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Abstract
Background Type 2 diabetes (T2D) has been linked to changes in DNA methylation levels, which can, in turn, alter 
transcriptional activity. However, most studies for epigenome-wide associations between T2D and DNA methylation 
comes from cross-sectional design. Few large-scale investigations have explored these associations longitudinally 
over multiple time-points.

Methods In this longitudinal study, we examined data from the Cooperative Health Research in the Region of 
Augsburg (KORA) F4 and FF4 studies, conducted approximately seven years apart. Leucocyte DNA methylation was 
assessed using the Illumina EPIC and 450K arrays. Linear mixed-effects models were employed to identify significant 
associations between methylation sites and diabetes status, as well as with fasting plasma glucose (FPG), hemoglobin 
A1c (HbA1c), homoeostasis model assessment of beta cell function (HOMA-B), and homoeostasis model assessment 
of insulin resistance (HOMA-IR). Interaction effects between diabetes status and follow-up time were also examined. 
Additionally, we explored CpG sites associated with persistent prediabetes or T2D, as well as the progression from 
normal glucose tolerance (NGT) to prediabetes or T2D. Finally, we assessed the associations between the identified 
CpG sites and their corresponding gene expression levels.

Results A total of 3,501 observations from 2,556 participants, with methylation measured at least once across two 
visits, were included in the analyses. We identified 64 sites associated with T2D including 15 novel sites as well as 
known associations like those with the thioredoxin-interacting protein (TXNIP) and ATP-binding cassette sub-family G 
member 1 (ABCG1) genes. Of these, eight CpG sites exhibited different rates of annual methylation change between 
the NGT and T2D groups, and seven CpG sites were linked to the progression from NGT to prediabetes or T2D, 
including those annotated to mannosidase alpha class 2a member 2 (MAN2A2) and carnitine palmitoyl transferase 1 A 
(CPT1A). Longitudinal analysis revealed significant associations between methylation and FPG at 128 sites, HbA1c at 
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Background
Type 2 diabetes (T2D) is a major public health concern, 
characterized by chronic hyperglycemia. The prevalence 
of T2D is rising rapidly worldwide, projected to affect 
783 million adults by 2045 [1]. Individuals with T2D are 
at risk of developing severe and life-threatening compli-
cations, leading to increased medical needs and reduced 
quality of life. Despite extensive research on T2D patho-
physiology, the underlying mechanisms are not yet fully 
elucidated. Epigenetic modifications, especially DNA 
methylation—where methyl groups are added to DNA 
molecules affecting gene expression without altering the 
DNA sequence—are emerging as crucial links between 
genetic, environmental, and lifestyle factors in T2D 
development and progression [2–5]. Identification of 
novel biomarkers linked to T2D and early glucose distur-
bances can enhance our understanding of the disease’s 
etiology and improve prevention and prediction strate-
gies [6, 7].

Advances in methylation technology have facilitated 
the simultaneous measurement of numerous cytosine-
phosphate-guanine (CpG) dinucleotide sites, leading to 
the identification of various CpG sites associated with 
prevalent T2D and glycemic traits in cross-sectional 
epigenome-wide association studies (EWAS) [8–11]. 

Recent comprehensive analyses, including a systematic 
review of 32 studies, have summarized evidence link-
ing DNA methylation patterns to T2D pathophysiology, 
utilizing samples from blood, pancreatic islet, adipose 
tissue, liver, spermatozoa and skeletal muscle [12]. Addi-
tionally, a study involving over 18,000 Scottish indi-
viduals examined the relationship between blood DNA 
methylation and the prevalence and incidence of multi-
ple diseases, including T2D [13]. Furthermore, genome-
wide DNA methylation changes in early life, particularly 
among offspring exposed to gestational diabetes, have 
been proposed as a potential mechanism that increase 
the risk of obesity, glucose intolerance, and T2D [14–16].

Previous studies have been cross-sectional, limiting 
insights into temporality. Methylation changes may either 
be part of the causal pathway to disease or serve as non-
causal biomarkers [17, 18]. Considering the fluctuating 
nature of glucose and insulin metabolism prior to T2D 
development, it is essential to understand the evolution 
of methylation patterns in the progression from normal 
glucose tolerance (NGT) to prediabetes and T2D. For 
instance, maternal glycemia during pregnancy has been 
linked to longitudinal variations in blood DNA meth-
ylation at the fibronectin type III and spry domain con-
taining 1 like (FSD1L) loci from birth to age five [19]. In 

41 sites, and HOMA-IR at 57 sites. Additionally, we identified 104 CpG-transcript pairs in whole blood, comprising 40 
unique CpG sites and 96 unique gene transcripts.

Conclusions Our study identified novel differentially methylated loci linked to T2D as well as to changes in diabetes 
status through a longitudinal approach. We report CpG sites with different rates of annual methylation change and 
demonstrate that DNA methylation associated with T2D is linked to following transcriptional differences. These 
findings provide new insights into the molecular mechanisms of diabetes development.
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addition, a cross-lagged analysis of twin samples in China 
demonstrated bidirectional associations between DNA 
methylation and T2D or glycemic traits, with significant 
paths from T2D influencing subsequent DNA methyla-
tion and vice versa [20]. In summary, few studies have 
examined longitudinal changes in methylation across 
multiple time points and existing longitudinal research 
often focuses on specific individuals or ancestries with 
small sample sizes. In our study, we aimed to investigate 
the association between DNA methylation and diabetes 
status, as well as four related traits—fasting plasma glu-
cose (FPG), hemoglobin A1c (HbA1c), homoeostasis 
model assessment of insulin resistance (HOMA-IR) and 
homoeostasis model assessment of beta-cell function 
(HOMA-B)—within a longitudinal, population-based 
cohort comprising 2,556 individuals, utilizing up to two 
repeated measurements of DNA methylation as well as 
glucose- and insulin-related traits.

Illustration of the selection criteria for study partici-
pants and CpG sites included in the analysis.

Methods
Study population
This study used data from the Cooperative Health 
Research in the Region of Augsburg (KORA) F4 (2006–
2008) and FF4 (2013–2014) studies, both follow-up 
studies of the KORA S4 study (1999–2001). Detailed 
information on the KORA cohort design, measurement, 
and data collection has been previously described [21]. 
In total, 3,501 observations from 2,556 participants in 
KORA F4 (1,696) and FF4 (1,805), with methylation 

data at least once across two visits, were included in the 
analysis. Of these participants, 945 participants (36.97%) 
had methylation patterns measured at both time points. 
Detailed information about the inclusion of study partici-
pants can be found in Additional file 1: Text S1.

Measures of epigenome-wide DNA methylation and gene 
expression
In the KORA F4 study, genome-wide DNA methylation 
in whole blood was analysed using the Illumina 450K 
Infinium Methylation BeadChip (Illumina Inc., San 
Diego, CA, USA). For the KORA FF4 study, the Infinium 
MethylationEPIC BeadChip (Illumina Inc., San Diego, 
CA, USA) was used. DNA methylation was quantified 
on a scale of 0 to 1, with 1 signifying 100% methylation. 
We followed the general outline of the CPACOR prepro-
cessing for quality control by using minfi2 package [22]. 
A total of 374,054 CpG sites were left for the analysis 
and detailed information about the quality control step 
and inclusion of CpG sites can be found in Fig.  1 and 
Additional file 1: Text S2 and Text S3. The proportions 
of white blood cell types (CD8T, CD4T, natural killer 
(NK) cells, B lymphocytes, monocytes and granulocytes) 
were estimated using the Reinius reference-based house-
man algorithm implemented in the minfi package [23]. 
The algorithm is based on methylation values obtained 
from purified cell types in whole blood. These propor-
tions were then utilized as covariates in the model to 
mitigate cell type confounding. The KORA F4 and FF4 
datasets each included 470 and 448 non-negative control 
probes from the methylation arrays, respectively, with 
430 probes overlapping. To address technical effects dur-
ing the experiment, we conducted principal component 
analysis (PCA) on the overlapping probes. The result-
ing principal components (PCs) are believed to capture 
technical variability, and the first five control probe PCs, 
which accounted for 70% of the variance, were included 
as covariates in the model to eliminate technical biases. 
The generation and processing of the RNA-seq data of 
KORA FF4 are described in Additional file 1: Text S4. 
After quality control, the RNA-seq data were available for 
1,543 individuals, with 10,671 gene counts retained for 
subsequent analysis.

Measures of diabetes status
Previously known T2D was identified by self-report, 
validated by the responsible physician or medical chart 
review, or by self-reported current use of glucose-lower-
ing medication. After an overnight fast of at least eight 
hours, participants without known diabetes underwent a 
standard 75 g oral glucose tolerance test (OGTT). NGT, 
prediabetes and newly diagnosed T2D were defined 
according to the 1999/2006 World health organiza-
tion (WHO) criteria [24]. The specific cutoff values for 

Fig. 1 Illustration of the selection criteria for study participants and CpG 
sites included in the analysis
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the definition of T2D can be found in Additional file 1: 
Text S5. For this study, individuals with newly diagnosed 
T2D or previously known T2D were categorized as hav-
ing T2D. Since this study involves longitudinal data, an 
individual’s diabetes status may change between time 
points. Abbreviations separated by a dash indicate dia-
betes status at baseline and at follow-up. For example, " 
prediabetes-T2D” refers to individuals who had predia-
betes at baseline and had T2D at follow-up. FPG, HbA1c, 
HOMA-IR, and HOMA-B were assessed as described 
earlier [25].

Statistical analysis
Epigenome wide association studies
We applied linear mixed-effects models with random 
participant-specific intercepts to examine the associa-
tions between DNA methylation (measured beta values 
ranging from 0 to 1) and diabetes status (NGT vs. predia-
betes and T2D). The association between DNA methyla-
tion and diabetes status were identified by the epigenome 
wide association studies, adjusting for follow-up time (0 
for baseline and the time difference to follow-up), age 
at baseline (years), sex (male, female), body mass index 
(BMI, kg/m2), smoking status (never, former, current), 
estimated cell types (monocytes, B Cells, CD4 T cells, 
CD8 T cells, and NK cells) and technical effects. An 
interaction term between sex and T2D was incorporated 
into the EWAS model to assess the differences in meth-
ylation levels between male and female individuals. We 
used the false discovery rate (FDR) (Benjamini–Hoch-
berg method) to account for multiple testing. An asso-
ciation was considered statistically significant at a p_FDR 
value < 0.05. The same linear mixed effect model was 
applied to explore the association between DNA meth-
ylation and four continuous outcomes (FPG, HbA1c, 
HOMA-B and HOMA-IR), which were log-transformed 
to increase the conformity to normal distributions of 
residuals. Differentially methylated regions (DMRs) are 
genomic areas characterized by consistently differing 
DNA methylation levels across multiple adjacent CpG 
sites. Alongside the single-site position analysis, we uti-
lized the comb-p function from the Enmix package (ver-
sion 1.38.01) to identify diabetes-related DMRs. These 
were defined as groups of probes containing three or 
more positions within 1,000 base pairs of one another, 
with FDR-adjusted p-values of less than 0.05. To deter-
mine whether the identified diabetes-related CpG sites 
are also associated with other diseases or exhibit meth-
ylation changes in tissues beyond whole blood samples, 
we checked each significant CpG site in the EWAS Cata-
log [26].

Time interaction analysis
For CpG sites significantly associated with T2D in the 
main model, we examined their interaction effects 
between diabetes status and follow-up time. This interac-
tion effect represents the difference in the rate of meth-
ylation change per year between individuals with and 
without T2D.

Sensitivity analysis
We conducted two sensitivity analyses to evaluate the 
robustness of our findings. First, we expanded our 
analysis by including additional confounding variables: 
parental history of diabetes (positive: at least one par-
ent with diabetes; negative: both parents without diabe-
tes; unknown), use of glucose-lowering medication (yes 
or no), HDL-cholesterol levels, triglyceride levels, and 
hypertension (yes or no). The detailed criteria used to 
assess or define these cofounders have been previously 
explained [27]. Second, we included only participants 
with repeated measures of both DNA methylation and 
glucose- and insulin-related traits, allowing for within-
person comparisons over time (945 participants with 
1,890 observations).

Association between DNA methylation and changing 
diabetes status
To investigate the association between DNA methylation 
and changing diabetes status over time, we categorized 
945 participants individuals into 3 groups according 
to the diabetes status both at baseline and at follow-up: 
(i) 169 individuals who had either prediabetes or T2D 
at both time-points (prediabetes-prediabetes:67, T2D-
T2D:102), (ii) 200 individuals who progressed from NGT 
to prediabetes or T2D, or from prediabetes to T2D (pre-
diabetes-T2D:57, NGT-T2D:22, NGT-prediabetes:121), 
and (iii) 523 individuals who had NGT at both time-
points (NGT-NGT: 523). We further excluded 53 indi-
viduals whose conditions improved over time, including 
those with T2D at baseline who had prediabetes or NGT 
at follow-up, and those with prediabetes at baseline who 
had NGT at follow-up (T2D-prediabetes:6, T2D-NGT:1, 
prediabetes-NGT:46) and finally 892 individuals left for 
the analysis. We focused on the previously identified 
overlapping significant CpG sites from the analysis of 
all individuals with methylation measured at least once 
across two visits (N = 2,556), as well as the subset with 
repeated DNA methylation measurements (N = 945).

Association between DNA methylation and gene expression
To investigate the relationship between the identi-
fied T2D-related CpG sites and gene expression, and to 
improve annotation, we analysed associations with gene 
expression probes within a 500 kb window surrounding 
the significant CpG sites. The MatrixEQTL (version 2.3) 
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package was used to identify significant CpG-transcript 
associations. Linear models were adjusted for age, sex, 
measured white blood cell proportions (neutrophils, 
monocytes, basophils, and eosinophils) and technical 
variation with FDR correction for multiple testing.

Pathway analysis
To gain insights into potential biological processes rel-
evant to diabetes or glycemic regulation, we performed 
gene pathway analysis using the GOmeth function from 
the missMethyl package (version 1.38.0). Pathways with 
an p_FDR < 0.05 were considered significant association.

Results
Characteristics of the study population
The analysis included 3,501 observations from 2,556 par-
ticipants in the KORA F4 (1,696) and FF4 (1,805) stud-
ies. Table 1 presents the characteristics of all participants, 
while Additional file 1: Table S1 shows the characteristics 
of the 945 individuals with methylation measured at both 
time points. For all participants, the mean age was 61.0 
years in F4 and 58.0 years in FF4. Among the 945 par-
ticipants with repeated methylation measurements, the 
mean age was 57.0 years in F4 and 64.0 years in FF4. Due 
to differences in average age between the two cohorts, we 
included baseline age as a covariate in our linear mixed 
effects model to control for age-related variability. The 
mean BMI was 27.5 kg/m2 in F4 and 27.0 kg/m2 in FF4. 
Male participants comprised 48.8% of the F4 cohort and 

48.1% of the FF4 cohort. Additionally, 14.5% of partici-
pants in F4 and 13.2% in FF4 had T2D, while 22.4% and 
27.8%, respectively, had a parental history of diabetes.

Longitudinal association between DNA methylation and 
diabetes status
An EWAS was conducted to identify differences in DNA 
methylation among individuals with NGT, prediabetes 
and T2D using linear mixed effect models with individ-
ual-specific random intercepts in a longitudinal study. 
Among the 374,054 CpG sites examined, none showed 
a significant association with prediabetes, while 64 sites 
(annotated to 47 unique genes) exhibited significant 
associations with T2D, with 21 sites being hypomethyl-
ated and 43 sites being hypermethylated compared to 
individuals with NGT. Diabetes-by-sex interaction analy-
sis revealed no significant differences between men and 
women. The Miami plot (Fig.  2) illustrates the distribu-
tion of CpG sites associated with T2D. Table 2 provides 
a summary of the 15 most significant CpG sites, while 
Additional file 2: Table S1 lists all significant CpG sites 
linked to T2D. Notably, cg19693031, annotated to thio-
redoxin-interacting protein (TXNIP), emerged as the 
most significant CpG site (p value: 9.51 × 10− 27) and dem-
onstrated the most significant effect size in our analysis 
(− 2.92%). The results confirm 49 previously reported 
cross-sectionally associated gene loci, including those 
annotated to TXNIP, ATP-binding cassette sub-family G 
member 1 (ABCG1), carnitine palmitoyl transferase 1 A 

Table 1 Characteristics of the study population
Characteristics KORA F4 KORA FF4

All N = 1696 NGT N = 1113 Prediabetes
N = 338

T2D N = 245 All N = 1805 NGT N = 1262 Prediabetes N = 304 T2D N = 239

Age (years) 61 (14) 58 (14) 65 (14) 67 (10) 58 (18) 54.5 (16) 63 (16) 68 (13.5)
Male (%) 828 (48.8%) 499 (44.8%) 184 (54.4%) 145 (59.2%) 868 (48.1%) 554 (43.9%) 172 (56.6%) 142 (59.4%)
BMI (kg/m2) 27.5 (5.8) 26.2(5.2) 29.3 (5.7) 30.7(6.7) 27.0 (6.2) 26.0 (5.4) 29.2 (5.2) 30.4 (7.2)
Smoking
Never smoker 710 (41.9%) 460 (41.3%) 156 (46.2%) 94 (38.4%) 746 (41.3%) 522 (41.4%) 118 (38.8%) 106 (44.4%)
Former smoker 737 (43.5%) 462 (41.5%) 156 (46.2%) 119 (48.6%) 766 (42.4%) 517 (41.0%) 138 (45.4%) 111 (46.4%)
Current smoker 247 (14.6%) 189 (17.0%) 26 (7.7%) 32 (13.1%) 293 (16.2%) 223 (17.7%) 48 (15.8%) 22 (9.2%)
Hypertension (%) 772 (45.5%) 377 (33.9%) 198 (58.6%) 197 (80.4%) 646 (35.8%) 317 (25.1%) 159 (52.3%) 170 (71.1%)
Fasting glucose 5.4 (0.9) 5.2 (0.6) 5.8 (0.9) 6.9 (1.9) 5.4 (0.9) 5.2 (0.6) 6.1 (0.8) 7.2 (2.0)
HOMA-IR 2.2 (1.8) 1.9 (1.3) 3.1 (2.5) 5.1 (4.0) 2.1 (1.9) 1.8 (1.4) 3.5 (2.2) 4.8 (4.2)
HOMA-beta 102.0 (65.7) 101.0 (62.7) 110.0 (79.0) 93.5 (97.4) 94.8 (65.5) 93.1 (61.0) 110.0 (87.7) 102. (70.3)
HbA1c 37.0 (6.0) 36.0 (5.0) 38.5 (5.0) 46.0 (12.0) 36.0 (6.0) 34.0 (5.0) 38.0 (5.0) 45.0 (10.8)
HDL-cholesterol 1.4 (0.5) 1.5 (0.5) 1.3 (0.5) 1.2 (0.4) 1.6 (0.7) 1.7 (0.7) 1.5 (0.6) 1.4 (0.5)
Triglycerides 1.3 (0.9) 1.1 (0.8) 1.5 (1.0) 1.7 (1.2) 1.2 (0.8) 1.1 (0.7) 1.5 (1.0) 1.6 (1.2)
Medication 128.0 (7.6%) 0 (0%) 0 (0%) 128 (52.2%) 133 (7.4%) 0 (0%) 0 (0%) 133 (55.6%)
Parental history
Yes 380 (22.4%) 239 (21.5%) 71 (21.0%) 70 (28.6%) 501 (27.8%) 314 (24.9%) 94 (30.9%) 93 (38.9%)
No 773 (45.6%) 582 (52.3%) 135 (39.9%) 56 (22.9%) 1131 (62.7%) 844 (66.9%) 177 (58.2%) 110 (46.0%)
Unknown 254 (15.0%) 159 (14.3%) 53 (15.7%) 42 (17.1%) 173 (9.6%) 104 (8.2%) 33 (10.9%) 36 (15.1%)
Data are median (IQR) for continuous variables and n (%) for categorical variables. The unit for both fasting glucose and HbA1c is mmol/mol. The unit for both HDL-
cholesterol and triglycerides is mmol/l. Medication means the glucose-lowering medication
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(CPT1A), and sterol regulatory element-binding tran-
scription factor 1 (SREBF1). Importantly, the effect direc-
tion of these associations in this longitudinal study was 
consistent with those of the cross-sectional results for all 
49 known sites listed in the EWAS catalogue [26]. Addi-
tionally, 15 CpG sites annotated to 10 unique genes were 
identified as novel associations, including cg02550722 
annotated to tenascin XB (TNXB), cg04745771 anno-
tated to epiplakin 1 (EPPK1), cg23661483 annotated to 

ilvb acetolactate synthase like (ILVBL), cg13947735 anno-
tated to UDP-glcnac: betagal beta-1,3-n-acetylglucosami-
nyltransferase like 1 (B3GNTL1), cg15418499 annotated 
to interleukin-18 (IL18), cg14172849 annotated to X-ray 
repair cross complementing 3 (XRCC3), cg20661985 
annotated to open reading frame 3 encoded at human 
chromosome 20 (C20orf3). The DMR analysis identified 
44 significant regions associated with 36 unique genes. 
This analysis confirmed 7 genes previously identified in 

Table 2 Summary of top 15 significant CpG sites associated with T2D
Probe Delta beta (%) p value p_FDR CHR Gene MAPINFO Gene_group
cg19693031 − 2.92 9.51E−27 3.55E−21 1 TXNIP 145,441,552 3’UTR
cg06500161 1.22 6.69E−14 1.25E−08 21 ABCG1 43,656,587 Body
cg13274938 0.91 3.30E−11 4.12E−06 17 RARA 38,493,822 Body
cg11024682 0.95 6.78E−10 5.43E−05 17 SREBF1 17,730,094 Body
cg00574958 − 0.73 7.26E−10 5.43E−05 11 CPT1A 68,607,622 5’UTR
cg07458272 1.02 7.75E−09 4.45E−04 19 KIAA0355 34,744,396 TSS1500
cg15082870 0.91 8.44E−09 4.45E−04 7 # 36,022,841 #
cg17058475 − 1.06 9.53E−09 4.45E−04 11 CPT1A 68,607,737 5’UTR
cg27516100 0.83 1.11E−08 4.64E−04 6 DHX16 30,624,520 Body
cg06710464 0.94 2.24E−08 8.38E−04 17 BAIAP2 79,047,695 Body
cg16805291 1.15 4.70E−08 1.58E−03 7 # 36,022,575 #
cg13059136 1.06 5.08E−08 1.58E−03 11 SNORA54 2,986,541 TSS1500
cg14476101 − 1.46 6.48E−08 1.86E−03 1 PHGDH 120,255,992 Body
cg27431877 0.60 8.83E−08 2.35E−03 12 NCOR2 124,911,924 Body
cg01676795 1.18 2.02E−07 5.04E−03 7 POR 75,586,348 Body
Probe: Unique identifier from the Illumina CG database; Delta Beta: Mean methylation difference between T2D and NGT; p_FDR: Benjamini-Hochberg corrected p 
value (FDR); CHR: Chromosome; Gene: Target gene name from the UCSC database (# indicates no annotated gene); MAPINFO: Chromosomal coordinates of the CpG 
(Build 37); Gene_Group: Gene region feature category describing the CpG position from UCSC

Fig. 2 Miami plot illustrating EWAS results associated with T2D
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the single position analysis and uncovered 29 novel genes 
linked to T2D, such as valyl-tRNA synthetase (VARS), 
or solute carrier family 1 member 5 (SLC1A5). Detailed 
information related to the DMR analysis is available in 
Additional file 2: Table S2. The identified T2D-related 
CpG sites are also linked to other diseases, including 
metabolic syndrome and cardiovascular diseases, and 
show methylation changes in specific tissues, such as the 
liver. For detailed information, please refer to Additional 
file 2: Table S3.

Miami plot illustrating EWAS results associated with 
T2D. The x axis indicates the chromosome location, and 
the y-axis represents the − log10 (p-value). The Bonfer-
roni threshold of 1.34 × 10− 7 is marked by a red dashed 
line, while the Benjamini–Hochberg (FDR) threshold 
(p_FDR < 0.05) is indicated by a blue solid line. The upper 
side represents the positive estimates, and the lower side 
represents the negative estimates.

Longitudinal association between DNA methylation and 
glycemic traits
The same EWAS model was employed to evaluate the 
longitudinal association between DNA methylation 

and four glycemic traits: FPG, HbA1c, HOMA-B, and 
HOMA-IR. Out of the 374,054 CpG sites examined, 128 
were associated with FPG, 41 with HbA1c, none with 
HOMA-B, and 57 with HOMA-IR. Notably, two CpG 
sites, cg19693031 (TXNIP) and cg06500161 (ABCG1), 
were associated with FPG, HbA1c, HOMA-IR, and T2D. 
The glycemic trait analysis identified an additional 161 
unique CpG sites distinct from those associated with 
T2D, bringing the total number of unique CpG sites 
linked to both T2D and glycemic traits to 225. Volcano 
plots (Fig. 3) illustrate the direction of association of the 
significant CpG sites related to glycemic traits. Addi-
tional file 2: Tables S4-6 provide detailed information on 
all significant CpG sites linked to glycemic traits.

Volcano plots illustrating the results for glycemic traits. 
The x axis indicates the effect size, and the y-axis repre-
sents the − log10 (p-value). The Bonferroni threshold of 
p = 1.34 × 10− 7 is marked by a red dashed line, while the 
Benjamini–Hochberg (FDR) threshold (p_FDR < 0.05) 
is indicated by a blue dashed line. (A) Volcano plot for 
FPG. (B) Volcano plot for HbA1c. (C) Volcano plot for 
HOMA-B. (D) Volcano plot for HOMA-IR.

Fig. 3 Volcano plots illustrating the results for glycemic traits
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Interaction between diabetes status and follow-up time
We focused on the 64 CpG sites that showed significant 
associations with T2D in the main model and added 
an interaction term between T2D and follow-up time 
to the model. This estimate indicates the difference of 
the methylation change rates between individuals with 
T2D and NGT. Eight CpG sites were considered sig-
nificant (p_FDR value < 0.05). All 8 CpG sites showed a 
decrease in methylation levels over time. Two CpG sites, 
cg20346503 and cg19693031 (annotated to TXNIP), 
exhibited a steeper decline in methylation for individuals 
with T2D compared to those with NGT, with methylation 
rates of -1.22% and − 1.01% for NGT, versus − 1.31% and 
− 1.15% for T2D, respectively. In contrast, six CpG sites 
(cg10442325, cg15418499 annotated to IL18, cg20507228, 
annotated to MAN2A2, cg04334723 annotated to calre-
ticulin (CALR), cg20661985 and cg00574958 annotated 
to CPT1A) exhibited a slower decrease in methylation 
change over time for individuals with T2D compared to 
those with NGT. For instance, the slope for CPT1A was 
− 0.17% for NGT versus − 0.10% for T2D. Furthermore, 
our analysis demonstrated that there are no interaction 
effects among male and female participants. Table 3 and 
Additional file 2: Table S7 provide summary information 
about the CpG sites which showed interaction effects 
with follow-up time. Figure 3 and Additional file 1: Fig.S1 
illustrate the rate of methylation change over time for the 
NGT and T2D groups (Fig. 4).

Line plots illustrating the rate of methylation change 
over time for the NGT and T2D groups. The red and 
blue line represents the individuals with NGT and T2D, 
respectively. (A) cg19693031 (TXNIP); (B) cg00574958 
(CPT1A); (C) cg15418499 (IL18); (D) cg20507228 
(MAN2A2).

Sensitivity analysis
In our sensitivity analysis, we further adjusted for medi-
cation use, parental history of diabetes, HDL-cholesterol, 
triglycerides, and hypertension as the extended model. 

Among the 374,054 CpG sites examined, 8 sites were 
associated with T2D. Of these, 3 CpG sites remained sig-
nificant and consistent with our main analysis results. 
These include cg19693031 annotated to TXNIP (effect 
size: -1.83%, p value: 1.31 × 10− 7), cg06500161 annotated 
to ABCG1 (effect size: 0.20%, p value: 1.41 × 10− 7), and 
cg13274938 annotated to retinoic acid receptor alpha 
(RARA) (effect size: 0.92%, p value: 9.93 × 10− 7).

We also conducted a sensitivity analysis on a subset 
of 945 individuals with repeated methylation measure-
ments. Among the 374,054 CpG sites examined, 50 CpG 
sites were associated with T2D and the associations for 
22 of these sites, including TXNIP, ABCG1 and RARA, 
remained robust. The correlation coefficients of estimates 
and p values between the full cohort (N = 2,556) and the 
repeated methylation measurement subset (N = 945) was 
strong (r = 0.78) and moderate (r = 0.45), respectively. 
The Venn diagram (Fig. 5) illustrates the overlap of CpG 
sites across different datasets, while the Manhattan plots 
(Additional file 1: Fig. S2) and Additional file 2: Tables 
S8-9 present results from the extended model and the 
subset analysis.

Venn diagram illustrating the overlap of CpG sites 
(with annotated gene names) in the sensitivity analysis. 
The light cyan colour represents the number of signifi-
cant CpG sites associated with T2D in the main analysis 
with all individuals. The greyish-yellow colour represents 
the number of significant CpG sites associated with T2D 
in the extended models with all individuals. The light 
pink colour represents the number of significant CpG 
sites associated with T2D from individuals with repeated 
methylation measurements at two time points.

Association between DNA methylation and changing 
diabetes status over time
The analysis focused on the 22 CpG sites that were 
associated with T2D in both the full cohort (N = 2,556) 
and the subset cohort (N = 945). Among these 22 CpG 
sites, all showed significant associations with persistent 

Table 3 Summary of 8 significant CpG sites with different methylation change rates over time for individuals with T2D compared to 
those with NGT
Probe Estimate1 (%) Estimate2 (%) Estimate3 (%) pvalue p_FDR Gene Gene_group
cg10442325 − 0.86 − 0.71 0.14 3.81E-05 0.002 # #
cg15418499 − 0.98 − 0.81 0.17 8.19E-04 0.023 IL18 5’UTR
cg20507228 − 1.16 − 0.96 0.19 1.10E-03 0.023 MAN2A2 Body
cg04334723 − 0.79 − 0.68 0.10 2.15E-03 0.031 CALR Body
cg20346503 − 1.22 − 1.31 − 0.09 2.48E-03 0.031 # #
cg19693031 − 1.01 − 1.15 − 0.14 3.40E-03 0.031 TXNIP 3’UTR
cg20661985 − 1.39 − 1.25 0.13 3.46E-03 0.031 C20orf3 Body
cg00574958 − 0.17 − 0.10 0.07 6.02E-03 0.048 CPT1A 5’UTR
Probe: Unique identifier from the Illumina CG database; Estimate1: the estimate of follow-up time indicating the methylation change rate per year for individuals 
with NGT; Estimate2: the methylation change rate per year for individuals with T2D by adding Estimate1 and Estimate3; Esimate3: the estimate of the interaction 
term between diabetes and follow-up time indicating the difference of methylation change rates between NGT and T2D; p_FDR: Benjamini-Hochberg corrected p 
value; Gene: Target gene name from the UCSC database. Gene_Group: Gene region feature category describing the CpG position from UCSC
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prediabetes or T2D at both timepoints, while 7 showed 
significant associations with progression of diabetes 
status either from NGT to prediabetes or T2D or from 
prediabetes to T2D. Notably, these 7 CpG sites, includ-
ing cg23436042, cg11183227 annotated to MAN2A2, 
cg06500161 annotated to ABCG1, cg08788930 anno-
tated to DENN domain-containing protein 3 (DENND3), 

cg11311053 annotated to nuclear receptor corepressor 2 
(NCOR2), cg06710464 annotated to BAR/IMD domain 
containing adaptor protein 2 (BAIAP2), and cg17058475 
annotated to CPT1A, demonstrated associations with 
both persistent and progressed diabetes status. Volcano 
plots (Fig.  6) illustrate the direction of associations of 
these significant CpG sites, while the Venn plot (Addi-
tional file 1: Fig.S3) shows the overlap of CpG sites across 
different groups. Additional file 2: Tables S10-11 provide 
summaries of the significant CpG sites linked to persis-
tent and progressed diabetes status, respectively.

Volcano plots illustrating the association between DNA 
methylation and changing diabetes status over time. 
The x axis indicates the effect size, and the y-axis rep-
resents the − log10 (p-value). The Bonferroni threshold 
of 2.27 × 10− 3 is marked by a red dashed line, while the 
Benjamini–Hochberg (FDR) threshold (p_FDR < 0.05) is 
indicated by a blue dashed line. (A) Volcano plot for the 
persistent prediabetes or T2D. (B) Volcano plot for the 
progression of diabetes.

Fig. 5 Venn diagram illustrating the overlap of CpG sites (with annotated 
gene names) in the sensitivity analysis

 

Fig. 4 Line plots illustrating the rate of methylation change over time for the NGT and T2D groups

 



Page 10 of 15Lai et al. Cardiovascular Diabetology           (2025) 24:19 

Association between DNA methylation and gene 
expression
Focusing on the 64 significant T2D-related CpG sites, 
we identified 104 CpG-transcript pairs in whole blood, 
involving 40 unique CpG sites and 96 unique gene tran-
scripts. Of these, 48 pairs showed positive associa-
tions with an average effect size of 0.58, while 56 pairs 
showed negative associations with an average effect 
size of -1.02. For example, cg06500161 in ABCG1 and 
cg06710464 in BAIAP2 were negatively associated with 
their corresponding gene transcripts, while cg24704287 
in latrophilin 1 (LPHN1) was positively associated with 
its corresponding gene transcript. Table 4 shows the top 
10 significant associations; Additional file 2: Tables S12 
summarizes the CpG-transcript associations.

Pathway analysis
In the pathway analysis of the 225 CpG sites associated 
with T2D and glycemic traits, no significant pathways 
were identified. The list of non-significant pathways is 

provided in Additional file 1: Fig.S5 and Additional file 2: 
Table S13.

Discussion
This study employed longitudinal data with repeated 
measurements to explore the association between DNA 
methylation and diabetes status, as well as glycemic traits. 
We analysed 3,501 observations from 2,556 participants 
using linear mixed-effects models and identified 64 CpG 
sites associated with T2D. Notably, DNA methylation 
at 49 of these loci, including TXNIP, ABCG1, CPT1A, 
and SREBF1, exhibited consistent directional associa-
tions in our longitudinal analysis compared to previously 
reported cross-sectional studies [13, 28]. Importantly, 
our study revealed 15 novel CpG sites within 10 unique 
genes. Furthermore, we observed a distinct rate of 
methylation change for 8 CpG sites between the NGT 
and T2D groups, including those annotated to IL18, 
MAN2A2, CALR, C20orf3 and CPT1A, which exhibited 
either faster or slower decreasing trends. Additionally, 
7 CpG sites annotated to MAN2A2, ABCG1, DENND3, 
NCOR2, BAIAP2 and CPT1A were linked to changes in 
diabetes status. Moreover, we identified 104 associations 
between identified significant T2D-related CpG sites and 
their corresponding gene expression levels.

The 64 significant sites that differ between individuals 
with T2D and NGT in our longitudinal study are anno-
tated to 49 unique genomic loci. TXNIP (1 site) has con-
sistently emerged as the most significant gene associated 
with T2D in previous EWAS studies [29] due to its role 
in regulating pancreatic β-cells production and survival 
[30] and has arisen as a novel potential therapeutic tar-
get in diabetes mellitus and its complications [31]. RARA 
(1 site), the gene encoding retinoic acid receptor alpha, 
is a well-known gene linked to cigarette smoking [32]. 
FoxK2 (1 site), a major target of insulin signalling, plays 

Table 4 Top 10 associated CpG-transcript pairs
CpG Gene p value FDR Beta
cg06500161 ABCG1 1.17E−46 5.80E−44 − 4.76
cg06710464 BAIAP2 2.84E−41 7.04E−39 − 3.30
cg24704287 LPHN1 2.11E−29 3.49E−27 1.02
cg27243685 ABCG1 3.97E−28 4.91E−26 − 4.76
cg11024682 SREBF1 4.32E−26 4.28E−24 − 2.31
cg01676795 POR 3.23E−22 2.67E−20 − 1.18
cg06710464 BAIAP2-AS1 4.83E−22 3.41E−20 − 2.12
cg00851028 TARBP1 2.69E−15 1.66E−13 − 1.36
cg26340740 MPEG1 4.90E−12 2.69E−10 − 1.21
cg10691109 COG5 1.10E−11 5.48E−10 − 0.95
Statistically significant associations between metabolic measure-associated 
CpG sites and expression of cis-transcripts in whole blood (FDR-adjusted 
significance threshold p < 0.05). Gene: transcript ID; beta: coefficient between 
methylation and gene transcripts.

Fig. 6 Volcano plots illustrating the association between DNA methylation and changing diabetes status over time
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a critical role in apoptosis, metabolism, and mitochon-
drial function [33] and could regulate aerobic glycoly-
sis [34]. Dyslipidaemia and diabetes are closely related, 
and epigenome-wide approaches have identified differ-
ential methylation of genes known to have a key role in 
lipid metabolism and lipid traits, particularly CPT1A, 
ABCG1, SREBF1 [35–38]. ABCG1 (2 sites) is crucial for 
cholesterol efflux [39], and cg06500161 within ABCG1 
has been reported to mediate the association between 
statins and risk of T2D [40]. CPT1A (2 sites) is associ-
ated with an increased risk of gestational diabetes mel-
litus (GDM) [41]. And multi-tissue epigenetic analysis 
has revealed distinct associations between the CPT1A 
locus and insulin resistance [42]. Risk group stratifica-
tion based on cg11024682 (SREBF1) was reported to be 
valuable for personalized T2D risk prediction [43, 44]. 
Our study found that after controlling for lipid levels in 
extended models, the associations at the ABCG1 loci 
remained robust. In contrast, the associations for CPT1A 
and SREBF1 were not maintained, suggesting that these 
associations might be driven by alterations in lipid 
metabolism.

Our study identified 15 novel CpG sites annotated 
to 10 unique genes, including TNXB, EPPK1, ILVBL, 
B3GNTL1, IL18, XRCC3, C20orf3. Hypomethylation of 
TNXB gene and differential expression of EPPK1 pro-
tein in the placenta has been reported to be associated 
with GDM [45, 46]. In a mouse model of diabetes, ILVBL 
has been reported to be involved in the formation of 
increased dimethylglyoxal, which induces oxidative stress 
and disrupts the blood-brain barrier, potentially leading 
to neurological complications in diabetes [47]. B3GNTL1 
was identified as part of a trans-omics biomarker for dia-
betic kidney disease in diabetic patients [48]. XRCC3, a 
DNA repair gene, has been significantly associated with 
T2D and diabetic nephropathy in a Turkish population 
[49]. C20orf3, an adipocyte plasma membrane-associated 
protein, was found to be down-regulated in omental adi-
pose tissues from individuals with GDM [50]. Previous 
studies have shown that blood methylation patterns in 
adipose tissue change after bariatric surgery, particularly 
in genes related to immune system, suggesting that blood 
DNA methylation reflects the inflammatory state of adi-
pose tissue post-surgery [51]. In our study, we also found 
that the identified T2D-related CpG sites are also showed 
methylation changes in specific tissues, such as the liver, 
by comparing them to the EWAS catalog.

Prolonged disturbances in glucose metabolism are 
often observed before diabetes diagnosis. Diagnostic 
tools like FPG and HbA1c are critical for identifying dia-
betes, underscoring the significance of investigating their 
effects on DNA methylation. A systematic review and 
meta-analysis revealed that high HOMA-IR values were 
positively associated with an increase in risk of T2D [52]. 

Previous studies have explored the association between 
DNA methylation changes and hyperglycaemia exposure 
using the longitudinal D.E.S.I.R. cohort over a six-year 
period but did not find significant results [53]. Notably, 
in our study, two CpG sites, cg19693031 (TXNIP) and 
cg06500161 (ABCG1), were simultaneously associated 
with FPG, HbA1c, HOMA-IR, and T2D. These findings 
highlight the link between glycemic parameters, insulin 
resistance and DNA methylation, suggesting that altera-
tions at specific CpG sites could serve as biomarkers for 
glycaemic control and diabetes risk prediction.

DNA methylation is the most studied epigenetic regu-
lator related to environmental exposures. Various envi-
ronmental triggers, including chemical exposures and 
complex disease conditions, can lead to global or site-
specific DNA methylation changes. This regulation allows 
for immediate environmental adaptations, potentially 
affecting transcription factor binding and gene expres-
sion. Importantly, we observed that the rate of meth-
ylation change varied across diabetes groups. Eight CpG 
sites, annotated to six unique genes—IL18, MAN2A2, 
CALR, TXNIP, C20orf03, and CPT1A—all showed 
decreasing methylation values over time. Low blood 
TXNIP DNA methylation has been linked to increased 
glucose levels and an increased risk of T2D. In our study, 
a hypomethylated CpG site annotated to TXNIP showed 
a faster rate of methylation decline in individuals with 
T2D compared to NGT individuals, resulting in a larger 
methylation difference between groups, potentially lead-
ing to a higher TXNIP gene expression over time. Con-
versely, IL18, an inflammation-induced cytokine that is 
secreted by immune cells and adipocytes [54], was identi-
fied as one of the novel sites in our research, showed a 
slower decrease in methylation values in individuals with 
T2D compared to NGT. Inflammation-driven processes 
in the innate immune system can lead to apoptosis, tissue 
fibrosis, and organ dysfunction, contributing to insulin 
resistance, impaired insulin secretion, and renal failure 
[55]. The changing methylation signatures at these 7 CpG 
loci over time confirm their responsiveness to variations 
of diabetes status and suggesting their potential as thera-
peutic targets for future interventions.

In our follow-up study, we considered the evolving 
nature of diabetes status and identified seven methyla-
tion sites linked to the progression from NGT to pre-
diabetes and T2D: cg23436042, cg11183227 (MAN2A2), 
cg06500161 (ABCG1), cg08788930 (DENND3), 
cg11311053 (NCOR2), cg06710464 (BAIAP2), and 
cg17058475 (CPT1A). MAN2A2 (2 sites), involved in 
carbohydrate formation, was linked to fasting insulin in 
an integrative cross-omics analysis [56]. DENND3 is a 
positive regulator of starvation-induced autophagy [57]. 
NCOR2 has been identified as a potential target gene for 
T2D screening in the context of cell-free DNA (cfDNA) 
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methylation changes [58]. It has also been recognized 
as a potential druggable target for T2D based on an 
interactome-transcriptome analysis of peripheral blood 
mononuclear cells (PBMC) in a case-control study of 
Chinese T2D patients and age- and sex-matched healthy 
people [59]. BAIAP2, the tenth significant site in our 
study (effect size: 0.94%, p value: 2.24 × 10− 8), encodes 
the insulin-responsive protein of 53kDa (IRSp53). In our 
EWAS analysis, we did not identify any CpG sites linked 
to prediabetes. However, within the progression analysis 
involving individuals transitioning from NGT to predia-
betes or T2D, we observed that 2 out of 7 CpG sites—
MAN2A1 and ABCG1—exhibited suggestive significance 
or nominal significance to prediabetes. This suggests that 
prediabetes may indeed influence the progression of dia-
betes from NGT to prediabetes. Our findings reveal that 
DNA methylation is associated with the progression of 
diabetes status and the identified CpG sites could serve 
as valuable biomarkers for tracking disease evolution 
and guiding personalized treatments. Further investiga-
tion with larger sample sizes may be necessary to bet-
ter understand the epigenetic changes associated with 
prediabetes.

DNA methylation is a recognized regulator of gene 
expression. By integrating gene expression data, we 
identified 104 associations between 40 CpG sites and 96 
unique gene transcripts in whole blood. Notably, among 
the seven CpG sites liked to the diabetes progression, 
five showed a negative correlation with gene expression 
levels, including cg23436042, cg11183227 (MAN2A2), 
cg06500161 (ABCG1), cg06710464 (BAIAP2), and 
cg17058475 (CPT1A), while cg08788930 (DENND3) 
and cg11311053 (NCOR2) did not. For instance, meth-
ylation at cg06500161 in the ABCG1 gene was nega-
tively associated with its expression levels, providing 
evidence for a potential link between hypomethylation 
at this site and upregulated gene expression, which may 
contribute to T2D and related diseases. Although meth-
ylation at cg19693031, which is annotated to TXNIP, was 
negatively associated with T2D, our analysis in blood 
did not identify any associations involving the TXNIP 
gene transcript. Prior research has demonstrated that 
hyperglycemia-induced overexpression of TXNIP can 
lead to pancreatic β-cell apoptosis, cardiomyopathy, and 
metabolic disorders [46]. However, the EWAS results 
indicated no significant association between DNA meth-
ylation and HOMA-beta function; likely due to the 
nature of the blood samples used. TXNIP gene expres-
sion has been found to be upregulated in skeletal muscle 
samples from individuals with diabetes and prediabetes 
[55], supporting our hypothesis. As a metabolically active 
tissue, blood plays a crucial role in the inflammatory and 
vascular effects associated with adiposity, thus making it 
relevant to our investigation. Moreover, the advantages 

of utilizing blood samples include their accessibility, 
cost-effectiveness, and potential for early diagnosis and 
treatment, which enhances their practicality for clinical 
applications.

Our study has notable strengths. Firstly, we have com-
prehensive CpG site coverage through EPIC and 450k 
arrays, in contrast to candidate locus studies which 
typically utilize pyrosequencing methods. Secondly, we 
conducted a longitudinal analysis spanning seven years, 
incorporating both DNA methylation profiles and dia-
betes status assessed, through OGTT in those without 
a clinical diabetes diagnosis. Lastly, we employed differ-
ent statistical models to control for potential confound-
ers, thereby enhancing the robustness and reliability of 
our findings. Our study also has limitations. We did not 
account for other types of diabetes such as type 1 dia-
betes and gestational diabetes, which may exhibit dif-
ferent methylation patterns and disease mechanisms. 
Furthermore, utilizing DNA derived from blood may 
not completely reflect tissue-specific variations in meth-
ylation patterns. Additionally, the lack of a replication 
cohort from diverse ancestries, focusing solely on indi-
viduals of European ancestry, highlights the necessity 
for future studies to validate our findings across different 
populations.

Conclusion
Our study provides new insights into the associations 
between DNA methylation and T2D through a longi-
tudinal approach involving repeated measurements. 
We identified novel CpG sites associated with T2D and 
revealed varying rates of methylation changes at specific 
loci across different diabetes status groups. Moreover, 
we underscored the potential of DNA methylation as a 
biomarker for diabetes progression and demonstrated 
the relationship between DNA methylation and the gene 
expression levels.
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