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The genomic architecture of circulating
cytokine levels points to drug targets for
immune-related diseases
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Sebastian-Edgar Baumeister4, Jürgen Bernhagen 1,5,6, Martin Dichgans 1,5,6,7 &
Marios K. Georgakis 1,5,8

Circulating cytokines orchestrate immune reactions and are promising drug targets for immune-
mediated and inflammatory diseases. Exploring the genetic architecture of circulating cytokine levels
could yield key insights into causal mediators of human disease. Here, we performed genome-wide
association studies (GWAS) for 40 circulating cytokines in meta-analyses of 74,783 individuals. We
detected 359 significant associations between cytokine levels and variants in 169 independent loci,
including 150 trans- and 19 cis-acting loci. Integration with transcriptomic data point to key regulatory
mechanisms, such as the buffering function of the Atypical Chemokine Receptor 1 (ACKR1) acting as
scavenger for multiple chemokines and the role of tumor necrosis factor receptor-associated factor 1
(TRAFD1) in modulating the cytokine storm triggered by TNF signaling. Applying Mendelian
randomization (MR), we detected a network of complex cytokine interconnections with TNF-b, VEGF,
and IL-1ra exhibiting pleiotropic downstreameffects onmultiple cytokines. Drug target cis-MRusing 2
independent proteomics datasets paired with colocalization revealed G-CSF/CSF-3 and CXCL9/MIG
as potential causal mediators of asthma and Crohn’s disease, respectively, but also a potentially
protective role of TNF-b in multiple sclerosis. Our results provide an overview of the genetic
architecture of circulating cytokines and could guide the development of targeted immunotherapies.

Chronic inflammation contributes to multiple human diseases, including
allergic and autoimmune diseases, cardiometabolic diseases, and cancer.
Inflammatory proteins like cytokines, chemokines and growth factors
(hereafter collectively referred to as “cytokines”) orchestrate the immune
response underlying inflammation1,2. Circulating cytokines (i.e. cytokines
measured in the circulation, including serum and blood specimens) are
readily accessible and, therefore, attractive targets for therapeutic modula-
tion, as they represent soluble ligands that execute downstreammechanisms
through binding tomembrane receptors or other circulating agents3. While
several immunotherapies targeting circulating cytokines have been suc-
cessfully introduced into the clinic, the lack of efficacy in other indications
and the usually associated susceptibility to infection underscore the need for
targeted approaches4,5. Prioritizing specific downstreammediators is critical

to minimize safety signals and ensure adherence to a life-long
pharmacotherapy5,6.

Recent advances in human genetics have enabled an in silico prior-
itization of drug targets7,8, with approval rates more than two times higher
than targets without genetic support9. Mendelian randomization (MR) uses
data from genome-wide association studies (GWAS) and offers a statistical
framework for exploring associations between variants in genes encoding
drug targets and disease traits10. Previous MR analyses have illustrated the
potential of integrating GWAS data for circulating proteins, including
cytokines, with disease outcomes to discover novel drug targets11–16. How-
ever, existing efforts have been largely restricted by the small sample sizes of
GWAS studies for circulating cytokines. For example, the largest-to-date
targeted GWAS, which focused specifically on circulating cytokines
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included up to 8293 individuals and allowed the detection of 27 significant
genomic loci for 41 cytokines17.

Novel proteomic platforms, such as the aptamer-based
SOMAScan® and the proximity extension assay Olink®, gain popu-
larity in quantifying at scale large numbers of proteins including
cytokines. Here, we performed cross-assay comparisons in the
genetic architecture of 40 cytokines quantified with three approaches
(multiplex bead-based immunoassay, aptamer-based assay, proximity
extension assay) and pooled data in GWAS meta-analyses including
up to 74,783 individuals. This effort allowed the detection of
359 significant associations between 169 independent genomic loci
and one or more of the 40 cytokines offering novel insights into
mechanisms regulating circulating cytokine levels. Applying MR, we
establish a causal cytokine network including upstream mega-
regulator cytokines that exert influence on a range of other cyto-
kines. Finally, integrating these data with GWAS data for relevant
disease endpoints, we provide genetic support for putative anti-
inflammatory drug targets.

Results
Study cohorts and cross-assay reproducibility rate of significant
genomic loci
We leveraged summary-level GWAS data for 40 circulating cytokines from
three published datasets summing up to 74,783 individuals: the Cardio-
vascular Risk in Young Finns Study (YFS) and FINRISK studies that
measured cytokines in serum using Luminex bead-based multiplex
immunoassays (N = 8293); the Systematic and Combined AnaLysis of
Olink Proteins (SCALLOP) study that measured cytokines in plasma using
the proximity extension assay-based Olink® platform (N = 30,931); and the
dataset provided by deCODE that measured cytokines in plasma using the
aptamer-based SOMAScan® assay (N = 35,559, Fig. 1).

Given the known differences across the assaying methods, we first
tested the replication rate of significant variants across all cytokines detected
in each dataset in the other two datasets18. Although the GWAS in SCAL-
LOPidentified a considerably lowernumberof genome-wide significant loci
for the available cytokines (n = 119 SNPs found for 13 cytokines), these
variants exhibited the highest reproducibility rate (p < 0.05 anddirectionally

Fig. 1 | Flowchart of the study design. a Illustration of the analytical pipeline steps
applied in this study to decipher the genetic architecture of circulating cytokines and
their relation to allergic and autoimmune, cardiometabolic, and cancer outcomes.
b Venn diagram shows the number (and percentage) of overlapping cytokines

available in the three cohorts. SCALLOP Systematic and Combined AnaLysis of
Olink Proteins, SNP single-nucleotide polymorphism, TWAS-MR transcriptome-
wide Mendelian randomization analysis, YFS & FINRISK Cardiovascular Risk in
Young Finns Study.
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consistent) across the other two datasets. Specifically, 79 out of 119 variants
replicated in YFS and FINRISK, with a median replication rate of 67%, and
46out of 77variants replicated indeCODE,with amedian replication rate of
63% (Fig. 2, Supplementary Fig. S1, and Supplementary Data S1). In con-
trast, variants identified as significant in YFS & FINRISK had a lower
replication rate in deCODE (70out of 785 variants replicated,with amedian
replication rate of 4%) and in SCALLOP (101 out of 481 variants replicated,
with a median replication rate of 11%). Similarly, variants identified in
deCODE showed relatively low reproducibility with a median replication
rate of 21% in YFS& FINRISK (141 out of 607 SNPs replicated) and 19% in
SCALLOP (73 SNPs out of 252 replicated). The cytokines that showed the
highest relative proportion of reproducible SNPs across all three datasets
independently of themeasuring assay were CC chemokine ligand 2 (CCL2/
MCP-1) and vascular endothelial growth factor (VEGF).

GWASmeta-analysis reveals novel trans- and cis-acting variants
Next, we performed GWAS meta-analyses across the three datasets.
We identified a total of 359 significant associations between variants
at 169 independent genomic loci and the circulating levels of one or
more of the 40 cytokines (p < 5 × 10−8 in fixed-effects meta-analysis,
Fig. 3, Supplementary Data S2). Variants that showed significant
heterogeneity between the three cohorts (HetPval < 0.1) are reported
in Supplementary Data S2 (48% of the significant loci with HetP-
val < 0.1; range 0–100% across 40 cytokines and 41% of the sig-
nificant loci with HetPval < 0.05; range 0–100% across 31 cytokines).
The lambda values ranged between 0.96 for interleukin (IL)-16 and
1.04 for basic fibroblast growth factor (FGF-b), indicating the absence
of overall inflation in the test statistics (Supplementary Data S2).
According to the GWAS catalog (https://www.ebi.ac.uk/gwas/)19, 156
of the loci have not been associated with circulating levels of the 40
cytokines in previous GWASs (Supplementary Data S2). Assessing
the loss of loci that were significant in the original studies, we found
that 18% of loci lost significance in the meta-analyzed samples of the
three source databases17,20,21. The proportion of explained variance by
the significant variants ranged from 0.0008 for IL-17 to 0.033 for
stem cell growth factor beta (SCGF-b) (Supplementary Data S2).

As expected, due to larger effect sizes for rare genetic variants, we found
a strong inverse correlation between minor allele frequency and effect size
(Spearman’s rho =−0.827, p = 5 × 10−30, Fig. 4a). The majority of the sig-
nificant loci (150 out of 169) represented trans- (distant-) acting variants.
When excluding the human leukocyte antigen (HLA) region on chromo-
some 6, we found 33 pleiotropic variants showing associations with >1
cytokine among the significant trans-variants (Fig. 4b). A locus hotspot
associated with multiple cytokines was found at the region of the gene
encoding complement factor H (CFH). This soluble mediator plays an
essential role by interacting with the C3 convertase for the regulation of
inflammatory responses exerted by the complement system, which could
possibly explain the associations with multiple cytokines22. While at least 1
significant trans-variant was present for all studied cytokines (median
number of variants per cytokine = 5, range 1–2), we found significant cis-
(local-) acting variants in the vicinity of their encoding gene for 19 cytokines
(Supplementary Data S2). The lead cis-acting variants showed stronger
associationswithcytokine levels (meanabsolutebeta: 0.18, range:0.05–0.94)
than trans-acting variants (mean absolute beta: 0.08, range: 0.03–0.55, p-for-
comparison = 0.03, Fig. 4c).

Tomapcausal variants responsible for associationsbetweencirculating
cytokine levels and genes within each of the 169 independent genomic loci
we used SuSiE fine mapping. Employing a Bayesian framework, fine
mapping identifies credible sets of variants with a posterior probability (PP)
of 95%.Thenumber of variantswithin credible sets ranged from2 to50.The
highest numbers of variants within a credible set were found at 15q21.3 for
stem cell factor (SCF) (n = 50), at 19q13.33 for SCGF-b (n = 49), and at
6p21.1 for VEGF (n = 44). SuSiEmapped the association test lead variant to
the credible sets for 49 genomic loci, identifying the GWAS lead as themost
likely causal mutation (Supplementary Data S3).

Functional follow-up analyses highlight immune response reg-
ulatory mechanisms
To understand the biological significance and downstream functional
impact of the identified variants, we performed follow-up analyses. We
performed a gene-based multi-marker analysis of genomic annotation
(MAGMA)analysis,which combines the effects ofmultiple SNPs to identify
associations between genes and circulating cytokine levels. This analysis
showed829 significant associationswith the levels of circulating cytokines at
a Bonferroni-defined significance level (Supplementary Data S4). In total,
626 uniquely mapped genes were associated with at least 1 cytokine. The
number of genes mapped to cytokines ranged from 1 for beta nerve growth
factor (bNGF), cutaneous T-cell attracting (CCL27/CTACK), IL-10, and
tumor necrosis factor-alpha (TNF-a) to up to 95 genesmapped for SCGF-b,
92 genes for macrophage inflammatory protein-1β (CCL4/MIP-1b) and 51
genes for CCL11/eotaxin-1. In line with our GWAS results, the gene that
wasmapped formost cytokines (n = 16)wasCFH. Thegeneswith the lowest
p-value were H4 Clustered Histone 14 (H4C14) for monocyte-specific che-
mokine 3 (CCL7/MCP-3) (p = 1 × 10−50), Ribosomal Protein S17 (RPS17)
for IL-16 (p = 1.3 × 10−45), andATPBindingCassette SubfamilyAMember 1
(ABC1) for SCF (p = 1.9 × 10−29). A gene-property analysis revealed that the
cytokine-related genes were primarily enriched for expression in the liver
(p = 4.9 × 10−10), in line with its well-established role as a main source of
production of many cytokines. Other enriched tissues included the spleen
(p = 4.9 × 10−4) and lung (p = 5.9 × 10−4, Supplementary Data S4). Further
combining the genes to sets related to concrete biological pathways, we
performed a gene-set MAGMA analysis which prioritized 41 pathways for
12 cytokines that reached a Bonferroni-adjusted significance level
(p < 1.2 × 10−7, Supplementary Data S4). The identified pathways were
primarily related to immune response with a small cluster involved in
metabolic and developmental processes.

Positional mapping ascribed 75% of significant variants to intronic
(54%) and intergenic (21%) regions, suggesting that the identified var-
iants primarily determine gene transcription or gene expression profiles
(Supplementary Data S2)23. Thus, we integrated our GWAS data with
transcriptomic data and performed a transcriptome-wide association
study (TWAS) using Mendelian randomization (MR) for a deeper ela-
boration on the transcriptional effects underlying our GWAS results.
Summary statistics for expression quantitive trait loci (eQTLs) in whole
blood were obtained from the eQTLGen consortium including tran-
scriptomic profiles for 31,684 individuals of primarily European
ancestry24. Using cis-eQTLs as genetic instruments, we identified
245 significant associations between genetically proxied gene expression
in whole blood and cytokines levels. Sensitivity analyses showed direc-
tional concordance for 77% and 76% of the associations calculated with
weighted median MR and MR Egger, respectively, and for weighted
median MR 62% of the associations were significant (Fig. 5a, Supple-
mentary Fig. S5 and Data S5). The number of significant genes per
cytokine ranged from 1 to 18. While most significant genes (78%)
influenced the levels of a single cytokine, the genetically proxied
expression of 54 genes showed an effect on circulating levels of up to 9
cytokines (n[SKI2 Subunit Of Superkiller Complex; SKIV2L] = 9, n[Major
Histocompatibility Complex, Class II, DR Beta 5; HLA-DRB5] = 9,
n[Negative Elongation Factor Complex Member E; NELFE] = 7, n[Aty-
pical Chemokine Receptor 1; ACKR1] = 5, n[Fc Epsilon Receptor Ia;
FCER1A] = 4, n[TNF receptor-associated factor-Type Zinc Finger Domain
Containing 1; TRAFD1] = 4, n[Leucine Carboxyl Methyltransferase 2;
LCMT2] = 4) (Fig. 5b). Interestingly, we found significant cis-effects of
the encoding gene expressions on the circulating levels of only 3 of the 40
respective cytokines. This is in line with previous eQTL–pQTL com-
parisons and aligns with the fact that the circulating proteome is not the
direct product of the whole-blood transcriptome25,26.

Excluding genes within the very dense HLA region (i.e. SKIV2L,
HLA-DRB5 and NELFE) we explored deeper the biological relevance of
the pleiotropic ACKR1, TRAFD1 and LCMT2 genes. The genetically
proxied mRNA levels of ACKR1 were associated with circulating CCL2/
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Fig. 2 | Comparisons of significant genomic loci for 40 circulating cytokines
across three proteomics assays. a Number of reproducible and non-reproducible
SNPs per cytokine (depicted as saturated and light-colored bars, respectively) for
deCODE, SCALLOP, andYFS&FINRISK cohorts. The saturated portion of the bars
represents the number of SNPs that were replicated in at least one other cohort,
where reproducibility is defined as SNPs confined to significant loci (p-value < 0.05)
and directionally concordant. b Proportion of replicated SNPs across cytokine
datasets visualized for all possible combinations of cohorts. Thematrix at the bottom
left shows the comparison each of the vertical bars at the top represents. Arrows in
the comparison matrix illustrate the direction of comparison—from the reference
dataset where significant SNPs were identified, to the dataset in which SNPs were

replicated. For example, the first bar displays the percentage of loci in deCODE that
were replicated in SCALLOP (with the arrow pointing fromdeCODE to SCALLOP).
The horizontal bars on the bottom right show the number of cytokines for which
significant SNPs were found. The sample sizes used to derive the statistics in b are
from left to right 73, 141, 46, 79, 101, and 70. Median, IQR (error bars represent the
25th and 75th percentiles). Colored bars represent the deCODE consortium in red,
the SCALLOP consortium in blue and YFS& FINRISK cohorts in yellow. IQR inter-
quartile range, SNP single-nucleotide polymorphism, SCALLOP Systematic and
Combined AnaLysis of Olink Proteins, YFS & FINRISK Cardiovascular Risk in
Young Finns Study.
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MCP-1, CCL7/MCP-3, CCL11/eotaxin-1, growth regulated oncogene-α
(CXCL1/GROa), CXCL8/IL-8 (Fig. 5b). ACKR1 codes for a cell-surface
receptor that binds, internalizes and transports multiple CC and CXC
chemokines and promotes leukocyte transcytosis into the circulation27,28.
By acting as a scavenger receptor, ACKR1 modulates the bioavailability
of cytokines and thereby affects inflammatory responses29,30. The iden-
tified associations were driven by rs12075, a well-characterized missense
variant in ACKR1, resulting in less efficient chemokine binding to
ACKR1 due to the loss of a necessary amino-acid sulfation (Fig. 6a)31.
The impaired receptor binding leads to elevated circulatory levels of
chemokines and might, in turn, result in a compensatory increase in

ACKR1 expression, which could explain the positive association between
genetically proxied ACKR1 and its ligands32. We replicated previously
reported associations between ACKR1 and levels of CCL2/MCP-1,
CCL7/MCP-3, CCL11/eotaxin-1, and CXCL1/GROa and additionally
showed an association with CXCL8/IL-8 levels17,25. The genetically
proxied expression of TRAFD1 was also associated with multiple circu-
latory cytokine levels, including CCL7/MCP-3, monokine induced by
interferon-gamma (CXCL9/MIG), interferon gamma-induced protein 10
(CXCL10/IP-10), and tumor necrosis factor-beta (TNF-b) (Fig. 5b).
TRAFD1 functions as an adaptor protein that binds to the intracellular
domain of TNF receptors expressed on both innate and adaptive

Fig. 3 | Genetic architecture of the circulating levels of the 40 cytokines. Circular
Manhattan plot of genomic loci significantly associated with circulating levels of 40
cytokines in ameta-analysis of the three datasets. The 359 genome-wide significantly
associated variants at p < 5 × 10−8 are depicted as black dots for GWAS meta-
analyses in YFS & FINRISK, SCALLOP, and deCODE cohorts. The horizontal and

vertical locations of dots in each single rectangle depict genomic positioning
(increasing from left to right) and p-value (decreasing from bottom to top),
respectively. SCALLOP Systematic and Combined AnaLysis of Olink Proteins, YFS
& FINRISK Cardiovascular Risk in Young Finns Study.
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immune cells. It regulates downstream signaling also involving the NF-
κB pathway and thereby modulates the production of several pro-
inflammatory cytokines and inflammatory responses33–35 (Fig. 6b).
TRAFD1 is a master regulator of genes involved in interferon-γ (IFNg)
signaling and T-cell receptor activation36. Genetically proxied expression
of the gene encoding for LCMT2 showed associations with beta nerve
growth factor (bNGF), CXCL8/IL-8, CXCL10/IP-10, and platelet-derived
growth factor-bb (PDGFbb). LCMT2 is involved in amino-acid meta-
bolism, presumably regulating hypothalamic gene expression but there is
only limited knowledge on its biological function37,38.

Genetic associations point to network interactions between cir-
culating cytokines
As a next step, we explored cross-trait genetic correlations between the
circulating levels of the 40 studied cytokines (Fig. 7a, Supplementary
Data S6). One-third of the between-cytokine correlationswere significant at
p < 0.05; the vastmajority of the significant associations (96%)werepositive.
Due to a computation error in 5%of cross-cytokine interactions (80of 1600)
caused by missing evidence of SNP-heritability for two phenotypes (MIF
[Macrophage migration inhibitory factor] and G-CSF/CSF-3) LDSC values
and therefore correlations could not be computed. Furthermore, to

Fig. 4 | Trans- and cis-acting genetic variants
underlying circulating cytokines. a Inverse corre-
lation betweenminor allele frequency and effect size
is illustrated for trans- and cis-acting loci, depicted
as gray and red circles, respectively. b Number of
significant loci binned by the number of associated
circulating cytokines (excluding the HLA region on
chromosome 6). c Cis-acting variants (n = 19, red
bar) showed stronger associations with cytokine
levels when compared with trans-acting variants
(n = 150, gray bar). Bars and lines represent median
and 95% confidence intervals, respectively. HLA
human leukocyte antigen, SD standard deviation.
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Fig. 5 | Genetically predicted gene expression in peripheral blood partly explains
the genetic architecture of 40 circulating cytokine levels. a The dots represent
genes, the blood expression of which was significantly associated with circulating
cytokine levels in a Mendelian randomization-based transcriptome-wide

association study. Short names of genes are depicted for the top-line results (log10 P-
value > 10). bChord diagram visualizes the pleiotropic effects of genes (in the upper
part of the figure) affecting circulating levels of cytokines (in the lower part of
the figure).
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understand causal interconnections between circulating cytokines levels, we
performed MR analysis using cis-variants from our GWAS meta-analysis.
We found significant (FDR-corrected p < 0.05) associations between 65
cytokine pairs (53 positive associations and 12 negative associations, Fig. 7b,
sensitivity analyses excluding variants showing significant heterogeneity
between the three datasets in Supplementary Fig. S2 and Supplementary
Data S6). In pleiotropy-robust sensitivity analyses (weighted median, MR
Egger) 89% and 85% of the 65 cytokine pairs showed directionally con-
cordant associations, respectively (Supplementary Data S6). Genetically
proxied levels of CCL7/MCP-3, stromal cell-derived factor-1alpha
(CXCL12/SDF-1a), granulocyte colony-stimulating factor (G-CSF/CSF-3),
IL-9,TNF-b, andVEGFwerepositively associatedwith the levels of >2other
cytokines, whereas genetically proxied CXCL1/GROa and IL-1 receptor
antagonist (IL-1ra) were negatively associated with lower level of >2 other
cytokines. Most significant associations were detected for TNF-b (n = 13),
VEGF (n = 9), IL-1ra (n = 7), IL-9 (n = 7), and G-CSF/CSF-3 (n = 7). The
negative associations between IL-1ra and several proinflammatory cyto-
kines (CCL7/MCP-3, IL-9, TNF-a, TNF-b), chemokines (macrophage
inflammatory protein-1α, CCL3/MIP-1a), and growth factors (hepatocyte
growth factor, HGF; VEGF) align well with the immunoregulatory role of
the IL-1 pathway and the inhibitory effect of IL-1ra on downstream IL-1
signaling39,40. TNF-b emerged as a significant player in our network analysis,
demonstrating characteristics of a master regulator by showing significant
associations with higher circulating levels of 13 mostly pro-inflammatory
cytokines. Furthermore, TNF-b exhibited significant positive LDSC genetic
correlations with 7 of the 13 cytokines, suggesting a shared genetic archi-
tecture within the TNF-β network (Fig. 7a). For both master regulator
cytokines (i.e. TNF-b and IL-1ra) sensitivity analyses confirmed directional
consistency for all associations using the two MR methods reported above
(Supplementary Data S6). While certain interactions with TNF-b, such as
those involving IL-1ra, TNF-a, TNF-related apoptosis-inducing ligand
(TRAIL), and VEGF, are well-documented, the majority of interactions
have not been reported previously and merit additional investigation41–43.

Cis-Mendelian randomization and colocalization highlight
potential drug targets for immune-related diseases
For insights into the clinical consequences of genetically proxied levels of the
circulating cytokines, we analyzed associations with allergic and

autoimmune, cardiometabolic, and cancer outcomes in two-sample MR
followed by colocalization analyses (Fig. 8a, sensitivity analyses excluding
variants showing significant heterogeneity between the three datasets in
Supplementary Fig. S4 and Supplementary Data S7). We used cis-acting
genetic variants as instruments due to their lower likelihood of influencing
cytokine levels throughpleiotropicmechanisms.We further complemented
these analyses with Bayesian colocalization to prioritize associations less
likely to be influenced by pleiotropy due to linkage disequilibriumof studied
variants with neighboring genes44. Following correction for multiple com-
parisons, we found 24 significant MR associations between genetically
proxied cytokine levels and disease outcomes (14 positive and 10 negative
associations). Sensitivity analyses showed directional concordance for 91%
and 75% of the associations calculated with weighted median MR and MR
Egger, respectively (Supplementary Fig. S6 and Data S7). Our MR findings
partially confirmed established pathogenetic associations with diseases and
therapeutic drug targets that are already in clinical application. For example,
there is solid evidence linking IL-2 receptor subunit alpha (IL-2ra)
increasing variants to elevated risk for multiple sclerosis (MS) and Crohn’s
disease (CD)17Aldesleukin, a recombinant formof IL-2 approved for cancer
indications, is currently under investigation in a phase-2 clinical trial for CD
(ClinicalTrials.gov ID: NCT04263831)45. Also, compounds targeting IL-1
signaling, anakinra or canakinumab, represent established treatment algo-
rithms for inflammatory joint diseases like rheumatoid arthritis (RA) or
juvenile arthritis46,47.

Of the 24 signals, 4 also showed evidence of significant colocaliza-
tion, that is a PP of association >80% for shared causal variants between
cytokine levels and disease outcomes (Fig. 8a, Supplementary Data S7),
thus providing even stronger evidence for causality. These included
associations of higher genetically proxied G-CSF/CSF-3 levels with
asthma, lower genetically proxied G-CSF/CSF-3 and higher genetically
proxied CXCL9/MIG levels with CD, as well as lower genetically proxied
TNF-b levels with MS.

Furthermore, the associationbetween genetically proxied IL-1 receptor
antagonist (IL-1ra) levels and lower risk of RA reached a PPA of 68% for a
shared causal variant in colocalization analysis. These results are consistent
with data from preclinical studies48–50, observational studies in humans51–55,
and clinical trials56,57, thus providing support for potentially promising
targeted immunotherapies for these indications.

Fig. 6 | Gene expression of ACKR1 and TRAFD1 exert pleiotropic effects on
multiple cytokine levels. a Schematic illustrating the impact of cis-eQTLs for
ACKR1 on receptor function. The left-hand side shows the ACKR1 gene encoding
the atypical chemokine receptor 1 functioning as a sink for multiple chemokines,
which are buffered intracellularly in venular endothelial cells. Depicted on the right,
is themissense variant rs12075 coding for a dysfunctional receptor with less efficient
chemokine binding efficacy. This leads to higher levels of circulating CCL2/MCP-1,
CCL7/MCP-3, CCL11/eotaxin-1, CXCL1/GROa, and CXCL8/IL-8 and possibly to a

compensatory increase in ACKR1 expression and receptor density. Created in
BioRender. User1, L. (2025) https://BioRender.com/p20h611. b Schematic illus-
trating how genetically proxied TRAFD1 expression regulates multiple cytokine
levels (CCL7/MCP-3, CXCL9/MIG, CXCL10/IP-10, TNF-b), supporting its reg-
ulatory role in TNF-mediated NF-κΒ signaling. ACKR1 atypical chemokine
receptor 1, TNF-R TNF-receptor, TRAFD1 tumor necrosis factor receptor-
associated factor-type zinc finger domain-containing protein 1. Created in BioR-
ender. User1, L. (2025) https://BioRender.com/k48o152.
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Fig. 7 | Cross-cytokine genetic associations. aGenetic correlations (n = 1600) with
LD-score regression across cytokine serum levels are depicted as a correlation
heatmap. Stars highlight significance level *0.05; **0.0001; ***0.00001. LD-score
correlation coefficients are illustrated according to the legend below spanning from
−1 in blue to+1 in red, missing correlation coefficients are depicted in gray and are
due to no evidence of SNP-heritability for one of the cytokines. b Cis-Mendelian

randomization excluding variants associated with the exposure and outcome in the
instruments lists between genetically proxied circulating cytokine levels (n = 65).
Arrow heads show the direction of causal influence, color gradient indicates the
effect estimate, and line width is the logarithm-adjusted Benjamin–Hochberg cor-
rected significance level. LD linkage disequilibrium.
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To substantiate our MR results we validated our findings with
genetic instruments derived from the independent United Kingdom
Biobank (UKBB) data. Using cis-acting variants for G-CSF/CSF-3,
CXCL9/MIG, and TNF-b from the UKBB proteomics dataset as
instruments, we could confirm significant associations with asthma, CD,
and MS, respectively. Furthermore, we performed logistic regression
analyses for these cytokines and the respective disease endpoints defined
by ICD-9 and ICD-10 codes in the UKBB with three of the associations
being significant and directionally consistent with the MR results
(Fig. 8b). The c-index of an age- and sex-adjusted model for asthma and
multiple sclerosis did not significantly improve after adding G-CSF
(0.558–0.562) and TNF-b levels (0.612–0.618), respectively, but the

addition of MIG levels led to significant prediction gains for Crohn’s
disease (0.536–0.659).

Integration of cytokine-disease MR and TWAS-MR results
implicates additional mediators of disease mechanisms that
could represent promising drug targets
As a last step, we aimed to integrate the cytokine-disease MR results with
the TWASMR results with the goal of also detecting upstream regulators
of the potentially causal cytokines. We performed MR analyses between
genetically proxied expression of genes significantly associated with G-
CSF/CSF-3, CXCL9/MIG, and TNF-b in our TWAS-MR analyses and
the associated disease outcomes. We found that higher genetically
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Psoriasis

Rheumatoid arthritis

Ulcerative colitis

Breast cancer
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Type 2 diabetes
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Fig. 8 | Cis-Mendelian randomization associations and colocalization analyses
between genetically proxied cytokine levels and disease risk. a Significant asso-
ciations between circulating cytokine levels and disease outcomes are shown for
allergic and autoimmune, cardiometabolic, and cancer outcomes. Effect sizes and
log-transformed, Benjamin–Hochberg corrected p-values are illustrated by color
gradient and circle size, respectively. Only cytokines and disease endpoints with at
least 1 significant association are depicted. Stars highlight significant genetic colo-
calizations (posterior probability of association > 80%) for shared causal variants

between circulating cytokine levels and disease risk. n(SNP), indicates number of cis-
acting genetic variants used as instruments in MR analyses. b Inlet from (a) for
colocalized associations between G-CSF/CSF-3 and Asthma, G-CSF/CSF-3 and CD,
CXCL9/MIG and CD, and TNF-b andMS. Cis-MR undertaken in the current meta-
analysis (red colored) and UKBB proteomics cohort (light-blue colored) as well as
logistic regression prediction model using longitudinal UKBB clinical data showing
converging evidence. Error bars represent 95% confidence intervals. Log scale
logarithmic scale, OR odds ratio, UKBB United Kingdom Biobank.
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proxied expression of PPP1R37 is associated with lower levels of G-CSF/
CSF-3, as well as with a lower risk of asthma (Fig. 9a). We also found
higher genetically proxied expression of TRAFD1 to be associated with
higher CXCL9/MIG levels and higher risk of CD (Fig. 9b).

Discussion
Pooling data from up to 74,783 patients from three independent GWAS
cohorts, we identified 169 independent genomic loci influencing the cir-
culating concentration of 40 cytokines, 156 of which have not been asso-
ciated with circulating cytokine levels in previous GWASs. Integrating our
results with transcriptomic data, a TWAS-MR analysis revealed 245
potentially causal associations between gene expression of mostly immu-
noregulatory genes in peripheral blood and circulating cytokine levels.
Analyzing regulatory interactions between cytokines, we found TNF-b,
VEGF, and IL-1ra as master controllers of the circulating levels of multiple
cytokines. Finally,weprovide genetic evidence basedupon two independent
proteomics datasets that the circulating levels of three cytokines (G-CSF/
CSF-3, CXCL9/MIG, TNF-b) might be causally involved in the pathogen-
esis of asthma, CD, and MS, thus offering insights for the development of
more specific immunotherapies. We backed the genetic data with clinical
data from UKBB showing predictive biomarker properties for the four
cytokine–disease pairings.

Our MR and colocalization analyses provided evidence for potential
causality for four cytokine–indication pairs, thus offering genetic support
for potentially promising targeted immunotherapies for asthma, CD, and
MS. These results are highly consistent with preclinical, epidemiological,
and occasionally clinical data. For example, G-CSF/CSF-3 is a pro-
inflammatory cytokine involved in neutrophil differentiation and systemic
mobilization and has been implicated in the pathogenesis of neutrophilic
atopic asthma48,58. Several preclinical studies in asthmamodels showed that
blockage of upstream inductors or the receptor of G-CSF/CSF-3 reduced
circulating cytokine levels, alleviated the airway inflammatory response, and
improved disease outcome48–50,59. Furthermore, G-CSF/CSF-3 levels in the
sputum of asthma patients have been suggested as a marker of airway
neutrophilic inflammation60. Our results provide genetic support for the

concept of targeting G-CSF/CSF-3 in asthma, potentially focusing on
patients with neutrophilic asthma.

Using integrated results from our GWAS and TWAS findings, we
identified an upstream mechanism of yet unknown relevance: higher
PPP1R37 gene expression was associated with reduced G-CSF/CSF-3 levels
and lower risk of asthma. The gene encodes a regulatory subunit that acts as
a phosphatase inhibitor and has, so far, not been associated with airway
diseases61. Previous studies investigating related regulatory subunits have
unveiled potential biological mechanisms through which these subunits
may influence the immune response62,63, and genetic studies have provided
support for the significance of other protein phosphatase regulatory sub-
units as contributing factors to airway diseases64–66. For example, genetically
proxied expression of PPP1R3D was associated with disease characteristics
of asthma, including mucosal immunity, cell metabolism, and airway
remodeling, and predicted responsiveness to omalizumab therapy64.
Although the specific biological mechanism underlying our finding is
unknown, onemight speculate that the diverse range of functions associated
with PP1, including cell progression, apoptosis, and muscle contraction,
might underlie the observed findings.

The MR results supported a connection between genetically proxied
circulating levels of six cytokines and CD. Among them, associations of
higher CXCL9/MIG and lowerG-CSF/CSF-3 with CDwere also supported
by colocalization evidence. CXCL9/MIG, a proinflammatory IFNg-induced
CXC-chemokine, is released by various immune cells, including macro-
phages, to attract and activate T-cells and forms together with neighboring
CXCL10/IP-10, CXCL11/IP-9 and their cognate CXCR3 receptor an axis
with specific relevance in inflammatory bowel disease67,68. In clinical studies,
elevated CXCL9/MIG serum levels have been associated with CD relapses,
affirming CXCL9/MIG as a risk factor in CD55. Apart from pro-
inflammatory actions, exogenous administration of G-CSF/CSF-3 has
been associated with immunoregulatory effects, such as modulation of
T-cell responses69. Two open-label studies have indeed demonstrated that
subcutaneous G-CSF/CSF-3 is effective in inducing clinical remission,
fostering mucosal healing, and normalizing cell counts and cytokine
responses in CD patients56,57.

Fig. 9 | Causal associations between genetic reg-
ulators for cytokines, circulating cytokine levels,
and disease risk. a Genetically proxied mRNA for
PPP1R37,PVR,RTN2, and IGFBP2 affect circulating
G-CSF/CSF-3 levels leading to increased risk for
asthma. In turn, PPP1R37 directly lowers disease
risk for asthma. Created in BioRender. User1, L.
(2025) https://BioRender.com/r76a901.
b Genetically proxied mRNA for 11 genes under-
lying CXCL9/MIG levels differentially affect circu-
lating cytokine concentrations which influence the
risk for Crohn’s disease. Independently, TRAFD1,
ATF6B, and C4A also modulate disease risk for
Crohn’s disease. Created in BioRender. User1, L.
(2025) https://BioRender.com/r76a901.
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Integrating our results linkingCDwith circulatingCXCL9/MIG levels,
we identified genetically proxied expression of TRAFD1 as a potential
upstream causal regulator of CXCL9/MIG levels and, subsequently, risk of
CD55,70,71. TRAFD1 binds as a homodimer or in interaction with TRAFD2,
to TNF receptors, impacting pro-inflammatory cytokine production and
modulating inflammatory responses in immune cells34,35,72. In celiac disease,
TRAFD1 was recognized as an upstream regulator of IFNg signaling and
thereby activating cytotoxic T-cells, an important pathomechanism36. The
identified function of TRAFD1 as an inductor of IFNg signaling aligns well
with the literature and also with our findings showing increased circulating
CXCL9/MIG levels underlying TRAFD1 expression68. Substantiating the
risk-increasing associations in our analysis, elevated expression of TRAFD1
and TRAFD2 was noticed in acutely inflamed mucosal biopsies of CD
patients73. Together these reports confirmourfindings for the importance of
TRAFD1 in the pathology of CD and as a modulator of inflammatory
reactions through effects on cytokine levels.

Our analysis also provided evidence for an inverse association between
genetically proxied circulating TNF-b and MS risk. TNF-b is a pro-
inflammatory cytokinewithin the TNF superfamily with substantial genetic
correlation to TNF-a and binding affinity to pro-inflammatory as well as
anti-inflammatory TNF receptors74. In a randomized phase 2 trial the TNF-
inhibitor lenercept was tested for safety and efficacy in MS but had to be
terminated prematurely after the interim analysis detected a dose-
dependent increase in the frequency and severity of MS exacerbations75.
In contrast to the TNF blockers infliximab, adalimumab and golimumab,
lenercept provides equal inhibitory efficacy forTNF-a andTNF-b74,76.While
TNF inhibition has demonstrated success in treating autoimmune diseases,
such as rheumatoid arthritis or psoriasis, patients undergoing anti-TNF
therapy for these indications are at risk for developing demyelinating CNS
lesions, indicating a disease-specific effect42,77. Supporting the clinical find-
ings,GWASstudies inMS identifiedTNF lowering alleles for both cytokines
TNF-a and TNF-b that were associated with higher risk for MS25,78. We
provide additional genetic evidence in line with observational, clinical, and
GWAS findings for a potentially protective role of TNF-b in MS.

In our network analysis, over 80% of the significant cytokine–cytokine
interactions led to an increase in downstream cytokine concentrations.
Given that the majority of the involved cytokines were pro-inflammatory
implies a self-perpetuating feedback mechanism leading to strong inflam-
matory responses and suggests a global trend where cytokines mutually
activate each other to amplify their immune reaction. For the IL-1ra and
TNF-b network, specifically, we successfully expanded the list of down-
stream affected cytokines. TNF-b exhibited notable downstream effects on
13 other cytokines, signifying its role as amaster regulator. This observation
aligns with existing reports on TRAFD1’s downstream effects, influencing
various cytokine-encoding genes like CXCL10/IP-10 and IFNg36.

Our study has limitations. First, our meta-analysis was based on three
cohorts that displayed considerable heterogeneity regarding the genetic
background, the number of measured cytokines, and the biological speci-
men used across the databases. To objectify the influence of between
database differences, we reported the numbers of variants with hetero-
genicity p-value < 0.1 and <0.05, respectively, and repeated theMR analyses
based solely on variants without evidence of heterogeneity. The sensitivity
analysis results are in line with our main findings showing pleiotropic
downstream effects of TNF-b in the cross-cytokine MR and consistent
cytokine–disease associations for asthma, CD, and MS. Nevertheless, the
resulting heterogeneity (see Fig. 2) must be taken into consideration when
interpreting the results. Next to these differences between the three cohorts,
the databases also used different affinity-based assaying approaches for
quantifying circulating cytokines. The different approaches might yield
varying measurements for the same proteins with only moderate correla-
tions across the assays18. This might explain the difference in replication
rates across the three cohorts. Interestingly, we found a higher replication
rate for signals detected with the Olink assay. In a previous cross-assay
comparison between Olink and SomaScan, the proportion of assays with
detected pQTLs was also higher with the Olink-based assay18. The

differences across the panels should be further explored at a larger scale to
explore the extent towhich it would be possible to scale genetic explorations
across cohorts utilizing different proteomic platforms. Second, due to dif-
ferences in reporting of effect sizes for genetic variants across the GWAS
source data and the unavailability of individual-level data, we could perform
only p-value-based meta-analyses and only indirectly estimate the pooled
effect sizes based on the derived p-values and the variant allele frequencies.
Inaccuracies in this estimation could influence downstreamanalysesheavily
relying on effect sizes.Third, due todata availability, our analyseswere based
on 40 selected cytokines. Future endeavors utilizing solely high-throughput
proteomic data could scale up to analyses including more inflammatory
proteins. Fourth, our analyses are based on individuals of European, Fin-
nish, and Icelandic ancestry and, as such, might not be generalizable to
individuals of a different ancestry background. Fifth, due to the large
number of cytokines, we adjusted the significance level for multiple testing,
which might have neglected important findings due to non-significance.
Using a hypothesis-driven approach, future studies should follow up on our
results to identify additional targets we might have missed for a compre-
hensive view of our findings. Sixth our GWAS meta-analysis was based on
population-based cohorts without predominant inflammatory diseases.
Genetic variantsmight influence cytokine levels in specific contexts suchas a
response to infection or other pro-inflammatory stimuli; our approach
could not detect such signals.

In conclusion, our study, leveraging data from 74,783 individuals
across three cohorts, identified 169, mostly novel, genomic loci influencing
circulating cytokine levels. Follow-up analyses of the detected signals reveal
interesting underlying pathways, which enhance our understanding of the
biology of the immune response. Integrating our data with genetic and
clinical data for human disease risk, our analyses suggest potential targets
like G-CSF/CSF-3, CXCL9/MIG, and TNF-b for immune-related diseases
including asthma, Crohn’s disease, and multiple sclerosis, warranting fur-
ther exploration in clinical trials. The summary statistics from our study
offer a valuable resource for future omics analyses, aiding data integration
for the identification of potential drug targets for human diseases.

Methods
Study populations and design
The study cohorts and a flowchart of the study design are depicted in Fig. 1.
We downloaded publicly available GWAS summary statistics for the cir-
culating levels of up to 40 cytokines from three independent cohorts. We
did not have access to individual-level data. Details of the study protocols
have been published elsewhere17,20,21. Human genome assembly GRCh37
(hg19) from Genome Reference Consortium was used for genomic
positioning79. Before further computations, all three databases were har-
monized regarding data structure. For the GWAS meta-analyses and
downstream computations, we included all cytokines that were available in
at least two cohorts. To ensure that the available cytokines were identical
between cohorts we used information provided on the NIH and Gene-
Cards (https://www.genecards.org/) websites and verified synonyms and
aliases in the abbreviated and full names of the cytokines. We excluded 1
cytokine (IL-12) from the analyses because different subunits of the protein
were quantified in the two cohorts (IL-12p70 in YFS & FINRISK and IL-
12p40 in deCODE).

YFS and FINRISK. Genomic data for 40 cytokines were drawn from up
to 8293 individuals of Finnish background that were included in the YFS
& FINRISK cohorts 1997 and 2002, respectively17. The mean age across
all studies was 49 years (standard deviation 8 years). The cytokine
measurements were carried out in EDTA plasma for the FINRISK 1997
cohort, in heparin plasma for the FINRISK 2002 cohort, and in serum for
the YFS cohort using cytokine Luminex®-basedmultiplex immunoassays
from Bio-Rad®. Genotyping was completed using the Illumina HT12
platform for the YFS study and the Illumina 670k HumanHap array for
both FINRISK studies. Imputation was performed using the 1000 Gen-
omes reference panel across all cohorts79. The GWAS meta-analyzing of
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all three studies normalized the cytokine distribution using inverse
transformation and adjusted the genetic analyses for age, sex, and
ancestral principal components 1–10. The reported effect sizes were
scaled per standard deviation increment in inverse-transformed cytokine
levels.

SCALLOP Consortium. Genomic data for 16 cytokines were drawn
from up to 30,931 individuals with European backgrounds from the
SCALLOP consortium, a collaborative framework analyzing gene-
protein associations across 13 studies20. The cytokine measurements
were carried out in plasma samples using the proximity extension assay-
based Olink® platform. Genotyping methods across the studies included
Cardiometabochip, Immunochip, PsychChip, Illumina HumanCoreEx-
ome, Illumina OmniExpress, Metabochip, Illumina OmniExpress 2.5,
Affymetrix Axiom UK Biobank array, HumanCytoSNP-12 BeadChip,
HapMap300v2, Human Exome, Illumina HumanOmniExpressExome-8
v1, Illumina HumanHap300v1, Omni1, OmniX, Illumina Human-
Hap300v1 and Infinium PsychArray-24 v1.2. Imputation was performed
using the following panels: 1000G phase v5, 1000G phase v3, UK10K
reference panel, HRC, HRC r1.1. The GWAS meta-analyzing all 13 stu-
dies adjusted the cytokines for age, gender, site, OLINK batch, Olink
plate, MDS components, storage time, bleed to processing time (days),
smoking status, oral contraceptive usage, blood cell counts, season of
venipuncture and ancestral principal components 1–10. The log2-based
normalized expression values (NPX) for each protein were rank-based
inverse normal transformed and standardized to units of standard
deviation.

deCODE. Genomic and proteomic data for 39 cytokines were taken from
35,559 Icelandic individuals included in deCODE21. Themean age was 55
years (standard deviation 18 years). The cytokine measurements were
carried out in plasma samples using the aptamer-based SOMAScan®

assay. Genotyping was completed using Illumina SNP Chip. Imputation
was based on an in-house developed whole genome sequencing reference
panel. The genetic analyses were adjusted for age and sex. Cytokine
measurements were normalized using rank-inverse normal transfor-
mation and standardized to standard deviation increment. To allow
alignment with other datasets, we excluded all SNPs that were not cov-
ered by the 1000 Genomes reference panel.

Cross-assay comparisons in the genetic architecture of circu-
lating cytokines
To explore differences in the genomic architecture of cytokines levels
between the three studies that applied different measurement assays, we
compared the proportion of overlapping SNPs between datasets confined to
significant (p-value < 0.05) and directionally concordant (same direction of
effect estimates across all three databases) variants. Using the GWAS
summary level data of the three cohorts, we analyzed overlapping SNPs by
taking one dataset as a reference and comparing it to the other two.Next,we
calculated descriptive summary statistics (median and IQR) of the pro-
portion of replicated SNPs across all cytokines for each cohort.

GWASmeta-analyses
We performed fixed-effects inverse variance-weighted meta-analysis for
each cytokine across the available cohorts using METAL software (v.2011-
03-25, number of cohorts and sample sizes per cytokine GWAS are pro-
vided in Supplementary Data S8)80. Due to differences in scaling of the
derived effect estimates across the three datasets, we applied a z-score-based
meta-analysis (SCHEME SAMPLESIZE). Subsequently, we estimated
standardized beta coefficients using p-values, minor allele frequency, and
direction of effects, weighted according to sample sizes, as previously
described81. For estimation of heterogeneity of effect sizes between the three
genomic datasets (or two for cytokines available in only two of three data-
sets) we calculated CochranQ statistics for all included variants and re-run
MR analyses (see Supplementary Figs. S2 and S3) excluding heterogenic

variants (HetPval < 0.05). To control for genomic inflation, we calculated
lambda statistics for each cytokine (Supplementary Data S2)82. Significant
variants were defined based on the established genome-wide significance
level (p < 5 × 10−8). To detect independent variants following correction for
linkage disequilibrium, we clumped across the significant ones using
clump_data (TwoSampleMRRpackage version 0.5.6) at an r2 < 0.001 based
on the European 1000 Genomes Project reference panel79. We defined
independent loci as SNPs that were separated by more than 1Mb from the
next SNPs in the 3’ and 5’ direction, as reported earlier83.

Linkage disequilibrium score regression (LDSC)
Using the LD score v1.0.1 tool we applied LDSC regression with reference
data from the European 1000 Genomes project for calculation of cross-trait
LDSC genetic correlations between all 40 cytokines using the meta-analysis
results79,84–86.

Fine mapping, functional annotation, pathway, and gene-set
analysis
To identify causal variants responsible for variations in circulating cytokine
concentrations, we investigated significant loci associated with cytokines.
We employed PLINK v1.9 to compute LD score correlation matrices and
further refined the results using SuSiE (susieR R package version 0.12.16) to
derive sets of variants, ensuring the inclusion of at least one causal variant
with a cumulative probability ≥ 95%87,88. Subsequently, the causal variants
were utilized to estimate the total variance explainedby the identified loci for
individual cytokines89. For functional analyses, we used phenoscanner
(MendelianRandomization R package version 0.6.0) which ascribes func-
tional consequences (intron, intergenic, exon, upstream, downstream, etc.)
of single variants using positional mapping (physical distance)90,91. Gene-
property analyses were conducted for identification of the tissue specificity
of cytokines using the FUMAGene2Func web database92. Lastly, MAGMA
gene-based and gene-set analyses were conducted. Gene-based analysis
initially calculates p-value association tests for variants mapped to protein-
coding genes which are then used to calculate gene-set p-values in the gene-
set analysis. Using predefined gene-sets, variants with significant associa-
tions to genes can then be analyzed to determine their underlying functional
or process-related feature, i.e. gene-sets belonging tomolecular functions or
biological processes93.

Transcriptome-wide Mendelian randomization analysis
(TWAS-MR)
To further explorewhether variant effects on the expressionof specific genes
underlie the genetic underpinnings of circulating cytokine levels, we per-
formed transcriptome-wide inverse variance-weighted 2-sample MR ana-
lysis, as has beenpreviously described94. Sensitivity analyseswere conducted
using MR Egger regression and the weighted median estimator to control
for horizontal pleiotropy95,96. For the calculation of effect estimates, we used
the mr command from the TwoSampleMR R Package (TwoSampleMR
version 0.5.6) with cis-expression quantitative trait loci (eQTL) gene
instruments from the eQTLGen Consortium as exposure (clumped at
r2 < 0.01) and the GWAS meta-analysis results of our cytokine panel as
outcome. Publicly available data was obtained from the eQTL consortium
(summary level data accessible at https://eqtlgen.org/phase1.html) includ-
ing 31,684 individuals of primarily European ancestry (detailed methods
have been described previously and are available online)24.

Mendelian randomization analyses
We performed MR analyses exploring (i) the effects of circulating
cytokine levels on other cytokines, (ii) the effects of circulating cytokine
levels on allergic and autoimmune, cardiometabolic, and cancer disease
endpoints, (iii) and, depending on the outcomes of the second MR
analyses the effects of gene transcripts (eQTL) upstream of promising
cytokines on allergic and autoimmune endpoints. For (i) and (ii) we used
cis-acting variants as genetic instruments for our MR analyses, as they are
associated with a lower risk of pleiotropic effects when compared to
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trans-acting variants97–101. We filtered the GWAS meta-analysis results
for variants within 300 kb around the gene encoding the respective
cytokine. We selected variants associated at p < 5 × 10−5 and clumped the
data at r2 < 0.1. For the (i) cross-cytokine MR analyses, for each cytokine,
we used as genetic instruments cis-variants influencing its levels and
located within the locus of their encoding gene. This approach helped
ensure that the variants were not directly used as instruments for two
cytokines at the same time. Still, to exclude the possibility of pleiotropic
mechanisms that might lead to spurious reverse causality associations
being interpreted as causal, we also performed Steiger filtering excluding
variants that showed stronger associations (larger absolute betas) with
the “outcome” than the “exposure” cytokine. Steiger filtering led to the
exclusion of 0.07% of instruments and replicated all of our main findings
(see Supplementary Fig. S3 and Supplementary Data S6). For the (ii)
disease endpoint MR we validated the significant MR results that also
showed significant colocalization between cytokine levels and disease risk
in the locus of the cytokine gene by using genetic instruments derived
from an independent UKBB proteomics dataset, selected based on the
same criteria. Furthermore, we explored whether measured levels of these
cytokines are associated with the respective disease endpoints using
clinical data from UKBB. The UKBB is a prospective cohort study that
recruited over 500,000 individuals from the general UK population at
baseline102. Between March 2006 and October 2010, participants aged
37–73 years attended one of 22 assessment centers across Scotland,
England, and Wales103,104. Each participant completed a touchscreen
questionnaire, had physical measurements taken, and provided blood,
urine, and saliva samples at baseline. Plasma Proteomics in the UK
Biobank dataset collected plasma samples from UKBB participants
during their baseline visit. Samples were representative of the broader UK
population, with 93% of European ancestry105. We performed logistic
regression analyses adjusted for age and sex with the normalized levels of
the proteins scaled at standard deviation increments. The outcomes were
defined based on ICD-9 and ICD-10 codes of the primary care and
hospital records of the study participants either before or after the
baseline examination (Supplementary Data S8). To explore the dis-
crimination utility of the protein biomarkers to detect or predict the
disease endpoints, we calculated the area under the curve (c-index) for
logistic regression models including age and sex, and models also
including the protein levels. We applied fixed-effects inverse variance-
weighted MR analysis as our main analytical approach94. Again, MR
Egger regression and the weighted median estimator were used as sen-
sitivity analyses95,96. After harmonization of the effect alleles across
cytokines, we used the mr command from the TwoSampleMR R Package
(TwoSampleMR version 0.5.6) to extract the respective effect estimates.

Disease outcome GWASs
For the disease endpoints, we downloaded the largest, publicly available
summary-level data GWAS based on European ancestry individuals that
were non-overlapping with our cytokine summary-level data and per-
formedMR analyses for three independent disease groups. For allergic and
autoimmune phenotypes we analyzed asthma (121,940 cases, 1,254,131
controls)106, Crohn’s disease (5956 cases, 14,927 controls)107, ulcerative
colitis (6968 cases, 20,464 controls)107, multiple sclerosis (47,429 cases,
68,374 controls)108, psoriasis (4815 cases, 415,646 controls)109, and rheu-
matoid arthritis (14,361 cases, 43,923 controls)110. For cardiometabolic
phenotypes, we analyzed peripheral vascular disease (31,307 cases, 211,753
controls)111, coronary artery disease (60,801 cases, 123,504 controls)112, large
artery stroke (9219 cases, 1,503,898 controls)113 and diabetesmellitus type II
(242,283 cases, 1,569,730 controls)83. For cancer phenotypes we analyzed
breast cancer (133,384 cases, 113,789 controls)114, colorectal cancer (5657
cases, 372,016 controls)115, lung cancer (29,266 cases, 56,450 controls)112,
non-Hodgins lymphoma (2400 cases, 410,350 controls)113, and skin cancer
(23,694 cases, 372,016 controls)115. The data sources are detailed in Sup-
plementary Data S8.

Colocalization analysis
To analyze shared causal variants between SNPs for circulating cytokines
and disease outcomes showing significant associations in MR analyses, we
used the “coloc” v3 R package. COLOC is a variant colocalization method
that performs tests on shared causal variants in the locus. Colocalization
methods consider the GWAS and disease outcome summary statistics at a
locus jointly and probabilistically test if the two signals are likely to be
generated by the same causal variant114. We used the meta-analyses sum-
mary statistics for the significant cytokines restricted to a flanking region
±300 kb around the genetic location of each cytokine and mapped disease-
associated variants by their rsID.

Statistics and reproducibility
Baseline characteristics of each cohort were summarized in Supplementary
Data S8. Meta-analysis of GWAS summary statistics was performed using
METAL software (latest version released on 2011-3-25, https://csg.sph.
umich.edu/abecasis/metal/download/), subsequent clumping, calculation
of heterogeneity statistics and lambda was executed using R statistical
environment with the help of R packages as defined in the code availability
section. Next, we used LDSC v1.0.1 (https://github.com/bulik/ldsc) for the
computation of LD Score Regression, heritability, and genetic correlation.
Todetect individual lead loci,we appliedPlink 1.9 (version1.9, https://www.
coggenomics.org/plink/) to generate LDmatrices that were incorporated by
susieR R package to pinpoint causal variants. Functional analysis, including
positional mapping, gene property, and gene-set analysis, was executed
using thephenoscannerRpackage, theweb-based tool FUMA(version1.3.8
and 1.5.2, https://fuma.ctglab.nl/), and MAGMA (https://ctg.cncr.nl/
software/magma, as implemented in FUMA), respectively. For all MR
analyses in this manuscript, the TwoSampleMR R package was employed.
Finally, colocalization was executed using the coloc R packages.

Database search
To assess previously reported associations a database search was conducted
using theNHGRI-GWAS catalog115 on February 15, 2023.We analyzed our
GWAS hits for associations with any of the 40 cytokines reported here
(Supplementary Data S2), restricting the results for European-ancestry
associations.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The data sources used in the current study are publicly available (download
links are available in Supplementary Data S8). Ethical approval was not
required due to the usage of publicly available summary-level data17,20,21. The
datasets generated during and/or analyzed during the current study are
available in the EBI GWAS catalog (accession numbers
GCST90428399–GCST90428438). Whole-blood cis-eQTL summary sta-
tistics from the eQTLGen Consortium were downloaded from https://
eqtlgen.org/phase1.html.

Code availability
The analyses in this study were conducted using various line scripts as
defined in the Statistics and Reproducibility section and R statistical
environment (version 2024.09.1+394, https://www.r-project.org/). The R
tools used in the analyses, which are publicly available, include: “Two-
SampleMR” R package (version 0.5.6), “coloc” R package (version 5.2.3),
MendelianRandomization R package (version 0.6.0), susieR R package
(version 0.12.16). No custom algorithms or code were used in this study.
An example R script can be found as a supplementary document named
“code example.R”. For further details on the analysis scripts or any
specific code used in our study, please contact the corresponding author
upon request.
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