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ABSTRACT
Mastering skills which involve high dexterity, such as playing the

piano, requires extensive guidance through personal teaching. Un-

derstanding how we can leverage data from sensor-based systems

to improve the learning process, allows us to build interactive sys-

tems which effectively facilitate skill acquisition. To explore such

possibilities, we developed EyePiano—a gaze-assisted tool for reflec-

tive piano playing. EyePiano guides the practice process of learning

piano scores through analyzing the pianist’s gaze behavior. We

based the design of EyePiano on requirements identified through

interviews with piano teachers and a feasibility evaluation of gaze

metrics. Our system illustrates that basic gaze metrics are sufficient

to predict difficult regions for students. Thus, highlighting sections

of the music piece which are particularly difficult for the pianist

allows EyePiano to support piano rehearsals for students. Our work

showcases the feasibility of using gaze data for reflective music

education, enabling effective instrument practice.

CCS CONCEPTS
• Human-centered computing→ Human computer interac-
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1 INTRODUCTION
Being able to develop skills based on one’s aptitudes is central to a

fulfilling life, and a key component in finding meaning [47]. Tradi-

tionally, skills are acquired through organized education staffed by

professional teachers. Technological developments offer new possi-

bilities and advances in artificial intelligence [21] allow us to create

intelligent systems that are able to support users in learning new

skills. Such intelligent tutoring systems (ITSs) have long piqued

the interest of human-computer interaction (HCI), exploring their

potential for a variety of different domains, such as sketching [59],

programming [28], and machine tasks [23]. While these examples

show the feasibility of using computational methods for supporting

skill development, it still remains a challenge for HCI to harness

the power of computational performance assessment to develop

effective learning support strategies. This is particularly relevant

for domains where creativity is required, such as playing music.

The HCI field has an established interest in supporting creativity

and, specifically, helping users play instruments with more enjoy-

ment and develop skills. Work by Rogers et al. [46] used projections

to help users improve their piano playing, a common approach

for piano tutoring systems [7, 45]. Piano Genie [11] allowed users

with no piano skills to improvise piano pieces. Chiang and Sun [7]

developed a portable system for assisting piano play on the go.

While these systems show that interactive assistance in playing

the piano can improve playing performance, they do not enable

the user to understand their performance and reflect on their skills,

which is particularly valuable for advanced players. Our work is

interestingly different from past research on interactive piano tu-

toring as it demonstrates that a data-driven approach can be used

to identify particularly difficult parts of a piece. By doing so, the

system enables reflective learning, i.e., facilitates understanding

performance and promotes sensemaking.

In this work, we investigate the potential of leveraging gaze data

for reflective piano learning, enriching existing learning concepts

for musical education. In this domain, autodidactic approaches

and digital alternatives to personal teaching can play a key role

in making music accessible to a wider audience and enable more

opportunities to practice and play, e.g., through remote sessions.

While there already exists a number of systems supporting different

kind of instruments, such as the guitar [26, 34], the violin [25], and

the piano [46, 62], we envision our work not as a strict tutoring
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system — possibly substituting a personal teacher — but rather as a

tool that provides pianists with the means for reflective learning

by guiding their practice routine. Our goal is to understand how

we can design systems that seamlessly integrate into existing learn-

ing concepts but also allow for new opportunities of autonomous

learning.

To this end, we leverage the pianist’s gaze data to infer their

current practice progress. Gaze as a modality provides us with an

unobtrusive way to monitor students and offers cognitive insights

(see [62]) about their play, rather than just technical proficiency,

i.e., correct play. We developed EyePiano—a gaze-assisted tool for

reflective piano learning—in a systematic process of identifying

design and technical requirements through interviews with piano

teachers and a gaze feasibility study. The system offers a gaze-

assisted feedbackmodule for score learning, integrated into a guided

practice routine. We identified access to an auditory gold standard

and feedback customization as key features. In an evaluation of

EyePiano, we found that participants approved of the reflective

feedback of the gaze-based algorithm, which offered support for

working on their individual weaknesses. EyePiano allowed them

to focus on the challenging parts of a score, facilitating a better

understanding of their own learning process.

In our work, we highlight the potential of data-driven systems

for reflective piano learning. We contribute EyePiano’s complete

design process and its evaluation. Based on our findings, we derive

implications for future systems, including key functionalities and

adapted learning concepts for musical education.

2 RELATEDWORK
In ourwork, we draw fromfindings in the domain of gaze analysis as

well as from existing research work on intelligent tutoring systems.

In the following, we provide an overview for both of these domains,

how our investigation has benefited from them, and how they come

together in our work on EyePiano.

2.1 Gaze and Music
Seminal works by Buswell [5] and Yarbus [61] have first indicated

a relationship between gaze behavior and high-level cognitive pro-

cesses. Since then researchers have connected eye movements to

user activities and respective skills for a vast variety of scenar-

ios, e.g., reading [43], personal interest [57], or language profi-

ciency [27]. For a more extensive overview, in particular for gaze

metrics in HCI, we refer the reader to review works by Jacob and

Karn [24] and Duchowski [13].

Reading and playing music score notation, also known as sight-

reading, is more cognitively demanding than text reading. Aggra-

vating factors include the complex notation, appropriate transfer

to motor commands, and the musician’s head and body move-

ments [44, 52]. Although there is a generally agreed on movement

pattern [35] when reading scores, non-linear movements such as

refixating on already processed score parts are challenging [42]. On

the one side, characteristics of the score notation influence the gaze

behavior of the player. Here, research has identified, among oth-

ers, rhythm [40], tempo [51], note length [29, 40], structure [6, 58],

and genre [58] to have an effect on the musician’s gaze behavior.

On the other side, the musician’s proficiency plays a vital role in

how they process score notation. Here, the ability to sight-read

has been in the focus of research works. Generally, more skilled

sight-readers fixate for shorter periods on average and read further

ahead (greater eye-hand span) [35, 40], suggesting a faster music

comprehension. Similarly, proficient sight-readers exhibit fewer

overall fixations and fewer refixations on already seen parts of a

score [4]. This multi-faceted nature makes it challenging to identify

universal gaze characteristics of a musician’s proficiency.

Consequently, in EyePianowe opted for amore feedback-focused

approach.While both score difficulty and the musician’s proficiency

moderate the exhibited gaze pattern, it is irrelevant which aspect

is responsible. In other words, for EyePiano it does not matter if

the student struggles due to the high score difficulty or to their

low playing proficiency. The resulting outcome that the student

needs support from the system will be the same, and can be inferred

from their gaze data. We adopt this approach to foster indepen-

dent reflective learning [9, 50]. In HCI, reflection is considered a

key design goal for system design to foster one’s understanding

of oneself or self-improvement [1, 2]. While past work primarily

explored designing for reflection in domains where performance

is readily quantifiable (e.g., physical activity [48] or smartphone

use [19]), we designed a system that supports reflection in the

creative, open-ended activity of piano play.

2.2 Intelligent (Piano) Tutoring Systems
The goal of intelligent tutoring systems (ITS) is to provide a more

student-centered approach to facilitate learning.While being closely

connected to the metaphor of human teachers in the beginning,

ITSs nowadays often make use of artificial intelligence [8, 37]. Be-

ing able to manipulate the problem-solving environment [8] to

create a situational awareness in students, e.g., with contextual

illustrations [31] or interactive simulations [18], can significantly

increase the learning performance of students.

Analogously, tutoring systems in musical education have applied

the same concept. Interactive systems directly communicate and

assess the learning process for a variety of music fields. For example,

making use of augmented reality like guitAR [34] to project chord

and note sequences on the guitar fretboard, leveraging sensing

technologies to detect correct finger postures of guitarists in EM-

Guitar [26], or to provide instant vibrotactile feedback for violinists

on their posture [25].

In particular, the piano has been of great interest to researchers.

Early work by Dannenberg et al. [10] contained a complete one-

year curriculum, including video tutorials and low-level real-time

feedback on wrong pitch, tempo changes, and interruptions; ad-

ditionally containing automatic page-turning and audio playback.

Similarly, Kitamura and Miura [30] focused on generating suitable

exercises and feedback on detected weak points for amateur pi-

anists. Commercial learning apps and websites offer a plethora of

lessons, including listening features and progress visualizations,

e.g., Playground Sessions
1
, Song2See

2
, Practice Bird

3
, and Synthe-

sia
4
. In EyePiano, we also explicitly focus on providing feedback for

the student’s weak points. Contrary to the presented systems here,

1
https://www.playgroundsessions.com/

2
https://www.songs2see.com/en/products/game/

3
https://phonicscore.com/

4
https://synthesiagame.com/
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we do not use MIDI or audio as input for our detection algorithm.

Instead, EyePiano leverages the student’s gaze data to detect chal-

lenging parts of a score, allowing us to capture cognitive struggles

rather than just wrong play.

Tutoring systems for the piano oftenmake use of simplified learn-

ing methods, lowering the entry barrier for novices, in particular

when it comes to sight-reading. Here, interactive projections play a

vital role in communicating real-time feedback [45]. P.I.A.N.O [46]

makes use of an interactive projection to display a rolling notation

of the score, removing the need for sight-reading. Similar works

(see [7, 22]) provide virtual finger postures for practicing the piano.

Other feedback methods include tactile feedback supporting pi-

anists in acquiring the necessary motor skills [12, 33]. While these

interactive systems may allow users to improve their playing skills

through novel learning methods, even improvising without prior

piano skills [11], EyePiano—in contrast—focuses on delivering re-

flective feedback, providing the users with the means to improve

their own learning process.

Instead of inferring play performance through detecting correct

play, through MIDI and audio input, or even vision-based finger

detection, a seminal work by Yuksel et al. [62] showed that it was

possible to build tutoring systems that directly react to the pianist’s

cognitive workload. Using functional near-infrared spectroscopy

(fNIRS), BACh [62] is able to adjust piece difficulty dynamically

during play, always providing the perfect difficulty level for the

pianist. Our work with EyePiano draws from this approach, iden-

tifying cognitively challenging score parts for the pianist rather

than detecting technical proficiency, i.e., correct play. By doing so,

we can identify not only parts that were played incorrectly but

also parts that sound right but should be practiced nonetheless as

identified by the player’s cognitive demand. In contrast to BACh,

our system leverages gaze data, allowing deployment in a variety

of practice environments more easily.

3 METHODOLOGY
While we draw from existing designs of piano tutoring systems,

we rather envision EyePiano as a tool for reflective piano playing.
Such systems should allow pianists to reflect on and improve their

own individual learning process by providing them with the means

(potentially validated through data) to understand it. As such, Eye-

Piano is mainly tailored towards advanced piano players. To that

end, our system offers a data-driven approach to piano learning

which aims to facilitate understanding performance and promotes

sensemaking.

To allow for a holistic investigation (see Figure 1), we first inter-

viewed experienced piano teachers to identify design requirements
on how interactive systems could support score learning for pianists

and integrate into existing musical education. In a second step, we

confirmed the technical feasibility of gaze metrics to estimate pi-

ano playing proficiency by analyzing the gaze data of participants

during piano play. This allowed us to derive implications for the

design and implementation of EyePiano. Finally, we evaluated the

system in a user study with advanced pianists, investigated the

effectiveness of reflective piano learning. In particular, we observed

whether participants systematically paid attention to their own

playing difficulties and, most importantly, how EyePiano facilitated

this recall process. This included a quantitative analysis on the

amount of difficult bars over the course of the rehearsal with Eye-

Piano as detected by the gaze algorithm. We complement this with

a qualitative analysis through interviews, identifying specific as-

pects of EyePiano that contributed to reflective learning apart from

traditional rehearsal. Consequently, we employed a mixed-method

evaluation to assess requirements, constraints, and opportunities

of reflective piano learning. To guide the individual parts of our

research, we formulated three research questions:

RQ1: What are design requirements and constraints for piano
learning tools? We first explored necessary design requirements

and possible constraints for systems that support piano learning.

Informed through related work and expert interviews with piano

teachers (Section 4), we distilled key features as well as challenges

to consider for such systems.

RQ2:Canwe determine the proficiency of a piano player using gaze
data? We addressed this research question in our gaze feasibility

evaluation (Section 5). In conjunction with findings in related work,

we hypothesized that piano players exhibit distinct gaze patterns

that are influenced by, among others, their own playing proficiency

and the current score difficulty. Since eye movements of beginner

players are more volatile (see Section 2), we focus our investigation

on players of advanced skill level. Here, we expect gaze patterns to

generalize better. We evaluated whether it is feasible to implement

an algorithm that detects where users experience difficulty in a

given piano score. Eventually, this information is used to inform

the user’s learning process in EyePiano.

RQ3: What are design implications for gaze-assisted reflective pi-
ano learning? We identified necessary design requirements in our

interviews with piano teachers. After assessing their viability in

conjunction with our gaze feasibility evaluation, we implemented

selected features in EyePiano (Section 6). In a subsequent evaluation

(Section 7) of EyePiano, we first confirmed the feasibility of EyePi-

ano for piano rehearsal in terms of usability and user experience.

We further evaluated through post-hoc interviews how EyePiano

can leverage reflective piano learning by allowing pianists to recall

their mistakes through a guided rehearsal routine.

4 DESIGN REQUIREMENTS FOR AN
INTERACTIVE TOOL TO SUPPORT PIANO
LEARNING

We conducted a series of interviews with experienced piano teach-

ers to identify a first set of requirements (RQ1) for the design of an

interactive tool that could support pianist by means of reflective

piano learning. We additionally inquired about their concept of

playing proficiency to gather objective criteria to be later used in

our gaze-based proficiency estimation.

4.1 Participants
We recruited three piano teachers with at least five years of experi-

ence through word of mouth. All participants were male and aged

𝑥 = 43.3𝑦 (𝑠 = 21.5𝑦). A remuneration of USD 12 (local equivalent)

per hour was provided. The individual profiles of the participants

1211



DIS ’23, July 10–14, 2023, Pittsburgh, PA, USA Karolus et al.

Piano Teacher
Interviews (Section 4)

Gaze Feasibility
Evaluation (Section 5)

Design and
Implementation of
EyePiano (Section 6)

Evaluation of
EyePiano (Section 7)

Design requirements

Technical feasibility

Figure 1: Structure of our holistic investigation, illustrating our initial design requirements analysis through piano teacher
interviews (Section 4) and initial technical feasibility analysis (Section 5). Both these steps then informed the design and
implementation of EyePiano (Section 6), which were subsequently evaluated in a final user study (Section 7).

are shown in Table 1, depicting their total years of teaching and

average teaching hours per week.

ID Age Gender Profession

Years of

teaching

Avg. hours

per week

1 38 male piano teacher 8 15

2 67 male retired piano teacher 42 20

3 25 male music student 6 3

Table 1: Participant profiles in our interviews, including in-
formation on their teaching experience.

4.2 Interview Script
After the participants consented to the interview, we asked about

their experience in teaching piano. We further inquired how they

structured and conducted a typical piano teaching lesson as well

as how they assessed a student’s playing proficiency. To collect

insights for our gaze feasibility evaluation (see Section 5), we also

asked them how they determined the difficulty of a classical piano

piece for their own lessons and had them evaluate three specific

pieces later used for our own evaluation. Here, we identified how

teachers use objective metrics to determine difficulty, highlight-

ing challenging regions in the process. Finally, we discussed the

potential of intelligent tutoring systems from their point of view,

including their own experiences and thoughts about the possible

limitations.

4.3 Analysis
All interviews were recorded and transcribed verbatim (total dura-

tion of 3:17ℎ). To analyze the interviews, we opted for a pragmatic

approach to thematic analysis [3], known to be effective for concep-

tualizing requirements. After merging an initial coding tree based

on one interview coded by two researchers, the rest of the interview

material was evenly split and analyzed separately. Based on a final

iterative discussion, we constructed three themes that describe the

requirements discussed by the piano teachers.

4.4 Interview Findings
Our analysis resulted in the following themes: learning and

teaching the piano, pianist’s proficiency, intelligent tu-

toring systems.

4.4.1 Learning and Teaching the Piano. The piano teachers agreed

on intrinsic motivation as a key factor to learn the piano. Here, it

is the teacher’s task to create new motivations for the students.

It is important to consider if I can set a new impulse. (P2)

Most importantly, the teachers remarked on the existence of dif-

ferent learning strategies for students that need to be curated. For

example, balancing an explorative with a more structured approach.

Here, EyePiano’s approach for reflective learning enables a variety

of strategies.

4.4.2 Pianist’s Proficiency. The teachers reported on the problem

of objectively rating the difficulty of piano pieces and, in turn,

assessing the relative proficiency of the pianist. Different interpre-

tations and different ways of approaching a score influence the

subjective feeling of difficulty for the pianist. However, a certain

set of objective metrics still exists. Among others, rhythm, readabil-

ity, amount of notes and polyphony, tempo, physical demand, and

special techniques are of relevance.

(...) the physical, the demand for mobility, for speed, for
polyphony, in which they then strike many keys simulta-
neously. (P2)

In line with assessing objective elements of a score influencing

the pianist’s relative (influenced by score difficulty) proficiency

and thus current performance, the teachers agreed that proficient

pianists should be versatile.

(...) and above all, a pianist who is flexible. That is, if I can
play not only one direction, but can do something with
each direction. (P1)

Additionally, a certain level of motor mastery is a prerequisite for

any aspiring pianist.

(...) Virtuosity is always one of those things when they are
simply technically very good. (P3)
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However, for a teacher, there will always be some form of subjec-

tiveness involved when assessing a student’s proficiency.

4.4.3 Intelligent Tutoring Systems. In a section of the interviews,

we asked the piano teachers about their views on IPTSs. While they

agreed that IPTSs lack a teacher’s competence and would likely

suffer from a too mechanical approach to teaching, all three saw

the potential in combining such systems with traditional teaching

methods — an approach we follow with EyePiano. Here, the pos-

sibility for instant feedback and preventing the consolidation of

mistakes were highlighted.

The tendency is always, “Okay, I will play what I can
already do and then I will play a thousand mistakes again”
- afterwards (pianists are) just as dumb as before. (P1)

Requested features were—among others—adjustable feedback for

students, highlighting wrongly played notes and tempo, recom-

mending first steps during rehearsal, and a form of gold standard

to aim for. We will pick up these key features in our design of

EyePiano.

Not only show where he had struggled with because maybe
he has already noticed it himself. But you might also have
a suggestion where he should start again because many
people start at the beginning and that is often fatal. (P1)

4.5 Implications for EyePiano
During our interviews, we identified specific design qualities and

limitations for tools to support piano learning (RQ1). We summa-

rize these findings below and highlight how they inform our gaze

feasibility evaluation (see Section 5) as well as the design of our

final prototype EyePiano (see Section 6).

Challenges in Determining Piano Playing Proficiency. Piano teachers
often have their own subjective, qualitative metrics to assess a stu-

dent’s proficiency, each emphasizing different aspects (Pianist’s

Proficiency). The artistic nature of music [14, 63] warrants indi-

vidual assessment. However, the teachers also reported on objective

metrics that can be measured. Among others, these include motor

skills, being able to express and interpret music, creativity and im-

provisation, and the ability to sight-read. For example, sufficient

motor skills are a prerequisite to play multiple notes at once and to

master large amplitudes and fast tempos (Pianist’s Proficiency).

Another aspect of proficiency is the ability to sight-read and play

music directly from the sheet [52].

Consequently, we will focus on the ability to play by sight as an

indicator for relative proficiency in EyePiano. Here, the idea is that

piece difficulty and individual piano playing proficiency moderate

and impact gaze patterns during sight-reading. We validate this

assessment through a technical evaluation regarding the feasibility

of gaze metrics to recognize when players are struggling with a

specific part of the score (see Section 5).

Strengths and Limitations of Teachers and Intelligent Tutoring Sys-
tems. The piano teachers have identified the potential for auto-

mated feedback, e.g., on pitch and rhythm, as a major advantage

for intelligent tutoring systems (Intelligent Tutoring Systems).

The fact that these systems are always available, even between

teacher lessons, makes them a valid asset for musical education.

Statistics on learning progress allow a collaborative nature, ready

to be shared with other students. In theory, this would allow IPTSs

to possess a huge amount of accessible learning material. Yet, IPTSs

can only provide a narrow view on learning achievements. The

teacher, on the other hand, has a much more holistic view of a

student’s learning process (Learning and Teaching the Piano),

able to provide explanations regarding mistakes, e.g., a wrong hand

posture. Here, the experience of a teacher is a key element for

proper motivation, allowing empathy and long-term success.

We argue that these complementary strengths of the experi-

enced teacher and the data-driven nature of IPTS add value to a

new blended way of learning — reflective piano learning (cf. [9]).

With EyePiano, we explore the feasibility of this concept and how

it integrates into existing concepts for musical education (see Sec-

tion 7).

Key Features. When asked about potential features and require-

ments for a gaze-based system to support piano learning, the pi-

ano teachers highlighted the following key points. Firstly, the

system needs to identify and display mistakes to students and,

secondly, provide recommendations of a suitable start to practice

(Intelligent Tutoring Systems). We later address these points

in EyePiano, through a user-tailored practice routine that makes

use of the recorded gaze data to identify difficult regions (see Sec-

tion 6). Thirdly, feedback needs to be customizable, such as changing

the detection sensitivity and allowing users to correct the system.

EyePiano conforms to these requirements by implementing three

distinct detection levels (see Section 5), also allowing for post-hoc

correcting of system markings. Further minor features include a

metronome and an overall score analysis.

5 FEASIBILITY EVALUATION OF GAZE
METRICS

After drawing insights on proficiency aspects and potential metrics

to quantify playing skill from our interviews with piano teachers,

we take a closer look atRQ2, studying the feasibility of gaze metrics

as an indicator for piano playing proficiency. We report on a small-

scale dataset of gaze data during regular score play from pianists

and subsequent analysis thereof that informed our final algorithm

in EyePiano.

5.1 Gaze Data Collection
We employed a repeated measures design, where each pianist per-

formed three different music pieces twice. The three blocks for the

different pieces were counterbalanced, resulting in a total of six

recorded performances and an additional test trial at the beginning.

We captured gaze and MIDI data for post-hoc verification of the

participants’ markings of difficult parts within the scores. The three

musical pieces were chosen from three intermediate levels in accor-

dance with PianoBookGuide [36], IMLSP [41] and Wolters [60]. We

chose a sonata by Clementi
5
, Gnossienne by Satie

6
, and a Prelude

of Chopin
7
.

5
https://www.mutopiaproject.org/ftp/ClementiM/O36/sonatina-1/sonatina-1-a4.pdf,

Level 5 (see [36]).

6
https://www.8notes.com/scores/10611.asp, Level 6 (see [36]).

7
https://www.mutopiaproject.org/ftp/ChopinFF/O28/Chop-28-6/Chop-28-6-a4.pdf,

Level 7 (see [36]).
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Figure 2: Apparatus showing the MIDI keyboard, two loud-
speakers and a monitor with attached eye tracker connected
to the stimulus and recording laptop (left).

5.1.1 Apparatus. The apparatus of the study is depicted in Fig-

ure 2. It consisted of an external monitor (2560x1440 px) used to

display the score to the pianists. On the bottom rim of the screen,

we attached a Tobii 4C eye tracker (90𝐻𝑧 sampling rate). The par-

ticipant was seated on a piano stool approximately 70 𝑐𝑚 in front

of the monitor. We used the full-key MIDI Masterkeyboard Doepfer

LMK2+ coupled with the free synthesizer Piano One
8
integrated

into the application Waveform
9
. Sound output was provided by

two loudspeakers next to the screen. During performances of the

participants, both the gaze data stream from the eye tracker as well

as the MIDI data from the keyboard were recorded. An additional

experimenter PC was connected to the apparatus as well, allowing

the experiment to monitor the stimulus display’s output, including

the pianist’s gaze, and additionally mark score regions that they

identified as challenging for the participant. The experimenter and

participant shared the same room separated by a distance of 2.5𝑚,

including a physical separation through a perspex wall
10
.

5.1.2 Procedure. After participants provided informed consent, we

asked them about their demographics and calibrated the eye tracker.

The calibration was accepted for a deviation level of ≤ 2 deg visual

angle and additionally validated during the study and at its conclu-

sion. Participants then played through the provided music pieces,

activating each score by themselves by looking at a play button for

two seconds. Page turning was handled automatically by the proto-

type, updating played half pages consecutively. To gather ground

truth data
11

for the later gaze analysis, participants self-reported

difficult passages by highlighting them on the screen immediately

after each play-through. To add reliability, these markings were

validated
12

by the experimenter based on the observed gaze data

and musical performance. The study lasted approximately 60 min-

utes, and participants were compensated with the equivalent of

8
https://neovst.com/piano-one/

9
https://www.tracktion.com/products/waveform-free

10
Note: the study was conducted during the COVID-19 pandemic. A full hygiene

concept was compiled in compliance with the rules of the university.

11
Whether or not a current passage is difficult for the player.

12
The experimenter may adjust or delete participants’ markings or add new ones.

Changes were verified with the participants.

Figure 3: Example excerpt of a pianist’s gaze path on a score
highlighting the challenge of non-linear gaze progression.
Colors represent temporal progression. Red circles highlight
non-linear gaze behavior (refixations to previous bars, gazing
upwards) that we address with our algorithm to allow robust
mapping of gaze data to respective bars.

USD 12 per hour. Ethical approval for this study was obtained from

the Ethics Committee at the University of Constance.

5.1.3 Participants. We recruited six participants (4 female, 2 male;

Age: 𝑥 = 29𝑦, 𝑠 = 14𝑦) through personal contacts and participation

in related studies. All participants were advanced pianists with on

average 𝑥 = 20𝑦 (𝑠 = 16𝑦) of experience, being able to fairly play

the Sonatine I (Op. 20 no 1-1) by Kuhlau
13
. Their sight-reading

experience (7-item likert) was 𝑥 = 5.8(𝑠 = 0.8). None of them used

digital notes regularly.

5.2 Gaze-Based Algorithm
Based on the collected gaze data, we implemented a robust detec-

tion algorithm for regions, in particular individual bars, that our

participants found difficult to play. This metric serves as an indica-

tor of their actual piano playing proficiency. Less proficient players

will struggle with difficult bars, exhibiting characteristics gaze pat-

terns during these sections (see Section 2). After eye event detection

based on an I-DT algorithm [49], we further processed the gaze

events to accommodate non-linear score reading behaviors [42],

as detailed in the following sections. An example is detailed in

Figure 3.

5.2.1 Line Detection. The first essential step is the correct alloca-

tion of gaze events to corresponding staff lines on the score sheet.

Recorded gaze data do not necessarily fall within the boundary

boxes of individual lines, e.g., due to body movements or mind

wandering [52]. The main idea behind this processing step is based

on including a "carriage return" detection of the collected gaze

data, hence allowing a temporal allocation of gaze events to staff

lines. The algorithm uses an adaptive threshold based on the initial

25th and 75th percentiles of the x coordinates of the fixation data.

Additional safety checks on the y coordinates ensure robustness.

5.2.2 Fixation to Bar Mapping. Finally, a mapping of fixations to

respective bars in the score notation was realized through con-

straining positional and temporal location of each fixation. Thus, a

fixation might be assigned a different bar than its x/y coordinates

13
https://www.mutopiaproject.org/ftp/KuhlauF/O20/sonatine-1-allegro/sonatine-1-

allegro-a4.pdf, Level 5 (see [36]).

1214

https://neovst.com/piano-one/
https://www.tracktion.com/products/waveform-free
https://www.mutopiaproject.org/ftp/KuhlauF/O20/sonatine-1-allegro/sonatine-1-allegro-a4.pdf
https://www.mutopiaproject.org/ftp/KuhlauF/O20/sonatine-1-allegro/sonatine-1-allegro-a4.pdf


EyePiano: Leveraging Gaze For Reflective Piano Learning DIS ’23, July 10–14, 2023, Pittsburgh, PA, USA

based on its temporal data. First, this allowed us to calculate the ex-

act time a pianist spent looking at a specific bar, which we later used

for an outlier detection algorithm. Secondly, bar-level detection of

difficult regions is vital for appropriate feedback, as suggested in

our interview with piano teachers.

In particular, we identified refixations of already read parts, gaze

data outside of staff lines, gaze wandering, bar repetition or skip-

ping, and crossing between bars at their borders as problematic

cases where gaze events could be attributed to the wrong bar (see

Figure 3). After initially allocating gaze events to staff lines, further

clustering based on their location and time allowed us to discard

outliers and to properly handle repetitions. Employed thresholds

for the algorithms are based on the average bar duration for each

individual participant due to the observed high variance across

participants in terms of playing time and fixation patterns.

5.2.3 Classification of Difficult Bars. To cater to individual practice
needs by students as suggested by the piano teachers, we opted to

implement three sensitivity levels within our detection algorithm: a

user-dependent machine learning algorithm (MLA), a simple outlier

detection (SOD) based on average bar dwell time, and a combination

of the twomethods. Our classification algorithmwill detect whether

a given bar was difficult to play for a given pianist.

Fixations and associated bar mappings are used as initial in-

put for the MLA. We identified that no single gaze feature was

sufficient for a robust classification of difficult regions. Thus, we

constructed a set of gaze features and optimized parameters by

reviewing the resulting confusion matrices. Noteworthy features of

our final set included: normalized refixation count, dwell time on

60-pixel clusters
14
, and normalized horizontal movement between

fixations (horizontal saccade length). By dividing the gaze data into

several epochs (sliding window approach), our MLA can make use

of aggregated gaze metrics, adding robustness. Epoch durations

are adaptive to the average bar duration of participants and passes

were submitted for 0.25, 0.5, and 1 times the average bar duration.

A unanimous vote between all three passes was required to be

considered a difficult passage for the player.

To detect the most challenging parts, we developed a simple

outlier detection (SOD) that is based on the participants’ average

dwell time on a specific bar. We empirically validated that bars over

one standard deviation longer than the average bar dwell time were

troublesome for participants.

In a final algorithm, we combine both SOD and MLA to allow

for bar-level estimation of playing difficulty. Depending on the

configured sensitivity level, either algorithm takes precedence. On

the highest sensitivity level, only the MLA is used, detecting most

bars that were challenging for the player, albeit suffering from a

higher false positive rate. The medium level only used the SOD,

while the lowest sensitivity level combined both MLA and SOD. In

this setting, bars are only considered difficult when flagged by both

algorithms, ensuring a low false positive rate while still detecting

the most challenging parts of a score. An overview showing cross

validation results for user-dependent classification (averaged over

all users) is given in Figure 4.

The purpose of our gaze-based algorithm lies within the robust

detection of most difficult regions, allowing us to investigate new

14
In accordance with [44] and empirically validated on our dataset.

reflective learning paradigms supported by EyePiano (see Section 7).

Developing a complex and sophisticated algorithm is not the focus

of this work, neither is it necessary to investigate how gaze data

can be leveraged for reflective piano learning.

5.3 Implications for EyePiano
Based on our analysis of the recorded gaze data, we have identified

several implications for our design of EyePiano, addressing techni-

cal requirements (RQ2). We highlight these in the next section and

refer to respective decisions made for EyePiano.

Gaze Is a Suitable Predictor of Difficult Score Regions. Our analysis
highlighted that a set of basic gaze metrics are indicative of how

challenging score regions are to play for a pianist. Variances in

temporality and locality of gaze data allow us to derive the player’s

relative playing proficiency. Regions with a higher average refixa-

tion count, fixation count, and dwell duration correlate with greater

difficulty for the pianist, e.g., due to high score difficulty or their

own lack of playing proficiency. In our work, we employed a set of

several gaze features to create a robust algorithm, counteracting po-

tential noise artifacts as reported by related work (see [29, 35, 40]).

However, our lack of tempo control [42] required us to carefully

review the recorded gaze data, implementing fail-safes (repeated

bars, slow start). The presented algorithm has been integrated into

the final version of EyePiano, including the algorithm based on

viewing time (SOD) and the more sophisticated machine learning

algorithm (MLA) based on gaze metrics. It provides robust detection

of students’ difficulties on a bar level. Interviewed piano teachers

have confirmed that this granularity is sufficient.

Favor of User-Dependent Difficulty Prediction Algorithms. To aid in

robustness, we opted for a user-dependent prediction algorithm

in EyePiano. This allows us to tailor the detection more closely to

individual differences in eye patterns, such as body movements,

overall varying proficiency [4, 52] and genre-specific notation styles

influencing rhythm [40], note length [29], or structure [58]. There-

fore, employing a user-dependent algorithm allows us to better

cater to the individual preferences of pianists. By design, this loss

of generality is not an issue for EyePiano. As pianists will typi-

cally use the system for a longer period of time, more gaze data

is provided naturally, allowing an even better fit for the student.

For this use case, it is most beneficial if the algorithm can learn the

student’s individual characteristics. While this choice results in an

initial cold-start problem
15
, a generic model can be used at first and

trained over time, e.g., by fusing predictions with collected MIDI

or audio data on play correctness.

6 EYEPIANO— A GAZE-ASSISTED TOOL FOR
REFLECTIVE PIANO PLAYING

After confirming technical requirements, we further explore neces-

sary design requirements for EyePiano. Identified by our interviews

with piano teachers (see Section 4) and the results from our gaze

feasibility study (see Section 5), we implemented four key features

and subsequently evaluated the system in terms of usability and

user experience. In concluding interviews, we additionally paid

attention to changes and alterations to traditional score learning

15
There is initially no data to train the algorithm for new users.
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Highest (MLA only) Medium (SOD only) Lowest (MLA & SOD)

Figure 4: Confusion matrices depicting the accuracy of the final prediction algorithm for difficult passages grouped by three
sensitivity levels (from left to right: highest to lowest). There is a total of N=1230 samples with 386 difficult parts.

and how these impacted the learning process (RQ3). The key fea-

tures are detailed in the following. A complete overview of the user

interface is shown in Figure 5.

Highlighting difficult bars. After a completed play through,

our algorithm identifies difficult bars and highlights them on the

score sheet (see the center of Figure 5). Additionally, the pianist

has the option to visualize their own gaze data superimposed on

the score, both for the whole score and for difficult bars only. The

option to correct the system’s markings is provided as well.

Adjustable sensitivity levels. Closely coupled to the first fea-

ture is the option to adjust the sensitivity level to individual needs,

e.g., rigorous rehearsal vs. more lenient practice. Here, EyePiano

allows changing between the three sensitivity levels dynamically.

The selection is immediately updated and highlighted bars are re-

calculated. Pianists can thus play around with the different levels

and reflect on their performance, i.e., selecting a lower sensitivity

if only the most challenging bars are to be practiced.

Gold standard to support learning goals. Piano teachers re-

marked that students needed a gold standard of how a score sounded

to aim for. To provide tangible goals for piano learners, we added an

audio playback functionality, allowing them to listen to a gold stan-

dard of how to play the specific bar. The playback can be triggered

by selecting a bar, e.g., via gaze.

Recommendations for practice. A last requirement was easy

and ready access to a rehearsal strategy that would allow players to

reflect on their individual weaknesses. EyePiano addresses this need

by including its own user-tailored practice procedure, accessible in

the training mode (see Figure 5). This simple step-by-step process

of (1) selecting a suitable sensitivity based on highlighted bars, (2)

listening to the respective playback before (3) rehearsing, guides pi-

ano learners through the score and helps them to identify, to reflect

on and to systematically rehearse problematic sections. A more

detailed description of this practice routine is given in Section 7.3.

In addition, EyePiano implements hands-free interaction and can

be controlled via gaze alone. This eliminates the need to navigate via

a separate mouse and keyboard, potentially hindering the learning

flow. We implemented a standard dwell-time activation to avoid a

random gaze selection. A circular progress bar provides feedback

for the user.

7 EVALUATION
We evaluated EyePiano in a study employing a repeated measures

design consisting of two blocks, where each block required the

participants to practice a specific score using the features offered

by EyePiano through following the given practice procedure. Each

practice of a specific score was repeated twice, yielding three re-

hearsals per score. Including a test trial, participants played a total

of seven times. The difficulty of the two scores corresponded to

level five and seven [36], ensuring similar ratings in IMLSP [41] and

Wolters [60]. We chose one prelude by Bach
16

and one by Chopin
17
.

Note that this design allowed participants to use EyePiano in both

blocks, potentially eliciting a richer qualitative feedback [3] and

— most importantly — insights into how EyePiano can support

the learning process [9]. We opted for this design rather than a

comparative approach where quantitative measure would be of

limited significance, especially when biased by individual learning

strategies.

7.1 Apparatus
We utilized the same apparatus for the evaluation of EyePiano as

we did for our gaze feasibility study (see Section 5.1.1), except the

EyePiano software. A Tobii 4C remote eye tracker was attached

to the stimulus monitor (2560𝑥1400𝑝𝑥) used to display the score

during playing and EyePiano’s training mode during practice. As

EyePiano allows hands-free interaction throughout, we not only

used the eye tracker to record gaze data but as an input device

for participants as well. We again used the MIDI Masterkeyboard

Doepfer LMK2+, external loudspeakers, and PianoOne in conjunc-

tion with Waveform for sound output. Seating arrangements and

hygienic precautions for the experimenter and participants were

the same. The setup is depicted in Figure 6.

16
https://www.mutopiaproject.org/ftp/BachJS/BWV939/bwv-939/bwv-939-a4.pdf,

Level 5

17
https://www.mutopiaproject.org/ftp/ChopinFF/O28/Chop-28-4/Chop-28-4-a4.pdf,

Level 7

1216

https://www.mutopiaproject.org/ftp/BachJS/BWV939/bwv-939/bwv-939-a4.pdf
https://www.mutopiaproject.org/ftp/ChopinFF/O28/Chop-28-4/Chop-28-4-a4.pdf


EyePiano: Leveraging Gaze For Reflective Piano Learning DIS ’23, July 10–14, 2023, Pittsburgh, PA, USA

Figure 5: Training mode of EyePiano showing sensitivity settings (left side), highlighted difficult bars (center) and the practice
procedure (right side). Step one (choosing an appropriate sensitivity level) is currently selected.

Figure 6: Study setup showing participant during the training
mode of EyePiano.

7.2 Participants
We recruited four pianists who had previously participated in our

gaze feasibility study (see Section 5). Note that no participant has

seen the EyePiano software before. The tool used in our previous

gaze feasibility evaluation was used for recording gaze data and

displaying note sheets only. As such, participants were not involved

in the design process of any of EyePiano’s features. The participants’

profiles are listed in Table 2. None of them had used digital tutoring

systems before. We intentionally recruited participants from our

previous study to make use of the person-dependent classifier of

EyePiano. Thus, for each participant, we trained the classifier based

on their gaze data from the gaze feasibility study. We believe this to

be a sufficient sample size for our formative evaluation [56] since

all participant exhibit adequate proficiency with the piano but still

struggled with the difficult pieces.

7.3 Procedure
First, participants were informed about the study. After partici-

pants provided consent, we asked them to fill out a demographics

questionnaire. Subsequently, we calibrated the eye tracker. The

calibration was accepted for a deviation level of ≤ 2 deg visual

angle and additionally validated during the study and at its conclu-

sion. After this initial setup, participants were able to familiarize

themselves with EyePiano in a test trial.

Participants then practiced the provided music pieces by first

activating each score themselves through looking at a play button

for two seconds. Analogously to the gaze feasibility study, page

turning was handled automatically. Participants engaged in EyePi-

ano’s training mode after each play-through following an abstract

practice routine as suggested by the piano teachers. The routine was

provided to them on a sheet of paper and additionally implemented

within EyePiano:

(1) Study the prediction results by EyePiano. Look at the av-

eraged play statistics and select an appropriate sensitivity

level. This step allowed the participants to reflect on their

performance.
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ID Age Gender Years of playing Playing frequency General playing Sight-reading Technical Favorite genres

1 20 f 14 1 / week 5 6 5 classical music, jazz

2 28 m 11 1 / week 5 6 4 classical music, jazz, pop

3 23 f 15 1 / week 5 5 5 classical music, film music

4 23 f 7 1 / month 5 6 4 classical music

Table 2: Demographics of the participants in EyePiano’s evaluation. All participants took part in our previous gaze feasibility
study. Proficiency in general playing, sight-reading, and technical skills were rated on a 7 point likert scale.

Participants’ impressions of EyePiano

Q1 The system accurately assessed my performance.

Q2 The practice routine was understandable.

Q3 The practice routine was helpful for me.

Q4 EyePiano helped me with learning the pieces.

Q5 I have used the feedback of EyePiano to improve my play.

Q6 The feedback of EyePiano changed how I addressed my rehearsal.

Q7 I have gained new insights on challenging parts through EyePiano.

Table 3: Additional questions on the participants’ impres-
sions of EyePiano: strongly disagree to strongly agree; all
visual analog scale (0 to 20).

(2) Listen to themarked bars that were detected as being difficult

for you by EyePiano.

(3) Practice each marked bar at least two times. Included tips:

play slowly, practice each hand separately, play the previous

bar as well.

We concluded the study with the UMUX [17] and flow-short-

scale [15] questionnaire, assessing usability and perceived flow. An

additional questionnaire on specific features of EyePiano (see Ta-

ble 3) assessed the perceived accuracy of the system and its practice

routine. A final semi-structured interview revealed additional in-

sights on the potential and further challenges of reflective piano

learning and EyePiano in particular. The study lasted approximately

60 minutes, and participants were compensated with the equivalent

of USD 12 per hour. Ethical approval for this study was obtained

from the Ethics Committee at the University of Constance.

7.4 Results
In this section, we report results on our evaluation of EyePiano,

such as its user experience as reported by participants and qualita-

tive insights from our post-study interviews. As we have already

confirmed the technical feasibility of our gaze algorithm, we omit a

detailed analysis here, instead focusing on the qualitative feedback

from the users’ impressions of the system’s accuracy.

7.4.1 Usability, Feedback Assessment, and Accuracy of EyePiano.
We administered two post-study questionnaires: UMUX [17] (𝑥 =

76.1, 𝑠 = 13.8) and Flow-Short-Scale [15] (Flow: 𝑥 = 4.8, 𝑠 = 0.8,

Worry (low is better): 𝑥 = 2.2, 𝑠 = 1.4). The results suggest no major

usability issues. Our additional custom questions (see Figure 7) show

that participants gave a high rating for the perceived accuracy of

EyePiano (Q1). Additionally, the user-tailored practice routine was

deemed understandable (Q2) and helpful (Q3). The system helped

pianists to learn new pieces (Q4), whereby users made extensive use
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Figure 7: Additional custom questions assessing various fea-
tures of EyePiano (all visual analog scale: 0 to 20). Please refer
to Table 3 for the complete list of identifiers. Overall, EyePi-
ano showed high accuracy (Q1), provided a helpful practice
routine (Q2, Q3), and offered useful feedback (Q4, Q5) that
influenced participants’ practice (Q6) as well as offering new
insights (Q7).

of EyePiano’s feedback (Q5) and adapted their rehearsal accordingly

(Q6). Finally, participants rated EyePiano’s capabilities to facilitate

new insights about their own weaknesses as very high (Q7).

7.4.2 Effects of Rehearsal. To evaluate whether the focused re-

hearsal impacted play performance in the participants’ training

sessions, we fitted a linear mixed model using the percentage of

difficult bars (as predicted by our gaze algorithm) as a dependent

variable. We submitted the rehearsal count as fixed effect
18

and

added the participant ID as a random effect. We then tested the fit-

ted model against a null model (without the rehearsal count as fixed

effect) and found a significant difference (𝜒2 (1) = 8.76, 𝑝 < 0.05).

Residuals plots did not reveal any deviations from homoscedas-

ticity or normality. This result confirms that EyePiano’s practice

routine is effective and does not impede the learning process. Note

that compared to traditional rehearsal, EyePiano employs a more

focused rehearsal on difficult passages, guiding the user. In the post-

study interviews, we further investigate what features of EyePiano

were especially helpful for the pianists, compared to traditional

rehearsal.

7.4.3 Interviews. We analyzed the post-study interviews (approx.

15𝑚𝑖𝑛 per participant) using the pragmatic approach as detailed

18
We additionally evaluated models using the played score as a fixed effect (and their

interaction effects). Effects are analogous, which is why we only report the most simple

model.
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Figure 8: Linear mixed model fitted to assess whether our
rehearsal routine had an effect on the amount of difficult
bars. The solid black line resembles the fitted model (see Sec-
tion 7.4.2); the gray shaded corridor marks the standard error.
Additionally, data points from individual participants are
illustrated, grouped by score.

by Blandford et al. [3]. Two researchers were involved in this anal-

ysis. Intermediate coding tree construction and final merge fol-

lowed the method as employed in our other studies. We constructed

four themes for the transcript data: Proficiency Insights, Goal-

Driven Learning, Tutoring and User Experience. We provide

insights for each theme below.

Proficiency Insights. Participants stated that EyePiano was espe-

cially useful in providing guidance during practice. It supported

them in remembering difficult bars that would require more atten-

tion.

(...) just as a helpful reminder to know exactly where to
start again. (P1)

Similarly, EyePiano highlighted unnoticed sections and allowed

the pianists to adjust their training. Here, the system elicited new

insights for some participants that only recalled the most difficult

bars.

So I find it totally helpful that it also shows regions I would
not have noticed. (P4)

Subsequently, EyePiano curated their practice through focused

rehearsal — a key aspect as indicated by the piano teachers — by

arranging a training sequence for students depending on the chosen

sensitivity level.

I found it really helpful because you can focus exactly on
the parts you found harder. (P1)

Goal-Driven Learning. Piano teachers and related works [8, 39]

have highlighted the importance of proper motivation during learn-

ing. To provide tangible and achievable goals while practicing,

EyePiano incorporates a playback functionality for each score. Par-

ticipants reported this feature to be very helpful, especially if scores

were unknown.

I find listening to it useful. It helps me. Especially with
pieces that you don’t know. (P3)

Additionally, the playback facilitated the recognition of mistakes.

For the students, it was often easier to identify their mistakes

through auditory comparison rather than studying the score sheet.

You may not even notice that you played incorrectly, but
then you hear how it should sound. Then you might notice
directly when you made mistakes. (P4)

Tutoring. EyePiano adheres to a practice routine that adapts to

the proficiency of the individual student based on their recorded

gaze data. Albeit not as powerful and motivating as a real teacher,

this feature allowed us to curate the learning process for each par-

ticipant. Feedback on this feature was divided. While participants

concordantly agreed on the usefulness of this feature, some par-

ticipants expressed that it was still rather abstract. Nevertheless,

interviewees especially saw the benefits for beginners and amateurs,

offering them a more structured learning process.

There are always people who do not have their own strat-
egy, for them being pointed to it is definitely a good thing.
(P1)

Participants also remarked on the potential of having a digital

footprint of one’s rehearsal and saw the opportunity of sharing re-

sults with the teacher and other students, allowing for competition

among students as well as providing teachers with an in-depth look

at a student’s progress.

(So I could upload my score) to the cloud or share it with
my student. (P2)

User Experience. Feedback on EyePiano’s gaze interaction was

split. Increased demand due to its unfamiliarity was one of the

stated reasons. Participants suggested touch- and gesture-based

interaction as alternatives.

The handling was actually quite simple, but I find it a
little exhausting using my eyes. (P4)

The user interface was clearly structured and easy to use, but par-

ticipants disliked that piano learning with EyePiano was limited

to score learning. Other techniques such as playing by chords or

improvising were missing, though all of them agreed that the func-

tionality to support score learning was realized well and were posi-

tively surprised by the accuracy of the system in detecting difficult

bars.

I think that among the difficult ones, what the system
indicated and what I marked myself mostly matched, with
a few exceptions. (P2)

7.5 Summary
In our evaluation of EyePiano, we investigated the system’s us-

ability and user experience, particularly focusing on whether our

previously identified requirements for reflective piano learning

(RQ3) were fulfilled.

User Experience. Participants reported predominantly positive

impressions of EyePiano’s usability. The system is clearly struc-

tured and supportive, as indicated in questionnaires and interviews.

The gaze interaction in EyePiano received mixed reviews, warrant-

ing alternative gaze selection modes [55] or alternative modalities
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(User Experience). We note that EyePiano does support mouse

and keyboard interaction.

EyePiano’s Detection Algorithm Is Sufficiently Accurate. While our

initial accuracy results were modest (see Section 5), our post-study

interviews (see Section 7.4.3) and questionnaires (see Section 7.4.1)

confirmed that the employed detection algorithm provides accurate

recognition of bars that are challenging for the pianist. Often the

lowest sensitivity was sufficient to allow a guided rehearsal within

EyePiano’s practice routine. We attribute this to the user-dependent

classification enabling us to capture the individual characteristics of

each participant and the low false-positive rate of the lower settings,

as it allowed EyePiano to focus on the most challenging parts.

EyePiano Facilitates Score Learning. The feedback of EyePiano

allowed participants to recall difficult bars and facilitated their score

learning (see Sections 7.4.1 and 7.4.2). We confirmed in the inter-

views that pianists perceived the algorithm as accurate enough to

support their rehearsal and appreciated the audio playback to allow

for more effective training. In particular, EyePiano provides them

with new insights about their own weaknesses, highlighting over-

looked bars (Proficiency Insights). Through an effective rehearsal

routine, EyePiano provides a systematic approach to score learning

(Tutoring). Further, participants remarked that especially the op-

tion to select different sensitivity levels supported them in eliciting

useful feedback (Proficiency Insights). Lastly, the audio playback

supported goal-driven learning and prevented the consolidating of

mistakes (Goal-Driven Learning).

8 DISCUSSION
Over the course of our investigation, we identified four key features

that support reflective piano learning: highlighting difficult bars,
choice of sensitivity, access to a gold standard, and a user-
tailored rehearsal routine. We implemented and evaluated these

features with EyePiano (see Section 7.5 for details). Based on our

findings, we provide a set of implications and guidelines for future

systems in the following, and discuss limitations of the current

system.

8.1 Gaze Is an Indicator for Playing Proficiency
Our gaze feasibility study and our final evaluation of EyePiano

confirmed the suitability of basic gaze metrics as an indicator for

piano playing proficiency (RQ2). We have used the ability to sight-

read scores as a proxy [20], which limits this approach to learning

new scores. Our work suggests that a complementary teaching

method including both teachers and automated systems allows

for long-lasting learning success (RQ1, RQ3). Interestingly, our
approach shows opportunities for other forms of musical education

as well, allowing the ability to sight-read to become an indicator

of playing proficiency (RQ3). This approach could be especially

useful for proficiency assessment for cases where analyzing play

performance is difficult for machines, such as polyphonic or non-

MIDI instruments.

Though this approach has great potential, confound variables

such as varying levels of play proficiency, or personalized play

styles are likely to introduce noise and biases in the gaze data

(cf. Section 2.1). EyePiano in its current form is tailored towards

advanced players, limiting inter-user variance but also its scope

of application. Future work is needed to identify algorithm adjust-

ments for novice and expert pianists to allow a more general model.

However, small-scale user-dependent models are a valid alternative

as we have shown in this work. They require little training data and

are able to cope with individual user variances. Future integration

of other proficiency metrics, as discussed in Section 4 can help

strengthen the robustness of the algorithm.

Our work shows engineering requirements for future gaze-based

systems for piano learning. We highlighted the suitability of user-

dependent classification algorithms, provided choices for sensitivity

levels, and assessed the necessary locality (bar-level) for effective

rehearsal [40]. Our choices were driven by empirical findings as

well as by the design rationale to facilitate reflective piano learning,

making gaze a robust and suitable indicator of piano playing
proficiency (RQ2).

While deploying a gaze-based tutoring system such as EyePiano

as described in this work is currently out of scope for most home

users, there exists excellent solutions for camera-based gaze estima-

tion using webcams, possibly even integrated in digital notebooks

used to display the score sheet. Our call for user-dependent gaze

detection complements this scenario, as little training data would

be required to train the gaze detection algorithm. A single piano

lesson with a teacher would be sufficient to train a sufficient model

to support EyePiano’s features.

8.2 EyePiano Facilitates Reflective Piano
Learning

Our findings confirm that the user-tailored practice routine as pro-

vided by EyePiano was appealing to our participants and supported

their learning process. We first confirmed that EyePiano’s rehearsal

routine provided positive learning benefits (cf. Section 7.4.2), like-

wise to traditional rehearsal routines. We further explored how

the individual features of EyePiano supported the pianists in inter-

views (cf. Section 7.4.3). We found that it provided them with the

means to reflect on their own learning process and subsequently

improve their play. Here, we identified the interplay of the key
features as essential (RQ3), as participants reported in our inter-

views. First, highlighting difficult bars allowed participants to

recall and to reflect on challenging, often overlooked parts of a

score, providing them with a starting point for their practice. The

fact that EyePiano is based on objective measurements (difficult

bars as detected by our gaze algorithm) supported evidence-based

learning. Secondly, ready access to different sensitivity levels
enabled the pianists to further adapt their own individual practice,

such as focusing only on the most challenging parts. Thirdly, an

auditory playback complemented the rehearsal process. Being

able to listen to a gold standard for a particular piece facilitated

goal-driven learning and mitigated the consolidation of mistakes.

Lastly, all features are incorporated into EyePiano’s user-tailored
rehearsal routine that guides the learning process and supports

a more systematic rehearsal of music pieces (RQ1, RQ3). Finally,
we observe how EyePiano features a property noted previously as

beneficial in computer-based learning systems [38]—providing the

learner with the ability to self-correct. This feature was previously

identified as important for independent music learning [32, 53].
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8.3 Reflective Feedback Through Data-Driven
Systems Enriches Musical Education

In this work, we highlight the potential of reflective piano learning

for musical education. While this paradigm is becoming popular

in other domains, predominantly in sports [16], musical education

to date largely focuses on traditional teaching methods. We show

how new methods for data collection and analysis can help build

intelligent systems which provide an in-depth look into one’s pro-

ficiency. However, we do not expect these systems to substitute

personal teachers (RQ1). On the contrary, their capabilities can

enhance existing musical education where a mutual enrich-
ment between teacher and system allows both to play to their
individual strengths (RQ3), e.g., the system provides tangible

evidence for the teacher to curate the learning process. Research

has already shown that having access to gaze data may potentially

be beneficial to improve musical skills [54]. The ability to sight-read

can thus serve as a crude proxy for a musician’s proficiency and

generalizes well across multiple instruments. Consequently, sys-

tematic reflection and guided rehearsal as implemented in EyePiano

are applicable throughout a wide range of instruments in musical

education.

In this new paradigm, the teacher provides the holistic approach

to musical education as before, while EyePiano facilitates data-

driven support for reflective piano learning. A traditional teaching

scenario includes weekly sessions with a teacher. The teachers

selects appropriate scores for the students to rehearse until the

next lesson, and checks the learning progress at the beginning of

each lesson. Here, we see the potential of EyePiano to monitor the

learning process of students continuously throughout the week

and to guide rehearsal, avoiding consolidation of mistakes between

sessions. Moreover, the teacher has the option to review collected

data and get a better understanding of their student’s learning

process, curating the learning progress more efficiently through a

different selection of pieces or even altering their teaching meth-

ods. Thus, integrating EyePiano’s rehearsal into musical education

broadens the potential audience (teacher and student) and
their available opportunities (RQ3).

9 CONCLUSION
In this paper, we described the design, and evaluation of EyePiano—

a gaze-assisted tool for reflective piano learning. Our investigation

into the potential of data-driven systems has contributed design im-

plications and opportunities for reflective piano learning. Informed

by findings from our piano teacher interviews and from our gaze

feasibility evaluation, we identified and implemented four key fea-

tures in EyePiano: highlighting difficult bars, choice of sensitivity,

access to a gold standard, and a guided rehearsal routine. Our work

shows that a data-driven system for reflective piano learning is not

only feasible but also positively impacts the learning process.

We confirmed that EyePiano facilitated reflection on the learning

process of piano scores through the interplay of these key features,

initiating a potential paradigm shift in musical education, where

both personal teachers and data-driven systems can play to their

strength. We envision that this collaborative nature is not limited to

just the student and their teacher. It will enable a variety of practice

opportunities for musical education through readily available teach-

ing, not limited to traditional in-person practice forms. Access to a

wide range of students and their individual learning progress may

allow us to build powerful systems that support reflective piano

learning in the future.
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