Quality Contr ol 
N A-seq da ta 

n addition to the quality c hec ks mentioned abov e, the quality of
he dataset was e v aluated. To v erify the annotation of sex, the ex-
ression of XIST was investigated in each sample (Fig. 4 ). XIST is a

ong noncoding RN A, inv olved in X chromosome inactivation and
her efor e highl y expr essed in females [ 35 ]. We could not detect
n y mismatc hed sex annotation in the human or mouse samples
Fig. 4 ). 

Furthermor e, we v alidated the expr ession of the tr ansgenic
ariant for the FUS, SOD1, and TDP43 mouse models . T he trans-
enic mouse models were generated by including the mutated hu-
an gene (SOD1 and TDP43) or ov er expr essing the wild-type hu-
an gene (FUS) in the mouse genome . T her efor e, the fr action of

 eads aligning a gainst this r egion of inter est was compar ed to the
otal number of reads in that region (Fig. 5 ). The region of inter-
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Figure 9: Completeness of raw proteomics data. Fraction of measured zeros in the proteomics experiments colored by sex. No difference in the 
distribution between the sexes and the condition could be detected. 
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est was defined as ±200 bp around the gene’s coding region. It is 
expected that control samples do not show any expression of hu- 
man reads, while the mutated samples show a significant expres- 
sion of the human variant. T hus , we could verify the expression 

of the transgene in these 3 mouse models (Fig. 5 A). 
The C9orf72 mouse model was generated by introducing a re- 

peat expansion in the intronic region of C9orf72, which cannot 
be detected using the a ppr oac h used for the other mouse models.
Ther efor e, we used an indir ect a ppr oac h to detect the GFP expres- 
sion of the construct used for integrating the repeat expansion 

[ 20 ]. We were able to detect the expression of the construct only 
n transgenic animals, thus indicating that the introduced repeat 
xpansion is likel y pr esent as well in these animals (Fig 5 B). Fur-
hermor e, the expr ession data wer e visualized using a histogram
or each sample, showing no distinct pattern for individual sam-
les (Fig. 6 ). Ther efor e, we consider the RNA-seq data good quality
atching with the provided annotations. 

mall RNA-seq data 

he quality of the small RNA-seq data was additionally evaluated
sing miRTrace [ 27 ] as part of the Nextflow smrnaseq pipeline.
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Figure 10: Ov er all quality of tr ansformed pr oteomics data. Histogr am of normalized pr otein abundance v alues with samples on the x-axis color ed by 
sex and condition. No strong difference between the sexes and conditions could be observed. 
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iRTrace detected 17.07% reads as originating from miRNAs on
v er a ge acr oss the models (human: 10.12%, SOD1 29.05%, FUS:
3.37%, TDP43: 32.29%, C9orf72: 28.01%) and only a low percent-
ge of artifacts (mean < 6%). We could also not observe any large
ifference in the detected RNA types across samples (Fig. 7 ). How-
 v er, the human samples sho w ed a lo w er number of reads as-
igned to any class compared to the mouse samples. 

Similar to the RNA-seq data, also a histogram of the miRNA
xpression was visualized (Fig. 8 ). The mouse models show a con-
istent expression pattern across samples, with only minor differ-
nces between the mouse models , conditions , and sexes . For the
uman samples, we observed a consistent expression pattern for
ost samples (Fig. 8 ). 

roteomics data 

he quality of the proteomics data was e v aluated by calculat-
ng the fraction of measured zero values and the histogram of
r otein abundance v alues. We could not observ e an y significant
ifference between the fraction of zero measurements in the
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Figure 11: Evaluation of proteomics differential protein abundance analysis. Calibration plots for case vs. control differential protein abundance 
analysis to check if the P values respect the assumptions of classical FDR control procedures. A high (close to 100%) differential concentration (in 
green) and a low uniformity underestimation (close to 0) are preferred. 
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Figure 12: Top modifications found by the open modification search using ionbot for the 4 mouse models and human samples. For each model, the top 
10 modifications were selected and the number of occurrences of the union of those (17 modifications) is displayed. Fixed modifications 
(Carbamidomethyl, Oxidation, Acetyl[N-term]) and sequence variations (Glu → Ser, Arg → Orn, Ser → Ala, Gln → pyro-Glu, Xle → Pro, Tyr → Phe, 
Delta:H(2)C(2)[N-term]) were removed for display. 
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roteomics data (Fig. 9 ), indicating that there is no systematic bias
mpacting the sample quality. Furthermore, no systematic differ-
nce between the samples could be detected in the histograms
f the normalized protein abundances (Fig. 10 ). Differential pro-
ein abundance analysis was conducted, and a calibration analy-
is was performed to verify that the obtained P values follo w ed the
ssumptions of classical FDR control [ 37 ]. We detected a high dif-
er ential pr otein abundance concentr ation (differ ential concen-
ration > 83%) and a low uniformity underestimation ( < 0.02) in all

odels (Fig. 11 ). This indicates that there are likely no violations of
he FDR control assumptions. In addition, we performed an open

odification search but did not detect any striking differences be-
ween the mouse models and human samples (Fig. 12 ). Ov er all, we
etected no systematic biases, low intersample intramodel vari-
bility (especially for the mouse samples), and pr ov en expr ession
 i  
f the transgenes . T herefore , in our opinion, the dataset provides
 unique resource for the (r e)anal ysis of ALS considering multiple
nown ALS mouse models and human samples. 

atch effects 

o assess the possibility of batch effects in transcriptomics and
roteomics data, PCA and sample distance heatmaps were used.
pecificall y, batc h effects r elated to the factors br ain bank, sex,
ase/control condition, and age at death were investigated. As
eported in the previous publication (Fig. 13 ; Figure 1 b of Caldi
omes et al. [ 12 ]), sex-related differences were found, and all anal-
ses were performed separately for each sex. For the other fac-
ors, there is no evidence that they influenced the results (Fig. 13 ;
upplementary Figure 1 of Caldi Gomes et al. [ 12 ]). For instance,
f batch effects had been present, they would likely have caused
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A

B

Figure 13: Evaluation of batch effects using PC A. PC A of human transcriptomics (A) and proteomics (B) data. The 500 most variable genes for the 
transcriptomics data and all proteins for the proteomics data were used. 
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distinct clustering or separation of samples. Ho w ever, our analy- 
sis sho w ed no such patterns, indicating that these factors did not 
introduce systematic biases into our data. 

Results Summary 

In brief, in our initial study [ 12 ], this dataset r e v ealed distinct 
molecular subclusters within patients with ALS. These subclus- 
ters sho w ed varying patterns in gene, protein, and miRNA ex- 
pression, suggesting the presence of different underlying disease 
mechanisms. One of these identified mechanisms was the MAPK 

pathway as a putative therapeutic target. Another important as- 
pect of our study was the pronounced sex differences captured 

in the molecular profiles of patients with ALS, with male patients 
exhibiting more pronounced alterations overall. 

The findings summarized her e wer e v alidated acr oss m ultiple 
models, reinforcing the significance of the identified molecular 
subclusters and pathwa ys . T his validation suggests that future 
ALS r esearc h should consider these fr equentl y r eported molec- 
ular differences and focus on developing personalized medicine 
a ppr oac hes tailor ed to specific patient subgr oups. 

Reuse potential 
Our complex cross-species and sex-specific data can serve as a 
basis for future computational and experimental studies. Fur- 
ther, the stratification of patients with ALS into specific subtypes 
thr ough our m ultiomics data could help with de v eloping person- 
alized, sex-specific, and efficient treatment approaches. Further- 
mor e, ne wl y found tr eatment candidates can be dir ectl y inv esti- 
gated in the 4 available mouse models to detect the potentially 
best mouse model for in vivo testing. Furthermor e, this ric h r e- 
source of human sALS and mouse models for gALS could be uti- 
lized to detect subtle differences between sALS and gALS (e.g., on 

splicing le v el), whic h ar e curr entl y not well understood and can 
r ovide ne w biomarkers or treatment options in the earl y sta ges
f ALS. 

To facilitate future usage, intermediate files are saved in a
ormat that is readable using most common pr ogr amming lan-
ua ges, mainl y in CSV format, allowing for flexible integration of
ew methods at every step of the existing pipeline. Se v er al down-
tr eam a pplications, suc h as differ ential gene expr ession anal ysis,
r e alr eady implemented and can be executed using D VC . Further-
or e, these methods ar e highl y configur able using the par ameter

les and allow for a multitude of differ ent anal yses. To ac hie v e
ontin uous high re producibility, we recommend the implementa- 
ion of executable scripts, which can be automatically executed 

y D VC . 
In addition, the repository provides code for the analysis of

ranscription factor activity , RNA stability , and possible RNA vari-
nts. Further details can be found in the 3 following sections. 

ranscription factor activity 

ranscription factor activity was estimated using decoupleR [ 38 ]
ith default settings. For activity estimation, a univariate linear 
odel, a weighted sum, and a m ultiv ariate linear model were used

s recommended by decoupleR. The DoRothEA [ 39 ] database was
sed for potential transcription factor targets. Only targets of at

east category C were used (category A = high confidence, category
 = low confidence). 

NA stability analysis 

N A stability analysis w as performed using REMBRANDTS [ 40 ].
xon and intron regions, as required for the analysis with REM-
RANDTS, wer e extr acted fr om GENCODE v37 annotations for
he human data and GENCODE vM26 for the mouse data. The
uantification of exon and intron abundance was performed us- 

ng htseq (v1.99.2) as described in Alkallas et al. [ 40 ] and the REM-
RANDTS manual. REMBRANDTS was run using default argu- 
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ents with a linear bias mode, a stringency of 0.99, and no further
atch information. 

ariant analysis 

o anal yze v ariations in the mRN A, w e performed variant calling
n the RNA-seq data. Bcftools (v1.14) was used for variant calling
ased on the STAR alignments , as pro vided by the NextFlow Core
NA-seq pipeline, version 3.0, described in Ewels et al. [ 17 ]. 

onclusion 

n summary, our study provides a valuable data resource, includ-
ng sex-specific and cross-species datasets . T he str atified m ulti-
mics data from ALS prefrontal cortices highlights male and fe-
ale differences, with implications for future personalized treat-
ent a ppr oac hes. Additionall y, we offer a r obust anal ysis pipeline

nd high-quality data for investigating early ALS mechanisms. 
Our methods ensure robust comparability and reproducibility

f the analysis across all generated datasets, both within omics
ayers for the analyzed cohorts and also across species. Overall,
hese datasets can help with the understanding of ALS pathogen-
sis and assist in identifying new and personalized ther a peutic
argets for this devastating neurodegenerative disease. 

a ta Av ailability 

he w orkflo w contains scripts for the automatic do wnload of all
ouse sequencing data from SRA to be used as input to the
 orkflo w. Ho w e v er, the w orkflo w can also be used with manu-
ll y downloaded files, whic h is r equir ed for human samples, due
o the restricted access. Details about how to access the human
ata deposited in European Genome Phenome Archive are avail-
ble online [ 41 ]. All supporting data and materials are available in
he GigaScience database, GigaDB [ 42 ] and in WorkflowHub [ 43 ]. 

ouse RNA-seq data 

aw RNA-seq data (FASTQ format) and processed data (CSV for-
at) were deposited to the National Center for Biotechnology In-

ormation Gene Expression Omnibus database (GSE234245) and
r e openl y av ailable. 

ouse small RNA-seq data 

aw small RNA-seq data (FASTQ format) and processed data (CSV
ormat) were deposited to the National Center for Biotechnology
nformation Gene Expression Omnibus database (GSE234243) and
r e openl y av ailable. 

uman RNA-seq and small RNA-seq data 

uman raw data (FASTQ format) are encrypted and stored
t the European Genome Phenome Archive (registered study:
GAS00001007318). These data are available upon request to the
uropean Genome Phenome Archive. Details about how to access
he human data deposited in European Genome Phenome Archive
r e av ailable online [ 41 ]. 

roteomics data 

uman and mouse proteomics data were deposited to the Pro-
eomeXchange Consortium database (PXD043300) and are openly
 vailable . T he results from the open modification search are avail-
ble via Figshare [ 44 ]. 
vailability of Source Code and 

equirements 

roject name: MAXOMOD 

Pr oject homepa ge: https:// github.com/ imsb-uke/ MAXOMOD _
ipeline 

Operating system(s): Platform independent 
Pr ogr amming langua ge: Python, R, Bash, Nextflow 

Other r equir ements: DVC ( https://dvc.or g/), Doc ker 
License: MIT 

Workflowhub.eu: https:// doi.org/ 10.48546/ workflowhub.
 orkflo w.1191.1 . 
All code for pr epr ocessing and anal yzing the data is av ailable

nline [ 45 ]. The w orkflo w consists of multiple scripts R and Python
 src/directory ), which can be executed in a dockerized environ-

ent, which is provided on GitHub as well. The execution order is
rovided as a Data Version Control w orkflo w, which can be auto-
atically executed with D VC . All parameters are provided in the

ar ams/dir ectory. Further information can be found in the README
le in the GitHub repository. 

bbreviations 

LS: amyotrophic lateral sclerosis; CTR: control; DVC: Data Ver-
ion Control; FDR: false discovery rate; gALS: genetic amyotrophic
ater al scler osis; PBS: phosphate-buffer ed saline; PCA: principal
omponent analysis; PFC: prefrontal cortex; RN A-seq: RN A se-
uencing; sALS: sporadic amyotrophic lateral sclerosis. 
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