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Abstract: This paper is concerned with the formal synthesis of safety controllers for
partially-observable continuous-time polynomial-type systems with unknown dynamics. Given
a continuous-time polynomial-type estimator with a partially-unknown dynamic and a known
upper bound on the estimation accuracy, we propose a data-driven approach to compute a
polynomial-type controller ensuring safety of the system. The proposed framework is based
on a notion of so-called control barrier functions and only requires a single output trajectory
collected from the system and a single state trajectory collected from its estimator. We show
the application of our technique by synthesizing a safety controller for a partially-observable jet
engine with unknown dynamics.
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1. INTRODUCTION

Synthesizing controllers that enforce safety specifications
has gained significant attentions in the last decade. In
this regard, formal methods have emerged as a promis-
ing and reliable approach to synthesize safety controllers
for complex dynamical systems. When synthesizing con-
trollers, assuming that the values of all of the system’s
states are known is often an unrealistic assumption, and
in many real world applications, full state information is
not always accessible. This limitation led to new challenges
in the synthesis of controllers for systems with partial or
incomplete information. Motivated by these challenges, the
works in (Jahanshahi et al., 2020b,a; Clark, 2021, 2019)
provide an approach based on notions of barrier functions
to synthesize safety controllers, where proper state estima-
tors are used in order to compute a controller that makes
the partially-observable stochastic control system safe.
The results in (Jahanshahi et al., 2020b) and (Jahanshahi
et al., 2020a) provide a lower bound on the probability that
the trajectories of the system remain safe over a finite-
time horizon. The proposed approaches in (Clark, 2021)
and (Clark, 2019) provide infinite-time horizon guaran-
tees for the safety of the system with probability 1 while
assuming a prior knowledge of control barrier functions
and considering an unbounded input set. The problem
of synthesizing controllers for partially-observable Markov
decision processes (POMDPs) using barrier functions has
also been studied in (Ahmadi et al., 2019) and (Ahmadi
et al., 2020).

⋆ This work was supported in part by the H2020 ERC Starting Grant
AutoCPS (grant agreement No. 804639) and the German Research
Foundation (DFG) through the Research Training Group 2428.

The proposed methods in the above-mentioned literature
require precise models of dynamical systems. However,
closed-form mathematical models of many physical sys-
tems are either unavailable or too complicated to be
of any use. Therefore, it is not possible to analyze or
synthesize controllers for complex systems with unknown
models using model-based methodologies. Since obtain-
ing precise models for complex systems is typically a
tedious and costly task (Hou and Wang, 2013), data-
driven approaches are becoming increasingly popular when
dealing with systems with unknown dynamics. To this
end, over the past few years, several studies have inves-
tigated data-driven controller synthesis for systems with
complete state information. When the system model is
unavailable, (Fraile et al., 2020) offers an approach to syn-
thesis controllers for single-input, single-output feedback
linearizable systems. The work in (Coulson et al., 2019)
examines a data-enabled predictive control technique for
linear stochastic systems for which the model is unavail-
able and the controller is derived from noisy input-output
data. Given that an upper bound on the dimension of
the system is available, (Coulson et al., 2021) presents a
data-driven model predictive control scheme solely based
on initially measured input-output data. By collecting
input-output data over a finite time horizon, (Guo et al.,
2020) proposes a methodology to compute control laws
for nonlinear polynomial-type systems. Using the so-called
behavioural framework, which is a data-driven method
proposed in (Willems and Polderman, 1997), state and
output feedback stabilization and linear quadratic regu-
lation (LQR) problems are studied in (De Persis and Tesi,
2019). Based on the same behavioural idea, the problem is
extended to stabilizing polynomial-type systems (Esfahani
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et al., 2014), switched linear systems (Rotulo et al., 2022),
and linear time-varying systems (Nortmann and Mylva-
ganam, 2020). In addition, barrier-based data-driven tech-
niques, in which barrier functions are constructed directly
from data, have also been investigated recently. In this
respect, the work in (Salamati and Zamani, 2022) offers a
data-driven verification strategy via barrier functions for
stochastic systems with unknown dynamics as well as a
probabilistic confidence over the verification. The exten-
sion of (Salamati and Zamani, 2022) from verification
to synthesis of safety controllers is proposed in (Salamati
et al., 2021). Under a certain rank condition, (Nejati
et al., 2022) provides a data-driven controller synthesis
methodology for continuous-time nonlinear polynomial-
type systems based on a single trajectory acquired from
the system. However, to the best of our knowledge, there is
no work on the synthesis of safety controllers for unknown
systems with partial state information. This work is the
first to provide a data-driven methodology to synthesize
controllers making a partially-observable system safe.

The main contribution of this work is to provide a data-
driven framework for the synthesis of safety controllers
for partially-observable continuous-time polynomial-type
systems with unknown models. Given an appropriate es-
timator with a known estimation accuracy, we provide
sufficient conditions for so-called control barrier functions
under which the safety of the unknown system can be guar-
anteed. The control barrier function and its corresponding
polynomial-type safety controller are constructed purely
from data. Under a certain rank condition, which is linked
to the condition of persistency of excitation (Willems
et al., 2005), only a single state trajectory from the estima-
tor and a single input-output trajectory from the system
over a finite time horizon are needed in our setting. We
illustrated our proposed results on a partially-observable
jet engine example.

The remainder of the paper is organized as follows. Sec-
tion 2 contains the definition of polynomial-type systems,
mathematical notations, and a description of the problem.
Control barrier functions are formally defined in Section 3.
We outline our data-driven methodology in Section 4 for
synthesizing safety controllers. Section 5 is dedicated to
the computation of control barrier functions. Finally, in
Section 6, we use a jet engine example with an unknown
model to show the effectiveness of our results.

2. PARTIALLY-OBSERVABLE CONTINUOUS-TIME
POLYNOMIAL-TYPE SYSTEMS

2.1 Notations

The sets of positive integers, non-negative integers, real
numbers, non-negative real numbers, and positive real
numbers are denoted by N,N≥0,R,R≥0, and R>0, respec-
tively. We use Rn to denote an n-dimensional Euclidean
space and Rn×m to denote the space of real matrices with
n rows and m columns. Given N vectors xi ∈ Rni , ni ∈ N,
and i ∈ {1, . . . , N}, we use [x1; . . . ;xn] and [x1, . . . , xn] to
denote the corresponding column and row vectors, respec-
tively, with dimension

∑
i ni. The notation ∥x∥ is used to

indicate the infinity norm of a vector x ∈ Rn. For a set
X, we denote its ϵ-inflated version by Xϵ, with ϵ ∈ R>0,

and define it as Xϵ := {x̂ ∈ X | ∃x ∈ X, ∥x̂− x∥ ≤ ϵ}. We
denote by In the identity matrix in Rn×n. A symmetric
matrix P ∈ Rn×n is said to be positive definite, denoted
by P ≻ 0, if all its eigenvalues are positive.

2.2 Partially-Observable Continuous-Time
Polynomial-Type Systems

In this work, we consider partially-observable continuous-
time polynomial-type systems as formalized in the follow-
ing definition.

Definition 2.1. A partially-observable continuous-time
polynomial-type system (PO-ct-PS) is described by

S :

{
ẋ = AM(x) +Bu,

y = CM(x),
(2.1)

where A ∈ Rn×N , B ∈ Rn×m, and C ∈ Rp×N . The vector
function M(x) ∈ RN contains monomials in state x ∈ X,
with X ⊂ Rn being the state set. Furthermore, u ∈ U is
the control input with input set U ⊂ Rm, and y ∈ Y is the
output with output set Y ⊂ Rp. Here, we employ notation
xx0υ to denote the trajectory of S starting from an initial
state x0 = x(0), under an input υ, and xx0υ(t) denotes the
value of this trajectory at time t ∈ R≥0.

For system S as in (2.1), we assume matrices A,B, and
C are unknown and we employ the term unknown model
to refer to this type of system. Furthermore, we raise the
following assumption on the existence of an estimator that
can estimate the states of S with an upper bound on the
estimation accuracy.

Assumption 1. Consider a PO-ct-PS S as in (2.1). States

of S can be estimated by a proper estimator Ŝ represented
as:

Ŝ :

{
˙̂x = AM(x̂) +Bu+K

(
CM(x)− CM(x̂)

)
,

ŷ = CM(x̂),
(2.2)

with x̂ ∈ X̂ and ŷ ∈ Ŷ , where X̂ ⊂ Rn and Ŷ ⊂ Rp

are the estimator’s state and output set, respectively.

Furthermore, X ⊆ X̂ and Y ⊆ Ŷ . The matrix K ∈ Rn×p

is the known estimator gain, and A,B, and C are the
unknown matrices as in S. Moreover, in this paper, we
consider a guaranteed upper bound on the estimation
accuracy as:

∥x(t)− x̂(t)∥ ≤ ϵ, ∀t ∈ R≥0, (2.3)

where ϵ ∈ R>0 is a known constant.

Now we can formally define the main synthesis problem
that we are interested in solving in this paper.

Problem 2.2. Consider a PO-ct-PS S as in (2.1) with

unknown matrices A,B, and C, its estimator Ŝ as in (2.2)
with the estimation accuracy ϵ as in (2.3). Let X1, X2 ⊂
X represent initial and unsafe sets for S, respectively.
Synthesize a polynomial-type safety controller using which
the trajectories of S starting from initial setX1 never reach
the unsafe set X2.

To synthesize a controller for Problem 2.2, we utilize a
notion of control barrier functions, introduced in the next
section.
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et al., 2014), switched linear systems (Rotulo et al., 2022),
and linear time-varying systems (Nortmann and Mylva-
ganam, 2020). In addition, barrier-based data-driven tech-
niques, in which barrier functions are constructed directly
from data, have also been investigated recently. In this
respect, the work in (Salamati and Zamani, 2022) offers a
data-driven verification strategy via barrier functions for
stochastic systems with unknown dynamics as well as a
probabilistic confidence over the verification. The exten-
sion of (Salamati and Zamani, 2022) from verification
to synthesis of safety controllers is proposed in (Salamati
et al., 2021). Under a certain rank condition, (Nejati
et al., 2022) provides a data-driven controller synthesis
methodology for continuous-time nonlinear polynomial-
type systems based on a single trajectory acquired from
the system. However, to the best of our knowledge, there is
no work on the synthesis of safety controllers for unknown
systems with partial state information. This work is the
first to provide a data-driven methodology to synthesize
controllers making a partially-observable system safe.

The main contribution of this work is to provide a data-
driven framework for the synthesis of safety controllers
for partially-observable continuous-time polynomial-type
systems with unknown models. Given an appropriate es-
timator with a known estimation accuracy, we provide
sufficient conditions for so-called control barrier functions
under which the safety of the unknown system can be guar-
anteed. The control barrier function and its corresponding
polynomial-type safety controller are constructed purely
from data. Under a certain rank condition, which is linked
to the condition of persistency of excitation (Willems
et al., 2005), only a single state trajectory from the estima-
tor and a single input-output trajectory from the system
over a finite time horizon are needed in our setting. We
illustrated our proposed results on a partially-observable
jet engine example.

The remainder of the paper is organized as follows. Sec-
tion 2 contains the definition of polynomial-type systems,
mathematical notations, and a description of the problem.
Control barrier functions are formally defined in Section 3.
We outline our data-driven methodology in Section 4 for
synthesizing safety controllers. Section 5 is dedicated to
the computation of control barrier functions. Finally, in
Section 6, we use a jet engine example with an unknown
model to show the effectiveness of our results.

2. PARTIALLY-OBSERVABLE CONTINUOUS-TIME
POLYNOMIAL-TYPE SYSTEMS

2.1 Notations

The sets of positive integers, non-negative integers, real
numbers, non-negative real numbers, and positive real
numbers are denoted by N,N≥0,R,R≥0, and R>0, respec-
tively. We use Rn to denote an n-dimensional Euclidean
space and Rn×m to denote the space of real matrices with
n rows and m columns. Given N vectors xi ∈ Rni , ni ∈ N,
and i ∈ {1, . . . , N}, we use [x1; . . . ;xn] and [x1, . . . , xn] to
denote the corresponding column and row vectors, respec-
tively, with dimension

∑
i ni. The notation ∥x∥ is used to

indicate the infinity norm of a vector x ∈ Rn. For a set
X, we denote its ϵ-inflated version by Xϵ, with ϵ ∈ R>0,

and define it as Xϵ := {x̂ ∈ X | ∃x ∈ X, ∥x̂− x∥ ≤ ϵ}. We
denote by In the identity matrix in Rn×n. A symmetric
matrix P ∈ Rn×n is said to be positive definite, denoted
by P ≻ 0, if all its eigenvalues are positive.

2.2 Partially-Observable Continuous-Time
Polynomial-Type Systems

In this work, we consider partially-observable continuous-
time polynomial-type systems as formalized in the follow-
ing definition.

Definition 2.1. A partially-observable continuous-time
polynomial-type system (PO-ct-PS) is described by

S :

{
ẋ = AM(x) +Bu,

y = CM(x),
(2.1)

where A ∈ Rn×N , B ∈ Rn×m, and C ∈ Rp×N . The vector
function M(x) ∈ RN contains monomials in state x ∈ X,
with X ⊂ Rn being the state set. Furthermore, u ∈ U is
the control input with input set U ⊂ Rm, and y ∈ Y is the
output with output set Y ⊂ Rp. Here, we employ notation
xx0υ to denote the trajectory of S starting from an initial
state x0 = x(0), under an input υ, and xx0υ(t) denotes the
value of this trajectory at time t ∈ R≥0.

For system S as in (2.1), we assume matrices A,B, and
C are unknown and we employ the term unknown model
to refer to this type of system. Furthermore, we raise the
following assumption on the existence of an estimator that
can estimate the states of S with an upper bound on the
estimation accuracy.

Assumption 1. Consider a PO-ct-PS S as in (2.1). States

of S can be estimated by a proper estimator Ŝ represented
as:

Ŝ :

{
˙̂x = AM(x̂) +Bu+K

(
CM(x)− CM(x̂)

)
,

ŷ = CM(x̂),
(2.2)

with x̂ ∈ X̂ and ŷ ∈ Ŷ , where X̂ ⊂ Rn and Ŷ ⊂ Rp

are the estimator’s state and output set, respectively.

Furthermore, X ⊆ X̂ and Y ⊆ Ŷ . The matrix K ∈ Rn×p

is the known estimator gain, and A,B, and C are the
unknown matrices as in S. Moreover, in this paper, we
consider a guaranteed upper bound on the estimation
accuracy as:

∥x(t)− x̂(t)∥ ≤ ϵ, ∀t ∈ R≥0, (2.3)

where ϵ ∈ R>0 is a known constant.

Now we can formally define the main synthesis problem
that we are interested in solving in this paper.

Problem 2.2. Consider a PO-ct-PS S as in (2.1) with

unknown matrices A,B, and C, its estimator Ŝ as in (2.2)
with the estimation accuracy ϵ as in (2.3). Let X1, X2 ⊂
X represent initial and unsafe sets for S, respectively.
Synthesize a polynomial-type safety controller using which
the trajectories of S starting from initial setX1 never reach
the unsafe set X2.

To synthesize a controller for Problem 2.2, we utilize a
notion of control barrier functions, introduced in the next
section.

3. CONTROL BARRIER FUNCTIONS

In this section, we define a notion of control barrier
functions (CBFs), adopted from (Prajna et al., 2007), as
formalized in the following definition.

Definition 3.1. Consider a PO-ct-PS S as in (2.1), its esti-

mator Ŝ as in (2.2) together with an estimation accuracy ϵ

as in (2.3), and X1, X2 ⊂ X⊆ X̂ as initial and unsafe sets

of S, respectively. Let us define Xϵ
2⊂ X̂ as an ϵ-inflated

version of X2. A function B : X̂ → R is called a control
barrier function for Ŝ if there exists constants λ1, λ2 ∈ R,
with λ1 < λ2, such that

• ∀x̂ ∈ X1,

B(x̂) ≤ λ1, (3.1)

• ∀x̂ ∈ Xϵ
2,

B(x̂) ≥ λ2, (3.2)

• ∀x̂ ∈ X̂, ∃u ∈ U , such that ∀x ∈ X,

LB(x, x̂, u) ≤ 0, (3.3)

where LB is the Lie derivative of B with respect to the
dynamic of the estimator, which is defined as

LB(x, x̂, u) :=
∂B(x̂)
∂x̂

(
AM(x̂) +Bu+K

(
CM(x)− CM(x̂)

))
.

(3.4)

The above definition implicitly associates a controller to a
CBF according to the existential quantifier over the input

for any x̂ ∈ X̂.

Remark 3.2. Note that X1 and Xϵ
2 should not intersect in

order to enforce the safety property in Definition 3.1. This
condition is implicitly enforced by imposing λ1 < λ2.

The next theorem shows how CBFs can be used in order to
make sure that the unknown PO-ct-PS S in (2.1) is safe
in the sense that its trajectories starting from X1 never
reach X2.

Theorem 3.3. Let S be a PO-ct-PS as in (2.1) and Ŝ be
its corresponding estimator as in (2.2) with the estimation

accuracy ϵ as in (2.3). Suppose B is a CBF for Ŝ as
in Definition 3.1. Then, one gets xx0υ(t) ̸∈ X2 for any
x0 ∈ X1 and any t ∈ R≥0, where the control input u is
chosen in such a way that (3.3) holds.

In the next section, we propose a data-driven approach in
order to construct control barrier functions for unknown
PO-ct-PSs as in (2.1).

4. DATA-DRIVEN CONTROLLER SYNTHESIS VIA
CBFS

We now provide our data-driven approach in order to
synthesize safety controllers for the unknown PO-ct-PS

S in (2.1) using its estimator Ŝ in (2.2). To do so, we
first collect input-output data from the unknown PO-ct-

PS S and its estimator Ŝ over the time interval [t0, t0 +
(T − 1)∆t], where ∆t is the sampling time, and T ∈
N>0 is the number of collected samples. Then, using the

collected data from S, we collect input-output data from

the estimator Ŝ. The collected samples are denoted as
follows:

U0,T := [u(t0), u(t0 +∆t), · · · , u(t0 + (T − 1)∆t)] ,

Y0,T := [y(t0), y(t0 +∆t), · · · , y(t0 + (T − 1)∆t)] ,

X̂0,T := [x̂(t0), x̂(t0 +∆t), · · · , x̂(t0 + (T − 1)∆t)] ,

X̂1,T :=
[
˙̂x(t0), ˙̂x(t0 +∆t), · · · , ˙̂x(t0 + (T − 1)∆t)

]
.
(4.1)

Remark 4.1. Observe that in order to construct X̂1,T , one
needs to have access to the derivatives of the states of the
estimator at sampling times. Since this data is generally
not available via measurements, proposed results in the
relevant literature can be utilized in order to approximate
derivatives using some filters (cf. (Padoan and Astolfi,
2015; Garnier et al., 2008, 2003)). Although a small
numerical error gets introduced from approximating the
derivatives, we do not consider this error in our analysis.

Next, we use the results of (Guo et al., 2020) in order
to provide a data-based representation of the closed-

loop estimator Ŝ in (2.2) using a polynomial-type safety
controller of the form u = Z(x̂)M(x̂), where the matrix
polynomial Z(x̂) is to be synthesized.

Lemma 4.2. Let F (x̂) be a (T × N) matrix polynomial

such that IN = M̂0,TF (x̂), where M̂0,T is an (N ×T ) full
row-rank matrix constructed from the vector M(x̂) and

samples X̂0,T as follows

M̂0,T =
[
M

(
x̂(t0)

)
, · · · ,M

(
x̂(t0 + (T − 1)∆t)

)]
.

If the input is set to be as u = Z(x̂)M(x̂) =
U0,TF (x̂)M(x̂), then the data-based representation of the

closed loop estimator ˙̂x = AM(x̂) + Bu + K
(
CM(x) −

CM(x̂)
)
is as follows:

˙̂x =
(
X̂1,T −KY0,T

)
F (x̂)M(x̂) +KY0,TF (x)M(x),

or equivalently,

A+BZ(x̂)−KC = (X̂1,T −KY0,T )F (x̂),

and
KC = KY0,TF (x).

Remark 4.3. Note that the number of samples T should

be at least N in order to insure M̂0,T to have full row
rank.

The following theorem, inspired by (Nejati et al., 2022,
Theorem 8), shows the usefulness of CBFs in order to
solve Problem 2.2. To do so, we construct the CBF from
data and use the data-based representation in Lemma 4.2
in order to synthesize the controller gain Z(x̂), such that
u = Z(x̂)M(x̂) makes the unknown PO-ct-PS (2.1) safe.

Theorem 4.4. Let S be a PO-ct-PS in (2.1) and Ŝ be its
estimator in (2.2) together with an estimation accuracy
ϵ as in (2.3). Suppose there exists a matrix polynomial

H(x̂) ∈ RT×N such that M̂0,TH(x̂) = P−1, ∀x̂ ∈ X̂,
with P ≻ 0. If conditions (4.2)-(4.4) are satisfied, then

B(x̂) = M(x̂)⊤[M̂0,TH(x̂)]−1M(x̂) is a CBF and u =

U0,TH(x̂)
(
M̂0,TH(x̂)

)−1M(x̂) is its corresponding safety
controller which makes the unknown PO-ct-PS S safe:

• ∀x̂ ∈ X1,
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M(x̂)⊤[M̂0,TH(x̂)]−1M(x̂) ≤ λ1, (4.2)

• ∀x̂ ∈ Xϵ
2,

M(x̂)⊤[M̂0,TH(x̂)]−1M(x̂) ≥ λ2, (4.3)

• ∀x̂ ∈ X̂,

M(x̂)⊤P
[∂M(x̂)

∂x̂
(X̂1,T −KY0,T )H(x̂)

+H(x̂)⊤(X̂1,T −KY0,T )
⊤(

∂M(x̂)

∂x̂
)⊤

]
PM(x̂)

+M(x̂)⊤P
[∂M(x̂)

∂x̂
KY0,TH(x)

]
PM(x)

+M(x)⊤P
[
H(x)⊤(KY0,T )

⊤(
∂M(x̂)

∂x̂
)⊤

]
PM(x̂) ≤ 0,

(4.4)

where λ1 < λ2, λ1, λ2 ∈ R. In the next section, we discuss
the computation of CBFs.

5. COMPUTATION OF CBFS

In this section, we provide a systematic approach to
implement Theorem 4.4 and search for CBFs and their
corresponding controllers. The proposed method is based
on a sum-of-square (SOS) optimization problem (Parrilo,
2003). To do so, we consider the state set of the system

and the estimator X, X̂, the initial set X1, and the unsafe
set Xϵ

2 as

X =

nx⋃
i=1

Xi, Xi :=
{
x ∈ Rn | gij(x) ≥ 0, j = 1, . . . , ℓ

}
,

(5.1)

X̂ =

nx̂⋃
i=1

X̂i, X̂i :=
{
x̂ ∈ Rn | ĝij(x̂) ≥ 0, j = 1, . . . , ℓ̂

}
,

(5.2)

X1 =

nx1⋃
i=1

X1i, X1i :=
{
x̂ ∈ Rn | g1ij(x̂) ≥ 0, j = 1, . . . , ℓ1

}
,

(5.3)

Xϵ
2 =

nx2⋃
i=1

Xϵ
2i, X

ϵ
2i :=

{
x̂ ∈ Rn | g2ij(x̂) ≥ 0, j = 1, . . . , ℓ2

}
,

(5.4)

where nx, nx̂, nx1 , and nx2 are the number of regions in

X, X̂,X1, and Xϵ
2, respectively. Furthermore, gij , ĝij , g

1
ij ,

and g2ij are polynomial functions, with ℓ, ℓ̂, ℓ1, and ℓ2 being
the number of polynomials required to characterize each
region. The input set U is defined as

U :=
{
u ∈ Rm | b⊤j u ≤ 1, with j = 1, . . . , ℓu

}
, (5.5)

where bj ∈ Rm are some constant vectors. We now present
the SOS formulations in the following corollary.

Corollary 5.1. Consider a PO-ct-PS S in (2.1) and its

estimator Ŝ in (2.2) together with an estimation accuracy

ϵ as in (2.3). Let X, X̂,X1, and Xϵ
2 be as in (5.1)-

(5.4), respectively, the input set U be as in (5.5), and

data U0,T ,Y0,T , X̂1,T , and M̂0,T be as in (4.1) and in
Lemma 4.2, respectively. If there exist a positive definite
matrix P ∈ Rn×n, a matrix polynomial H(x̂) ∈ RT×N ,

and λ1, λ2 ∈ R, with λ1 < λ2, such that the following
expressions are sum-of-squares (SOS) polynomials

−M(x̂)⊤PM(x̂)−
ℓ1∑
j=1

h1
ij(x̂)g

1
ij(x̂)+λ1,∀i ∈{1,. . ., nx1

},

(5.6)

M(x̂)⊤PM(x̂)−
ℓ2∑
j=1

h2
ij(x̂)g

2
ij(x̂)− λ2,∀i ∈{1,. . . ,nx2

},

(5.7)

−M(x̂)⊤P
[∂M(x̂)

∂x̂
(X̂1,T −KY0,T )H(x̂)

−H(x̂)⊤(X̂1,T −KY0,T )
⊤(

∂M(x̂)

∂x̂
)⊤

]
PM(x̂)

−M(x̂)⊤P
[∂M(x̂)

∂x̂
KY0,TH(x)

]
PM(x)

−M(x)⊤P
[
H(x)⊤(KY0,T )

⊤(
∂M(x̂)

∂x̂
)⊤

]
PM(x̂)

−
ℓ̂∑

j=1

ĥîj(x̂)ĝîj(x̂)−
ℓ∑

j=1

hij(x)gij(x),

∀i ∈ {1, . . . , nx}, ∀î ∈ {1, . . . , nx̂},

(5.8)

1−b⊤j U0,TH(x̂)PM(x̂)−hu(x̂)
(
λ1 −M(x̂)⊤PM(x̂)

)
,

∀j ∈ {1, . . . ℓu},
(5.9)

with h1
ij(x̂), h

2
ij(x̂), ĥîj(x̂), hij(x), and hu(x̂) being SOS

polynomials of appropriate dimensions, then B(x̂) =

M(x̂)⊤PM(x̂) is a CBF for Ŝ, and u = U0,TH(x̂)PM(x̂)
is a safety controller for S.
Remark 5.2. If one wishes to accommodate the error term
coming from the calculation of derivatives, as discussed in

Remark 4.1, one can add an extra positive term to X̂1,T in
(5.8) such that condition (5.8) is satisfied for that positive
error term.

Remark 5.3. Note that in order to search for the matrix
polynomial H(·) and matrix P fulfilling conditions (5.6)-
(5.9), one can employ existing software tools in the relevant
literature such as SOSTOOLS (Prajna et al., 2002), in
conjunction with a semidefinite programming solver, such
as SeDuMi (Sturm, 1999).

Remark 5.4. Observe that in condition (5.9) there exists a
bilinearity between decision matrices P and H(·). In order
to tackle this bilinear matrix inequality (BMI), one can
first acquire a candidate for P derived from (5.6) and (5.7),
and then attempt to obtain an appropriate candidate for
H(·) based on (5.8) and (5.9). Another approach to resolve
this problem is to utilize the proposed method in (Hassibi
et al., 1999) in order to locally solve the BMI by linearizing
it via a first-order perturbation approximation. Then, the
problem reduces to solving the linearized version.

Remark 5.5. Note that we provide an approach that is
sound but not complete in solving the synthesis problem.
This means if one fails to find matrices P and H(·), then
a safety controller may or may not exist.

6. CASE STUDY

Here, we consider a nonlinear Moore-Greitzer jet engine
model in no-stall mode (Krstic and Kokotovic, 1995) given
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M(x̂)⊤[M̂0,TH(x̂)]−1M(x̂) ≤ λ1, (4.2)

• ∀x̂ ∈ Xϵ
2,

M(x̂)⊤[M̂0,TH(x̂)]−1M(x̂) ≥ λ2, (4.3)

• ∀x̂ ∈ X̂,

M(x̂)⊤P
[∂M(x̂)

∂x̂
(X̂1,T −KY0,T )H(x̂)

+H(x̂)⊤(X̂1,T −KY0,T )
⊤(

∂M(x̂)

∂x̂
)⊤

]
PM(x̂)

+M(x̂)⊤P
[∂M(x̂)

∂x̂
KY0,TH(x)

]
PM(x)

+M(x)⊤P
[
H(x)⊤(KY0,T )

⊤(
∂M(x̂)

∂x̂
)⊤

]
PM(x̂) ≤ 0,

(4.4)

where λ1 < λ2, λ1, λ2 ∈ R. In the next section, we discuss
the computation of CBFs.

5. COMPUTATION OF CBFS

In this section, we provide a systematic approach to
implement Theorem 4.4 and search for CBFs and their
corresponding controllers. The proposed method is based
on a sum-of-square (SOS) optimization problem (Parrilo,
2003). To do so, we consider the state set of the system

and the estimator X, X̂, the initial set X1, and the unsafe
set Xϵ

2 as

X =

nx⋃
i=1

Xi, Xi :=
{
x ∈ Rn | gij(x) ≥ 0, j = 1, . . . , ℓ

}
,

(5.1)

X̂ =

nx̂⋃
i=1

X̂i, X̂i :=
{
x̂ ∈ Rn | ĝij(x̂) ≥ 0, j = 1, . . . , ℓ̂

}
,

(5.2)

X1 =

nx1⋃
i=1

X1i, X1i :=
{
x̂ ∈ Rn | g1ij(x̂) ≥ 0, j = 1, . . . , ℓ1

}
,

(5.3)

Xϵ
2 =

nx2⋃
i=1

Xϵ
2i, X

ϵ
2i :=

{
x̂ ∈ Rn | g2ij(x̂) ≥ 0, j = 1, . . . , ℓ2

}
,

(5.4)

where nx, nx̂, nx1 , and nx2 are the number of regions in

X, X̂,X1, and Xϵ
2, respectively. Furthermore, gij , ĝij , g

1
ij ,

and g2ij are polynomial functions, with ℓ, ℓ̂, ℓ1, and ℓ2 being
the number of polynomials required to characterize each
region. The input set U is defined as

U :=
{
u ∈ Rm | b⊤j u ≤ 1, with j = 1, . . . , ℓu

}
, (5.5)

where bj ∈ Rm are some constant vectors. We now present
the SOS formulations in the following corollary.

Corollary 5.1. Consider a PO-ct-PS S in (2.1) and its

estimator Ŝ in (2.2) together with an estimation accuracy

ϵ as in (2.3). Let X, X̂,X1, and Xϵ
2 be as in (5.1)-

(5.4), respectively, the input set U be as in (5.5), and

data U0,T ,Y0,T , X̂1,T , and M̂0,T be as in (4.1) and in
Lemma 4.2, respectively. If there exist a positive definite
matrix P ∈ Rn×n, a matrix polynomial H(x̂) ∈ RT×N ,

and λ1, λ2 ∈ R, with λ1 < λ2, such that the following
expressions are sum-of-squares (SOS) polynomials

−M(x̂)⊤PM(x̂)−
ℓ1∑
j=1

h1
ij(x̂)g

1
ij(x̂)+λ1,∀i ∈{1,. . ., nx1

},

(5.6)

M(x̂)⊤PM(x̂)−
ℓ2∑
j=1

h2
ij(x̂)g

2
ij(x̂)− λ2,∀i ∈{1,. . . ,nx2

},

(5.7)

−M(x̂)⊤P
[∂M(x̂)

∂x̂
(X̂1,T −KY0,T )H(x̂)

−H(x̂)⊤(X̂1,T −KY0,T )
⊤(

∂M(x̂)

∂x̂
)⊤

]
PM(x̂)

−M(x̂)⊤P
[∂M(x̂)

∂x̂
KY0,TH(x)

]
PM(x)

−M(x)⊤P
[
H(x)⊤(KY0,T )

⊤(
∂M(x̂)

∂x̂
)⊤

]
PM(x̂)

−
ℓ̂∑

j=1

ĥîj(x̂)ĝîj(x̂)−
ℓ∑

j=1

hij(x)gij(x),

∀i ∈ {1, . . . , nx}, ∀î ∈ {1, . . . , nx̂},

(5.8)

1−b⊤j U0,TH(x̂)PM(x̂)−hu(x̂)
(
λ1 −M(x̂)⊤PM(x̂)

)
,

∀j ∈ {1, . . . ℓu},
(5.9)

with h1
ij(x̂), h

2
ij(x̂), ĥîj(x̂), hij(x), and hu(x̂) being SOS

polynomials of appropriate dimensions, then B(x̂) =

M(x̂)⊤PM(x̂) is a CBF for Ŝ, and u = U0,TH(x̂)PM(x̂)
is a safety controller for S.
Remark 5.2. If one wishes to accommodate the error term
coming from the calculation of derivatives, as discussed in

Remark 4.1, one can add an extra positive term to X̂1,T in
(5.8) such that condition (5.8) is satisfied for that positive
error term.

Remark 5.3. Note that in order to search for the matrix
polynomial H(·) and matrix P fulfilling conditions (5.6)-
(5.9), one can employ existing software tools in the relevant
literature such as SOSTOOLS (Prajna et al., 2002), in
conjunction with a semidefinite programming solver, such
as SeDuMi (Sturm, 1999).

Remark 5.4. Observe that in condition (5.9) there exists a
bilinearity between decision matrices P and H(·). In order
to tackle this bilinear matrix inequality (BMI), one can
first acquire a candidate for P derived from (5.6) and (5.7),
and then attempt to obtain an appropriate candidate for
H(·) based on (5.8) and (5.9). Another approach to resolve
this problem is to utilize the proposed method in (Hassibi
et al., 1999) in order to locally solve the BMI by linearizing
it via a first-order perturbation approximation. Then, the
problem reduces to solving the linearized version.

Remark 5.5. Note that we provide an approach that is
sound but not complete in solving the synthesis problem.
This means if one fails to find matrices P and H(·), then
a safety controller may or may not exist.

6. CASE STUDY

Here, we consider a nonlinear Moore-Greitzer jet engine
model in no-stall mode (Krstic and Kokotovic, 1995) given

by:

S :



ẋ1 = −x2 −

3

2
x2
1 −

1

2
x3
1,

ẋ2 = x1 − u,

y = x2,

(6.1)

where x = [x1;x2], x1 = Φ−1, x2 = Ψ−ϕ−2, Φ is the mass
flow, Ψ is the pressure rise, and ϕ is a constant. System S
in (6.1) is in the form of the PO-ct-PS in (2.1), with

A =


0 −1 −3

2
−1

2
1 0 0 0


,M(x) =



x1

x2

x2
1

x3
1


 ,

B =


0
−1


, C = [0 1 0 0] .

We assume that matrices A,B, and C are all unknown
and treat the system as a black-box. Here, we consider the
state set X = [−5, 5]×[−5, 5], the initial setX1 = [−1, 1]×
[−1, 1], the unsafe setX2 = [−4.7, 4.7]×[2, 4.7], and the in-
put set U = [−5, 5]. Here, we consider a partially-unknown
estimator as in (2.2) with unknown A,B, and C matrices
and a known gain matrix as K = [0.06738; 0.09959]. Note
that we are not providing the design procedure of the
estimator since it is out of the scope of this paper. Further-
more, we compute the estimator’s accuracy empirically
using the results of (Marchi et al., 2021) and a sufficiently
large amount of data. Now with the estimator’s state

set as X = X and an estimation accuracy as ϵ = 0.3,
we illustrate the results in Theorem 4.4. To do so, we
collect data in the form of (4.1), with a sampling time
of ∆t = 0.01s, and the number of samples as T = 10.
With the help of Corollary 5.1, we obtain

P =



1.212 0 0 0
0 141.5 −1.067 0
0 −1.067 2.511 0
0 0 0 2.172× 10−9


 ,

with λ1 = 150, λ2 = 400, and the safety controller as
follows:

u =0.0011x̂3
1x̂2−0.0211x̂3

1+0.00011x̂2
1x̂

2
2−0.0007x̂2

1x̂2

− 0.0610x̂1x̂
2
2 − 0.0006x̂1x̂2 + 0.0943x̂1

− 0.0075x̂3
2 + 0.0083x̂2.

(6.2)
For the simulation results, we initialized the system and
the estimator with 100 random initial states from the
initial state set and simulated the closed-loop system
under the controller (6.2). The input and state trajectories
of the system are illustrated in Figure 1 and Figure 2,
respectively.

7. CONCLUSION

In this work, we established a data-driven method for
the synthesis of safety controllers for partially-observable
continuous-time polynomial-type systems with unknown
models. Given a partially-unknown polynomial-type esti-
mator with an upper bound on the estimation accuracy,
control barrier functions were utilized in order to syn-
thesize safety controllers. The controller associated with
the control barrier function (if existing) makes the system
safe. Our proposed framework only requires a single state
trajectory collected from the estimator and a single output

Fig. 1. Input trajectories of the system starting from
different initial conditions.

Fig. 2. A few closed-loop state trajectories starting
from different initial conditions in X1 under con-
troller (6.2).

trajectory of the system, given that a specified rank condi-
tion is met. Finally, we used a case study to demonstrate
the effectiveness of our proposed results.
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