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ABSTRACT
Despite the popularity of density-based clustering, its procedural

definition makes it difficult to analyze compared to clustering meth-

ods that minimize a loss function. In this paper, we reformulate

DBSCAN through a clean objective function by introducing the

density-connectivity distance (dc-dist), which captures the essence

of density-based clusters by endowing the minimax distance with

the concept of density. This novel ultrametric allows us to show

that DBSCAN, 𝑘-center, and spectral clustering are equivalent in

the space given by the dc-dist, despite these algorithms being per-

ceived as fundamentally different in their respective literatures. We

also verify that finding the pairwise dc-dists gives DBSCAN cluster-

ings across all 𝜀 values, simplifying the problem of parameterizing

density-based clustering. We conclude by thoroughly analyzing

density-connectivity and its properties – a task that has been elu-

sive thus far in the literature due to the lack of formal tools. Our

code recreates every experiment below: github link.
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1 INTRODUCTION
Some of the most frequently used clustering algorithms approx-

imate or find the optimum of a function. For example, 𝑘-center
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Figure 1: Equivalence among clustering algorithms under
the dc-dist. 𝑘-center, spectral clustering, and DBSCAN* on
the dc-dist are equivalent to DBSCAN* on the Euc. distance.

minimizes the maximum distance of any point to the closest of 𝑘

centers [1] and spectral clustering optimizes a cut criterion on a

graph obtained from the data [59]. However, for one of the most

famous algorithms, DBSCAN [21], there exists only a procedural

description of density-based clusters without a formal optimization

criterion. As a result, the wealth of literature regarding density-

based clustering has largely been heuristic due to the procedural

nature of the algorithm [57].

Our primary contribution is an objective function for density-

based clustering. We achieve this by introducing the dc-dist, a novel

distance measure that captures density-connectivity. To the best

of our knowledge, such a measure has not been defined in the

literature yet. We then show that it is an ultrametric and show

that DBSCAN* [6] (DBSCAN without border points) optimally

minimizes this function: Calculating the pairwise dc-dists provides

DBSCAN* solutions across all 𝜀 values simultaneously. By a simple

extension, we define an analogous distance measure and objective

function for the full DBSCAN problem, with similar implications.

We then prove that any DBSCAN* clustering corresponds to the

optimal solution for some 𝑘-center instance under the dc-dist. Put

simply, if the 𝑘-center problem has an optimal solution with cost 𝜀,

then the density-based clustering problem for a given 𝜀 has the same

optimal solution with 𝑘 clusters. We extend this by incorporating

the well-studied 𝑘-center with 𝑞-coverage problem [38] to ensure

that each cluster has at least 𝑞 points.

Due to the ultrametric nature of the dc-dist, we furthermore

show that this optimal solution corresponds to cuts that can be

obtained through the spectrum of the graph under our distance

measure [37, 45]. Consequently, spectral clustering under the dc-

dist returns the exact same clustering as DBSCAN* and 𝑘-center.

Fig. 1 summarizes the connection of various clustering heuristics

based on the proposed dc-dist.
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We conclude by performing a thorough experimental analysis

of our distance measure. Since the dc-dist captures the spirit of

density-connected clustering, studying its attributes gets at the fun-

damental properties underlying DBSCAN. For example, we show

that the dc-dist is more robust to the single-link effect [34] than

the minimax distance [42]. We also simplify the DBSCAN param-

eterization problem by noting that setting 𝑘 roughly equal to the

number of classes is a simple heuristic for high-quality DBSCAN

clusterings. In summary, we:

• define the first distance measure that incorporates the con-

cept of density-connectivity, called the dc-dist.

• show the equivalence of DBSCAN* (DBSCANwithout border

points), spectral clustering, 𝑘-center and 𝑘-center with q-cov-

erage on the space defined by the dc-dist.

• give the first non-procedural definition of DBSCAN’s clus-

tering objective, including the concept of border points.

• perform extensive experiments showing that the dc-dist cap-

tures the structure of density-connected data better than

other commonly used distance measures and how the dc-

dist can be used to effectively select DBSCAN parameters.

2 AN ULTRAMETRIC CAPTURING
DENSITY-CONNECTIVITY

Notation. Let (X, 𝛿) be a metric space of a finite set X and a

metric 𝛿 . The input data X = {𝑥1, . . . , 𝑥𝑛}, where 𝑥𝑖 ∈ R𝑑 , can be

represented as an undirected, weighted graph G𝛿 = (V, E,𝑤) for
any distance measure 𝛿 (·, ·). Each data point 𝑥𝑖 ∈ X implies a node

𝑣𝑖 ∈ V , where |X| = |V| = 𝑛, i.e., there exists a bijective mapping

𝜙 : X → V . Further, E = {(𝑣𝑖 , 𝑣 𝑗 ,𝑤𝛿𝑖 𝑗 ) | ∀𝑣𝑖 , 𝑣 𝑗 ∈ V}, where the
weight/length of edges is defined by the distance 𝛿 between the

points in high-dimensional space:𝑤𝛿 (𝑒𝑖 𝑗 ) = 𝑤𝛿
𝑖 𝑗

= 𝛿 (𝑥𝑖 , 𝑥 𝑗 ). As a
result, each node has an edge of weight 0 to itself. A path 𝑃 from

a node 𝑣𝑝 to another node 𝑣𝑞 is a sequence of edges that connect

a sequence of nodes, starting at 𝑣𝑝 and ending at 𝑣𝑞 : 𝑃 (𝑣𝑝 , 𝑣𝑞) =
(𝑒𝑝,1, 𝑒1,2, · · · , 𝑒𝑙−1,𝑞). P(𝑣𝑝 , 𝑣𝑞) is the set of all paths between 𝑣𝑝
and 𝑣𝑞 .

Figure 2: Left: dc-dist to the star, 𝜇 = 3. Middle: 𝑘-center clus-
ters for 𝑘 = 4; centers are stars; heatmap gives dc-dist to the
closest center; the cluster outlines are distance cost(𝐶𝑖 ) to
each center. Right: DBSCAN clusters with 𝜀 = max𝑖 cost(𝐶𝑖 ).

2.1 The Density-Connectivity Distance
With our measure, we want to combine density and connectivity
in order to capture the essence of density-based clustering. The

connectivity can be measured by the minimax distance [33, 42].

Definition 2.1. Minimax path (distance)
The minimax path between two nodes 𝑣𝑝 , 𝑣𝑞 is the path between

𝑣𝑝 and 𝑣𝑞 that minimizes the maximum weight of any of its edges.

The minimax (path) distance𝑚𝛿 is the weight of the longest edge

on the minimax path [33].

𝑚𝛿 (𝑣𝑝 , 𝑣𝑞) =𝑚𝑖𝑛𝑃 ∈P(𝑣𝑝 ,𝑣𝑞 )𝑚𝑎𝑥𝑒∈𝑃𝑤
𝛿 (𝑒) (1)

The minimax distance’s lack of a density constraint leaves it prone

to the single link effect, i.e., points that are far apart can have a small

minimax distance when a single chain of noise points links them. In

order to incorporate density into the minimax distance, we require

a way to define the dense (core) distance between pairs of nodes.

To this end, we translate the concept of dense (core) points (as

known from clustering algorithms like DBSCAN [21] or Wishart’s

method [61]) to the graph setting:

Definition 2.2. Dense path, core nodes, and core distance
Given a graph G𝛿 , a dense path w.r.t. 𝜇 and 𝜀 is a path that contains

only core nodes. Core nodes are nodes with at least 𝜇 edges (includ-

ing the edge with weight zero to itself) that have a weight lower

than 𝜀. We call the length of the 𝜇-th shortest edge connected to a

node 𝑣𝑝 its core distance 𝑑𝜇𝑐𝑜𝑟𝑒 (𝑣𝑝 ). Equivalently, the core distance
𝑑
𝜇
𝑐𝑜𝑟𝑒 (𝑝) is the distance to the 𝜇-th nearest neighbor of 𝑝 , where

𝛿 (·, ·) is usually Euclidean.

We can now capture density-connectivity by measuring the

connectivity with the minimax distance while ensuring density on

these paths:

Definition 2.3. Density-Connectivity distance

The density-connectivity distance 𝑑
𝜇

𝑑𝑐
(short: dc-dist) between two

nodes 𝑝 and 𝑞 in a dataset X is the minimax distance on the graph

G𝑑𝐸 induced by the Euclidean distance on X, where only dense

paths are regarded.

We calculate this distance by working on a graph of only dense

paths, i.e., all nodes of the graph are core nodes. For that, we propose

themutual reachability distance 𝑑𝜇𝑟 . It implies the distance for which

two points can be "reached", i.e., the maximum of their Euclidean

distance and the value for which both are core points. We provide

a visualization of it in Fig. 2.

Definition 2.4. Mutual Reachability distance

The mutual reachability distance 𝑑
𝜇
𝑟 (𝑝, 𝑞) for any 𝜇 ≤ |X| is 0 if

𝑝 = 𝑞, and else

𝑑
𝜇
𝑟 (𝑝, 𝑞) =𝑚𝑎𝑥 (𝑑𝐸 (𝑝, 𝑞), 𝑑

𝜇
𝑐𝑜𝑟𝑒 (𝑝), 𝑑

𝜇
𝑐𝑜𝑟𝑒 (𝑞)) (2)

Based on themutual reachability distance, the density-connectivity

distance can be formalized as follows:

Definition 2.5. The dc-dist is the minimax distance on the graph

given by the mutual reachability distance:

𝑑
𝜇

𝑑𝑐
(𝑝, 𝑞) =𝑚𝑑

𝜇
𝑟 (𝑣𝑝 , 𝑣𝑞) =𝑚𝑖𝑛𝑃 ∈P(𝑣𝑝 ,𝑣𝑞 )𝑚𝑎𝑥𝑒∈𝑃𝑤

𝑑
𝜇
𝑟 (𝑒) (3)
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Figure 3: Illustration of the relationship between different clustering methods with dc-dist. DBSCAN without borderpoints,
𝑘-center with 𝑞-coverage, and ultrametric spectral clustering return the same results.

Working on the graph given by the mutual reachability dis-

tance ensures that all possible paths are dense. Thus, known algo-

rithms for computing minimax distances on graphs, like Kruskal’s

or Prim’s, can be used directly to compute the dc-dist efficiently.

2.2 Properties
We first observe that because the minimax paths lie on minimum

spanning trees (MST) of the graph [14, 26], we can calculate the

dc-dist by building the MST of G𝑑
𝜇
𝑟 (see Sec. 2.3 for details). We also

note that the dc-dist inherits the properties of an ultrametric (also re-

ferred to as super metric or rooted tree metric) from the minimax dis-

tance [13, 40]. As such, all pairwise distances between 𝑛 objects can

be represented in a tree with the objects as leaves and the dc-dists

as nodes. Thus, the dc-dist only has up to𝑂 (𝑛) unique values while
traditional distance metrics have up to 𝑂 (𝑛2). The dc-dist further-
more defines a metric space in which the strong triangle inequality
holds, i.e., ∀𝑝, 𝑞, 𝑟 ∈ X : 𝑑

𝜇

𝑑𝑐
(𝑝, 𝑟 ) ≤ 𝑚𝑎𝑥{𝑑𝜇

𝑑𝑐
(𝑝, 𝑞), 𝑑𝜇

𝑑𝑐
(𝑞, 𝑟 )}.

2.3 Calculating the dc-dist
We calculate the dc-dist through a modification to Kruskal’s mini-

mum spanning tree (MST) algorithm on the fully-connected graph

induced by 𝑑
𝜇
𝑟 (for details on correctness and efficiency, see [14]).

Kruskal’s algorithm builds an MST by maintaining a set of forests

and, at each step, connecting the two forests that have the shortest

edge between them. The length of the edge that connected the

forests of 𝑝 and 𝑞 corresponds to the dc-dist.

Algorithm 2 in the supplementary material describes the calcu-

lation of the dc-dist. We store the pairwise distances in a tree data

structure that has one leaf for each point and one node for each

edge that connected two forests during Kruskal’s algorithm. We

assign the length of this edge to its corresponding node. Obtain-

ing the MST tree requires then 𝑂̃ (𝑛2) time [14]. Calculating the

dc-dist between two points then requires 𝑂 (log(𝑛)) time to find

their lowest common ancestor and return the value in that node

in the tree. Thus, the complexity to compute the entire distance

matrix requires 𝑂̃ (𝑛2) time. We note that this binary tree is also

used in Wishart’s hierarchical classification method [61] and in

HDBSCAN [6] (see Sec. 7.2).

3 DBSCAN(∗) AND DC-DIST
DBSCAN [21] assigns core points (points that have at least𝑚𝑖𝑛𝑃𝑡𝑠

neighbors in their 𝜀 range) that are density-connected to a single

cluster. Note, that two points can be density-connected without

being core points; they are then called border points. Although

DBSCAN is not usually presented as a hierarchical clustering algo-

rithm, points that share a DBSCAN cluster for a 𝜀1 will also do so for

𝜀2 ≥ 𝜀1. Furthermore, the DBSCAN clusters for𝑚𝑖𝑛𝑃𝑡𝑠 = 1 corre-

spond – save for border points and noise – to the clusters found by

Hierarchical Single Linkage clustering with cutoff at 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝜀.

Algorithms extending DBSCAN often ignore the border points and

differentiate only between core and noise points (e.g., [6, 46]). In

this adaptation of DBSCAN, called DBSCAN* [6], all border points

are considered noise points
1
. We show example DBSCAN* cluster-

ings in columns 4 and 5 of Fig. 3. Given this definition of DBSCAN*,

we have the following theoretical results:

Lemma 3.1. Let𝐶 = {𝐶1, ...,𝐶𝑘 } be the clusters found by DBSCAN*
with threshold 𝜀. Then, for any 𝐶𝑖 ∈ 𝐶 , 𝑑𝑑𝑐 (𝑐𝑎, 𝑐𝑏 ) ≤ 𝜀 ∀ 𝑐𝑎, 𝑐𝑏 ∈ 𝐶𝑖 .
Furthermore, for any 𝐶𝑖 ,𝐶 𝑗 ∈ 𝐶 with 𝐶𝑖 ≠ 𝐶 𝑗 , we have 𝑑𝑑𝑐 (𝑐𝑖 , 𝑐 𝑗 ) >
𝜀 ∀ 𝑐𝑖 ∈ 𝐶𝑖 , 𝑐 𝑗 ∈ 𝐶 𝑗 .

Proof. Let {𝑐𝑖1, 𝑐𝑖2, ..., 𝑐𝑖𝑚} be a sequence of points in a DB-

SCAN* cluster. Since DBSCAN* operates by connecting those points

that have a mutual reachability distance less than 𝜀 between one

another (see [9]), it must be the case that each step in this path

has mutual reachability distance less than or equal to 𝜀. Thus, the

longest step in any path within a DBSCAN* cluster is less than 𝜀,

proving the first part of the lemma. The second part is then triv-

ially true, as distances across DBSCAN* clusters must have mutual

reachability distance greater than 𝜀. □

Corollary 3.2. Let [M(𝜀)]𝑖 𝑗 = 1𝑑𝑑𝑐 (𝑝𝑖 ,𝑝 𝑗 ) ≤𝜀 be a matrix that is
1 when the dc-dist of a pair of points is less than 𝜀 and 0 otherwise.
Then M(𝜀) implies a valid DBSCAN* clustering for any value of 𝜀: if
two points have a non-zero entry inM(𝜀) then they are in the same
DBSCAN* cluster for that 𝜀.

1
We add the restriction that clusters must have at least 𝜇 points
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Proof. Since DBSCAN* clusters must have intra-cluster dc-

dist values less than 𝜀, thresholding the matrix of pairwise distances

by any value will leave only those pairs of points that are within

an 𝜀 ball of each other. Furthermore, this thresholding forms an

equivalence relation: it is inherently reflexive and symmetric due

to acting on a distance matrix and is transitive by the ultrametric

property 𝑑 (𝑥,𝑦) < 𝜀 ∧ 𝑑 (𝑦, 𝑧) < 𝜀 ⇒ 𝑑 (𝑥, 𝑧) < 𝜀. Thus, M(𝜀)
corresponds to a DBSCAN* clustering. □

Importantly, Cor. 3.2 shows that the set of 𝑛2 pairwise dc-dists

defines DBSCAN* clusterings across all values of 𝜀 simultaneously

– one only needs to threshold the matrix for an appropriate value

of 𝜀. Furthermore, since there are only 𝑂 (𝑛) unique dc-dist val-

ues, searching for the optimal 𝜀 can be done quickly using a tree

data-structure. We now present a result that states that DBSCAN*

clusterings are equivalent under the Euclidean and dc-dist.

Lemma 3.3. Let 𝜀 be a threshold value. Then 𝐶 = {𝐶1, ...,𝐶𝑘 } is a
clustering found by DBSCAN* under the Euclidean distance if and
only if 𝐶 is a clustering found by DBSCAN* under the dc-dist .

The proof is located in Sec. C in the appendix. This effect can

be seen in columns 4 and 5 of Fig. 3, where the DBSCAN* result is

identical under the Euclidean and density-connected distances.

3.1 DBSCAN*’s optimization criterion
We now utilize Lemma 3.1 to define an objective function for the

DBSCAN* algorithm. Let C ⊂ powerset(X) be the space of solu-
tions such that 𝐶 = {𝐶1, . . . ,𝐶𝑙 } partitions the dataset. Then we

define the 𝜀-density-based-clustering (𝜀DBC) objective as:

min

𝐶⊂C
𝑑𝑑𝑐 (𝑝,𝑞) ≤𝜀∀𝑝,𝑞∈𝐶𝑖∀𝐶𝑖 ∈𝐶

|𝐶 | (4)

This can be read as “find the smallest set of clusters such that the

maximum dc-dist within any cluster is 𝜀.” This leads to the natural

loss function L𝜀𝐷𝐵𝐶 (𝐶) = |𝐶 |,where we assume that𝐶 is a feasible

solution to the 𝜀DBC problem. We note that the objective can be

interpreted as a coverage problem, where we are given a set of

points in the dc-dist space and must find the minimum number of

𝜀-balls that cover them. The next theorem shows that DBSCAN*

solves the 𝜀DBC problem optimally.

Theorem 3.4. DBSCAN* with threshold 𝜀 obtains the optimal
solution to the 𝜀DBC objective when applied on the 𝜀 core points of 𝑃 .

Proof. FSOC, assume there is another method that finds a solu-

tion with fewer clusters than DBSCAN*. Then there must exist a

pair of core points 𝑝 and 𝑞 in the same optimal cluster but in sepa-

rate DBSCAN* clusters. By the definition of the objective function,

𝑑𝑑𝑐 (𝑝, 𝑞) ≤ 𝜀 since they reside in the same optimal cluster. However,

since their dc-dist is less than 𝜀, they must have been connected

during the DBSCAN* procedure. Thus, we have a contradiction. □

Importantly, this objective function is consistent with the origi-

nal introduction of DBSCAN [21]. Namely, the dc-dist corresponds

to the connectivity criterion, while minimizing the number of clus-

ters corresponds to the maximality criterion. We note that problems

defined through an objective function have the advantage of allow-

ing formal approximation and acceleration algorithms.

3.2 DBSCAN-Distance: Extension for
Borderpoints

Thus far we have only discussed the dc-dist with respect to DB-

SCAN*, as it is cleaner than its original counterpart. We note, how-

ever, that just as the dc-dist gives the smallest 𝜀 such that two points

are core points of the same DBSCAN* cluster, we can define the

DBSCAN-distance, which gives the smallest 𝜀, s.t. two points are in

the same DBSCAN cluster (even if they are “only” border points of

the same cluster). The difference to Def. 2.3 of the dc-dist is that, to

handle the border points, we do not require the start and end node

of a path to be dense. We note that this is no longer an ultrametric.

Definition 3.5. DBSCAN-distance
Let {𝑣𝑝 , ..., 𝑣𝑞} be the minimax path in the mutual-reachability

graph between the nodes of points 𝑝 and 𝑞 such that

(1) 𝑣𝑝 and 𝑣𝑞 are the only two nodes on the path that are allowed

to not be core points, and

(2) the path contains at least one core point.

Then the DBSCAN-distance 𝑑
𝜇

𝑑𝑏
between two points 𝑝 and 𝑞 is the

weight of the longest edge on this path.

We prove that this is a distance metric in Appendix E and give

an algorithm for calculating it in Alg. 3. We note that, since the

DBSCAN-distance corresponds to the smallest 𝜀 s.t. they are in the

same DBSCAN cluster, we can extend the 𝜀DBC objective onto DB-

SCAN by simply substituting the new distance function. Thus, while

other DBSCAN presentations only describe a method to find these

clusters, the DBSCAN-distance allows the first non-procedural def-
inition of the full DBSCAN optimization task. In Fig. 3, we show

the difference between DBSCAN and DBSCAN* clusterings.

4 CONNECTING 𝑘-CENTER TO DBSCAN*
We now turn to the equivalence of DBSCAN* and 𝑘-center solutions

under the dc-dist. The 𝑘-center problem is finding 𝑘 centers s.t. the

largest distance of any point to its closest center is minimized [27],

formalized via the objective function

L(X,𝐶) = max

𝑥 ∈X
min

𝑐∈𝐶
𝑑 (𝑥, 𝑐) .

We use the notation cost(𝑘, 𝑃) to refer to the cost of the optimal

𝑘-center solution on X.
We can see a clear connection between this and the 𝜀DBC objec-

tive introduced in Eq. 4, we see that the 𝜀DBC objective aims to find

the smallest number of 𝜀-balls that cover a set of points while the

𝑘-center objective is searching for the smallest 𝜀 such that 𝑘 𝜀-balls

cover the points. We formalize this connection in the following

theorems:

Theorem 4.1. Let 𝐶 be the unique optimal 𝑘-center solution on
pointset X under the dc-dist for some 𝜇 and assume there does not
exist an 𝑙 < 𝑘 such that cost(𝑙,X) = cost(𝑘,X). Let 𝜀𝑘

𝑖
be the cost of

the 𝑖-th cluster and define 𝜀𝑜𝑝𝑡 = max𝑖 𝜀
𝑘
𝑖
. Then

(1) 𝐶 is the optimum of the DBC objective on X with 𝜀𝑜𝑝𝑡
(2) |𝐶 | = 𝑘

(3) DBSCAN* finds this optimal solution.
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Proof. This is equivalent to saying that the 𝑘-center solution’s

intra- and inter-cluster dc-dists are respectively upper- and lower-

bounded by 𝜀𝑜𝑝𝑡 (see Sec. 3). The former occurs by definition. To

see the latter, note first that the assumption that 𝑘 is the smallest

integer for which we can get cost(𝑘,X) implies that there is not

an inter-cluster distance equal to 𝜀𝑜𝑝𝑡 . If there were, we could join

these together to obtain a (𝑘 − 1)-center solution with equal cost.

Now assume for the sake of contradiction that centers 𝑐𝑖 and 𝑐 𝑗
have dc-dist 𝑑𝑑𝑐 (𝑐𝑖 , 𝑐 𝑗 ) < 𝜀𝑜𝑝𝑡 . We can then combine clusters 𝑐𝑖 and

𝑐 𝑗 into a single cluster 𝑐𝑖 𝑗 that has cost strictly less than 𝜀𝑜𝑝𝑡 . This

gives a solution with 𝑘 − 1 centers where there still exists an edge

of length 𝜀𝑜𝑝𝑡 within some cluster 𝑐𝑘 . We can then split 𝑐𝑘 into two

clusters 𝑐𝑙 and 𝑐𝑚 along this longest edge. This new solution has

cost less than or equal to that of 𝐶 , which is a contradiction. Lastly,

Theorem 3.4 states that DBSCAN* finds this optimum. □

We note that if there is some 𝑙 < 𝑘 such that cost(𝑙,X) =

cost(𝑘,X), then |𝐶 | = 𝑙 . We refer to Algorithm 1 for a method

that optimally solves the k-center problem under the dc-dist
2
. It

operates over a binary tree where each node in the tree corresponds

to one edge in the mutual reachability MST. Each node’s value is

then equal to the length of its corresponding edge in the MST and

the distance between two nodes in the tree is the value of their

lowest common ancestor. Importantly, it is the ultrametric nature of

the dc-dist that allows the 𝑘-center problem to be solved optimally:

Theorem 4.2. Algorithm 1 returns the optimal 𝑘-center solution
under the dc-dist.

Proof sketch. Algorithm 1 begins by recursively finding the

nodes of the ultrametric’s density-connectivity tree that have at

most 𝑘 elements and assigning a center to each one. Thus, each

node in the recursive stack corresponds to a 𝑘-center solution on

its respective subtree. Since the cost of a cluster is the value of its

lowest-common-ancestor (lca), merging children by the smallest

lca guarantees that we retain optimality after each merge. □

We provide a full proof in the appendix. These theorems can

be interpreted as equivalence statements between 𝑘-center and

DBSCAN* under the dc-dist. Namely, if the 𝑘-center problem has

an optimal solution with cost 𝜀, then the 𝜀DBC problem has an

optimal solution with 𝑘 clusters
3
.

4.1 𝑘-center with 𝑞-Coverage
Note that the 𝑘-center problem is strongly influenced by outliers.

We see this effect in column 2 of Fig. 3, where the 𝑘-center solution

on the two-moons dataset has three clusters consisting of one

point each. Thus, although 𝑘-center solutions provide us with valid

DBSCAN* clusterings, they may not be the most practical ones.

This issue stems from low density at each outlier and has been

addressed by modifying the k-center problem to incorporate a

minimum number of points. Specifically, the popular 𝑘-center with

𝑞-coverage problem [38] is an extension of the 𝑘-center objective

such that each center accounts for at least 𝑞 points. Formally, the

2
The 𝐶 [𝑖 ] .𝑚𝑒𝑟𝑔𝑒 (𝐶 [𝑖 + 1]) function in Algorithm 1 appends the points in

𝐶 [𝑖 + 1] to𝐶 [𝑖 ] but does not change𝐶 [𝑖 ]’s center.
3
If these clusters have size less than 𝑘 , then they are noise points

objective function is given by

L(𝑃,𝐶) = max

𝑝∈𝑃
min

𝑐∈𝐶
max

(
𝑑 (𝑝, 𝑐), 𝑑𝑞 (𝑃, 𝑐)

)
,

where 𝑑𝑞 (𝑃, 𝑐) is the distance of the 𝑞-th nearest neighbor to the

center 𝑐 . Thus, any optimal solution to the 𝑘-center with 𝑞-coverage

problem has at least 𝑞 points belonging to each cluster. We can

transfer this to the density setting – a core point is defined as

having at least 𝜇 nearest neighbors within its 𝜀-ball. Thus, under

the dc-dist, the 𝑘-center with 𝑞-coverage problem constrains our

clusters to be density-connected with 𝜇 = 𝑞.

It is easy to amend Algorithm 1 to solve the 𝑘-center with 𝑞-

coverage problem by pruning the ultrametric tree. Specifically, we

make a copy of the tree that only includes nodes with at least 𝜇

children. We then apply Algorithm 1 on this pruned tree. Lastly,

we take the peak 𝑁𝑖 of each cluster in the pruned tree and set 𝑐𝑖 =

{𝑙 | 𝑙 is a leaf of 𝑁𝑖 in the original tree}. We describe this formally

in Algorithm 4 in the appendix. We now show that it optimally

solves the 𝑘-center with 𝑞-coverage problem.

Theorem 4.3. Algorithm 4 optimally solves the 𝑘-center with 𝑞-
coverage problem under the dc-dist.

Proof. The principal step in Algorithm 4 is Algorithm 1 on the

pruned tree. By definition, the pruned tree consists only of those

nodes that have at least 𝑞 children. Thus, any 𝑘-center solution

on the pruned tree corresponds to a 𝑞-coverage solution on the

original dataset. To show optimality, consider that Algorithm 1 finds

the optimal 𝑘-center solution on the pruned tree. Since solutions

on the pruned tree have equal cost to those on the original tree,

Algorithm 4 returns the optimal 𝑘-center with 𝑞-coverage solution.

□

The first column of Fig. 3 shows that this provides a significantly

more practical solution, where clusters are evenly distributed in

size. Furthermore, 𝑘-center with 𝑞-coverage solutions retain the

property that they must correspond to a DBSCAN* solution. Indeed,

we see that the DBSCAN* solutions in columns 4 and 5 of Fig. 3 are

identical to those in column 1. Thus, solving the 𝑘-center with 𝑞-

coverage problem on the dc-dist with 𝑘 roughly equal to the number

of classes offers a heuristic for finding a reasonable 𝜀 DBSCAN

parameter. We show this experimentally in Sec. 6.

5 ULTRAMETRIC SPECTRAL CLUSTERING
We now regard spectral clustering on the dc-dist. Spectral graph

analysis converts a clustering problem in arbitrary space into a

graph partitioning problem. For a given similarity matrix 𝑆 , where

𝑆𝑖, 𝑗 ≥ 0 is a similarity score between 𝑥𝑖 and 𝑥 𝑗 , the steps of SC

reduce to: (1) normalization, where often some Laplacian matrix is

used, (2) computation of the eigendecomposition, and (3) partition-

ing based on the eigenvectors. Depending on the affinity matrix

and type of partitioning, a minimum ratio cut or the closely related

minimum normalized cut gives the final clustering [59]. In this

paper, we regard the minimum cut𝑚𝑖𝑛𝑐𝑢𝑡 =
∑𝐾
𝑘=1

∑
𝑖∈𝐶𝑘 , 𝑗∉𝐶𝑘

𝑆𝑖, 𝑗 ,

where the similarity matrix 𝑆 is based on the dc-dist and has row

vectors 𝑆 [𝑖,:] ≔ 1 −
𝑑𝑑𝑐 [𝑖,:]
∥𝑑𝑑𝑐 [𝑖,:] ∥

. In the following, we provide an in-

tuition for how spectral partitioning yields the same clustering as

thresholding the dc-dist-tree (Sec. 3). We refer to Theorem 5 of [3]
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Algorithm 1: Tree-𝑘-Center
Input: Root node 𝑅; 𝑘
Output: 𝑘 clusters

1 𝐶 ← [] ;
2 if |𝑅 | <= 𝑘 then
3 𝐶 .append(𝑐ℎ𝑖𝑙𝑑) for 𝑐ℎ𝑖𝑙𝑑 ∈ 𝑅 ;

4 return 𝐶 ;

5 end if
6 𝐶 .append(Tree-𝑘-Center(𝑟 .left, 𝑘));
7 𝐶 .append(Tree-𝑘-Center(𝑟 .right, 𝑘));
8 while |𝐶 | > 𝑘 do
9 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡 ,𝑚𝑖𝑛_𝑖𝑛𝑑𝑒𝑥 ←∞, −1 ;

10 for 𝑖 < |𝐶 | − 1 do
11 𝑙𝑒 𝑓 𝑡 , 𝑟𝑖𝑔ℎ𝑡 ← 𝐶 [𝑖] .𝑐𝑒𝑛𝑡𝑒𝑟 , 𝐶 [𝑖 + 1] .𝑐𝑒𝑛𝑡𝑒𝑟 ;
12 𝑝𝑒𝑎𝑘 ← LeastCommonAncestor(𝑙𝑒 𝑓 𝑡 , 𝑟𝑖𝑔ℎ𝑡);
13 𝑑𝑖𝑠𝑡 ← 𝑝𝑒𝑎𝑘.value ;

14 if 𝑑𝑖𝑠𝑡 < 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡 then
15 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡 ,𝑚𝑖𝑛_𝑖𝑛𝑑𝑒𝑥 ← 𝑑𝑖𝑠𝑡, 𝑖 ;

16 end if
17 end for
18 𝐶 [𝑚𝑖𝑛_𝑖𝑛𝑑𝑒𝑥].merge(𝐶 [𝑚𝑖𝑛_𝑖𝑛𝑑𝑒𝑥 + 1]);
19 end while
20 return 𝐶

for a full proof of the statement and [40] for a deeper discussion of

spectral analysis using ultrametrics.

It is known that spectral clustering identifies eigenvectors that

describe minimal cuts between components [59]. Now consider that

the ultrametric distance matrix 𝐷𝑑𝑐 can be rearranged in a block

matrix 𝐶 representing the clusters. Following the proof scheme of

[3, 62], two rows 𝑟𝑘 , 𝑟𝑙 of 𝐶 are similar, i.e., 𝑟𝑘 ≈ 𝑟𝑙 , iff nodes 𝑘 and

𝑙 belong to the same cluster and the distance 𝑑𝑑𝑐 (𝑘, 𝑙) < 𝑑𝑑𝑐 (𝑘,𝑚)
for𝑚 in a different cluster. This holds for all sub-clusters as well,

implying a hierarchical partition structure. We refer to SC applied

on an ultrametric matrix 𝐷𝑑𝑐 as Ultrametric Spectral Clustering
(USC) and provide the following proposition (proven in [3]):

Proposition 5.1. Let the 𝑛 × 𝑛 similarity matrix 𝑆 induce Lapla-
cian 𝐿 = 𝐷 − 𝑆 , where 𝐷 is the degree matrix given by the affinity
matrix 𝑆 . Then the first non-constant eigenvector induces a partition
on G𝑑

𝜇
𝑟 . Applying this partitioning recursively until all dc-dist values

are less than 𝜀 gives the DBSCAN* clustering.

We start with the ultrametric distance matrix 𝐷𝑑𝑐 and an ascend-

ing ordering on the values stored therein, i.e., 𝑑𝑑𝑐1 ≤ . . . 𝑑𝑑𝑐𝑛 for

𝑛 distinct distance scores. To transform the values of 𝐷𝑑𝑐 into a

similarity matrix 𝑆 , we first normalize the values of 𝐷𝑑𝑐 to retrieve

𝐷𝑑𝑐 [𝑖,:] =
𝑑𝑑𝑐 [𝑖,:]
∥𝑑𝑑𝑐 [𝑖,:] ∥

such that values are in the range [0, 1]. Thus,

our affinity matrix 𝑆 ≔ 1 − 𝐷𝑑𝑐 gives similarity scores that are in

reverse order compared to the distances. We use 𝑆 for the Spectral

Clustering approach described in [50], where eigenpairs correlate

to edges in the graph having lowest values. By the minimization

problem of Spectral Clustering𝑚𝑖𝑛𝑓 ∈R𝑛 𝑓 ′𝑆 𝑓 (cf. [59]), the method

favors cuts having low similarity scores. Consequently, larger dis-

tances are favored by the proposed Ultrametric Spectral Clustering.
Applying the cutting procedure in an iterative manner, we get a

hierarchical partition clustering up to a specific 𝜀 that the user can

set as threshold.

6 EXPERIMENTS
Wenow turn to the experimental study of the dc-dist, demonstrating

that it indeed captures the essence of density-based clustering. We

describe our setup in Sec. 6.1. We study the separability of intra-

and inter-cluster distances in Sec. 6.2 and robustness w.r.t. the

single link effect in Sec. 6.3. We perform extensive experiments

on synthetic and real-world benchmark datasets to illustrate how

the dc-dist captures the structure of the data in Sec. 6.4. Sec. 6.5

shows the connection between the number of clusters 𝑘 for 𝑘-center

clustering and 𝜀 for DBSCAN*. Our code recreates every experiment

below: https://github.com/Andrew-Draganov/dc_dist.

6.1 Experimental Setup and datasets
We start with experiments on synthetic datasets containing density-

based clusters (d1, d2, d3) or Gaussian-distributed clusters (b3).

Datasets d1 and d2 consist of 10k datapoints in density-based clus-

ters with same and varying density respectively. Datasets b3 and

d3 consist of 9k datapoints in unbalanced clusters (resp. clusters

with varying density) and 1k uniformly distributed noise points.

We used the data generator functions from the scikit-learn library
4

and implemented a data generator (online accessible via github
5
)

adapting the Seed Spreader described in [24]: Each density-based

cluster is produced by a random walk through the d-dimensional

space. For each step, we uniformly generate points in the local hy-

persphere around the current position. We adapt the generator s.t. it

produces a given number of clusters that are well-separated. Noise

is added uniformly and assigned to a cluster if it is within a mini-

mum distance. A more detailed description of the data generator is

included in Appendix H. We examine the suitability of dc-dist for

real-world use cases on state-of-the-art benchmark datasets (driver

faces, coil5, coil10, pendigits, coil20, olivetti, coil). Appendix G gives

an overview of all datasets.

6.2 Capturing density-connectivity
We begin by demonstrating that the dc-dist indeed captures density-

connectivity by showing that the gap between intra-cluster and

inter-cluster distances ismuchmore pronounced for the dc-dist than

for commonly used distance measures.

Fig. 4 shows this effect for the Euclidean, Manhattan, Cosine,

and dc-dist with 𝜇 ∈ {3, 5, 10} on synthetic density-based clusters.

Intra- and inter-cluster distances are plotted in blue and yellow,

respectively. The x-axis corresponds to 5% distance buckets from

0 to 100% of the maximal distance in the dataset. The y-axis then

shows the percentage of distances that fall into each bucket. We

use the dotted lines to show the effect for each dimensionality and

average over 10 runs.

We start by examining the low-dimensionality, lighter-colored

lines. There, we see that the dc-dist imposes a large valley between

4
https://scikit-learn.org/stable/, last accessed: Jan 28, 2023

5
https://anonymous.4open.science/r/DensityDimReduction-077A
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the intra-cluster distances that skew left and the inter-cluster dis-

tances that skew right. Comparing this to the other distances, the

dc-dist obtains a larger differentiation between intra- and inter-

cluster distances. This implies that other distance measures blur

the distinction between clusters in low-dimensionality more than

the dc-dist. Then, as dimensionality increases, the expected density

decreases and thus the contrast decreases as well.
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Figure 4: Distribution of distance values on data with density-
based clusters. We can see a "valley" separating intra- (blue)
from inter- (yellow) cluster distances for the dc-dist across
dimensionalities, but not for the standard distance measures.

6.3 Robustness w.r.t. single link effect
Wenow show that while theminimax distance is prone to the single-

link (SL) effect, the dc-dist is more robust to noise with increasing 𝜇,

thanks to incorporating density. The SL effect means clusters cannot

be separated by density-based clustering, i.e., a path of density-

connected noise connects them. Quantitatively, this means that

the inter-cluster distance is less than or equal to the intra-cluster

distances. We illustrate the robustness of dc-dist to this effect in

Fig. 5 by plotting the difference between the minimum inter-cluster

and mean intra-cluster distances for two multivariate Gaussians

with centers at (−3, 0) and (3, 0). The x-axis shows their variances
and the average over 10 runs. Values in the plot below 0 imply

that clusters cannot be separated due to the SL effect, as the length

of the smallest inter-cluster distance is smaller than the average

intra-cluster distance. Fig. 5 shows that with increasing values of 𝜇,

this happens to a much lesser degree. Thus, incorporating density

into the dc-dist increases robustness w.r.t. the SL effect.

6.4 Clustering Algorithms and the dc-dist
We now turn to the relationship between distance measures and

clustering algorithms in Fig. 6. In order to perform a comprehensive

set of experiments, we find the pairwise distances across a dataset

and embed them into Euclidean space using multidimensional scal-

ing (MDS) [8]. This allows us to apply clustering algorithms that

may not accept pairwise distance matrices. We then measure the

Figure 5: Robustness of the dc-dist to SL effect. The higher
the values for 𝜇, the noisier data can be before the single link
effect occurs (i.e., before values fall below 0).

Adjusted Rand Index (ARI) [30] of the resulting clustering with

its ground truth. We use some of the most fundamental clustering

algorithms (DBSCAN [21], 𝑘-Means
4
, and spectral clustering

4
) as

well as a recent density-based clustering algorithm suitable for

large data of varying densities (DCF [58]) across synthetic and real

datasets, where real datasets are ordered by number of classes. To

account for the effect of the embedding, we vary over the MDS

embedding dimension in the large rows of the figure. For compa-

rability, parameters were chosen equally among all experiments.

As suggested in [55],𝑚𝑖𝑛𝑃𝑡𝑠 for DBSCAN was set to 2 ∗ 𝑑 , 𝜀 was
set to the maximum distance of the 𝑚𝑖𝑛𝑃𝑡𝑠-th nearest neighbor.

For spectral clustering, an RBF-Kernel with 𝛾 = 2/
√
𝑑 was used.

DCF parameters were chosen according to the suggested default

settings, with 𝑘 =
√
𝑛 and 𝛽 = 0.4.

We first see that on synthetic datasets, the clusterings for low-

dimensional embeddings maintain a higher ARI with the ground

truth when using the dc-dist. This holds true for data of different

structures (Gaussian or density-based clusters, with/ without noise,

balanced/ imbalanced densities) and for different clustering meth-

ods. This echoes the results shown in Fig. 4. Furthermore, we see

that the dc-dist is robust to decreasing the embedding dimension-

ality. This is intuitively clear when considering the dc-dist’s ultra-

metric nature: since many of the distances are exactly equivalent,

there is less information that is lost when reducing dimensionality.

Turning to the benchmark dataset, we see that both of these ef-

fects become less pronounced but that there are still clear patterns

that one can observe. First, the dc-dist loses some of its robustness

to the embedding dimensionality but this change seems smaller

for higher 𝜇. Second, we see datasets with fewer classes are better

clustered on average across all distance measures, but the standard

distance measures seem more resilient to larger numbers of classes.

We hypothesize that this is due to the single-link effect being more

likely to occur across classes as the number of classes grows. Third,

for density-connected data with few classes (e.g., c5 and c20) the

dc-dist permits better clusterings compared to the other distance

measures. We note that the reachability distance, which also cap-

tures density, outperforms the standard distance measures on these
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datasets as well. Fourth, the quality of clusterings naturally de-

creases if we choose the wrong 𝜇: e.g., 𝜇 = 10 is too high for the

Olivetti dataset, which only has clusters of size 10.

6.5 Choosing 𝑘 leads to good values for 𝜀
We lastly consider Fig. 7, which shows how the number of classes

affects the 𝜀 value in DBSCAN. Specifically, we increase 𝑘 and

observe that the resulting 𝑘-center with 𝑞-coverage leads to the 𝜀

value consistently dropping. Furthermore, the figure shows that, as

expected, setting 𝑘 equal to the number of classes is a reasonable

heuristic for parameterizing DBSCAN. We argue that practitioners

often have a rough idea for the number of classes in their dataset and

suggest this as a simple method for obtaining DBSCAN clusterings

without hyperparameter tuning.

7 RELATEDWORK
Sec. 7.1 gives some background on distance measures in general,

as well as the minimax distance and the reachability distance in

particular, as the dc-dist is based on them. Subsequently, we give

an overview of the research areas that are brought together by

our paper: density-connectivity (Sec. 7.2), k-center (Sec. 7.3), and

Spectral clustering (Sec. 7.4).

7.1 Distance Measures
In the experiments in Sec. 6 we compare the dc-dist to the most

commonly used distances measures: Euclidean, Manhattan, and

cosine distance, all working in R𝑑 . Link-based or path-based dis-

tances (e.g., shortest path distance [25] or minimax distance [33]),

as well as metrics based on MSTs (e.g., the critical distance [54]) and

ultrametrics in general, are more closely related to the dc-dist. The

minimax distance is known to be suitable for clustering and is used

as basis for several cluster algorithms (e.g., [11, 36, 40, 41, 44]). For

an extensive overview of minimax distances and related concepts,

we refer to [26]. Note, that it is also referred to as the widest path

[60], bottleneck shortest path [23, 32], longest leg path [40], or as

transitive distance [62] or connectivity kernel [22] and it is closely

related to the maximum capacity problem [51]. It is implied by

the Single Link Distance, which is defined on sets of points and

typically used for hierarchical clustering [47]. Additionally, it offers

the desirable properties of ultrametrics [26]. In general, ultramet-

rics can be useful for, e.g., minimum spanning tree (MST) based

clustering, efficient graph-based image segmentation (EGS), and

normalized tree partition (NTP) [62]. In [22], a "pairwise clustering

cost function" on the "connectivity kernel" is optimized, however,

the authors omit that it optimizes a graph cut on the minimax

distance. Nevertheless, they perform the cut with kernel PCA imi-

tating a spectral approach. The potential of representing distances

in the form of trees is known for a long time [17]. Our novel dc-

dist combines the minimax distance with an adaption of the original

reachability distance, which was first defined with the introduction

of OPTICS [2], and later reused by various algorithms, e.g., LOF [5]

or LDBSCAN [20]. A visualization of the reachability distance in

comparison to the dc-dist is given in Fig. 8, where the distances

used by OPTICS are framed in black. The reachability distance

builds on top of the definitions for (direct) density-reachability

introduced with DBSCAN [21] and is defined for |𝑁𝜀 (𝑝) | ≥ 𝜇 as

𝑑𝑜𝑟 (𝑝, 𝑞) =𝑚𝑎𝑥 (𝑐𝑜𝑟𝑒 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝), 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝, 𝑞)). Note that 𝑑𝑜𝑟
(as used in, e.g., [2, 5]) is not a distance measure as it is, e.g., not

symmetric. Also the "mutual reachability distance" defined by HDB-

SCAN [6] is not a metric as the distance of a point to itself there is

defined as its core-distance, not as 0. Power-weighted shortest path

distances (PWSPD) [39] account for the density along paths but

assume a continuous density-function. We leave the connection to

non-discrete settings for future work.

7.2 Density-Connectivity
Wishart’s density-based hierarchical clustering approach from 1969

[61] and Hartigan [28] laid the foundation for many later published

density-based algorithms. Wishart defined density via the distance

to the 𝑘-th nearest neighbor, equivalent to the𝑚𝑖𝑛𝑃𝑡𝑠 parameter

DBSCAN [21] paper published over 20 years later. Its results differ

from DBSCAN’s mainly in that "points which are non-dense [are]

allocated to the cluster containing its nearest dense point" [61],

instead of getting labeled as noise. Hartigan [28] described, among

others, the fundamental concepts of density-based clustering, con-
nectivity and maximality, which were later often readdressed (e.g.,

[34] or [4]). DBSCAN introduced the term "density-connected"

and builds a basis for a wealth of clustering algorithms, e.g. Any-

DBC [43], HDBSCAN [6], and Density Peaks [52]. Here, points are

density-connected, if there is a "chain" of core points between them.

Based on DBSCAN, HDBSCAN [6, 7] builds a clustering hierarchy

that also corresponds to the one described by Wishart [61]. They

offer a method on how to cut the tree for a flat clustering by opti-

mizing cluster stability. The DBSCAN-based hierarchical clustering

algorithm DBHC [35] merges DBSCAN clusterings resulting from

different parameter settings until the "number of clusters matches

the user’s desired number" [35]. This allows users to set the number

of clusters instead of 𝜀 and𝑚𝑖𝑛𝑃𝑡𝑠 , however, it requires to run DB-

SCAN𝑂 (
√
𝑛) times and comes, thus, with a high runtime. We point

out that calculating the pairwise dc-dists accomplishes the same

task in a simpler manner. 𝑆𝐿(𝛼) [44] is another clustering method

that combines densitywith hierarchical clustering, but their concept

of density defined by simplicial complexes differs from the concept

used by DBSCAN-like approaches. Cluster trees [12] come close to

the idea of dc-dists, but do so by hierarchical density estimateswhich
are used to build a hierarchy. Some heuristics on how to combine

density with hierarchical clustering, e.g., by requiring a minimum

cluster size, are given in [53]. Finding the “best”parameters for

𝑚𝑖𝑛𝑃𝑡𝑠 and 𝜀 is a much-discussed challenge [57].

7.3 k-Center
In [41], the authors employ the minimax distance and show that

cluster centers have a minimum density within them. They pro-

pose an Improved Path-based Clustering (IPC) algorithm using an

elimination process to find cluster centers. DBSCAN++ [31] speeds

up DBSCAN by only recovering a fraction of the core points. It

requires expensive density estimation queries on only𝑚 of the 𝑛

samples. The subset of 𝑚 samples is chosen according to the k-

center problem minimizing the maximum distance of any point

to its closest one in that subset. The connected k-center problems

presented in [19] use a connectivity graph such that each cluster

has a well-defined connected subgraph. The authors prove that if
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Figure 6: ARI of clusterings for different dimensionalities 𝑑 ∈ {2, 10, (50)} (top to bottom) and distance measures (left to right).
Within each table, rows show results of different clustering algorithms, columns are different datasets. The top figure uses
synthetic data, the bottom is on benchmark datasets.
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Figure 7: The effect of the number of clusters 𝑘 on 𝜀 for vary-
ing 𝜇 on different datasets. The red circle indicates that this
value of 𝑘 obtained the highest NMI with the ground truth.

the connectivity graph𝐺 is a tree, the connected k-center problem

can be solved optimally in 𝑂 (𝑛2𝑙𝑜𝑔𝑛) even if the distance measure

is not metric. In [16], the authors lay down the theoretical founda-

tions for admissible objective functions in the field of Hierarchical
Clustering where the ground-truth clustering has an optimal value.

7.4 Spectral Clustering
The relationship between spectral (SC) and density-based cluster-

ing has been studied as they are both able to find non-convex

clusters. E.g., it has been shown that DBSCAN* returns connected

components of the 𝜀- neighborhood graph of the core points in a

dataset [15] and they can be found by inspecting the multiplicity

of 0 eigenvalues without applying an additional clustering step

[56]. The authors of [56] also show the equivalence of ratio cut to

kernel k-means [29] and determine the best parameter settings for

𝑚𝑖𝑛𝑃𝑡𝑠 in DBSCAN to find clusters with a large average density

by analyzing the spectrum. However, these works are based on a

𝜀-graph for a given 𝜀. In contrast, in this paper, we neither create an

𝜀-graph nor is 𝜀 required for calculating the dc-dist. In [46], SC is

applied to the results of DBSCAN* to examine substructures and it

is accelerated by employing sparse representations of MSTs in [10].

SC is combined with the minimax distance in various works to

identify the number of clusters [40] or achieve robustness [11, 22].

8 CONCLUSION
In this paper, we introduced the dc-dist, which is an ultrametric

combining the concepts of density and minimax distance. It allowed

us to formalize density-based clustering by a loss function instead

of a procedural description. With an extension to the dc-dist, the

DBSCAN-distance, we can also capture the exact definition of DB-

SCAN including border points. Most importantly, we showed that

DBSCAN*, k-center, and spectral clustering are equivalent in the

space given by the dc-dist, even though they are perceived as funda-

mentally different in current literature. Our extensive experiments

showed, that the dc-dist captures the structure of data and improves

clustering data that contains density-based clusters compared to

other distance measures. By establishing the connection between

three fundamental clustering methods, we offer plenty of advan-

tages and build a stable foundation for future work: E.g., it allows

choosing the number of clusters 𝑘 for DBSCAN instead of the sen-

sitive parameter 𝜀. Furthermore, analyses can be performed more

formally and extensions as well as acceleration methods can be

transferred between the established algorithms.
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A PROOF OF CORRECTNESS OF
ALGORITHM 2

Proof. Let 𝐺𝑋 be a fully connected graph where edge lengths

are the reachability distance between the corresponding points.

Then the connectivity distance is defined as

𝑑
𝜇
𝑐 (𝑥𝑖 , 𝑥 𝑗 ) = min

path(𝑥𝑖 ,𝑥 𝑗 ) ∈𝐺𝑋

(
max

𝑒∈ path
|𝑒 |
)
,

where 𝜇 is the min points parameter. Consider that Algorithm 2

builds up forests across the dataset in increasing reachability dis-

tance. Before the forests of 𝑥𝑖 and 𝑥 𝑗 are connected, there does not

exist a path between 𝑥𝑖 and 𝑥 𝑗 . Upon connecting 𝑥𝑖 and 𝑥 𝑗 , all paths

must go through the recently added edge. Since Algorithm 2 adds

the smallest such edge, this edge’s length must be the connectivity

distance. □

B DC-DIST ALGORITHM

Algorithm 2: Density-Connectivity Distance

Input: Dataset X = {𝑥0, · · · , 𝑥𝑛 }, 𝑥𝑖 ∈ R𝑑
Output: Distance matrix D

1 D← zeros( (𝑛,𝑛)) ;
2 MST←MstClass();

3 for 𝑥 ∈ 𝑋 do
4 MakeTree (MST, {𝑥 }) ;
5 for 𝑒𝑑𝑔𝑒 (𝑥𝑖 , 𝑥 𝑗 ) ∈ PairwiseDistances(𝑋 ) increasing do
6 if Tree(𝑥𝑖 ) ≠Tree(𝑥 𝑗 ) then
7 Union(MST, Tree(𝑥𝑖 ) , Tree(𝑥 𝑗 ));
8 for 𝑢 ∈Leaves(Tree((𝑥𝑖 )) do
9 for 𝑣 ∈Leaves(Tree(𝑥 𝑗 )) do
10 D[𝑢, 𝑣 ] ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑥𝑖 , 𝑥 𝑗 ) ;
11 return D

C PROOF OF LEMMA 3.3
Proof. Part (A): if points are core points of the same cluster

for 𝑑
𝜇

𝑑𝑐
, then the same holds for 𝑑𝐸 and 𝜇. Assume two points 𝑝, 𝑞

are core points of the same DBSCAN*(𝜀, 𝜇) cluster for 𝑑
𝜇

𝑑𝑐
. Thus,

there is a chain of core points (resp. 𝑑
𝜇

𝑑𝑐
) between them where all

𝑑
𝜇

𝑑𝑐
(𝑣𝑖 , 𝑣 𝑗 ) ≤ 𝜀 and 𝑝, 𝑞 are core points themselves. I.e., 𝑑

𝜇

𝑑𝑐
(𝑣𝑖 , 𝑣 𝑗 ) =

𝑚𝑎𝑥 (𝑑𝐸 (𝑣𝑖 , 𝑣 𝑗 ), 𝑑
𝜇

𝐸,𝑐𝑜𝑟𝑒
(𝑣𝑖 ), 𝑑𝜇𝐸,𝑐𝑜𝑟𝑒 (𝑣 𝑗 )) ≤ 𝜀. Thus, 𝑑𝐸 (𝑣𝑖 , 𝑣 𝑗 ) ≤ 𝜀

and all points on the chain are core points for that 𝜀. Thus, 𝑝 and 𝑞

are also in a DBSCAN*(𝜀, 𝜇) cluster for 𝑑𝐸 .

Part (B): if points are core points of the same cluster for 𝑑𝐸 and 𝜇,

then the same holds for 𝑑
𝜇

𝑑𝑐
. Assume two points 𝑝, 𝑞 are core points

of the same DBSCAN*(𝜀, 𝜇) cluster for 𝑑𝐸 . Thus, there is a chain

of core points (resp. 𝑑𝐸 ) between them where all 𝑑𝐸 (𝑣𝑖 , 𝑣 𝑗 ) ≤ 𝜀

and 𝑝, 𝑞 are core points themselves: 𝑑𝐸,𝑐𝑜𝑟𝑒 (𝑣𝑖 ) ≤ 𝜀 for all 𝑣𝑖 on the

path. Thus, as 𝑑𝑑𝑐 (𝑣𝑖 , 𝑣 𝑗 ) ≤ 𝑑𝑟 (𝑣𝑖 , 𝑣 𝑗 ) =𝑚𝑎𝑥 (𝑑𝐸 (𝑣𝑖 , 𝑣 𝑗 ), 𝑑𝐸,𝑐𝑜𝑟𝑒 (𝑣𝑖 ),
𝑑𝐸,𝑐𝑜𝑟𝑒 (𝑣 𝑗 )) ≤ 𝜀 for all points on this path. Furthermore, all points

on this path are core points w.r.t. 𝑑
𝜇

𝑑𝑐
: Let us regard an arbitrary

point 𝑝 on the path and the distance to its 𝜇-th nearest neighbor

𝑛𝜇 . The set of points on the path is a subset of the full dataset,

thus, the distance to 𝑝’s 𝜇-th nearest neighbor on the path, 𝑛𝑝𝑎𝑡ℎ𝜇 ,

is larger than or equal to the distance to the 𝜇-th nearest neighbor

in the full dataset. As 𝑑𝑑𝑐 (𝑝, 𝑛
𝑝𝑎𝑡ℎ
𝜇 ) ≤ 𝑚𝑎𝑥 (𝑑𝑑𝑐 (𝑣𝑖 , 𝑣 𝑗 )) it holds

that 𝑑𝑑𝑐 (𝑝, 𝑛
𝑝𝑎𝑡ℎ
𝜇 ) ≤ 𝜀, thus 𝑑𝑑𝑐 (𝑝, 𝑛𝜇 ) ≤ 𝜀, meaning 𝑝 is a core

point. □

D PROOF OF THEOREM 4.2
Proof. We proceed inductively by showing that, given two op-

timal solutions in the left and right subtrees, our merge criteria

returns an optimal solution on the node in question. We first note

that the base case is clearly optimal, as there are up to 𝑘 centers

where each only has itself as a point.

Now assume that we have an optimal 2𝑘 clustering – 𝑘 centers

each in the left and right subtrees. By the nature of our tree, it is

always the case that the parent node has a higher value than either

of its children. Thus, the maximum distance in any cluster is the

value in the cluster’s lowest common ancestor (or peak) – the node

that is the parent to every element of the cluster. Furthermore, it

must be the case that each cluster is closest to its immediate left

or right neighbor and that the distance between two child nodes is

larger than any distance within each child. Thus, our merge criteria

must always merge two clusters whose peaks are the left and right

child of a node.

We prove the optimality of this as follows: Assume FSOC that

Algorithm 1 returns 𝐶 and let the optimal clustering be 𝐶𝑜𝑝𝑡 . Then

𝐶𝑜𝑝𝑡 must have a cluster with lowest common ancestor 𝑁 that

could not be obtained from our merging process in the original 2𝑘

clusters. Since cost(𝐶𝑜𝑝𝑡 ) < cost(𝐶), it must be the case that 𝑁 is

contained in one of the clusters in 𝐶 , i.e. 𝑐 ′, which was obtained by

merging 𝑐 ′
𝑙
and 𝑐 ′𝑟 . It must also be the case that 𝑁 ’s peak is greater

than one of the peaks of 𝑐 ′
𝑙
or 𝑐 ′𝑟 . Thus, 𝑁

′
, the peak of our ‘optimal’

cluster, is between the peaks of 𝑐 ′ and one of its children. Since

there is no additional node between 𝑐 ′ and its children, we have

reached a contradiction. □

E ADDITIONS TO THE DBSCAN-DISTANCE
Proof. We show that 𝑑

𝜇

𝑑𝑏
is a metric. Per definition, it is sym-

metric and 𝑑
𝜇

𝑑𝑏
(𝑝, 𝑝) = 0. As all values for 𝑑𝑑𝑏 are given by an

underlying distance measure (either some𝑤𝑑𝐸 (𝑒) or 𝑑𝜇𝑐𝑜𝑟𝑒 ), it holds
that 𝑑

𝜇

𝑑𝑏
(𝑝, 𝑞) ≥ 0 for all 𝑝, 𝑞.

For 𝜇 > 1, for all 𝑝 : 𝑐𝑜𝑟𝑒𝑑𝑖𝑠𝑡 (𝑝) > 0 (as we are on a dataset con-
taining only distinct objects), thus also for all 𝑞 ≠ 𝑝: 𝑑

𝜇

𝑑𝑏
(𝑝, 𝑞) > 0.

As 𝑑
𝜇

𝑑𝑏
(𝑝, 𝑝) = 0 per definition, it holds that iff 𝑑

𝜇

𝑑𝑏
(𝑝, 𝑞) = 0 then

𝑝 = 𝑞.

For proving the triangle inequality, let𝑑
𝜇

𝑑𝑏
(𝑝, 𝑞) = 𝜀𝑝𝑞 and𝑑

𝜇

𝑑𝑏
(𝑞, 𝑟 ) =

𝜀𝑞𝑟 and 𝑑
𝜇

𝑑𝑏
(𝑝, 𝑟 ) = 𝜀𝑝𝑟 . Note that points in a cluster might not be

core points themselves, but they are connected by a path of core

points. Thus, there is a core point 𝑞𝑝 ∈ 𝑁𝜀𝑝𝑞 (𝑞) and a core point

𝑞𝑟 ∈ 𝑁𝜀𝑞𝑟 (𝑞). The distance between𝑞𝑝 and𝑞𝑟 is at most 𝜀𝑝𝑞+𝜀𝑞𝑟 be-
cause of the triangle inequality of the underlying distance measure.

Thus, also 𝑝 and 𝑟 are in a cluster for 𝜀𝑝𝑟 ≤ 𝜀𝑝𝑞 + 𝜀𝑞𝑟 . □

Note that the DBSCAN-distance is not an ultrametric and that

it does not only use weights occurring in the mutual reachability

graph.
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Figure 8: dc-dist (left) andmutual reachability distance (right)
on the two-moons dataset. Black frames imply equal values.

Algorithm 3: DBSCAN distance

Input: Dataset 𝑋 = {𝑥0, · · · , 𝑥𝑛 }, 𝑥𝑖 ∈ R𝑑
Output: Distance matrix D

1 𝐷𝐸 ← euclidean_distance_matrix(𝑋 ); 𝐷𝑑𝑐 ← [∞];
2 𝑠𝑜𝑟𝑡𝑒𝑑_𝑑𝑖𝑠𝑡𝑠 ← 𝑠𝑜𝑟𝑡_𝑣𝑎𝑙𝑢𝑒𝑠 (𝐷𝐸 , 𝑎𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔) ;
3 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑣𝑖 ) ← {∅} for all 𝑣𝑖 ∈ 𝑛𝑜𝑑𝑒𝑠 ;
4 for 𝑑𝑖 𝑗 ∈ 𝑠𝑜𝑟𝑡𝑒𝑑_𝑑𝑖𝑠𝑡𝑠 do
5 𝜀 ← 𝑑𝑖 𝑗 ; 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑣𝑖 )+ = 𝑣𝑗 ; 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑣𝑗 )+ = 𝑣𝑖 ;
6 if𝑚 > 3 then
7 if 𝑑𝑖 𝑗 is𝑚-th neighbor of 𝑣𝑥 ∈ {𝑣𝑖 , 𝑣𝑗 } then
8 for 𝑛𝑥1, 𝑛𝑥2 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑣𝑥 ) × 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑣𝑥 ) do
9 if 𝑐𝑜𝑚𝑝 [𝑛𝑥1 ] ≠ 𝑐𝑜𝑚𝑝 [𝑛𝑥2 ] then
10 𝑚𝑒𝑟𝑔𝑒_𝑐𝑜𝑚𝑝𝑠 (𝑐𝑜𝑚𝑝 [𝑛𝑥1 ], 𝑐𝑜𝑚𝑝 [𝑛𝑥2 ], 𝜀)
11 if 𝑙𝑒𝑛 (𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑣𝑖 )) ≥𝑚 and 𝑙𝑒𝑛 (𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑣𝑗 )) ≥𝑚

then
12 for 𝑣𝑘 ∈ 𝑐𝑜𝑚𝑝 [𝑣𝑖 ], 𝑣𝑙 ∈ 𝑐𝑜𝑚𝑝 [𝑣𝑗 ] do
13 𝑚𝑒𝑟𝑔𝑒_𝑐𝑜𝑚𝑝𝑠 (𝑐𝑜𝑚𝑝 [𝑣𝑘 ], 𝑐𝑜𝑚𝑝 [𝑣𝑙 ], 𝜀)
14 else if 𝑙𝑒𝑛 (𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑣𝑖 )) ≥𝑚 then
15 for 𝑣𝑘 ∈ 𝑐𝑜𝑚𝑝 [𝑣𝑖 ] do 𝐷𝑑𝑐 [𝑣𝑘 , 𝑣𝑗 ] ← 𝜀

16 else if 𝑙𝑒𝑛 (𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑣𝑗 )) ≥𝑚 then
17 for 𝑣𝑙 ∈ 𝑐𝑜𝑚𝑝 [𝑣𝑗 ] do 𝐷𝑑𝑐 [𝑣𝑙 , 𝑣𝑖 ] ← 𝜀

Algorithm 4: Tree-𝑘-Center-with-𝑞-coverage
Input: Root node 𝑅; 𝑘 , 𝑞
Output: 𝑘 clusters

1 𝐶 ← [] 𝑆 ← 𝑃𝑟𝑢𝑛𝑒 (𝑅) ;
2 /* Prune(𝑅, 𝑞) returns a copy of those nodes in 𝑅 that

have at least 𝑞 children */

3 𝐶𝑆 ← Tree-𝑘-Center(𝑆, 𝑘) ;
4 𝜀 ← MaxEpsilon(𝐶) ;
5 /* MaxEpsilon(𝐶) gives the cost of the 𝑘-center

solution 𝐶 */

6 for𝐶𝑆
𝑖
∈ 𝐶𝑆 do

7 𝑝𝑒𝑎𝑘 ← LeastCommonAncestor(𝐶𝑆
𝑖
.points) ;

8 while 𝑝𝑒𝑎𝑘 .parent.value < 𝜀 do
9 𝑝𝑒𝑎𝑘 ← 𝑝𝑒𝑎𝑘 .parent ;

10 𝐶𝑖 .points← 𝑝𝑒𝑎𝑘 .orig_node.children ;

11 /* .orig_node refers to the node in 𝑅 that the peak

of 𝐶𝑆 is a copy of */

12 return𝐶

F RELATIONSHIP TO OPTICS
Fig. 8 gives a visualization of𝑑

𝜇
𝑟 for the two-moons dataset. Adjacent

points have low mutual reachability distances resulting in low

values around the diagonal. However, points that are equally well

connected, but at opposite ends of a "moon", have high values for 𝑑
𝜇
𝑟

because of their high Euclidean distance. In contrast, the dc-dists on

the left are uniformly low for all points of a cluster, which facilitates
subsequent clustering tasks. Black frames imply the reachability

distances 𝑑𝑜𝑟 as used by OPTICS [2], for more details see Sec. 7.1.

G DETAILS ON THE EXPERIMENTS
Tab. 1 gives an overview of the properties of the datasets used in

the experiments. For Fig. 4, the data was generated with the density-

based data generator for dimensionalities [2, 5, 10, 50, 100] for 10
seeds each. The number of data points was limited to 1000 from

5 disjoint clusters. For Fig. 7, two shifted copies of the 2-moons

dataset (left) generated with sklearn, 6 concentric circles of radii

[1, 2, ..., 6] with noise ∼ N(0, 0.1) (middle) and 10 classes from the

coil-100 dataset (right) were used. Experiments were performed on

an AMD Ryzen 7 2700X Eight-Core Processor @ 3.70GHz using

64GB RAM as well as an Intel(R) Core(TM) i7-7700K Eight-Core

Processor @ 4.20GHz.

Table 1: Dataset properties used in the analysis.

name n d k source
sy
n.

b3 10k 50 10 sklearn

d1, d2, d3 10k 50 10 own

Fig. 4 1k 2-100 5 own

b e
nc

hm
ar
k

driver faces 606 921,600 4 [18]

coil-5 360 186,368 5 [49]

pendigits 7,494 16 10 [18]

coil-20 1,440 16,384 20 [49]

olivetti 400 4,096 40 sklearn
6

coil-100 7,200 49,152 100 [48]

H DATA GENERATOR FOR DENSITY-BASED
CLUSTERS

The data generator used in this paper is based on the Seed Spreader

described by Junhao Gan and Yufei Tao in [24]. The basic procedure

uses a random walk with restarts where the data points themselves

are generated uniformly at random in a local hypersphere. After

a set amount of points, the hypersphere position is adjusted in a

random direction, and the process is repeated.

We made adaptions s.t. the number of clusters can be given, clusters

have a meaningful size, and density can differ between different

clusters. We furthermore ensure that clusters are not overlapping.

Noise points are generated uniformly across the data space spanned

by the cluster points. They are assigned to a cluster if they arewithin

a minimum distance of the initial data points of a cluster.

6
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_

olivetti_faces.html
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