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Abstract 

Background 

Hypoglycemia, one of the most dangerous acute complications of diabetes, poses a 

substantial risk for vehicle accidents. To date, reliable detection and warning of 

hypoglycemia while driving remains an unmet need, as current sensing approaches 

are restricted by diagnostic delay, invasiveness, availability, and costs. This work 

aimed to develop and evaluate a machine learning (ML) approach detecting 

hypoglycemia during driving through driving and gaze/head motion data.  

Methods 

We collected driving and gaze/head motion data (47,998 observations) during 

controlled eu- and hypoglycemia from 30 individuals with type 1 diabetes (24 males, 

age 40.1±10.3y, HbA1c 6.9±0.7%, 51.9±8.0 mmol/mol) while participants drove with a 

real car. Machine learning (ML) models were built and evaluated to detect 

hypoglycemia based solely on driving and gaze/head motion data.  

Results 

The ML approach detected hypoglycemia with high accuracy (area under the receiver 

operating characteristic curve [AUROC] 0.80±0.11). When restricted to either driving 

or gaze/head motion data only, the detection performance remained high (AUROC of 

0.73±0.07 and 0.70±0.16, respectively).  

Conclusions 

Hypoglycemia can be detected non-invasively during real car driving using an ML 

approach purely based on driving and gaze/head motion data, improving driving safety 

and self-management for people with diabetes. Interpretable ML also provided novel 

insights into behavioral changes when driving in hypoglycemia. 
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Study registration 

ClinicalTrials.gov (NCT04569630, NCT05308095) 
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Introduction 

Despite significant advances in diabetes care, hypoglycemia remains one of the most 

relevant challenges.1 Hypoglycemia significantly affects cognitive, executive, and 

psychomotor abilities,2 posing a significant risk to the safe performance of everyday 

tasks, such as driving. Unrecognized hypoglycemia is likely to cause a substantial 

number of road accidents in individuals with diabetes.3-5 

Existing methods for hypoglycemia detection encompass self-monitoring of blood 

glucose (SMBG) and continuous glucose monitoring (CGM). While SMBG lacks 

proactive warnings, CGM provides permanent glucose readings but is restricted by 

invasiveness, accessibility, costs and time delay.6 The latter is particularly relevant in 

driving, where rapid action must be taken. The considerable and growing number of 

vehicular accidents in people with diabetes,7 emphasizes the need for novel 

hypoglycemia detection approaches. As shown previously, machine learning (ML) can 

be leveraged to infer relevant health states through biomedical signals.8, 9  

Cars produce real-time, high-resolution information on various driving features (e.g., 

velocity, braking, steering, etc.), which are transferred through the Controller Area 

Network (CAN) bus. Driver monitoring cameras (DMCs) capturing gaze and head 

movements are increasingly installed to track driver behavior, also in (semi-) 

autonomous vehicles. A hypoglycemia detection system based exclusively on CAN 

and DMC data (no glucose measurement) may offer a novel, non-invasive and readily 

accessible solution to improve road safety for individuals with diabetes. 

In a proof-of-principle driving simulator study, we recently demonstrated that an ML-

based system using driving and eye tracker data might enable the detection of 

hypoglycemia while driving.10 However, simulator studies have fundamental limitations 

compared to real car studies. Firstly, driving simulators cannot fully replicate the 
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physical and perceptual experiences of real car driving, lacking in haptic feedback, 

tactile sensations, and genuine sensory input. Secondly, simulators cannot recreate 

the comprehensive environmental variables of real-world driving, such as weather and 

road conditions, which significantly influence vehicle dynamics and behavior. Thirdly, 

simulators do not provide real-world consequences for dangerous situations, leading 

to altered participant behavior. Lastly, the type, resolution, and quality of the respective 

sensors vary substantially.  

The present study aimed to develop and evaluate an ML-based system for 

hypoglycemia detection in real car driving. Specifically, our aim was to implement an 

ML approach based on CAN and DMC data alone to detect hypoglycemia while driving. 

Thereby we address the well-known limitations of simulators11 and go beyond previous 

research that has never induced hypoglycemia during real car driving.  
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Methods 

Overview 

We performed two studies in people with type 1 diabetes driving a car, collecting data 

from differing hypoglycemic levels (

 

 

Figure 1). In study 1 (10/2020–05/2021, NCT04569630), we collected CAN and DMC 

data while participants drove during euglycemia and pronounced hypoglycemia (blood 

glucose [BG] 2.0–2.5mmol/L). In study 2 (04/2022–06/2022, NCT05308095), we 

collected CAN and DMC data in euglycemia and mild hypoglycemia (BG 3.0–

3.5mmol/L). We used CAN and DMC data from both studies to develop and evaluate 

ML models predicting whether a driver was driving in eu- vs. hypoglycemia. To reflect 

different vehicle generations, we assessed hypoglycemia detection using three distinct 
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ML models: (i) the CAN+DMC model, which integrates driving and gaze/head motion 

data, representing cutting-edge technology in modern cars, (ii) the CAN model 

exclusively used driving data, considering that not all contemporary cars have DMC, 

and (iii) the DMC model used only gaze/head motion data, anticipating that in the future 

(semi-)autonomous driving12 may limit the impact of CAN data.  

Design and population 

Both studies were conducted at the University Hospital Bern and a nearby test track, 

following the guidelines of good clinical practice, the Declaration of Helsinki, and the 

local legally applicable requirements. The Ethics Committee Bern approved both 

studies (2020-00685, 2021-02381). The participants provided written informed 

consent. We included active drivers with type 1 diabetes, aged 21–60y, with 

HbA1c≤9.0%. Key exclusion criteria included: pregnancy; severe organ dysfunction; 

cardiovascular or cardiac disease; seizure disorders; drug or alcohol abuse; and 

medication interfering with driving performance (for details see Supplementary 

Methods, p2).  

Procedure 

Figure S1 displays the visit schedule. After screening, participants were equipped with 

the factory-calibrated Dexcom G6 CGM, and instructed on how to avoid hypoglycemia 

during participation. For the main visit (3 to 7 days after the screening), participants 

were admitted to our clinical research unit after an overnight fast. After insertion of the 

intravenous cannulas, participants were transferred to the nearby test track. Before 

starting the experiment, the participants completed a test driving session. 

Subsequently, participants drove with the study car (Volkswagen Touran, automatic 

gearshift) during a controlled hypoglycemia procedure on the secured test track 

supervised by a driving instructor (Figure S2). Driving was performed in euglycemia 
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(5.0–8.0mmol/L) and hypoglycemia (study 1: 2.0–2.5mmol/L, study 2: 3.0–3.5mmol/L). 

In each glycemic state, the participants completed ≈20min of driving, involving a 

randomized sequence of three driving scenarios. Each scenario lasted between 6–

9min, with intermittent 1–2-min pauses for venous BG measurement with the Biosen 

C-Line glucose analyzer. To capture driving data, we used a CAN-bus interface and 

recorded vehicle signals that were resampled to 50Hz. For gaze/head motion tracking 

(DMC), we used a pre-series near-infrared camera system (Robert Bosch GmbH, 

Stuttgart, Germany),13 which was mounted behind the steering wheel on the steering 

column and captured imagery with a framerate of up to 50Hz. The DMC was calibrated 

before each experiment.  

Participants were instructed that hypoglycemia targeting a BG level of 2.0–2.5mmol/L 

(study 1) or 3.0–3.5mmol/L (study 2) would be induced. However, throughout the 

experiment they remained blinded to their actual BG measurements. Participants rated 

(i) eight hypoglycemia symptoms, (ii) their perceived need for immediate treatment, (iii) 

and the difficulty level experienced while driving on a seven-point Likert scale 

(6=extreme; 0=none).14 Moreover, participants estimated their BG level in mmol/L. 

One to three days afterwards, the safety assessment was performed. Further details 

on the study procedure can be found in the Supplementary Methods (pp 2–3).  

Outcome 

Our study outcome was the diagnostic accuracy of our ML approach in detecting 

hypoglycemia quantified as the area under the receiver operating characteristic curve 

(AUROC). For the sample size calculation see Supplementary Methods (p 3).  
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Analysis and ML approach 

Figure 1c outlines the ML pipeline of the three hypoglycemia detection models 

(CAN+DMC, CAN, and DMC). Input data consisted of in-vehicle (CAN) and/or driver 

monitoring camera (DMC) data. Existing approaches for drowsiness and intoxicated 

driving detection15-17 informed our choice of features (Supplementary Methods, p 4). 

The fundamental CAN data signals were ‘steering wheel angle’, ‘steering wheel 

velocity’, ‘brake pedal position’, ‘gas pedal position’, ‘vehicle velocity’, and ‘vehicle 

acceleration’. From the DMC video data, we extracted gaze and head rotation signals 

using a standard proprietary algorithm that is commercially available in the automotive 

industry. The algorithm uses a four step procedure (face detection, eye region 

localization, pupil detection, gaze vector calculation) to determine the gaze and the 

head rotation (face detection, facial landmark detection, head pose calculation, head 

rotation calculation). Ultimately, we extracted two gaze (‘gaze velocity’ and ‘gaze 

acceleration’) and five head rotation signals (‘head rotation velocity, ‘head rotation 

acceleration’, ‘head acceleration roll’, ‘head acceleration pitch’, and ‘head acceleration 

yaw’). For feature engineering, we followed the conventions for time-series 

classification and used a sliding window approach.18 We cut all signals into sequences 

(windows) of 60sec with a shift of 1sec between adjacent windows; then we applied 

statistical aggregation functions on each sequence, generating a set of interpretable 

features for each sequence (e.g., median gaze velocity). This resulted in six features 

for CAN and seven features for DMC (Table S1). For each window, the binary output 

variables were set based on the venous BG (to 1 for BG <3.9mmol/L, and to 0 

otherwise) measured with the gold-standard device (Biosen).  

The ML models were implemented as logistic regression with ridge regularization (see 

Supplementary Methods, p 4 for further specifications). Following best practice19, the 
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performance for hypoglycemia detection was measured in a leave-one-subject-out 

cross-validation (n=30), i.e., the ML models were trained on n=29 subjects and are 

then evaluated on the left-out subject. This procedure was repeated until each subject 

has been left out for evaluation once. Both studies had no overlap in study participants. 

Results are presented as the out-of-sample detection performance, averaged across 

participants (i.e., macro-average). To measure the performance variation across 

participants, we provide the standard deviation (SD) at the participant level. To ensure 

generalizability, hyperparameters were fixed and thus the same across models and 

participants. Additionally, we ran robustness checks to confirm our results, including 

the evaluation of other (non-)linear ML models (e.g., gradient boosting decision tree, 

etc.), a sensitivity analysis across different window lengths, and different training and 

evaluation procedures (Supplementary Methods, p 5 and Tables S2–S4). We analyzed 

the regression coefficients and odds ratios (OR) to assess the influence of each feature 

on the decision-making of the CAN+DMC model. 

Statistical reporting 

Results are presented as mean±SD (unless otherwise specified). For paired BG and 

CGM measurements we used the Shapiro-Wilk test to assess normality, followed by a 

comparison through paired t-tests or Wilcoxon signed rank tests as appropriate. For 

the self-rated symptoms, we computed neurogenic and neuroglycopenic scores by 

averaging the four respective symptoms within each category20. The overall symptom 

score was determined by averaging all individual symptoms. Normality checks were 

applied to symptom scores, individual symptoms, and self-estimated BG values. 

Comparisons between euglycemia and hypoglycemia were made using paired t-tests 

or Wilcoxon signed rank tests. Statistical significance was set at p<0.05. 
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Software used for data analysis 

Descriptive statistical analyses were conducted with STATA 16.0 (StataCorp LLC, 

Texas, USA). The ML models were implemented using Python 3.7.13 using the scikit-

learn package (version 1.0.2). For robustness checks, the package XGBoost (version 

1.3.3) was employed. Input features to the ML models were computed using NumPy 

(version 1.20.3) and SciPy (version 1.7.3). Evaluation metrics were computed using 

scikit-learn (version 1.0.2). Details regarding the software used for data management 

can be found in the Supplementary Methods (p 5).   
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Results 

Study population and glucose 

Thirty individuals with type 1 diabetes generating 47,998 observations were included 

in the final analysis (age 40.1±10.3y, 24 males, HbA1c 6.9±0.7%, Table 1). The study 

flows are depicted in Figure S1. In study 1 (20 participants), mean venous BG in eu- 

and hypoglycemia was 6.38±0.84mmol/L, and 2.43±0.35mmol/L. Corresponding CGM 

values were 6.81±0.85mmol/L and 3.12±0.63mmol/L (p<0.01 compared to venous 

BG). In study 2 (10 participants), mean venous BG in eu- and hypoglycemia was 

6.18±0.83mmol/L, and 3.34±0.20mmol/L, respectively. Corresponding CGM readings 

were 6.67±1.26mmol/L and 3.85±0.50mmol/L, respectively (p<0.01 compared to 

venous BG). Individual BG measurements during driving are depicted in Figure S3.  

ML-based detection of hypoglycemia 

The feature engineering approach described in the Methods led to 32,537 (15,461) 

observations for study 1 (study 2), out of which 16,196 (7,728) observations come from 

driving in euglycemia (class 0, BG≥3.9mmol/L) and 16,341 (7,733) from driving in 

hypoglycemia (class 1, BG<3.9mmol/L).  
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For hypoglycemia detection, the CAN+DMC model yielded an AUROC of 0.80±0.11 (

 

Figure 2a). The CAN model showed an AUROC of 0.73±0.07, and the DMC model 

achieved an AUROC of 0.70±0.16. Further performance metrics are shown in Table 2. 

To explain the decision-making of the CAN+DMC model, we provide the coefficients 

and odds ratios (ORs) of the input features in Figure 2b. Figure S4 illustrates the plots 

for the area under the precision-recall curve (AUPRC). 

To ensure the robustness of our results, we conducted several checks including the 

evaluation of other (non-)linear ML models (e.g., gradient boosting decision tree, etc.), 

a sensitivity analysis for different window lengths, and applying various training and 

evaluation procedures (Tables S2–S4). Overall, the checks confirmed the choice of 

our ML model and the window length of 60sec used for the final analysis. Using 
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different training and evaluation procedures, the performance of the models remained 

stable across all combinations with minor decreases for training procedures involving 

less data (i.e., only mild hypoglycemia).  

Hypoglycemic symptoms 

Participants underestimated BG both in pronounced and in mild hypoglycemia. While 

they reported marked symptoms in pronounced hypoglycemia, differing significantly 

from baseline, there was no difference in symptom scores between baseline and mild 

hypoglycemia. Notably, 40% of the participants would keep driving in mild 

hypoglycemia. Table S5 reports the self-estimated BG values and self-rated 

hypoglycemic symptoms.  
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Discussion 

In this paper, we present a non-invasive ML approach to detect hypoglycemia in people 

with diabetes during real car driving. The approach exclusively uses driving and 

gaze/head motion data (CAN+DMC model). Limiting the input to driving data (CAN 

model) or gaze/head motion data (DMC model) still resulted in considerable 

performance. Furthermore, interpretable ML provided insights into behavioral changes 

when driving in hypoglycemia. 

Driving requires swift reactions to changing traffic and road conditions, relying on 

cognitive, executive, and motor abilities, all of which are impaired by hypoglycemia. 

SMBG, recommended as safety measure before driving, cannot proactively warn 

during a drive. Alternatively, CGM provides permanent glucose measurements but 

faces limitations due to invasiveness, accessibility, and accuracy, especially during 

hypoglycemia.21 In the present study CGM significantly overestimated glucose values 

during hypoglycemia. Manual calibration might alleviate this constraint yet would not 

eliminate CGM’s inherent time delay6. Raising CGM alarm thresholds could provide 

earlier warnings but is likely to have a negative impact on overall glycemic control.22 

Conversely, the present approach may offer a readily available, scalable, and non-

invasive warning system that can potentially substitute or complement existing 

detection methods during driving, thereby improving traffic safety of people with 

diabetes. In the future, the proposed approach could be used to trigger warning 

messages or conversational turns delivered by in-vehicle voice assistants. Such 

assistants are already implemented by various car manufacturers and implementation 

of voice-based alert systems seems feasible. Still, future studies have to test the 

acceptance and effectiveness of these systems. 
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Consistent with earlier reports,14 our participants substantially underestimated the 

degree of hypoglycemia, a majority planning to continue driving without 

countermeasures. These observations in well-controlled individuals and intact 

hypoglycemia awareness underscore the need for novel approaches to detect 

hypoglycemia.  

The relevance of the proposed ML approach goes beyond diagnostic properties. 

Evaluating the coefficients of the input features provides valuable insights into 

behavioral alterations during hypoglycemic driving. For the driving features (CAN), we 

observed fewer micro-corrections of the vehicle trajectory and speed in hypoglycemia, 

translating into a less proactive driving style with reduced fine control. These changes 

were first and foremost reflected in sign changes of steer velocity (directional changes 

of steering wheel), sign changes of steer angle (number of times zero position of 

steering wheel is crossed), and interquartile range of brake pedal position (Figure 2b). 

Analysis of DMC data revealed more monotonous gaze/head motion behavior. 

However, when drivers shifted their gaze or head, they did it more abruptly, as 

indicated by increased acceleration features. These behavioral changes had a 

particular impact on interquartile range of head yaw (left-right movement) acceleration, 

gaze velocity, and head roll (left-right head tilt) acceleration (Figure 2b). In summary, 

our findings indicate that hypoglycemia is associated with a less attentive, less fine-

controlled, and more hectic behavior.  

In an earlier driving simulator study, we have shown that an ML-based approach using 

driving and eye tracker data might enable detecting hypoglycemia while driving.10 

However, simulator studies are limited regarding perceptual experience environmental 

conditions, perception of danger, and sensor quality. In the present study, we now 

developed and evaluated a non-invasive hypoglycemia detection system using signals 
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from commercially available automotive systems in real cars. Remarkably, detection 

accuracy in the simulator and the car are comparable, despite the increased complexity 

and external influences in real car driving. In addition, lab eye tracking hardware is 

superior to standard DMC systems so that we could not include gaze features such as 

saccades or fixations due to the limited framerate of the in-vehicle DMC. Nevertheless, 

these finding corroborate the robustness of the proposed approach and the potential 

for integrating such a detection system into automotive systems.  

Earlier studies in individuals with diabetes driving in a simulator have shown that 

participants in hypoglycemia tend to drive off-road and across the midline.14, 23 

However, using position-based information to trigger alarms is not suitable for a 

preventive system in reality, as it would only detect mishaps after they have occurred. 

Conversely, the proposed ML approach relies on subtle alterations in driving behavior, 

enabling early detection and aiming to prevent such incidents. The need for novel 

approaches in this field is underlined by the substantial and increasing number of 

driving accidents related to hypoglycemia,3, 4 with recent studies emphasizing that 

people with diabetes drive a significant amount of time in undetected hypoglycemia.5  

We report consistent performance for the three presented ML models (CAN+DMC, 

CAN, and DMC). This offers the potential to implement our ML-based hypoglycemia 

warning system in different vehicle generations. The CAN+DMC model is suitable for 

modern cars with integrated driver monitoring cameras, while the CAN model can be 

implemented in current cars without DMC. Finally, the performance based on 

gaze/head motion data alone (DMC) supports applicability in future (semi-)automated 

driving.12 There are currently no specific guidelines for a hypoglycemia detection 

system while driving. However, standards for drowsiness detection systems are 
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understood to place sensitivity for regulatory approval at 40%,24 which our approach 

exceeds considerably.  

The strength of our work is the interventional and prospective design providing data 

from real car driving and covering different hypoglycemic ranges. To our knowledge, 

this is the first study to report standardized hypoglycemia interventions while driving. 

Venous blood glucose served as the gold standard and was regularly measured 

confirming the consistent adherence to targeted glycemic ranges during data 

collection. Additionally, our approach is implementable without the need for additional 

sensors in the vehicle or on the body. We intentionally employed interpretable ML 

models following current ML principles.25 While our ML approach was developed using 

data solely from individuals with type 1 diabetes, as hypoglycemia induction was 

ethically justifiable in this population, the concept may be applicable to other groups 

(e.g., type 2 diabetes), other driver states (e.g., intoxication), and/or different medical 

conditions, although further validation is required. The resource-intensive and complex 

procedures limited participant numbers, but the analysis was based on a large number 

of observations (47,998) due to high-resolution in-vehicle parameters and BG values, 

providing a robust basis for ML modeling. The male predominance in our studies limits 

generalization to female individuals with type 1 diabetes. The model was built on data 

of well-controlled and generally healthy individuals with type 1 diabetes, since 

hypoglycemia induction was ethically justifiable in this population. Further studies are 

needed to assess the impact of sex, age7, comorbidities (e.g., severe neuropathy), and 

hypoglycemia unawareness on detection performance. Hypoglycemia was induced 

using intravenous insulin to precisely and safely regulate BG levels during the 

experiments, and validation in the context of naturally occurring hypoglycemia is 

needed. Legal restrictions in Switzerland prohibited hypoglycemia induction during 



19 
 

normal road traffic, necessitating the study to be conducted on a closed-off test track. 

The choice of driving sequence (euglycemia followed by hypoglycemia) aimed to 

minimize carry-over effects, as driving performance may still be impacted for up to 75 

minutes after restoring euglycemia.26 Learning bias was minimized through a prior test-

driving session, and the amount of euglycemic and hypoglycemic values in the study 

was balanced, though not fully mirroring real-world clinical settings. This could result 

in a slightly higher rate of false positive warnings, which may be acceptable at this 

conceptual stage.  

To conclude, we introduce an ML-based approach solely based on driving and 

gaze/head motion date to detect hypoglycemia non-invasively during car driving. The 

approach applies to current vehicles and anticipates future advancements in 

automotive technology. In addition to hypoglycemia detection, interpretable ML 

improves our understanding of behavioral changes during hypoglycemia.  
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Figure Legends 

 
 
Figure 1: Overview. (a) Controlled hypoglycemia procedures for studies 1 and 2 using variable insulin 
and glucose administration with corresponding driving sessions in eu- and hypoglycemia. The intended 
range for blood glucose (BG) in hypoglycemia was 2.0–2.5 mmol/L in study 1, and 3.0–3.5 mmol/L in 
study 2. Driving sessions consisted of three 6 to 9-minute drives with three different driving scenarios 
while in-vehicle driving (CAN) and gaze/head motion (DMC) data was collected. (b) Venous BG in eu- 
and hypoglycemia for studies 1 and 2 are shown as mean (circles) with the standard deviation 
(whiskers). (c) The car, driver monitoring camera and glucose management setup in both studies is 
shown on the left part of the panel, while the procedure for building and evaluating our machine learning 
(ML) models is displayed in the right part of the panel. IQR, interquartile range.  
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Figure 2: Machine learning (ML) detects hypoglycemia based on real car driving, and gaze/head 
motion data. (a) Reported is the area under the curve for the receiver operating characteristic (AUROC) 
to detect hypoglycemia. Here, we report the performance using combined in-vehicle driving, gaze/head 
motion data (CAN+DMC), driving data exclusively (CAN), and gaze/head motion data exclusively 
(DMC). The AUROC illustrates the mean true positive rate (=sensitivity) against the false positive rate 
(=1−specificity). The shaded areas illustrate the standard deviation (SD) at various thresholds across all 
participants. The grey dashed line is a naïve baseline corresponding to a model that has no 
discriminatory power and decides at random (AUROC=0.50). (b) For interpretability, we examine the 
ML model (here: logistic regression) and report the regression coefficients and odds ratios (OR) of the 
CAN+DMC model. The regression coefficients and ORs quantify how each feature influences the output 
of the model. Features with positive coefficients move the output of the ML model toward predicting 
hypoglycemia, whereas features with a negative coefficient move the output of the ML model toward 
predicting euglycemia. The feature coefficients across all cross-validation folds are reported as mean 
(circles) with whiskers ranging from minimum to maximum. The most important features are: interquartile 
range (IQR) of head yaw acceleration (coefficient: 1.04 OR 2.83), IQR of gaze velocity (coefficient: -
0.89; OR 0.41), and IQR of head roll acceleration (coefficient: -0.72; OR 0.49). ROC, receiver operating 
characteristic.  
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Tables 

Table 1: Baseline characteristics. 

Continuous variables are shown using the mean±standard deviation. Impaired hypoglycemia awareness 
is indicated by a Clarke score of higher than 3 points. BMI, body mass index; CSII, continuous 
subcutaneous insulin infusion; HbA1c, glycated hemoglobin; IU, insulin units; MDI, multiple daily 
injections; TDD, total daily insulin dose.  

Variable Overall (n=30) Study 1 (n=20) Study 2 (n=10) 

Age [years] 40.1±10.3 41.6±9.8 37.2±11.1 

Sex 24 male, 6 female 17 male, 3 female 7 male, 3 female 

Insulin treatment 12 MDI, 18 CSII 9 MDI, 11 CSII 3 MDI, 7 CSII 

Weight [kg] 84.1±16.4 83.1±14.0 86.0±21.0 

Height [m] 1.76±0.09 1.77±0.07 1.76±0.13 

BMI [kg/m] 26.8±3.8 26.5±3.7 27.3±4.0 

TDD [IU/day/kg] 0.59±0.20 0.59±0.15 0.59±0.29 

HbA1c [%] 6.9±0.7 6.8±0.70 7.1±0.8 

HbA1c [mmol/mol] 51.9±8.0 50.8±7.7 54.3±8.4 

Clarke score >3 0 / 30 0 / 20 0 / 10 

Peripheral neuropathy 3 / 30 1 / 20 2 / 10 

Diabetes duration [years] 20.8±12.1 20.8±11.1 20.6±14.5 

Driving experience [years] 21.8±11.5 24.7±10.3 16.1±12.1 

Kilometers driven per year 

[km/year] 

12,353±12,420 13,645±10498 9,770±15,914 
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Table 2: Machine learning (ML) performance metrics.  

Reported are the performance metrics of the three ML models as mean±standard deviation based on 
combined driving, gaze/head motion data (CAN+DMC), driving data exclusively (CAN), and gaze/head 
motion data exclusively (DMC) detection. AUPRC, area under the precision-recall curve; BACC, 
balanced accuracy; F1, F1-score; MCC, Matthews correlation coefficient.  

 AUROC AUPRC BACC F1 MCC Sensitivity Specificity 

CAN+DMC 0.80±0.11 0.79±0.12 0.74±0.09 0.72±0.12 0.48±0.17 0.70±0.15 0.78±0.10 

CAN 0.73±0.07 0.71±0.09 0.68±0.06 0.69±0.07 0.37±0.11 0.72±0.11 0.65±0.12 

DMC 0.70±0.16 0.70±0.16 0.68±0.10 0.66±0.17 0.38±0.20 0.66±0.22 0.70±0.23 

 


