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SUMMARY

Neuroinflammation is often characterized by immune cell infiltrates in the cerebrospinal fluid (CSF). Here, we
apply single-cell RNA sequencing to explore the functional characteristics of these cells in patients with
various inflammatory, infectious, and non-inflammatory neurological disorders. We show that CSF is distinct
from the peripheral blood in terms of both cellular composition and gene expression. We report that the
cellular and transcriptional landscape of CSF is altered in neuroinflammation but is strikingly similar across
different neuroinflammatory disorders. We find clonal expansion of CSF lymphocytes in all disorders but
most pronounced in inflammatory diseases, and we functionally characterize the transcriptional features
of these cells. Finally, we explore the genetic control of gene expression in CSF lymphocytes. Our results
highlight the common features of immune cells in the CSF compartment across diverse neurological diseases
and may help to identify new targets for drug development or repurposing in multiple sclerosis (MS).

INTRODUCTION

One of the core features of the vertebrate adaptive immune

response is the rapid clonal proliferation of specific lymphocytes

on encountering antigen.1 This process is vital to efficiently con-

trol infections and malignancy but, when aberrantly activated or

inadequately regulated, can result in autoimmune disease.2–4

The cerebrospinal fluid (CSF), historically considered an immu-

nologically privileged compartment,5 becomes populated with

clonally expanded lymphocytes in both healthy aging and in

the context of neurological diseases.6–8 In multiple sclerosis

(MS) and other neuroinflammatory disorders, clonal expansion

of B cells within the CSF produces a limited repertoire of anti-

bodies, which can be detected as oligoclonal bands.9,10 Howev-

er, it remains unclear how B and T lymphocytes gain access to

the CSF in the context of inflammation, what conditions promote

clonal expansion, and to what extent these conditions are spe-

cific to MS or common to neuroinflammatory states. Under-

standing these processes may help to shed light on the pathobi-

ology of MS and suggest rational targets for therapeutic

intervention.

We therefore sought to characterize the immune landscape of

the CSF in non-inflammatory and inflammatory neurological dis-

ease states at single-cell resolution. We performed large-scale

single-cell sequencing of the CSF and peripheral bloodmononu-

clear cells (PBMCs) in a range of neurological conditions. Our

work provides insights into the biology of CSF immune re-

sponses in health and disease, building on the insights from

earlier efforts based on bulk RNA sequencing, lymphocyte reper-

toire sequencing, and single-cell sequencing in smaller co-

horts.2,6,11–16 We demonstrate that immune cells in the CSF

exhibit particular features that discriminate them from peripheral

blood immune cells, with the majority of these salient features

shared across neuroinflammatory states. We show that clonal

expansion of CSF B and T cells is observed across different

neurological diseases but is most prominent in inflammatory dis-

eases such as MS. Probing the gene expression profiles of clon-

ally expanded lymphocytes revealed common drivers of clonal

expansion across inflammatory disorders, suggesting shared

mechanisms of aberrant clonal expansion. This study represents

the largest single-cell dissection of the intrathecal immune

response to date and argues that neuroinflammatory disorders

are distinguished by rather subtle quantitative differences in

the intrathecal immune milieu rather than stark qualitative

differences.

RESULTS

CSF is enriched with antibody-secreting cells in
neuroinflammation
We generated single-cell RNA sequencing data from 354,055

CSF cells (see Figure 1A and Table 1)—collected from 123
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largely untreated people withMS (203,220 cells), 19 patients with

other inflammatory neurological disorders (OINDs; 30,796 cells),

23 patients with infectious neurological disorders (IDs; 83,339

cells), and 36 patients with non-inflammatory neurological disor-

ders (NINDs; 36,700 cells). We also collected venous blood from

a subset of these individuals and generated equivalent RNA

sequencing data for 422,809 cells from the peripheral circulation

(PBMC)—including 76 patients with MS (310,851 cells), 12 with

OIND (25,112 cells), 4 with ID (30,299 cells), and 28 with NIND

(56,547 cells; Figure 1A; Tables 1 and S1–S3; Figures S1–S4).

The cellular composition of CSF differed substantially from

PBMC (Figures 1A and 1B; Tables 2 and S3–S5). In the absence

of inflammation—i.e., in the cohort of patients with NINDs such

as primary headache syndromes and idiopathic intracranial hy-

pertension—CSF was enriched with dendritic cells (DCs), CD8+

T cells, monocyte-derived CSF macrophages, and regulatory

T cells (Tregs, false discovery rate [FDR] < 0.01) and depleted

of B cells and monocytes compared with the peripheral

blood.7,12,17,18 In the context of inflammation—i.e., in the MS,

OIND, and ID cohorts—the CSFwas notably enriched for plasma

cells and plasmablasts—referred to collectively as ‘‘antibody-

secreting cells’’ (ASCs) throughout—with this enrichment being

particularly marked in the context of MS and ID (Table 2; Fig-

ure 1C; Tables S3–S5).2,7,12

We observed striking heterogeneity of both PBMC and CSF

cell type proportions between individuals (Tables S3 and S5;

Figures S5 and S6). For example, within the MS cohort,

the proportion of ASCs in CSF varied from 0.05%

to 25.1% (median 1.7%, interquartile range [IQR] 2.1%).

We considered whether this heterogeneity was related to

biological differences in disease characteristics or merely

reflective of inherent variability between individuals. As

expected, the proportion of ASCs was higher in MS

patients with CSF oligoclonal bands (n = 119) than in those

without bands (n = 4) (FDR < 0.1, �6.23-fold increase),

and there were no statistically significant changes in

other cell type proportions. Comparison of patients with

primary progressive MS (PPMS, n = 8) with relapse-onset

MS (RMS, n = 113) did not show any suggestive (FDR < 0.1)

differences in CSF cell type proportions, arguing for a broadly

similar CSF cellular landscape in these clinically defined

disease categories. Analysis of ligand-receptor co-expression

suggested roles for CXCR3 and CXCR4 as plausible media-

tors of increased B cell and ASC entry into the CSF (Figure S7).

By contrast, no significant differences were observed

between MS and any of the ID, OIND, or NIND in the periph-

eral blood compartment (Figure 1C). MS CSF was composi-

tionally similar (i.e., no differences at FDR < 1%) to OIND

CSF but contained lower relative proportions of natural killer

(NK) cells and Tregs compared with ID CSF (Table S5). We

did not find evidence for the presence of MS-specific cell

types.

Figure 1. The cellular composition of the CSF is notably different from that seen in PBMC

(A) Uniform manifold approximation and projection (UMAP) plot displaying individual cells in the single-cell dataset colored according to cell type.

(B) Volcano plot showing differential abundance comparing the cell type proportions in CSF vs. PBMC (pooled across all disease cohorts). The x axis shows the

log-fold change (logFC) in cell type proportion, with positive values indicating a higher proportion in CSF compared with PBMC. The y axis shows the �log10 of

the p value, with values above the horizontal gray line achieving statistical significance at a Bonferroni-adjusted p value threshold (alpha 5%).

(C) Bar plot showing cell type proportions in CSF and PBMC in each cohort separately. Abbreviations: NIND, non-inflammatory neurological diseases; OIND,

other inflammatory neurological diseases; ID, infectious neurological diseases; MS, multiple sclerosis; CSF, cerebrospinal fluid; PBMC, peripheral blood

mononuclear cell.
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Geneexpression in the intrathecal compartment reveals
a central role for cholesterol homeostasis
Differential gene expression analysis showed that, in compari-

son to PBMCs, CSF immune cells upregulated markers of tissue

residence, cytotoxicity, and antigen presentation, consistent

with previous reports.11,12 This upregulation was seen in multiple

cell subtypes (Figure 2A; Table S6; Figure S8)6,8,11,12 and was

largely independent of disease context (i.e., there was strong

concordance between MS, ID, and OIND cohorts; Figure 2B).

Gene set enrichment analysis (GSEA) showed upregulation of

genes involved in cholesterol homeostasis in the majority of

cell types, and of MTORC1 signaling in B cells and ASCs (Fig-

ure 2C). Weighted pathway analysis implicated the sterol regula-

tory element binding protein transcription factors SREBF1 and

SREBF2 as the likely drivers of these changes. These transcrip-

tion factors (SREBF1 and SREBF2) regulate intracellular fatty

acid and cholesterol synthesis in lymphocytes and thereby

determine the supply of substrate necessary for proliferation

and clonal expansion.19–21

To systematically search for MS-associated gene expression,

we performed differential expression testing comparing MS

CSF with OIND and ID CSF. Compared with ID CSF, MS CSF

displayed upregulation of a small number of genes, including

CCL22 in B cells and ASCs, CD99 in myeloid DCs (mDCs),

CRIP2 in CD4+ T cells, and LEKR1 in CD14+ monocytes

(Table S6). There were very few differences between MS and

OIND CSF, suggesting that the CSF alterations observed in

MS are not disease specific but are very similar to inflammatory

changes observed in other inflammatory central nervous system

(CNS) diseases involving humoral immune responses.

Transcriptional features of B cell clonal expansion
across diseases
Focusing on B-lineage cells, we found that those present in the

CSF were more frequently class-switched, antigen-experienced

cells (largely memory cells and ASCs) and showed greater levels

of somatic hypermutation than peripheral B cells, in keeping with

the idea that most of these cells have experienced antigenic

stimulation within the intrathecal compartment (Figure 3).12

CSF B cells/ASCs were enriched for the immunoglobulin G1

(IgG1) isotype in the context of inflammatory and infectious

CNS disorders compared with the peripheral blood (Figure 3).

In keeping with previous reports, we observed preferential

usage of the IGHV4 immunoglobulin heavy-chain gene segment

families in MS CSF compared with peripheral blood, and a bias

toward immunoglobulin light-chain kappa gene segments

(Table S11; Figure S8).2,14,16 Neither the IGHV4 bias nor the

IGKV bias was observed in either the OIND or ID cohorts

(Table S11), and so these findings may represent an MS-specific

predilection of the intrathecal B cell repertoire. To avoid statisti-

cal bias due to selective usage of specific IGHV or IGKV seg-

ments by highly expanded clones, each clone was sampled

only once for these analyses. At the more granular level of indi-

vidual gene segments, we had less statistical power (due to

both the smaller number of cells with each gene segment and

the greater burden of multiple testing). However we found sug-

gestive evidence that the IGHV4 bias was driven by overexpres-

sion of IGHV4-31 (log2-fold change [logFC] 0.96, p = 0.01, FDR =

0.12) and that the IGKV bias was driven by several segments

(including IGKV6-21, IGKV1-27, IGKV2-28, and IGKV1-33 all

with FDR < 0.1), of which the strongest effect was observed for

IGKV6-21 (logFC 1.4, p = 2.1 3 10�6, FDR = 3.2 3 10�4).

Based on canonical receptor sequence homology, we identi-

fied 3,126 clonally expanded B cells (3,126/22,964, 13.6%)

belonging to 602 sets of clonally related B cells (449 were found

in the CSF alone, 151 in the peripheral blood alone, and 2

spanned both compartments). The proportion of clonotypic B

cells was much higher in the CSF of patients with OIND, MS,

and ID compared to peripheral blood. While few subjects in the

NIND (4/28, 14.3%) cohort had detectable CSF B cell clones,

these were commonplace in the OIND (7/15, 46.7%), ID (14/23,

60.9%), andMS cohorts (62/116, 53.4%; note that denominators

reflect the number of patients with any detectable B cells in their

CSF and so are slightly smaller than the total number of CSF

samples), reiterating the concept that CSF B cell clonal expan-

sion is a general feature of intrathecal inflammation, and not spe-

cific to MS (Figure 3A). Although most of the clonal groups we

observed consisted of just two clonally related cells (357/602,

59.3%), some clones were much larger with over 30 observed

cells. These highly expanded clones were only observed in the

MS and ID cohorts. However, given the strong correlation be-

tween number of cells sampled and clonal size, this may merely

reflect a sampling bias.

In the CSF most clonally expanded B-lineage cells (75.2%)

were IgG1+ ASCs that showed evidence of somatic hypermuta-

tion. Clonally expanded cells showed a subtle enrichment in the

usage of IGHV4 heavy-chain segments and IGHK light chains

(Figures 3B, 3C, and S9). When we categorized the patients by

disease subgroup, we found that these effects were driven by

the MS cohort: clonally expanded cells in the MS patients

showed biases toward usage of the IGHV4-39 and IGHV4-59

gene segments, whereas this effect was not observed in the

ID, OIND, or NIND patients. We observed a similar phenomenon

for the light-chain segments: in the MS CSF, clonally expanded

cells showed biased usage of IGKV1-9, 1-13, 1-17, and 3-15,

none of which were upregulated in clonal cells from the other dis-

ease cohorts (Figure S10).

We next performed differential expression analysis comparing

expanded vs. non-expanded cells within each cell type in each

Table 1. Demographic characteristics of included participants

Variable MS NIND OIND ID

Total 126 40 19 23

Age

(median

[IQR])

32.5 (16) 42 (25) 49 (14) 41 (19)

Gender

(n [%])

F 85 (67.5%) 25 (62.5%) 7 (36.8%) 9 (39.1%)

M 41 (32.5%) 15 (37.5%) 12 (63.2%) 14 (60.9%)

CSF OCBs

(n [%])

Negative 4 (3.3%) 15 (83.3%) 13 (68.4%) 4 (50%)

Positive 119 (96.7%) 3 (16.7%) 6 (31.6%) 4 (50%)
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compartment (Table S12). We performed these analyses in the

pooled cohort, combining MS, ID, OIND, and NIND samples.

We detected two genes which were upregulated in CSF

expanded ASCs—AL138963.4, a long noncoding RNA of un-

known function, and HIST1H1D, which encodes a histone

protein. This histone protein is a target for driver mutations in

myeloma and B cell lymphomas22 and so is a plausible driver

of ASC clonal expansion. Within the CSF memory B cell cluster,

we identified 89 genes which were differentially expressed in

clones (Figure 3D; Table S7, PBonferroni<0.05, 52 upregulated,

37 downregulated). The most upregulated transcript was SUB1

(log-fold change 1.3, p = 2.1 3 10�12), the gene product of

which—positive coactivator 4 (PC4)—promotes ASC differen-

tiation and maturation.23 Other upregulated genes in clones

included genes involved in antigen presentation via class II major

histocompatibility complex molecules (HLA-DRA, HLA-DPA1,

B2M, IFI30), cytoskeletal architecture (TMSB4X, ARPC1B,

ARPC5, CAPZB, LSP1, HCLS1), and guanosine triphosphate-

binding proteins (ARHGDIB, RAC2). Weighted pathway anal-

ysis suggested increased activity of RFX5 targets in clonally

expandedmemory cells (p = 0.01), largely driven by upregulation

of B2M, CD74, and class II histocompatibility leukocyte antigen

(HLA) genes (HLA-DPA1, HLA-DRA, HLA-DRB1, HLA-DPB1,

and HLA-DQA1). To determine whether these changes were

common across diseases, we repeated the analysis stratified

by disease. We found that the effect was largely attributable to

the MS and ID groups, with consistent effects of the top clone-

defining genes (e.g., SUB1, CAPZB, and ARPC5) in both MS

and ID expanded CSF memory cells (Tables S7 and S12). These

findings suggest a common transcriptional signature associated

with B cell clonal expansion across different disease contexts.

SUB1 expression was associated with increased expression of

B cell maturation markers (Figure S11) and showed a gradient

of expression from naive B cells (lowest) to plasma cells (high-

est), indicating that the clone-defining genes we identify likely

reflect active B cell differentiation into ASCs.

Characteristics of the CSF T cell repertoire in
neuroinflammation
The T cell composition of CSF was distinguished from PBMC by

a statistically significant shift (FDR <1%) toward memory,

effector, and resident phenotypes (TEM/RM cytotoxic T cells,

type 1 helper T cells, Tregs, follicular helper T cells, memory

CD4+ cytotoxic T cells, and TEM/Effector CD4
+ T cells), and a rela-

tive depletion of naive T cells (both CD4+ and CD8+), mucosal-

associated invariant (MAIT) T cells, and TEM/TEMRA cytotoxic

T cells (Table S8). We explored the relationship between

changes in CSF T cell composition and phenotype and found

that most of these alterations were features of the CSF T cell

pool in general and were not specific to MS. The increase in

T follicular helper cells was observed in all three inflammatory co-

horts (MS, OIND, and ID), but not in the non-inflammatory con-

trols, suggesting that the presence of these cells in CSF may

be a feature of neuroinflammatory CNS disorders (Figure 4B).

We identified 37,673 clonally expanded T cells in the dataset

derived from 11,541 expanded clonotypes. Unlike in the B cell

compartment, we observed extensive clonal sharing across

the blood-CSF barrier, with 986 clones observed in both CSF

and PBMC. Again in contrast to the B cell pool, the degree of

clonality of the CSF T cell compartment did not differ significantly

between patients with MS and NIND and in fact was lower in MS

than in the ID cohort (Figure 4A, p = 0.01). Clonally expanded

T cells were dominated by effector memory CD8+ cytotoxic sub-

sets (Figure 4B) in both blood and CSF. In the peripheral blood,

Table 2. CSF and PBMC cell type proportions in each of the four disease groups

CSF PBMC

Cell type MS NIND OIND ID MS NIND OIND ID

B cellsa 3.2% (3.7) 1.3% (1.8) 2.6% (3.4) 3.4% (4.1) 6.7% (3.5) 7.5% (2.9) 6.6% (5.6) 8.2% (7.1)

Plasma

cells/ASCsa
1.7% (2.1) 0.2% (0.6) 0.8% (1.1) 1% (2.4) 0.4% (0.4) 0.3% (0.2) 0.2% (0.5) 0.9% (0.4)

mDCs 1.3% (1.4) 1.5% (1.3) 2.3% (2.4) 1.2% (1.9) 0.6% (0.6) 0.4% (0.4) 0.4% (0.6) 1% (0.4)

HSPCs 0% (0) 0% (0) 0% (0) 0% (0) 0.1% (0.1) 0.1% (0.1) 0.1% (0.1) 0.2% (0.1)

CD14 mono 2.7% (2.5) 4% (4.2) 4.5% (5.1) 2.5% (1.6) 10.8% (7.9) 8.1% (4.8) 7.7% (7.3) 15.4% (6.1)

CD16 mono 0% (0) 0% (0.1) 0% (0) 0% (0) 1.6% (1.5) 1.6% (1.6) 1.2% (1) 1.5% (0.4)

Macrophages 0.2% (0.5) 1.2% (1.2) 0.4% (0.5) 0.1% (0.1) 0% (0) 0% (0) 0% (0) 0% (0)

CD4+ T cells 58% (13.7) 59.8% (9) 52.1% (15.3) 45.6% (17.9) 52.7% (14.4) 54.5% (13.5) 58.2% (6.6) 42.9% (6.4)

CD8+ T cells 20.1% (8) 21.5% (7.6) 17.7% (14.5) 22.7% (9.8) 10.3% (5.3) 13.8% (7.4) 12.6% (8.2) 12.7% (1)

Tregs 3.8% (2.8) 4.2% (2.2) 4.2% (3.8) 6% (4.7) 1.8% (1.3) 2.3% (1.2) 2.5% (1.8) 1.2% (0.4)

MAIT cells 0.7% (0.7) 0.8% (0.9) 0.8% (0.9) 0.8% (1.4) 1.5% (1.3) 1.3% (1.4) 1% (1.1) 1.5% (2)

NK cells 4.3% (2.4) 3.5% (2.1) 3.8% (3.8) 6.1% (4.4) 7.8% (6.3) 6.5% (3.4) 6.6% (3.3) 9.4% (5.5)

pDCs 0.6% (1) 0.3% (0.9) 0.8% (1) 0.7% (1) 0.2% (0.2) 0.2% (0.2) 0.1% (0.2) 0.3% (0.1)

Values represent the median % of the total PBMC/CSF cell population in each disease cohort (i.e., the percentage of the PBMC/CSF cell population

was calculated per person, and then the median was taken across the cohort). The values in brackets represent the interquartile range. Only subjects

with >10 total cells in the relevant compartment (PBMC or CSF) were included in these calculations.
aIndicates the two cell types—B cells and plasma cells/ASCs—which were present at higher proportions in MS CSF compared with NIND CSF at a

false discovery rate of <1%.
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the clonal T cell population was enriched for TEM/RM (effector

memory/resident memory) CD8+ cytotoxic cells, TEM/TEMRA

(effector memory/effector memory re-expressing CD45RA)

CD8+ cytotoxic cells, and MAIT cells compared with the non-

expanded pool. In contrast the majority of clonally expanded

CSF T cells were of a TEM/RM phenotype (>50%), with a lesser de-

gree of enrichment for TEM/TEMRA cells, and no enrichment of

MAIT cells (Figure 4B).

As with the B cell compartment, clonally expanded cells

showed preferential usage of specific T cell receptor beta vari-

able (TRBV) gene segments (TRBV6-4, TRBV7-8, and TRBV27)

and T cell receptor alpha variable (TRAV) gene segments

(TRAV1-2, TRAV14, TRAV19, and TRAV38-2). These findings

were not solely driven by MAIT cells (which classically express

TRAV1-2 with either TRBV6 or TRBV20 genes24), as exclusion

of these cells yielded similar results. Differential expression anal-

ysis comparing expanded and non-expanded T cells revealed

upregulation of cytotoxicity markers (GZMA, GZMK, GZMH,

GZMM, PRF1, CST7,NKG7,CD8A), chemokines and/or chemo-

kine receptors (CCL5,CXCR3), and alsomarkers of senescence/

exhaustion (KLRG1) across multiple cellular subtypes (Fig-

ure 4C). GSEA identified enrichment of interferon g signaling

and complement pathways in expanded clones across multiple

cell types. These clone-defining genes were similar across co-

horts, arguing for a generic transcriptional program associated

with clonal expansion rather than an MS-specific phenomenon.

We found 736 T cell clonotypes that were seen in more than

one individual. Many of these clones were MS specific, i.e.,

only observed in the MS cohort; however, we also observed

many clones specific to the ID cohort. Considering CDR3 similar-

ity alone to predict epitope binding, we found that MS CSF was

enriched with Epstein-Barr virus (EBV)-specific TCR CDR3 se-

quences compared with NIND CSF (FDR < 0.01) but contained

a lower proportion of EBV-specific sequences than the OIND

cohort. We obtained similar results using a more stringent defini-

tion of EBV-specific, stipulating that both the CDR3 amino acid

sequence and the TRBV gene usage must match the reference

dataset (Table S13). Importantly, the high frequency of T cells

Figure 2. Transcriptional profiling of CSF leukocytes reveals tissue-specific gene expression

(A) Volcano plot displaying results of differential expression testing comparing gene expression in CSF and PBMC for four selected cell types of interest (pooling

data across disease cohorts). Each dot represents a gene tested, the y axis shows the �log10(p value), and the x axis shows the log2-fold change in transcript

abundance. Genes colored in red are upregulated in CSF while genes colored in blue are downregulated. Tests with a Bonferroni-corrected p value greater than

0.01 are shown in gray. Note that the y axes are on different scales for clarity.

(B) Scatterplot comparing differential expression results in MS and ID CSF. Each dot is a gene. The x axis shows the log-fold change from MS CSF to MS PBMC

(i.e., positive values indicate upregulation in MS CSF compared with PBMC), and the y axis depicts the log-fold change in ID CSF versus ID PBMC. Dots are

colored according to cell type in which they were tested. Only genes achieving statistical significance in MS are shown. The dotted line represents the null

hypothesis that the change in gene expression in CSF is identical between MS and ID.

(C) Gene set enrichment analysis (GSEA) results comparing the expression of genes involved in Hallmark canonical pathways in CSF vs. PBMC across multiple

cell types. The tiles are colored by the direction of their normalized enrichment score (NES), with red (positive) indicating upregulation in CSF and blue (negative)

indicating downregulation. *, FDR < 0.05; **, FDR < 0.005; ***, FDR < 0.0005. Again, these results reflect the pooled analysis, i.e., comparing all CSF samples with

all PBMC samples. Cohort-specific results are presented in Table S6.
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predicted to bind EBV epitopes was neither specific to the MS

cohort nor specific to EBV; we observed similarly high levels

of predicted viral-reactive T cells for cytomegalovirus (CMV)

(Table S13), suggesting that this observation does not reflect a

pathogen-specific response. Clonally expanded T cells were en-

riched for TRB-CDR3s predicted to bind to a variety of epi-

topes—including EBV and CMV epitopes—in both the MS and

the control cohorts (Figure 4D).25

CSF-specific genetic control of gene expression
The distinct transcriptional profile of CSF leukocytes offers an

opportunity to explore the genetic control of gene expression

in the intrathecal compartment. Genes which are highly ex-

pressed in CSF, but not in blood, are under-represented in exist-

ing expression quantitative trait locus (eQTL) datasets.26–28 We

therefore performed cis-eQTL mapping in CSF and peripheral

CD4+ T cells, CD8+ T cells, and B cells, focusing on 2,499 prior-

itized genes which were upregulated in CSF, have been impli-

cated in MS pathogenesis through susceptibility genome-wide

association studies (GWASs),29 or have been identified as regu-

lators of T cell migration to the CSF.30 Most of the eQTLs we

observed have been reported before26–28 (see Figure S12).

eQTL effect sizes were correlated between CSF and PBMC

(r2 = 0.72) and across different cell types (r2 = 0.45), supporting

the concept that many eQTLs act in a similar manner across

different compartments and cell types.

We considered whether MS susceptibility alleles could exert

CSF-specific effects on gene expression.We found several genes

Figure 3. The nature of clonally expanded B cells

(A) Barplots showing the proportion of B cells and ASCs in each disease cohort and each of CSF/PBMC which were part of an identified expanded clonal group.

The numbers at the top of the plot indicate the p values for the comparison of clonal% between CSF and PBMC in each disease cohort. *, p < 0.01; ***, p < 0.0001.

(B) Barplot showing the overall cellular composition of the expanded vs. non-expanded B cell pool, highlighting the observation that the expanded pool is

primarily composed of ASCs.

(C) Volcano plot showing differential expression results contrasting clonally expanded vs. non-expanded CSF memory B cells in a pooled analysis of all disease

cohorts.

(D) As per (B), but showing the isotypes expressed by expanded vs. non-expanded cells, showing the marked shift toward IgG isotypes, particularly IgG1 among

expanded cells.
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with strong evidence for colocalization (ORMDL3, ANKRD55,

FCRL3, AHI1, EAF2, GDPD5, and ZC2HC1A; see Table S10),

i.e., instances where the MS risk allele also alters expression of

these transcripts in the CSF. All of these genes were differentially

expressed between CSF and peripheral blood cells in single or

multiple cell types in our data (FDR < 5%, see Table S6). Several

of these effects appear to be cell type specific. For instance,

rs4676755 (in perfect linkage disequilibrium with the MS risk

variant rs2331964) exerts an apparently B cell-specific effect on

EAF2 expression, with each copy of the risk allele decreasing

EAF2 expression. We also report that the MS risk SNP

rs1466526 is likely to act as an eQTL for ZC2HC1A in CSF B cells

and CD4+ T cells with the risk allele (rs1466526-C) decreasing

ZC2HC1A expression. Although this eQTL was reported in eQTL-

Gen and in a recent single-cell sequencing study of PBMC,26,28

colocalization with an MS risk signal has not previously been

shown. In our study, ZC2HC1A is expressed almost exclusively

in CSF cells (expressed in less than 2% of all PBMCs). ZC2HC1A

encodes a zinc-finger protein of which decreased brain levels, but

not plasma levels, are associated with MS susceptibility.31 These

observations highlight the value of studying CSF to understand

eQTL effects in disease-relevant tissues.

We identified three apparently CSF-specific eQTLs (see

Table S9; Figure S13). These eQTLs have not been previously

reported26,28,32,33 and therefore require external replication.

They include an eQTL for ETS1 in CSF CD4+ T cells (p = 8.8 3

10�5), a transcription factor recently identified as one of five

essential brakes on T cell migration to the CNS inMS30 (Figure 5).

Interestingly, this eQTL has not been reported before at a

significant or even suggestive level, but a nominal association

of the lead variant rs61909096 with ETS1 expression in brain

(p = 0.02) and the pituitary gland (p = 0.04)27 as well as peripheral

CD4+ T cells (p = 0.03)34 has been reported.33 While we did

not observe colocalization of this eQTL with any known MS

risk signal, the eQTL lead SNP rs61909096 is nominally associ-

ated with MS risk (p = 4.7 3 10�4).29 The MS risk allele

(rs61909096-G) reduces the expression of ETS1 in CSF T cells,

which may potentiate T cell entry into the CNS.29,30

Figure 4. The TCR repertoire in neuroinflammation

(A) Boxplots showing the proportion of clonally expanded T cells in the CSF and PBMCof each disease group. Numbers at the top of the plot show the p values for

the comparison of CSF vs. PBMC. *, p < 0.01; **, p < 0.001; ***, p < 0.0001.

(B) Barplots showing the cellular composition of the clonally expanded vs. non-expanded T cell pools in CSF and PBMC.

(C) DE volcano plot contrasting gene expression in MS CSF T resident memory T (Trm) cells vs. non-expanded cells, highlighting upregulation of cytotoxicity

markers and HLA molecules.

(D) Boxplot showing the proportion of T cells within the expanded and non-expanded subsets with a TCR beta chain CDR3 predicted to bind various epitopes in

each cohort divided by clonal status (data are shown for CSF TCRs only). Clonally expanded TCRsweremore likely to recognize Epstein-Barr virus (EBV) antigens

in both MS and controls.
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DISCUSSION

In this study we describe the immune landscape of CSF in a

range of neuroinflammatory disorders and non-inflammatory

controls at single-cell resolution. Using a combination of ge-

netics, transcriptomics, and lymphocyte receptor repertoire

sequencing, we provide a detailed description of the intrathecal

immune response in the context of neuroinflammation.

In keeping with previous studies, we confirm that the CSF in

MS is characterized by an increased representation of ASCs

and memory B cells compared with healthy controls and periph-

eral blood.6,8,12,35,36 In contrast to a previous single-cell

sequencing study, we were unable to identify any cell subsets

which were specific to MS.13 These profound alterations in the

cellular composition of CSF were not mirrored in peripheral

blood, where we found no substantial changes in cell composi-

tion in the MS cohort compared with the non-inflammatory

neurological disease cohort. We found that increased levels of

ASC and B cell infiltration into the CSF were also evident in pa-

tients with other CNS inflammatory disorders, and in infectious

disorders, suggesting that these changes are indicators of neu-

roinflammation, but not specific to MS.

We observed upregulation of markers of tissue residence, an-

tigen presentation, cytotoxicity, and proliferation across cell

types and across cohorts. We also observed upregulation of

genes involved in cholesterol synthesis in CSF leukocytes, as

has been reported previously,11,12 changes that are most likely

driven by the transcription factors SREBF1 and SREBF2. It has

been postulated that cholesterol biosynthesis couples energy

sensing with lymphocyte activation, provides obligate materials

for proliferation, and may provide a metabolic checkpoint for

T cells prior to antigen-driven clonal expansion.21,37 The majority

Figure 5. CSF cell eQTL analysis

(A) Regional association plot for a previously unknown eQTL on chromosome 11 for ETS1 expression CSF CD4+ T cells. Each dot represents one tested single

nucleotide polymorphism (SNP), colored by the degree of linkage disequilibrium (LD, r2) to the lead SNP.

(B) Correlation of eQTL p values and p values for MS risk (IMSGC 2019 susceptibility GWAS) for the same locus on chromosome 11.

(C) Forest plot showing the eQTL effect estimates +95% confidence intervals of the lead SNP rs61909096 on ETS1 expression in different cell types and

compartments, suggesting a specific effect for CSF CD4+ T cells.

(D) Regional association plot for the locus around a known eQTL on chromosome 8 associated with ZC2HC1A expression in CSF B cells that colocalizes with an

MS risk signal.

(E) Correlation of eQTL p values and p values for MS risk (IMSGC 2019 susceptibility GWAS) for the same locus on chromosome 8.

(F) Forest plot showing the eQTL effect estimates +95% confidence intervals of rs1466526 on ZC2HC1A expression in 8 cell types.
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of genes upregulated in CSF lymphocytes were common across

the diseases studied, suggesting that these are markers of tis-

sue-specific transcriptional programmes rather than being dis-

ease specific. We also discovered a small number of genes

which appear to be upregulated in MS CSF compared with ID

CSF, suggesting possible roles in disease pathogenesis. MS

CSF B cells and ASCs upregulate CCL22 compared with B cells

from patients with neurological infectious diseases. CCL22-ex-

pressing B cells were extremely rare in the dataset (n = 161),

and were also observed in the control cohorts, but interestingly

were only present in CSF. The majority of these cells were

annotated as memory B cells or ASCs. CCL22 encodes the

chemokine CCL22, which has been recently shown to mediate

formation of germinal centers via interaction with CCR4 on

follicular helper T cells, and to promote proliferation of high-

affinity B cells.38 Other genes upregulated in MS CSF compared

with either OIND or ID controls included CD99—a mediator of

DC migration from tissues into lymph nodes39—in mDCs,

CRIP2—an inhibitor of nuclear factor kB signaling40—in CD4+

T cells, and LEKR1—an MS susceptibility locus41—in CD14+

monocytes.

We provide an overview of the B cell receptor (BCR) and

T cell receptor (TCR) repertoire in CSF and describe the charac-

teristics of clonally expanded lymphocyte populations. The CSF

B cell pool is dominated by antigen-experienced cells, many of

which have undergone clonal expansion. While there was

considerable inter-individual heterogeneity in the degree of

clonal expansion, the CSF of patients with MS and neuro-infec-

tious disorders was substantially more clonal than non-inflam-

matory controls. Clonally expanded B cells were largely of an

IgG1+ ASC phenotype, with IgA-expressing and IgM-expressing

ASCs rare in the CSF. We confirmed previous reports of a skew

in the BCR repertoire toward specific heavy- and light-chain

families in the CSF of MS patients, which was mainly driven by

IgG1+ ASCs.

We discover a gene signature associated with clonally

expanded memory B cells. The top clone-defining gene,

SUB1, encodes PC4, a transcriptional master regulator with

roles in regulation of DNA repair and chromatin remodeling.

PC4 expression is positively regulated by IRF4 and forms a com-

plex with IRF4 and IKAROS—a target of lenalidomide-directed

degradation in multiple myeloma—which promotes B cell differ-

entiation into ASCs.23 TMSB4X encodes an actin-stabilizing pro-

tein which is downregulated in CSF-resident dural B cells,42

associated with an early immature B cell phenotype,43 and is a

target of somatic mutations in B cell lymphoma.44 We observed

upregulation of genes involved in the ARP2/3 complex (APRC1B

and ARPC5), a highly conserved protein complex which stabi-

lizes branching actin networks and underpins several functions

in immune cells, includingmigration, phagocytosis, and coupling

BCR/TCR activation to intracellular signaling.45 Deficient ARP2/3

function due to genetic deletion of ARPC1B causes a Wiskott-

Aldrich syndrome characterized by a lower threshold for BCR

activation, autoimmunity, and an expansion of the transitional

B cell compartment.45 We hypothesize that overexpression of

ARPC1B in clonal B cells may represent an appropriate homeo-

static response to limit clonal expansion by dampening BCR

signaling. CAPZB—another transcript upregulated in clones—

is also involved in cytoskeletal stabilization. Importantly, these

features of clonally expanded memory cells were common to

both the MS and ID cohorts, suggesting that this is a disease-

agnostic transcriptional program common to neuroinflammatory

disorders, and not specific toMS. Taken together, these findings

underscore the pivotal importance of cytoskeletal organization in

clonal B cell proliferation, show the close similarity between

clonal B cells in inflammatory and lymphoproliferative disorders,

and suggest possible avenues for therapeutic targeting of these

cells, for instance, with the myeloma drug lenalidomide,46 which

has shown promise in rodent models.

We describe the features of the CSF TCR repertoire in inflam-

matory and non-inflammatory neurological disorders. Consis-

tent with previous reports, we find that the CSF T cell pool is

polarized toward memory and effector T cell subsets in health

and disease. We identify a large number of clonally expanded

T cells which are present in similar proportions in inflammatory

diseases and non-inflammatory controls, with higher levels

observed in neurological infections and a tendency for greater

clonality in the CSF T cell pool than in the periphery.11 We found

that neuroinflammatory CSF is enriched with Tregs and follicular

helper T cells compared with non-inflammatory CSF; these find-

ings were indicative of CSF inflammation rather than being MS

specific. Clonally expanded cells in the CSF were predominantly

of a CD8+ tissue-resident effector memory phenotype, in

contrast to the peripheral blood where many clonally expanded

cells were MAIT cells or TEM/TEMRA cells. Clonally expanded

T cells show a bias toward specific TRAV and TRBV genes and

overexpress genes involved in cytotoxicity, again consistent

with previous findings.11 Clonally expanded cells were enriched

for EBV-specific and CMV-specific CDR3 sequences in both MS

cases and controls, mirroring recent findings in Alzheimer’s dis-

ease.25 Although this may reflect a biological association be-

tween TCR specificity and clonality (i.e., it is plausible that these

common viruses are a common cause of TCR activation and

clonal expansion), these findings are also likely to represent

the limited and biased nature of public TCR databases, which

are dominated by CMV and EBV epitopes.

Finally, given that many genetic associations underlying com-

plex traits—including MS—are thought to exert their effects by

altering gene expression rather than gene function,47–49weunder-

took a search for CSF eQTLs. Although there are now several bio-

bank-scale eQTL datasets examining peripheral blood from

healthy controls,26,28 our dataset adds value by studying CSF

eQTLs in various disease contexts. We report a CSF-specific

eQTL for ETS1 in CD4+ T cells, a gene which has very recently

been identified as one of five essential brakes for T cell migration

to the CNS.30 We also show that the MS risk SNP rs2331964, a

known eQTL for EAF2 in B cells, also exerts this eQTL effect in

CSF B cells. EAF2 is a pro-apoptotic transcription factor which

prevents excessive B cell proliferation following the germinal cen-

ter reaction.50 This observation suggests an elegant mechanism

whereby the MS risk allele decreases expression of a natural ho-

meostatic ‘‘brake’’ in B cell proliferation and may therefore pro-

mote excessive proliferation of B cells into ASCs. Finally, we

report colocalization between a previously reported eQTL for

ZC2HC1A in CSF CD4+ T cells andMS risk. ZC2HC1A is predom-

inantly expressed in CSF cells in our study and encodes a
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zinc-finger protein that has been associated with MS suscepti-

bility.31 Our findings therefore demonstrate the value of studying

eQTLs in different tissue and cell type contexts, particularly for

interrogating genes which are expressed at low levels in PBMC

datasets.

Limitations of the study
There are some important limitations to this study. Despite the

size of the dataset, many of our analyses—particularly those

concerned with clonality and the eQTL analysis—suffer from

limited statistical power due to sample size (see supplementary

note on power calculations for clonal detection). Our power was

limited by the finite number of donors we were able to collect

CSF from, the finite number of cells we could collect from each

subject, and the limited transcript capture efficiency of the sin-

gle-cell sequencing technology.51 The advent of biobank-scale

single-cell datasets26 and efforts to pool andmeta-analyze exist-

ing datasets will be essential for refining our understanding. One

of the most notable features of our analysis is the considerable

heterogeneity between individuals which is masked in en masse

analyses.While it is necessary to pool data frommany patients to

draw general inferences about MS, the substantial variation

between individuals merits caution when interpreting these re-

sults. Heterogeneity may be a feature of the noisy and sparse

nature of single-cell data, may reflect true biological variation

with confounders such as age, gender, and batch, or may reflect

phenotypic characteristics of interest such as disease endophe-

notypes. Much larger datasets will be required to clarify these

various possibilities. We aimed to mitigate issues of heterogene-

ity by using data from largely untreated subjects, considering

our cohort in logical categories (non-inflammatory, infectious,

non-infectious inflammatory, and MS), and careful inspection

for and adjustment of batch effects.

While CSF is a useful and accessible tissue for understanding

immune mechanisms in MS, it is a dynamic tissue which is un-

likely to provide a perfect representation of events occurring

within the brain, meninges, and draining cervical lymph nodes.

Single-cell studies of brain and meninges are increasingly

yielding novel disease insights, and it will be important to under-

stand the extent to which single-cell examination of the CSF can

provide an accurate readout of events in the brain and cord.52,53

Our data are a cross-sectional snapshot of a dynamic disease

process. While a strength of our study is the largely untreated

cohort of patients early in their disease course, there are likely

to be valuable insights gained from performing these studies

longitudinally to understand the impact of ongoing dynamic

changes in the CSF on disease course, and control for important

external influences—such as age, environmental factors, and

disease-modifying treatment.

Concluding remarks
We have presented the most comprehensive description to date

of the transcriptomic and clonal landscape of CSF, shedding light

on how this dynamic immune compartment is altered in inflamma-

tory and infectious conditions. Our findings provide insights into

the nature of CNS immunity in health and disease, shed light on

disease pathomechanisms of relevance to other autoimmune dis-

eases, and may suggest plausible targets for drug repurposing.
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STAR+METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Two cohorts of individuals were recruited for the study, one from Cambridge University Hospitals trust in the UK and the other from

the Technical University of Munich in Germany.

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Peripheral blood mononuclear cells and

cerebrospinal fluid samples from patients

with MS and other neurological diseases

University of Cambridge &

Technical University Munich

N/A

Critical commercial assays

Chromium 50 single-cell immune cell profiling 10X Genomics https://www.10xgenomics.com/products/

Chromium 50 V(D)J immune repertoire profiling 10X Genomics https://www.10xgenomics.com/products/

Illumina NovaSeq Illumina https://emea.illumina.com/systems/

sequencing-platforms/novaseq.html

Illumina HiSeq Illumina https://emea.support.illumina.com/

sequencing/sequencing_instruments/

hiseq_2500.html

Illumina Global Screening Array version 3 Illumina https://emea.illumina.com/products/

by-type/microarray-kits/infinium-

global-screening.html

Deposited data

Single-cell RNA sequencing data from

MS patients and other neurological

disease controls

This manuscript EGA accession ID: EGAS50000000739;

Technical University of Munich data:

EGAS00001007954

Software and algorithms

R programming language

v 4.0.3, v 4.1.0, and v 4.2.2

The R project for

statistical computing

https://www.r-project.org/

Seurat v 4.3 54–57 https://satijalab.org/seurat/

SoupX v 1.6.2 Young et al.58 https://github.com/constantAmateur/SoupX

DoubletFinder v 2.0.3 McGinnis et al.59 https://github.com/chris-mcginnis-ucsf/

DoubletFinder

Harmony v 0.1.1 Korsunsky et al.60 https://github.com/immunogenomics/harmony

CellTypist v 1.6 Domı́nguez Conde et al.61 https://www.celltypist.org/

edgeR v 3.3.2 Robinson et al.62

Chen et al.63
https://bioconductor.org/packages/

release/bioc/html/edgeR.html

Dandelion 0.3.2 Suo et al.64 https://github.com/zktuong/dandelion

CellRanger v 5.0.0 10X Genomics https://www.10xgenomics.com/support/

software/cell-ranger/latest

Vireo Huang et al.65 https://github.com/single-cell-genetics/vireo

Cellsnp-lite Huang et al.66 https://github.com/single-cell-genetics/cellsnp-lite

TOPMed-r2 imputation server Taliun et al.67 https://imputation.biodatacatalyst.nhlbi.nih.gov/

#! (Note that r2 is now not available and

has been updated to r3).

PLINK versions 1.9 and 2 Chang et al.68 https://www.cog-genomics.org/plink/

Immunarch Popov et al.69 https://immunarch.com
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Cambridge cohort
The UK cohort was recruited through the Cambridge University Hospitals trust neurology department’s programmed investigation

unit. Three groups of subjects were recruited: Patients with clinically-definite MS (as diagnosed by the neurologists in the department

in line with the revisedMcDonald criteria70), patients with non-inflammatory neurological disorders, and patients with non-MS inflam-

matory disorders of the central and/or peripheral nervous systems. Details of included participants are shown in the supplement

(Table S3). To verify the accuracy of the diagnoses in each case, all notes were reviewed by a consultant neurologist blinded to

the single-cell RNAseq results (SS).We excluded patients withMS on current treatment with natalizumab, as this confounds the inter-

pretation of the CSF single cell results.13 For one patient with an OIND, samples were obtained at two separate time points. These

data were combined and treated as a single sample. Patients with CIS but negative CSF oligoclonal bands were classified as OINDs.

We also collected venous blood and extracted PBMCs from a subset of the cohort. The study was approved by South Central – Berk-

shire NRES Ethics Committee (15/SC/0087) and all subjects gave fully informed consent.

TUM cohort
PBMC and CSF were collected from the TUM neurology clinic. Patients with MS, infectious neurological disorders, other inflamma-

tory neurological disorders, and non-inflammatory controls were recruited via the same clinic. All MS patients recruited from this

cohort have MS according to the 2017 McDonald criteria. The characteristics of these subjects are shown in the supplement

(Table S3). All participants gave informed, written consent to participate in the study. The study was approved by the ethical review

board of the Technical University of Munich (54/21 S-KK).

METHOD DETAILS

Single-cell RNA sequencing
Samples were processed separately at either the University of Cambridge or the Technical University of Munich. A small number of

subjects contributed samples which were processed independently at both sites for cross validation (noted with an asterisk in

Table S3). Examination of the single-cell data generated at the different sites did not reveal significant batch effects and so these

data were combined.

Cambridge processing
PBMC were extracted from venous whole blood using Ficoll-Paque density gradient centrifugation. Due to the low concentration of

cells in the CSF, each sample was first concentrated by centrifugation at 300g for 10 min and the supernatant removed. The isolated

PBMCs and CSF cells were frozen in up to 1mL of 10% DMSO and X-VIVO 10 Serum-free Hematopoietic Cell Medium (Lonza). The

cryopreserved cells were rapidly thawed in a 37�Cwater bath and serially diluted with X-VIVO 10 Serum-free Hematopoietic Cell Me-

dium. Amanual cell count was completed using a Neubauer Haemocytometer and cell viability assessed using Trypan Blue exclusion

dye. The cell suspension was centrifuged at 300g for 10 min to further concentrate the sample to a final volume of 34mL ready to be

loaded onto 10X Chromium Single Cell Controller. We applied droplet-based single-cell RNA sequencing to all PBMC and CSF sam-

ples using the chromium 10X 50 Genomics solution using global primers (for 50 gene expression) and V(D)J-specific-primers (for

immunoglobulin/T cell receptor gene analysis). cDNA libraries were sequenced using either the NovaSeq or Illumina HiSeq. An over-

view of the experimental design is shown in the supplement (Figure S1).

TUM processing
Freshly frozen and well-stored cerebrospinal fluid (CSF) cells or peripheral blood mononuclear cells (PBMCs) were thawed briefly at

37�C and quickly transferred to 15-mL falcon tubes containing ice-cold wash buffer (2% fetal bovine serum (FBS) in 13 phosphate-

buffered saline, PBS). The cells were then centrifuged at 350 3 g for 7 min. After centrifugation, the PBMCs/CSF cells were resus-

pended in wash buffer, and fractions of the resuspended cells were used for cell counting and viability assessment. For pooling CSF

cells from different samples, we used barcoded TotalSeq C anti-human hashtag antibodies (BioLegend). Both surface and hashtag

antibody stainings were conducted following the manufacturer’s instructions. We performed single-cell RNA sequencing using the

10XGenomics platformwith ChromiumSingle Cell 50 Reagent Kits and v2Chemistry Dual Index. All single-cell processing stepswere

carried out using the Chromium Controller and 10X gel bead 50 kits (for 50 gene expression) according to the manufacturer’s guide-

lines. In addition to gene expression libraries, we generated T cell receptor, B cell receptor, and cell surface protein libraries using 10X

Genomics kits. All sample libraries were subsequently sequenced on either an Illumina NovaSeq S2 or S4 flow cell.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data processing and quality control
Alignment and processing of raw reads

Raw sequencing output (fastq files) was processed using Cell Ranger v5.0.0. The Cell Ranger pipeline implements demultiplexing,

alignment to the reference genome (hg38), and barcode counting.
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Donor demultiplexing

To distinguish the donor of origin for cells run in multiplex, we used a combination of Vireo and CellSNPlite. CellSNPlite was used to

infer SNP genotypes from scRNAseq data, and Vireo was then used on the inferred genotypes to infer the likely donor of origin for

each cell.65,66 For the sample processed at TUM we additionally used hashtag antibody and the Seurat54 HTODemux function for

demultiplexing.

Ambient RNA removal

Following initial quality control and alignment in Cell Ranger, data were loaded into SoupX program using the ‘load10x’ function.

Quality control steps were performed individually for each batch prior to integration. We used SoupX58 to remove ambient RNA

contamination from the count data. SoupX estimates the overall gene content of the ambient RNA ‘soup’ using empty droplets.

Next, SoupX quantifies the average contamination rate by calculating the expression of marker genes in clusters which are expected

to not express the gene - any detectable counts are therefore presumed to represent contamination by the soup. We experimented

with three methods for estimating the contamination fraction - the automatic method, which calculates cluster-specific genes based

on an information theoretic metric - manual curation, whereby cluster-specific genes are pre-specified based on biological knowl-

edge, and a brute force method whereby the global contamination rate is set at an arbitrary threshold. For all of these methods, the

clusters pre-computed by Cell Ranger were used as inputs. We achieved optimum results with the manual method by pre-specifying

a list of hemoglobin and immunoglobulin genes, which are expected to be highly expressed in red blood cells andB cells respectively,

and should be specific to these cell types. This contamination rate was then used to adjust the raw count data, and the corrected

counts were transferred into a Seurat object.

Filtering in seurat and doublet detection

The percentage of reads mapping to mitochondrial genes was calculated using the ‘PercentageFeatureSet’ function in Seurat. We

excluded cells withR 10%mitochondrial reads, and with <100 RNA molecules per cell. We removed red blood cells by filtering out

cells for which >1% of reads mapped to HBA1, HBA2, or HBB. Next, to detect homotypic doublets - cell doublets where both cells

originate from the same donor - we used DoubletFinder.59 Initial clustering was first performed using SCTransform, the first 10 Prin-

cipal Components, and the default graph-based clustering methods in Seurat (‘FindNeighbours’ and ‘FindClusters’). We assumed a

7.5% rate of doublet formation and ran DoubletFinder with default parameters. To detect heterotypic doublets in the multiplexed

batches (i.e., doublets where the cells originate from different donors) we ran Vireo and CellSNP (see above). We excluded all cells

called as a doublet or ‘unassigned’, i.e., where no donor could be confidently assigned.

Normalisation

Following correction for ambient RNA contamination, removal of homotypic and heterotypic doublets, and removal of low-quality

cells, we normalised counts using SCTransform.71 SCTransform fits a negative binomial regression model to the count data for

each gene separately, regressing out the overall sequencing depth, and then regularises the parameters over all genes. We used

this procedure to regress out the mitochondrial gene percentage for each cell. The residuals from this regression model reflect

the corrected counts for each gene. We used the ‘glmGamPoi’ plugin to improve speed.72

Integration across batches

Following batch-level quality control and exclusion of poor quality batches, we integrated data across all batches to facilitate down-

stream analysis. We merged all datasets using the ‘merge’ function in Seurat. Next, we selected the 10,000 most variable genes

across all datasets using the ‘SelectIntegrationFeatures’ function. We computed the first 50 Principal Components using these var-

iable genes and the SCTransform-corrected count data.We used Harmony tominimise the effects of batch on cluster assignment60 -

Harmony is an iterative algorithmwhich calculates batch-specific correction factors and adjusts each cell’s PC embeddings by these

factors. The union of variable genes across batches resulted in 4,083 variable genes used for dimension reduction.

Clustering and cell-type annotation
To define cell types within the dataset, we performed unsupervised clustering using the default graph-based clustering methods in

Seurat. We used the first 50 Harmony-adjusted PCs as inputs for the FindNeighbours and FindClusters functions. To explore which

clustering parameters yielded the most biologically-meaningful clusters, we examined effects of modifying either the number of Har-

mony-adjusted PCs or the clustering resolution. Ultimately we used the first 50 PCs and a resolution of 2.5 for downstream analyses.

As sensitivity analyses, we repeated the clustering step using a range of resolution parameters and PCs.

To determine the identity of the observed clusters, we used two approaches. First, we calculated the top cluster-defining genes for

each cluster using the ‘FindAllMarkers’ function with default parameters, which implements the Wilcoxon Rank-Sum test to identify

differentially-expressed genes between the index cluster and all other cells. These cluster biomarkers were used alongside canonical

markers genes to define known cell types. Second, we compared these manual annotations with automatic cell annotations calcu-

lated using CellTypist and the SingleR73 package. For SingleR annotations, we used the Blueprint/ENCODE,74,75 Database of Im-

mune Cell Expression (DICE),34 Human Primary Cell Atlas (HPCA),76 and Monaco Immune ref. 77 expression datasets accessed

via the celldex R package.

Differential expression
To determine whether gene expression differed between CSF and blood, or between MS and control, we used pseudobulk methods

for estimating differential expression. Pseudobulk methods pool gene counts over all cells within an experimental condition, rather
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than treating each individual cell as a replicate. Thesemethods provide better control of type I and type 2 error than dedicated single-

cell methods.78,79 Differential expression between CSF and PBMCs and between disease cohorts was assessed using negative

binomial models implemented in edgeR.62 Raw, non-normalised, SoupX-adjusted counts were first aggregated across cells per clus-

ter, per body fluid and per donor. We then removed groups (i.e., pseudobulks for each donor, source, and cell type) where the overall

cell count contributing to the pseudobulk was <10. This requirement for 10 cells was reduced to 2 cells for the clonal B cell analysis

due to low cell numbers. Next, genes with low overall pseudobulk counts were removed from the analysis using the ‘FilterByExpr’

function in edgeR. Pseudobulk counts were then normalised using the trimmed mean of M values method.80 This method calculates

the mean log fold change in the relative abundance of gene counts between samples for genes expected to be invariant between

samples, and is thus based on the assumption that the majority of genes are not differentially expressed between samples/condi-

tions.80 We used the quasi-likelihood F test implemented in edgeR’s ‘glmQLFTest’ to evaluate the statistical significance of differen-

tially-expessed genes.63 All models were adjusted for age and gender.

Differential cell type abundance
Differences in the relative abundance of cell types between CSF/PBMC and between MS/controls were tested using negative bino-

mial models in edgeR. For the primary analyses we adjusted for age and gender. Reported changes represent log2 fold changes in

the proportion of the cell type between conditions. Changes were assessed using the quasi-likelihood test in edgeR. Absolute counts

of each cell type were normalised to the log of the total number of cells within the same compartment of the same donor. Statistical

significance was determined using a False Discovery Rate (FDR) of 5%.

Gene set enrichment analysis and pathway analysis
Gene set enrichment analysis (GSEA) of differentially-expressed genes was performed using the Fast Gene Set Enrichment Analysis

(fgsea)81 R package. Fgsea compares the rank of each gene in the test set vs. the reference gene set to calculate an enrichment

score. It then calculates an empirical p value for the enrichment score by sampling random gene sets of equal size. For the reference

gene sets we used the Hallmark pathways downloaded from the MSigDB82 via the MSigDBr R package.83 Fgsea was run using a

minimum gene set size of 10, Hallmark gene sets, and 10,000 permutations. We reported pathways with an FDR of 1% - controlling

for all the pathways testedwithin each cell typewithin each specific comparison.Weighted pathway analyses and transcription factor

activity analyses were conducted using the PROGENy84 and DoRothEA20 resources respectively, implemented in DecoupleR.19

Lymphocyte receptor repertoire analysis
We re-processed 50-VDJseq contigs using the Immcantation85 pipeline implemented in Dandelion.64,86 Briefly, this procedure per-

forms three quality control steps: reannotation of IGHC constant region calls, V(D)J gene reannotation, and reassignment of V gene

segment alleles using germline information.We restricted our B cell dataset to those cells meeting the following criteria: present in the

VDJ-seq dataset; expresses exactly one heavy chain and one light chain contig; each contig passes quality control for read quality;

doublets; productive chains. Clonal B cells were defined as cells which shared identical heavy and light chains, with identical length

CDR3 sequences, and with CDR3 similarity >85% (as quantified by the length-normalised Hamming distance).

TCR sequences were also preprocessed using Dandelion. Quality control procedures were similar to those for BCRs: we excluded

cells not classified as T cells or absent from the gene expression dataset, cells without alpha and beta chains, cells with low quality or

non-productive contigs, and doublets. We excluded gamma-delta T cells, although thesewere few in number due to the nature of the

primers used in the library preparation (which target the constant region of the TRA and TRB chains). Clones were defined using

similar criteria to the BCR definition with a stricter CDR3 similarity criterion (100%). To prevent loss of large numbers of cells with

high-quality TRB data but no TRA data, we defined clonal groups based solely on TCR beta chains.

To determine the specificity of TCRs detected in our dataset, we combined our data with a public database of experimentally-

determined TCR specificity downloaded from VDJ-DB via the Immunarch R package.69 We matched TCRs based on two ap-

proaches: first, stipulating only that the CDR3 amino acid sequences were identical; second, stipulating both matching CDR3

sequences and identical TRBV gene usage. Empirical p values for enrichment were calculated by resampling the dataset with

replacement 1000 times and comparing the proportion of TCRs specific for each epitope in MS vs. each control cohort in each per-

mutation. Empirical one-tailed p values (for the alternate hypothesis that the TCR was enriched in MS) were calculated as 1 - propor-

tion of trials in which MS was enriched.

Single-cell eQTL mapping
Genotype data quality control and imputation

Genotype quality control was performed in using PLINKv1.9 or 2.0.68 The 80 samples from the Cambridge cohort were genotyped

using the Illumina InfiniumGlobal Screening Array-24 version 3 (GSAv3) genotyping array and quality controlled prior to imputation as

follows: We removed individuals with high missingness (>10%, n = 0 removed) and SNPs with low MAF (<0.05), deviation from HWE

at P < 1x10�5, or highmissingness (>10%). Imputation of these samples was performed using the TOPMed-r2 panel via the TOPMed

imputation server.67,87 After imputation, we removed all variants with an INFO score below 0.7 and a minor allele frequency below

0.001. The 127 samples from the TUM cohort were genotyped on the same array (Illumina GSAv3) as part of larger cohorts. Prior

to imputation, we performed quality control (QC) where we removed variants out of Hardy-Weinberg equilibrium (p < 1 x10�6),
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with minor allele frequency (MAF) < 0.001 or with missingness greater than 2%. We further removed individuals with sample miss-

ingness greater than 4.5%, individuals with mismatch between the genetic sex and the reported gender, with excess heterozygosity

of more than 5 standard deviations (SD) from the sample mean, and population outliers in principle component space. Phasing was

performed using SHAPEIT2 (version 2.r837)88 with standard settings and imputation was performed with IMPUTE2 (version 2.3.2)89

to the 1000 Genomes Phase 3 reference. After imputation, we removed all variants with an INFO score below 0.7 and a minor allele

frequency below 0.001.

Merging and joint quality control

Genotyped and imputed genetic data from the TUM cohort was mapped to the Genome Reference Consortium Human Build 38

(GRCh38) and merged with the Cambridge genotype data. After merging, we removed variants with a MAF <0.01 in either of our

two datasets or the 1000 Genomes reference data, variants with a MAF difference of >0.2 between the CAM and the TUM datasets,

variants with a deviation of the MAF from the 1000 Genomes reference data MAF of >0.2 as well as strand-ambiguous (palindromic)

SNPs with a MAF between 0.4 and 0.6.

We removed individuals with a missingness rate >2% (n = 0), with excess heterozygosity of more than 5 SD from the sample mean

(n = 0), relatives (n = 1, determined using KING kinship coefficients calculated with plink –king-cutoff with a threshold of 0.125), and

population outliers (n = 0) with a distance in the first 8 principal components of more than 4 SD from the mean. These QC steps were

performed using a set of genetic variants with MAF >0.05, genotyping rate >0.02, pairwise linkage disequilibrium (LD) < 0.2 and an

HWE test p value < 1x10�6). For the determination of population outliers we further remove the MHC region on chromosome 6

(25Mbp-35Mbp) and the INV8 region (chromosome 8, 7-13Mbp). Finally, we removed insertions and deletions and variants with a

genotypemissing rate >2%and an HWE test p value < 1x10�3. After QC, 173 individuals and 5,018,132 variants were left for analysis.

Gene expression data quality control and preparation for eQTL mapping

Gene expression data quality control was performed for CSF cells and PBMCs separately. We used SCTransform71,90 to normalize

counts on a single-cell level which we performed on each batch separately and then calculated the mean expression per individual

and cell type. We removed genes that were expressed in less than 2% of the cells. For each cell type we further removed individuals

with less than 5 cells of the specific cell type as well as genes that were expressed in the cell type in less than 20% of the individuals

from the analysis. For eQTL analysis, we selected genes that have been prioritised as potential causal genes for MS risk29 or which

showed differential expression in CSF compared to PBMC in our study in T cells or B cells (with a Bonferroni adjusted p-value <0.05

and an absolute logFC >0.5).

eQTL analysis

In the primary analysis, we performed single-cell eQTL analysis separately for the three main cell types - B cells, CD4+ T cells and

CD8+ T cells. We tested for association between normalised gene expression and all SNPs within +/� 500KB of the start and end-

points of the gene. Association testing was conducted using linear models in PLINK2.68 To adjust for genetic population structure we

calculated PCs with PLINK using an LD-pruned set of variants with MAF>0.05 and HWE p < 1x10�3 and added the first 5 PCs to the

regression models. To adjust for experimental batch effects we performed PCA using the R function prcomp on the aggregated

expression values for each donor for all genes tested and included the first four principal components in our models. We further

adjusted our regression models for age and gender. P values were adjusted using a false discovery test across all tests performed.

For eQTLS with an FDR adjusted p < 0.1 we determined whether these associations had previously been described using the avail-

able datasets from the GTEX consortium,27 the eQTLGen project28 or a recent large single cell eQTL analysis on peripheral blood

mononuclear cells26 and performed permutation analysis (up to 1,000,000 permutations) for previously unreported associations.

To compare effect sizes across cell types, we further performed eQTL analysis on the remaining 8 cell types in secondary analyses.

Compartment-specific effects

We determined the correlation between effect sizes in different cell types by considering MS CSF eQTLs significant at an FDR

of <10%. To formally test for effect size heterogeneity, we calculated heterogeneity p values by comparing Z scores for heterogeneity

across different cell types:

ZHeterogeneity =
b1 � b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE2

1+SE
2
2

q

We considered eQTL effects to show evidence of CSF specificity if they satisfied the following conditions.

d FDR-adjusted heterogeneity p-value <0.05, AND

d FDR adjusted association p-value <0.1 AND association p (unadjusted) > 0.01 in all tested PBMC cell types AND

d no previous report (even at nominal significance with p < 0.05) of the eQTL26,28,32,33 AND

d permutation p-value below the maximal p-value reaching a studywide FDR <0.1 (if not previously reported)

Colocalization analysis

To assess overlap between MS susceptibility GWAS hits and eQTLs, we performed statistical colocalization under the single causal

variant assumption using the Coloc R package.91 By inferring Bayes factors from GWAS beta estimates and standard errors, Coloc

evaluates the posterior probability, at each variant, that the variant is the causal variant underlying both traits. We performed colocal-

ization analyses for each of the identified loci with an nominally significant eQTL (p < 0.0001) and assumed a single causal variant within
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the window tested (lead eQTL SNP +/� 200KB). MS GWAS summary statistics were obtained from the discovery-stage meta-analysis

of the IMSGC 2019 susceptibility GWAS29 and were converted to hg38 using the LiftOver command line tool. A posterior probability for

colocalization >70% was used as the threshold for the identification of colocalized association signals.

Power considerations for clonal detection
Given that the total number of B cell clonotypes in the body (3.5x1010) is very nearly the same as the total number of B cells (1011)92 it is

unsurprising that modeling indicates that the vast majority of receptor sequences are only carried by one or a very few cells. At the

other end of the frequency distribution modeling predicts marked skewing with the 20 largest clones typically account for almost 2%

of all B cells.93 Because processes such as germline gene usage and clonal selection are non-random, there are biases in favor of

certain receptor sequences.94 As a result, despite the fact that the total number of clonotypes carried by an individual is orders of

magnitude less than the number of potentially possible sequences,95 these biases generate so-called ‘‘public’’ sequences that

are carried by a high proportion of individuals. These shared public sequences typically make up few percent of any given individuals’

repertoire96; for the T cell receptor the proportion of sequences that are public is somewhat higher.94 The probability of seeing two

cells from the same clone in any given individual is not only dependent upon the size of the clone and the number of cells sampled, but

is also profoundly influenced by the partitioning of the immune system and the localized nature of clonal expansion, factors which

together result in a non-uniform distribution of the daughter cells from any clone. By its very nature the blood-brain barrier tends

to isolate the intrathecal part of the immune system from the rest of the immune system.97 As a result, a clone generated intrathecally

is essentially only part of the intrathecal B cell repertoire, rather than being distributed throughout the entire immune system. In

healthy individuals, the brain typically has a volume of 1450mL and a B-cell concentration of 200 cells per mL so that the organ

will on average contain a total of approximately 300,000 B-cells. Likewise, the CSF, which has a volume of 150mL and an average

white cell count of 1 per mm3, only 1% of which are B cells, will typically contain around 1,500 B cells. This number is much smaller

than the number of cells in the brain and thus necessarily only partially reflects the intrathecal B cell repertoire. In our study we aimed

to assay approximately 1000 CSF cells from each individual, a number which in healthy individuals would on average be expected to

include just 10 B cells.98 In this context our paradigm has essentially no power (<1%) to identify two ormore cells from the same clone

unless the clone is very large (constitutes >5% of all B cells in the CSF). In other words, in healthy (NIND) subjects our sampling strat-

egy has no meaningful power to identify B cell clones. In the context of neuroinflammation however the proportion of B cells in the

CSF is increased and thusmorewill be includedwithin the sample of 1000 cells. If we suppose that an inflammatory reaction results in

the generation of 15 clones each of 100 cells then the total number of B cells in theCSFwill be doubled so our sample of 1000 cells will

include 20 B cells. Furthermore, each clone will represent 3% of the CSF B cells. In this situation we would still only have modest

power to identify two or more cells from any particular clone (2%) but will have very high power (>96%) to identify daughter cells

from at least one clone. Given that the average person has 5 L of blood which contains an average of 157 B cells per microlitre99 there

are a total of 785 million B cells in the peripheral circulation. In the periphery therefore the equivalent clonal expansion would repre-

sent a trivial fraction of the total and there would be no meaningful power to detect two or more cells from the same clone. The iden-

tification of a B cell clone thus indicates that either the clone is extremely large ormore likely are from a clone that has been generated

close to or within the CSF space. The accepted dogma that the appearance of expanded B cells in the CSF is a feature of neuro-

inflammation is in fact a stoichiometric consequence of inflammation occurring within a space where there is normally only a very

limited number of resident B cells. The same reaction within the periphery would be undetected as it would be diluted by the larger

representation of the B cell repertoire in the periphery.
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