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ABSTRACT
Dynamic Ambulance Redeployment (DAR) is the task of dynami-
cally assigning ambulances after incidents to base stations to mini-
mize future response times. Though DAR has attracted considerable
attention from the research community, existing solutions do not
consider using electric ambulances despite the global shift towards
electric mobility. In this paper, we are the first to examine the impact
of electric ambulances and their required downtime for recharg-
ing to DAR and demonstrate that using policies for conventional
vehicles can lead to a significant increase in either the number
of required ambulances or in the response time to emergencies.
Therefore, we propose a new redeployment policy that considers
the remaining energy levels, the recharging stations’ locations, and
the required recharging time. Our new method is based on min-
imizing energy deficits (MED) and can provide well-performing
redeployment decisions in the novel Dynamic Electric Ambulance
Redeployment problem (DEAR). We evaluate MED on a simulation
using real-world emergency data from the city of San Francisco
and show that MED can provide the required service level without
additional ambulances in most cases. For DEAR, MED outperforms
various established state-of-the-art solutions for conventional DAR
and straightforward solutions to this setting.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems; • Com-
puting methodologies→ Simulation environments.
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1 INTRODUCTION
The Emergency Medical Service (EMS) is a critical part of health
infrastructure all over the world [15]. Paramedics are often the first
professional aid in health emergencies and are responsible for safe
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and quick transport to a secondary care unit such as a hospital. A
low response time to emergency calls has increased survival and
recovery rates in life-threatening health conditions such as cardiac
arrest [5, 18]. Ambulance response times to emergencies depends
on various factors, such as the emergency call itself, the processing
time needed for dispatch, the readiness of a qualified paramedic
team, and its travel time to the incident location. Travel time is
a substantial factor. While it can be accelerated by using high-
powered vehicles and specialized training for driving in emergency
conditions, the initial distance of the ambulance to the incident site
is the most prominent factor, with various approaches trying to
minimize this distance by proper ambulance placement.

Today, most ambulances are outfitted with internal combustion
engines (ICE) using fossil fuels. However, the growing public de-
mand for less air pollution and less release of greenhouse gases
promotes the transition towards electric vehicles (EV). Electric am-
bulances further come with additional benefits, such as a smoother
acceleration improving in-ambulance care. Thus, a first generation
of electric ambulances is already commercially available.

Ambulances are usually positioned at base stations strategically
placed over a city or coverage area to minimize incident response
times. Incoming emergency calls are assigned to an ambulance,
which drives to the incident location. Some incidents can be re-
solved on-site, while in other cases, patients need to be transported
to a hospital. After completing their assignment, ambulances return
to a base station. While ambulances could return to their origin
station, it is often advisable to select another base station based
on the actual ambulance distribution at this time. This selection of
base stations is known as the Dynamic Ambulance Redeployment
(DAR) problem in literature [13, 16, 23].

In this paper, we show that existing approaches do not perform
well when confronted with electric ambulances. First, we present
a formal definition of the Dynamic Electric Ambulance Redeploy-
ment Problem (DEAR), which extends existing DAR formalizations
by battery levels, range restrictions, charging stations, and recharg-
ing. Based on this extension, we can examine the performance of
established state-of-the-art methods for dynamic ambulance rede-
ployment, which do not consider these aspects. Afterwards, we
present the minimizing energy deficits (MED) approach, designed
to avoid these shortcomings and provide state-of-the-art ambulance
redeployment for E-Ambulances. Our method is based on matching
the predicted future demand in the area of each base station to the
joint energy level of the ambulances. The energy level of vehicles
at a base station is extrapolated for the same time frame as the
future demand and considers any recharging activity increasing
the energy level. Based on both estimations on future development,
MED assigns ambulances to those base stations where the deficits
between the energy level and the demand are expected to be the
largest. We compare MED to various state-of-the-art conventional
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ambulance redeployment methods on an extended environment of
[23]. Our results demonstrate that the conventional DAR methods
suffer significant performance decreases in various settings. In con-
trast, MED can cope well with the requirements of E-Ambulances,
often compensating for their drawbacks against using conventional
ICE ambulances.

To summarize, our contributions are as follows:
• We formalize DEAR, an extension of the DAR problem con-
sidering electric ambulances.

• We extended a DAR simulation environment based on real-
world data to consider the DEAR setting and examine the
performance of conventional DAR methods.

• We propose MED and present experimental results showing
that it copes well with DEAR compared to existing DAR
methods and basic DEAR approaches.

The remainder of this paper is structured as follows: Related work
is presented in Section 2. We then formulate the Dynamic Electric
Ambulance Redeployment Problem (DEAR) in Section 3 and pro-
pose MED in Section 4. We evaluate established DAR approaches
and MED for DEAR using a simulation based on real-world incident
data from San Francisco in Section 5 and summarize our work in
Section 6.

2 RELATEDWORK
The ambulance location problem (ALP) is an established research
topic. Existing approaches can be classified into static and dynamic
methods: In static methods, ambulances are stationed at fixed base
stations and always return to the same base station after an inci-
dent has been handled [7, 8, 19]. One way to obtain a static assign-
ment is to solve the Maximum Expected Covering Location Problem
(MEXCLP) [8, 13]. Its solution maximizes the expected coverage
of incident locations. In contrast to the Maximum Coverage Lo-
cation Problem [7] it is based on, the underlying model assumes
an ambulance to be busy with a certain probability. In this way,
ambulances that are unavailable due to being on a mission, are not
included in the coverage calculation. This reasonable modification
has been proven to be advantageous compared to earlier methods
[12, 13]. Expected Response Time Model (ERTM) [3] is another static
approach that has shown excellent performance due to its direct
minimization of the expected response time [3, 23].

Current state-of-the-art ALP solutions use a dynamic assignment
due to the volatility of the problem [13]. The dynamic assignment of
ambulances is also called Real-Time Ambulance Redeployment Prob-
lem or Dynamic Ambulance Redeployment Problem (DAR). Dynamic
redeployment leads to better response times than static return poli-
cies because the stochastic nature of incoming emergency calls can
lead to imbalances in ambulance distribution which are ignored by
static approaches [10, 11]. The redeployment decision is primarily
based on the locations of ambulances and base stations but may
also take other factors, such as demand distributions, into account.
The DMEXCLP approach by [13] is a dynamic variation of MEXCLP.
At each redeployment step, it selects the base station providing the
largest coverage increase in the respective situation according to
the MEXCLP strategy. This way, DMEXCLP takes the actual distri-
bution of ambulances into account. A reinforcement-learning based
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Figure 1: Simplified schematic overview of the modeled EMS
process. Specifics for electric ambulances are shown in red.

approach “Reinforcement Learning Deep Score Network” (DRLSN)
is presented by [14].

A vision paper by [20] highlights the growing importance of
electric ambulances and the associated challenge of keeping a fleet
of ambulances charged. It suggests a high-level framework for am-
bulance scheduling concerning the optimal use of renewable energy
sources, including predictive components for patient demand and
energy production and use. Though this work is related, it does nei-
ther propose a formalization of DEAR nor does it provide a method
for the redeployment problem for electric ambulances.

3 PROBLEM DEFINITION
In this section, we will provide a formal definition of the Dy-
namic Electric Ambulance Redeployment (DEAR) problem, out-
lining the operational process of the Emergency Medical Services
(EMS) provider and considering the specifics of electric ambulances.
Figure 1 provides a visual representation of the EMS process. When
an incident occurs, the EMS operator receives a call, and an available
ambulance is dispatched from a base station to the incident location.
In our scenario, the ambulance closest in driving time is dispatched
to ensure a prompt response. If no ambulance is available, the inci-
dent is handled as soon as an ambulance becomes available again.
Upon arrival at the incident, on-site care is provided to the patient.
Depending on the patient’s condition, subsequent transport to a
hospital may be necessary. Otherwise, the ambulance is redeployed
from the incident site to a base station. Once the ambulance arrives
at a base station, it becomes idle and available for dispatch. Consid-
ering electric vehicles introduces unique challenges compared to
Internal Combustion Engine (ICE) vehicles. The downtime for refu-
eling ICE vehicles is typically not a significant concern due to their
long ranges and fast refueling times. However, electric vehicles
have shorter ranges and require substantial charging time. There-
fore, factors such as charging downtime, battery levels, and the
availability of fast chargers at base stations need to be considered in
the EMS process. It is crucial only to dispatch an electric ambulance
if its battery is sufficiently charged to not run out of energy while
handling the incident. Therefore, we define a minimum dispatch
range 𝜏MDR (measured in time units) as the worst-case trip, starting
from the current base station to any incident location, followed by
transportation to any hospital, and finally redeployment to a base
station.

Electric ambulances can be charged at regular AC outlets (we
refer to them as slow chargers), which are already available in large
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numbers at base stations. However, slow chargers have limited
power output, resulting in extended charging times and longer
downtimes of ambulances. Charging times can be significantly re-
duced by installing high-voltage DC chargers (fast chargers specifi-
cally installed for electric vehicles) at base stations. However, their
number is limited because installation presents a significant cost
factor and constraints caused by the capabilities of the energy grid.

Assigning chargers to ambulances at a base station requires a
charging policy when the number of ambulances exceeds the num-
ber of fast chargers. The objective is to charge ambulances in a
manner that allows them to reach the minimum dispatch range
𝜏MDR as quickly as possible, thereby maximizing the number of
available ambulances. It is also important to avoid an unreasonably
high number of re-plugging actions by staff. To achieve these goals,
we implement the following approach: Ambulances below 𝜏MDR are
categorized as high-priority and are charged first. If there are more
high-priority ambulances than available chargers or fast charg-
ers, the ambulance with the shortest time required to reach 𝜏MDR
is prioritized for charging. This ensures that ambulances are pre-
pared for service at the earliest possible time. Once an ambulance
reaches 𝜏MDR, it becomes a low-priority ambulance. For charging
low-priority ambulances, we prioritize ambulances with the lowest
battery level to minimize the number of re-plugging actions. Re-
plugging can occur when an ambulance at the station is sufficiently
charged to provide the minimum dispatch range, is fully charged,
arrives, or is dispatched.

Now, we present a formal definition of the novel DEAR problem,
considering the aforementioned characteristics. In this task, an
operator needs to dynamically select a base station to redeploy an
ambulance to after the ambulance finishes handling an incident,
either from the incident site or the hospital.

The road network is represented as a graph𝐺 = (𝑉 , 𝐸), where𝑉
is the set of nodes representing locations in the road network, and 𝐸
is the set of directed edges representing road segments connecting
the nodes.

Incidents are emergencies requiring medical attention by an
ambulance and are denoted as 𝐼 . Each incident is mapped to the
nearest node in the graph.

Base Stations Let𝑊 be the set of base stations available within
the road network, where ambulances are stationed and dispatched
to incidents. Each base station is mapped to the closest node in the
road network. Base stations are equipped with charging infrastruc-
ture to support the operation of electric ambulances. They possess
an unlimited number of slow chargers (regular AC outlets) and
have varying numbers of fast chargers. Not all base stations are
guaranteed to have fast chargers available.

Hospitals The set 𝐻 represents the hospitals. Similar to base
stations, hospitals are mapped to the closest node in the graph.

Ambulances are electric vehicles, introducing specific charac-
teristics that affect their operational constraints. Key properties
include battery level and capacity, energy use per time, and charg-
ing characteristics. The charging rate of an ambulance depends on
various factors, including its current battery level and the power
output of the charger. A linear charging function is utilized, al-
though other charging functions may also be employed. We assume
that all ambulances are the same type, i.e., their key properties
are equal. Let us note that our method can easily be adapted to

more specific settings if required. Ambulances are initially assigned
to base stations and can be dynamically redeployed to other base
stations depending on incident demand. We allow an ambulance to
be redeployed only after finishing handling an incident.

Travel Times In our setting, the travel times 𝜏 (𝑖, 𝑗) between two
nodes 𝑖, 𝑗 ∈ 𝑉 are assumed to be deterministic and do not vary with
traffic conditions. When responding to an incident or transporting
a patient, ambulances use lights and sirens to alert other drivers,
enabling them to travel at fast speeds [4]. We denote the travel time
with lights and sirens activated as 𝜏 (𝑖, 𝑗).

4 MED: MINIMIZE ENERGY DEFICIT
In this section, we introduce our approach Minimize Energy Deficit
(MED) for the DEAR problem.

While approaches for solving the DAR problem can be applied,
they do not take the additional complexity of electric ambulances
into account. Our evaluation demonstrates that this leads to drasti-
cally degraded response times or requires multiple additional am-
bulances to maintain EMS service levels compared to combustion
engines.

Thus, it is crucial for a redeployment policy to take battery levels
and charging into account. MED is based on the concept of match-
ing the anticipated energy demand at different stations with the
expected energy supply at those stations. While the energy demand
depends on the incidents and, consequently, the amount of energy
needed to handle all incidents. On the other hand, the expected
energy supply depends mainly on the distribution of ambulances
across the base stations, which is influenced by redeployment deci-
sions. Whenever a redeployment decision needs to be made, our
approach deploys the ambulance to the station, which minimizes
the energy deficit.

Our proposed method consists of three steps described in the
remainder of this section:

(1) Determine the expected energy demand.
(2) Determine the expected energy supply.
(3) Calculate and minimize the energy deficit.

4.1 Expected Energy Demand
We introduce the concept of energy demand 𝜃𝑤 , which refers to the
expected energy required to handle incoming incidents within the
lookahead duration Δ𝑡 at base station𝑤 . It is determined based on
the expected number of incidents in the vicinity of the base station
𝑑𝑤 (𝑡now,Δ𝑡) during the lookahead duration and an expected energy
use per incident 𝜌𝑤 . The expected energy demand can be expressed
as the product of these:

𝜃𝑤 = 𝑑𝑤 (𝑡now,Δ𝑡)𝜌𝑤 (1)
We define the demand forecast 𝑑𝑤 (𝑡now,Δ𝑡) as a function that

estimates the expected number of incidents in the vicinity of the
station 𝑤 from the current time 𝑡now until 𝑡now + Δ𝑡 . Numerous
approaches have been proposed in the literature for predicting am-
bulance demand [21, 22, 25, 26]. These methods include but are not
limited to machine learning techniques, time series analysis, and
statistical models. In this paper, we compute an hourly historical
average for demand prediction. [6] shows that this method yields a
strong baseline for predicting ambulance demand. Let us note that
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our approach does not depend on a specific forecasting method and
likely benefits from more accurate predictions. We leave the explo-
ration of more sophisticated demand models to future research.

The vicinity 𝑉𝑤 of a base station𝑤 is defined to be the incident
locations 𝑖 ∈ 𝑉 where the travel time 𝜏 (𝑤, 𝑖) is shorter than from
any other station. Mathematically, this can be expressed as follows:

𝑉𝑤 = {𝑖 ∈ 𝑉 |𝜏 (𝑤, 𝑖) ≤ min
𝑤′∈𝑊

𝜏 (𝑤 ′, 𝑖)} (2)

Using historical incident data, we calculate the average number
of incidents per hour 𝜅𝑤 (ℎ) in the vicinity of each base station
𝑤 and each hour of day ℎ ∈ {0, ..., 23}. Let 𝛽ℎ ∈ [0, 1] represent
the fraction of hour ℎ in the time interval [𝑡now, 𝑡now + Δ𝑡]. The
demand forecast is then given by:

𝑑𝑤 (𝑡now,Δ𝑡) =
∑︁

ℎ∈{0,...,23}
𝛽ℎ𝜅𝑤 (ℎ) (3)

Determining the expected energy per incident within the prox-
imity of each station holds significant importance. This necessitates
evaluating the energy expenditure for traveling from a base station
to the incident location, potentially to a hospital and returning to a
station. A simplistic approach would assume that incidents solely
occur at the centers of each demand area (i.e., the base stations),
then travel to the nearest hospital, and finally return to the closest
station. However, such an approach lacks accuracy. Therefore, we
assume that the locations of incidents are uniformly spatially dis-
tributed across all possible incident locations 𝑖 ∈ 𝑉𝑤 in the vicinity
of 𝑤 . We consider the probability of requiring transportation to
a hospital, as well as accounting for the distribution of patients
transported to different hospitals and the expected energy for rede-
ployment to a station. The hospital distribution and the probability
of requiring hospital transportation are derived from historical data.

We denote the proportion of incidents requiring hospital trans-
portation as 𝛼 , while 𝛼ℎ is the fraction of these incidents handled
by hospital ℎ. To calculate the expected energy use per incident
𝜌𝑤 in the vicinity of station 𝑤 , we first determine the expected
driving time for fully handling an incident and redeployment to a
station. Subsequently, we estimate the energy usage by multiply-
ing the resulting driving times with the parameter 𝑃𝑑𝑟𝑖𝑣𝑖𝑛𝑔 , which
approximates the energy consumed per unit of time:

E(𝜌ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙 (𝑖)) =
∑︁
ℎ∈𝐻

𝛼ℎ
1
|𝑊 |

∑︁
𝑤′∈𝑊

(𝜏 (𝑖, ℎ) + 𝜏 (ℎ,𝑤 ′)) (4a)

E(𝜌𝑏𝑎𝑠𝑒 (𝑖)) =
1
|𝑊 |

∑︁
𝑤′∈𝑊

𝜏 (𝑖,𝑤 ′) (4b)

𝜌𝑤 = 𝑃𝑑𝑟𝑖𝑣𝑖𝑛𝑔
1

|𝑉𝑤 |
∑︁
𝑖∈𝑉𝑤

𝜏 (𝑤, 𝑖)+𝛼E(𝜌ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙 (𝑖))+(1−𝛼)E(𝜌𝑏𝑎𝑠𝑒 (𝑖))

(4c)

4.2 Expected Energy Supply
This section focuses on outlining the methodology for calculating
the expected energy supply 𝜙𝑤 , at a base station𝑤 over a specific
time period. The actual energy supply depends on the demand,
as ambulances may leave the base station to respond to incidents.
While it is theoretically possible to model the distribution of inci-
dents and to sample from an exponentially expanding set of future

scenarios to derive estimates, finding optimal solutions is computa-
tionally intractable. Even approximations similar to the hindsight
planning approaches in [24] are impracticable due to the inherent
complexity and real-time constraints of the DEAR problem. To ad-
dress this, we propose calculating an optimistic, expected energy
supply𝜙𝑤 , assuming that no incidents occur and no ambulances are
redeployed during the prediction horizon, effectively disregarding
the demand. This simplification allows for a deterministic calcula-
tion. However, we account for the probability of ambulances being
dispatched and subsequently reducing the energy supply during the
lookahead duration Δ𝑡 . This is achieved by introducing a charging
discount factor 𝛾 ∈ [0, 1] to adjust the expected energy supply,
resulting in 𝜙𝑤 = 𝛾𝜙𝑤 . Note that even with those assumptions, de-
termining the expected energy supply still requires simulating the
complex charging logic and considering the arrivals of ambulances
en route to the base station.

4.3 Minimize Energy Deficit
After we have defined the expected energy demand and supply, we
continue by specifying how to calculate the energy deficits and sub-
sequently dynamically redeploy ambulances. To define the energy
deficit 𝛿𝑤 at a specific base station𝑤 , we calculate the difference
between the expected energy demand and supply: 𝛿𝑤 = 𝜃𝑤 − 𝜙𝑤 .
However, simply minimizing this deficit has certain limitations. For
instance, if a station already has sufficient supply to meet the de-
mand, adding more supply would be unnecessary, even if it reduces
the deficit. Therefore, we introduce a weighted deficit 𝜔𝑤 using
a soft plus function [9]. This function assigns lower importance
to stations with negative deficits (i.e., surplus supply compared to
demand) and prioritizes stations with high deficits. The weighted
deficit is calculated as follows:

𝜔𝑤 = log(1 + 𝑒𝑥𝑝 ( 1
100

𝛿𝑤)) (5)

In the last step, we describe the methodology for using the
weighted energy deficit𝜔𝑤 to make redeployment decisions. When-
ever an ambulance 𝑎 needs to be redeployed, we simulate sending
the ambulance to each base station 𝑤 to obtain 𝜔𝑤 (𝑎). This is
used to calculate the reduction in the expected weighted energy
deficit 𝜔𝑤 − 𝜔𝑤 (𝑎) at each station. Subsequently, we redeploy the
ambulance to the station that yields the most significant reduction.

4.4 Computational Complexity
Making ambulance redeployment decisions is a time-critical task,
and any method should be able to compute a redeployment deci-
sion within seconds. Consequently, we designed our approach with
this requirement in mind. To make each redeployment decision,
we must assess the expected energy demand 𝜌𝑤 and the expected
energy supply 𝜙𝑤 at each station 𝑤 both with and without the
ambulance being redeployed. The energy demand consists of two
components, the expected number of incidents and energy use per
incident. The complexity of the former depends on the demand
prediction model used. In this paper, we use the historical average,
which can be pre-computed so that a prediction can be made in
constant time. The second component, the expected energy use
per incident, is a constant factor that can also be pre-computed.
Therefore, calculating the expected energy demand has constant
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complexity. The primary computational effort lies in determining
future energy supplies, which involves simulating the charging
logic of each ambulance. As we assume optimistically that ambu-
lances will not be deployed, they will eventually reach full charge,
and their energy supply will no longer change. In other words,
each ambulance adds a particular constant computational effort to
simulate. From a computational point of view, the time complexity
of determining future energy supplies is linear in the number of
ambulances, resulting in a complexity of 𝑂 ( |𝐴|).

Our approach has an overall worst-case time complexity of
𝑂 ( |𝐴| |𝑊 |). For each station, we need to calculate the expected
energy demand (with constant complexity due to pre-computation)
and compute the expected energy supply twice.

We implemented our method in C++ to obtain evaluation results
presented in the next section. Executed on a notebook with Intel®
Core™ i7-10750H CPU, one redeployment decision is obtained in ap-
proximately 0.23 milliseconds during a typical evaluation run with
45 base stations and 25 ambulances. Repeating the measurements
with 1,000 ambulances in the environment (an unreasonably high
number for benchmark purposes only), one decision is obtained in
approx. 0.26 ms. These results satisfy the real-time requirement.

5 EVALUATION
In this section, we evaluate various solutions in a DEAR setting
based on real-world emergency data from the city of San Francisco.
We will first detail our experimental setup and, afterward, exam-
ine the impact of electric ambulances on DAR solutions and the
performance of our newly proposed method MED.

5.1 Simulation environment
We evaluate various scenarios using an event-based simulator that
replays real-world emergency data. This simulator mirrors the
DEAR problem defined in Section 3 to simulate the operations of
the EMS with electric ambulances. The foundation of our simula-
tor is an openly accessible simulation environment for dynamic
ambulance redeployment developed by [23]. Since this simulation
does not consider electric vehicles, we extended it to include vehi-
cles’ battery state, charging, and energy use. Further, base stations
were modified to contain a definable number of chargers of speci-
fied charging power with the problem definition’s charging logic.
Note that charging electric vehicles is a complex process influenced
by factors such as battery level, battery condition, and ambient
temperature. Similarly, energy usage depends on variables like driv-
ing profile, traffic conditions, and secondary loads such as heating
or equipment required for patient care. Given the complexity of
modeling these factors accurately, we simplify our simulation by
utilizing constant values for charging power and driving energy
usage, respectively.

The simulated EMS system is based on the city of San Francisco,
USA. The system contains eleven hospitals and 45 base stations.
Their locations are depicted in Figure 2. The road network graph
used in the simulation was acquired from OpenStreetMap 1, with
intersections representing the graph nodes. Hospitals and base sta-
tions were attached to the nearest node in the graph. Driving times

1ODbL license https://www.openstreetmap.org/copyright. Map data copyrighted by
OpenStreetMap contributors and available from https://www.openstreetmap.org.

Figure 2: Simulation environment of San Francisco, USA. Lo-
cations of base stations are marked in orange if a fast charger
is present and otherwise, in blue; Hospitals are marked in
red. Note that population density is highest in the downtown
area (top right). Map data © OpenStreetMap contributors.

were computed based on the shortest path with respective street
limits depending on the road type. To account for traffic and slowing
down due to turns and crossings, we calibrated the driving times
based on estimates by HERE Traffic 2 by multiplying a constant
factor. Based on this method, the average speed, including traffic
congestion, was estimated to be 32 𝑘𝑚

ℎ
. Ambulances returning to a

base station are assumed to drive at traffic speed. However, when
moving toward an incident or hospital, ambulances are granted
certain exemptions from traffic regulations, allowing them to drive
faster. Nevertheless, traffic congestion and safety considerations
still limit realistic driving speed. Thus, we scaled driving times
accordingly, resulting in an average emergency speed of 50 𝑘𝑚

ℎ
as

suggested by [11].
The city of San Francisco has made real incident data publicly

available through their Fire Department Calls for Service dataset 3.
This dataset contains historical records of health emergency calls,
including information such as the date, time, and location of each
emergency. This enables us to simulate the historical occurrence
of incidents with arbitrary configurations of base stations, ambu-
lances, and redeployment methods. However, it is important to note
that while the dataset indicates whether a hospital was targeted,
specific details such as the hospital’s name or location are not dis-
closed. Selecting a suitable hospital involves a complex decision
process, including various factors such as the patient’s medical
needs, hospital occupancy levels, patient preferences, and the prox-
imity to hospitals [1]. Since this information is unavailable to us,
2https://www.here.com/platform/traffic-solutions/real-time-traffic-information
3https://data.sfgov.org/Public-Safety/Fire-Department-Calls-for-Service/nuek-vuh3
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we determine target hospitals by random sampling according to the
real-world distribution of patient transports to hospitals between
February 2022 and February 2023 published by the Data Working
Group (DWG) of the City of San Francisco 4. Note that this random
sampling was done as a preprocessing step, ensuring the hospital
transportations are consistent across all experiments. Locations of
incidents were mapped to the nearest graph node in our simulation.

5.1.1 Placement and power of fast chargers. As discussed in our
introduction, cities will likely outfit only a subset of base stations
with fast chargers, primarily due to installation costs. Therefore,
we strategically locate fast chargers at the stations with the high-
est demand, assigning one fast charger per station. Note that ac-
cording to our problem definition, additional slower chargers are
already present at every station. In our evaluation, we considered
three different types of fast chargers, each offering different charg-
ing powers. The first type is a high-power DC charger delivering
50 kW of charging power. The second type is a cheaper three-phase
AC charger delivering 22 kW charging power. Lastly, we considered
a more expensive option of 100 kW charging.

5.1.2 Electric Ambulance Models. The battery capacity and aver-
age driving energy use (𝑃driving) in our simulation are based on
real-world electric ambulances. We base our experiment values on
electric ambulance “WAS 500” because it is a suitable replacement
for ICE ambulances and technical data is readily available 5. We set
the battery capacity to 87 kWh, based on the specifications provided
in the datasheet of the ambulance. To determine 𝑃driving, we con-
sider the average speed and the energy usage from the datasheet.
We calculate this value as 30 kW.

5.2 Metrics
As motivated in our introduction, minimizing ambulance response
times is critical for EMS providers. In an ambulance redeployment
context, response times are usually defined as the time between
dispatching an ambulance at its base station and its arrival at the
incident scene. Aggregated metrics used for evaluating the per-
formance of EMS systems are the average response time (ART)
and the fraction of response times within a certain response time
threshold (RTT) [17, 23]. RTT values and targeted fractions are set
differently by different institutions [17]. San Francisco’s Emergency
Medical Services Agency aims to arrive at life-threatening incidents
within a 10 minute threshold at least 90% of the time [2, 23]. We
use this metric extensively in our evaluation, denoting it as RTT10.
We occasionally also include RTT fractions for 8 minutes (RTT8)
and 12 minutes (RTT12).

5.3 Baselines
We compare our method MED (Minimize Energy Deficit) with sev-
eral straightforward baselines as well as several state-of-the-art
approaches for redeploying combustion engine ambulances. The
most simple baseline is RAND, which redeploys the ambulance
to a random base station. NEAR selects the base station which
can be reached fastest by the ambulance (i.e. minimizes driving
time). NEARC and NEARF similarly select the nearest station but

4http://sfemergencymedicalresponse.weebly.com/ambulance-destinations.html
5https://www.was-vehicles.com/en/innovation/was-500-electric-ambulance.html

Table 1: RTT10 performance of conventional methods in the
ICE case compared to the EV case with different charging
powers and 24 ambulances.

Scenario ERTM DRLSN MEXCLP DMEXCLP

ICE 0.88 0.90 0.83 0.89
EV 22 kW 0.47 0.40 0.30 0.20
EV 50 kW 0.72 0.85 0.58 0.57
EV 100 kW 0.76 0.86 0.67 0.56

consider only stations with chargers (NEARC) or free, fast chargers
(NEARF), respectively. Note that this method checks availability
at query time. We also include state-of-the-art approaches from
the DAR problem discussed in (Section 2) and refer to them as con-
ventional approaches. These approaches consists of static methods,
namely ERTM[3] andMEXCLP[8, 13], a dynamic method called
DMEXCLP[13], and the reinforcement learning based approach
DRLSN[14]. Let us note that DRLSN is trained in an environment
considering DEAR, and thus, it can learn the specific behavior of
E-Ambulances. However, we did not change the agent itself as a
straightforward extension of observation data did not yield im-
proved results.

5.4 Results
In this section, we present the results of our experimental evalua-
tion based on the previously described simulation environment to
answer the following research questions:

(1) How large is the effect of replacing ICE ambulances with
EVs using established DAR methods?

(2) Does our approach MED perform better than methods from
related work for DEAR?

(3) What is the influence of simulation parameters such as the
number of available chargers?

(4) How sensitive is our approach to variation of its parameters?
For all experiments, methods were evaluated by simulating one

year of incidents (test set) in our simulation. The resulting response
times were then aggregated to obtain RTT10 and ART metrics. The
respective previous year (validation set) was used to determine
the method’s parameters, such as historical demand and selecting
hyper-parameters. The best set of hyper-parameters (according
to the RTT10 metric) was selected for evaluation on the test set.
Experiments were conducted for the years 2015 to 2022. Due to the
numerous parameters involved, including different combinations
of years, ambulance quantities, charger quantities, charging power,
etc., we cannot present all results here. Unless indicated otherwise,
the experiments were conducted with incidents from the year 2022,
using 15 fast chargers, each providing 50 kW charging power. Ad-
ditionally, we included variations of these parameters to facilitate a
comprehensive comparison of methods under different scenarios.

5.4.1 Effect of switching to electric ambulances. In this section, we
analyze the effectiveness of methods for ordinary DAR settings
(conventional approaches) when being applied to the DEAR prob-
lem. We present the results for ICE and EV scenarios containing
24 ambulances in Table 1, as 24 ambulances are required for the
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Figure 3: Number of additional ambulances needed to reach
same performance (RTT10 metric) as in the non-EV scenario
for best methods from related work. 50 kW charging power.

first method to reach the RTT10 target of 90%. We observe a sig-
nificant decline in the RTT10 metric when introducing energy use
and charging, with some cases showing a reduction of more than
50% in performance. Using 22 kW fast chargers results in inferior
performance: ERTM receives the best 22 kW RTT10 score (0.47),
which is not acceptable for an EMS provider, despite its signifi-
cantly better performance (0.88) in the ICE case. When using 50
kW or 100 kW fast chargers, the decline in performance is less
severe but still substantial. DRLSN achieves best RTT10 scores in
the ICE (0.90), 100 kW (0.86) and 50 kW (0.85) cases. Notably, its
reward-based algorithm shows the ability to learn certain charac-
teristics of the EV environment despite not explicitly observing
energy-related data. Its poor performance in the 22 kW case may be
explained by rewards being too sparse to enable effective training.
Like ERTM, bothMEXCLP and DMEXCLP show drastic decreases in
performance. Although the dynamic method DMEXCLP performs
better than the static approaches ERTM and MEXCLP in the ICE
case, it experiences substantial difficulties in the EV scenarios, even
showing worse results in the 100 kW case compared to 50 kW. Over-
all, results indicate that using fast chargers with 22 kW charging
power will not enable acceptable performance with these meth-
ods. Increasing the charging power to 50 kW improved the results,
but additional ambulances are still necessary. Installing 100 kW
chargers does not appear to improve results substantially. As in-
frastructure investments generally increase with higher charging
power, emergency medical service providers should be aware of
this effect when transitioning to electric ambulances.

Figure 3 provides insights into the number of additional ambu-
lances needed when transitioning from ICE to EV ambulances. It
depicts the number of additional ambulances required to reach an
equal or better RTT10 performance compared to non-EV ambu-
lances for the ERTM and DRLSN. We use 50 kW chargers in the
scenario, as there is a minimal improvement when using 100 kW.
ERTM requires an additional 3 to 6 ambulances. DRLSN requires 2
to 4 additional ambulances when replacing up to 25 ICE ambulances.
In settings replacing more than 25 ICE the number of additional
ambulances can decrease to 1.

Overall, our results show that employing conventional methods
from related work on the DEAR problem requires more ambulances

Table 2: Performance of all methods when using 24 ambu-
lances and 50 kW charging power.

Method RTT8 RTT10 ART

MED 0.87 0.92 4.64
NEAR 0.79 0.88 6.50
NEARF 0.79 0.87 5.38
DRLSN 0.81 0.85 5.90
NEARC 0.75 0.84 5.89
ERTM 0.68 0.72 19.27
MEXCLP 0.50 0.58 32.44
DMEXCLP 0.49 0.57 33.87
RAND 0.01 0.01 153.09

to achieve a similar level of performance compared to ICE ambu-
lances. Additionally, an interesting finding is that the difference
between 50 kW and 100 kW charging is minimal in contrast to
charging with 22 kW.

5.4.2 Performance of MED. We now introduce results for our ap-
proach MED and compare them to state-of-the-art conventional
methods developed for DAR, as well as our DEAR baselines. Results
for all methods are shown in Table 2. We again chose 24 ambulances
and 50kW charging power due to the previously mentioned practi-
cal relevance of this scenario. Our approach MED outperforms all
other methods across all metrics. Specifically, it achieves an RTT10
value of 0.92, which is well within the 90% target. The average
response time (ART) of 4.64 minutes is about 45s faster than the
second-best method NEARF, and 75s less than DRLSN, the best con-
ventional method from related work. It is worth noting that another
nearest station method, NEAR, also demonstrates surprisingly good
performance, securing the second-best RTT10 value of 0.88. The
best performing conventional method is DRLSN (0.85), followed
by ERTM (0.72). The difference between RTT10 and ART scores,
especially when considering the comparatively good performance
of simplistic baselines such as NEAR or NEARF underlines the ob-
servation that conventional methods do not perform well in the
evaluated EV scenario. In contrast, MED performs better in DEAR
(RTT10 of 0.92) than the best DAR approach in the corresponding
ICE scenario (RTT10 of 0.90, compare Figure 1).

The relationship between the number of deployed ambulances
and the performance is illustrated in Figure 4 for the best-performing
methods. MED consistently demonstrates strong results across all
metrics. Analyzing the RTT10 performance in Figure 4a, it becomes
evident that MED outperforms other approaches with a substantial
gap to the second best method up to a number of 29 ambulances. As
noted before, it is the first to exceed the 90% RTT10 target (dashed
red line). Furthermore, its performance considering the ART met-
ric (Figure 4b) is superior to others in the most interesting region
(due to its closeness to the 90% RTT10 target) of about 24 ambu-
lances. When 22 or fewer ambulances are used, method NEARF
yields lower ART values. This is because in these cases, demand
for ambulances, and the energy use that comes with it, is so high
that all other objectives fade in comparison to obtaining energy as
fast as possible. As the NEARF method is designed to immediately
drive to the nearest free charger, regardless of its location or any

17



SSTD ’23, August 23–25, 2023, Calgary, AB, Canada Lukas Rottkamp, Niklas Strauß, and Matthias Schubert

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Number of ambulances

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

RT
T1

0

DRLSN ERTM MED NEAR NEARF

(a) RTT10 metric. Dashed line indicates 90% target.

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Number of ambulances

0

5

10

15

20

AR
T 

(m
in

ut
es

)

(b) ART metric.

Figure 4: Performance comparison of best methods for 50 kW
charging power.

other criteria, it fulfills this objective well. In situations where a sub-
stantial number of ambulances (27 or more) are available, methods
from previous research narrow the gap. At this point, the locations
and availability of chargers become less critical as it becomes more
likely that a charged ambulance is stationed sufficiently close to
any incident. Furthermore, slow charging is sufficient to make sure
that drained ambulances will be available at a later point in time.
It is, however, interesting that the gap for the RTT10 metric (c.f.
Figure 4a) closes more slowly that the gap in ART (c.f. Figure 4b).
This indicates that MED still allows significantly fewer incidents
that are not handled within the 10-minute limit than compared
methods up to 29 ambulances.

As emergency service providers usually aim to fulfill a certain
minimum service level, we provide the number of ambulances
needed to reach a 90% fraction of common RTT values in Table 3.
An important observation is that MED requires the lowest num-
ber of ambulances to reach the target in all cases. A RTT8 target
is reached by deploying 26 ambulances with MED, whereas the
second best method, DRLSN, requires 29 ambulances. The RTT10
and RTT12 targets are reached with 24 and 22 ambulances, respec-
tively, requiring two and one ambulances less than the runner-up.
It is worth mentioning that most methods failed to reach the RTT8
target for fleet sizes up to 40, which is the maximum number of
ambulances considered in our experiments.

Table 3: Number of ambulances needed to reach the 90% RTT
target for various RTT values. 50 kW charging power.

Method 8 min 10 min 12 min

MED 26 24 22
DRLSN 29 26 25
NEAR > 40 26 24
ERTM 30 29 29
DMEXCLP > 40 32 31
MEXCLP > 40 32 29
NEARC > 40 > 40 23
NEARF > 40 > 40 23
RAND > 40 > 40 > 40

Table 4: Performances ofMED compared to bestmethod from
related work for each evaluation year. In each year, MED
performed best, followed by DRLSN. The number of ambu-
lances in each row was determined as the lowest amount
that reached 90% RTT10 for the given year. Column Diff for
RTT10 is the decrease of incidents that could not be reached
within 10 minutes. Column Diff for ART is the decrease in
response times.

Year RTT10 ART
MED DRLSN Diff MED DRLSN Diff

2015 0.901 0.860 -29.18% 4.810 5.551 -13.34%
2016 0.907 0.867 -30.57% 5.101 5.916 -13.78%
2017 0.919 0.877 -34.28% 4.494 5.345 -15.92%
2018 0.912 0.867 -33.63% 4.679 5.491 -14.79%
2019 0.910 0.875 -28.19% 4.579 5.469 -16.27%
2020 0.908 0.872 -28.18% 4.635 5.476 -15.37%
2021 0.905 0.852 -35.42% 4.927 5.767 -14.57%

To see if the superior performance of MED can be reproduced
in other years, we repeated the experiment above for each pair
of years starting in 2015. This includes fitting parameters on the
given year and testing methods’ performance in the following year.
The results summarized in Table 4 show that MED can reach the
90% RTT10 target with fewer ambulances than methods from re-
lated work each year. The difference in incidents that could not
be reached within 10 minutes is considerably lower in these cases,
namely between 28.18% to 35.42% lower. Average response times
also decrease consistently for all years. In absolute numbers, this
means reducing average response times by about 50 seconds in our
experiments, which can be valuable in critical emergencies.

These results demonstrate the superior performance of MED
for the DEAR problem across various scenarios. Furthermore, as
MED in DEAR displays a similar or better performance than com-
pared methods in the ordinary DAR environments based on ICE
ambulances, we can conclude that switching to an equally-sized
fleet of E-Ambulances can be done without significantly decreasing
response times.
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Figure 5: Performance of MED for different charging powers.

5.4.3 Varying power and number of chargers. The performance
of MED for different charging rates and numbers of deployed am-
bulances is presented in Figure 5. It can be seen again that the
difference between 50 kW and 100 kW fast charging power is min-
imal. However, 22 kW charging results in inferior performance.
For example, the RTT10 target is reached with 25 ambulances in-
stead of only 24 for both higher charging rates. This disparity
becomes more apparent as the number of ambulances decreases, as
the per-ambulance energy use and corresponding charging activity
increases in such scenarios. With increasing numbers of ambu-
lances, the charging pressure vanishes, which can be seen in the
convergence of all powers’ measurements. Figure 6 depicts the re-
sults of different methods for varying the number of installed fast
chargers. As before, we use 24 ambulances as the lowest amount to
be sufficient to reach the 90% RTT10 target. ERTM, MEXCLP, and
DMEXCLP exhibit a slow increase of performance when increas-
ing the number of fast chargers and thus appear to be especially
ill-suited for the EV scenario. In contrast, the performance of MED,
NEAR, NEARF and DRLSN follows an early quick increase with a
slower rise once about three fast chargers are installed, i.e., they
appear to either use less energy or utilize fast chargers better, or
both. It should be noted that MED is the only approach that meets
the 90% RTT10 level. Furthermore, MED’s performance does not
substantially increase when more than 11 chargers are installed
in the environment. To summarize, our method tailored for EV
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Figure 6: Comparison of RTT10 performance for different
numbers of fast chargers. Scenario with 24 ambulances and
50 kW charging power.
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Figure 7: Performance of MED for varying hyper-parameters.
Scenario with 24 ambulances and 50 kW charging power.

scenarios requires not only fewer ambulances but also fewer fast
chargers.

5.4.4 Parameter sensitivity. Figure 7 shows how varying MED’s
two parameters affect its RTT10 performance, using the scenario
of 24 ambulances and 50 kW charging. Examining the parameter
lookahead duration Δ𝑡 (Figure 7 left), the optimal value is 25 min-
utes, with a roughly linear decrease when higher or lower values
are used. The sensitivity of our approach to this parameter is low,
as doubling it to 50 minutes only marginally decreases RTT10 per-
formance by about 0.01. Varying the charging discount factor 𝛾
(Figure 7 right) appears to have little effect on performance. The
optimum is at a value of 0.4, which can be explained by charg-
ing processes at base stations being frequently interrupted due to
incoming incidents in this challenging scenario.

5.4.5 Qualitative analysis. Figure 8 shows a snapshot of our simu-
lation from the point of view of our approach MED. The weights
assigned by the method (orange bars) are calculated in a way that
expected demand (red bars) is offset by available energy (blue bars),
i.e., ambulances assigned to the respective base station. The energy
distribution appears to be pretty spread out to minimize response
times. Several base stations necessarily contain zero energy because,
in this scenario, 25 ambulances have to cover all 45 base stations.
However, the gaps are mostly in lower demand areas and can be
covered by nearby base stations with assigned ambulances.
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Figure 8: Snapshot of a simulation with 25 ambulances. Bar
plots indicate base stations’ estimated future energy values
as calculated by MED: Supply (blue); Demand (red); Deficits
(yellow) after nonlinear scaling (higher scores mean higher
priority). Map data © OpenStreetMap contributors.

6 CONCLUSION
In this paper, we introduce the Dynamic Electric Ambulance Re-
deployment (DEAR) problem extending the Dynamic Ambulance
Redeployment (DAR) problem to electric ambulances. We propose
the Minimize Energy Deficits (MED) method, which determines
redeployment actions by estimating the future energy deficit over
all base stations. The energy deficit of a base station weighs a
prediction of future demand against a prediction of the available
energy level corresponding to the remaining range of stationed am-
bulances. We conducted experiments in a realistic scenario using
an event-based simulator based on real-world incidents. Results
show that MED reaches better performance than compared DAR
methods, as well as baselines for EV settings. Furthermore, our
results indicate that transitioning to electric ambulances can be
done without increasing the number of available ambulances while
maintaining comparable response times.

For future work, we plan to explore using more sophisticated
prediction methods for demand and available energy. Furthermore,
we want to examine sequential planning approaches considering
multiple decisions in advance.
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