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A B S T R A C T

In this article we introduce a notion of depth functions for data types that are not given in
standard statistical data formats. We focus on data that cannot be represented by one specific
data structure, such as normed vector spaces. This covers a wide range of different data
types, which we refer to as non-standard data. Depth functions have been studied intensively
for normed vector spaces. However, a discussion of depth functions for non-standard data
is lacking. In this article, we address this gap by using formal concept analysis to obtain a
unified data representation. Building on this representation, we then define depth functions
for non-standard data. Furthermore, we provide a systematic basis by introducing structural
properties using the data representation provided by formal concept analysis. Finally, we embed
the generalised Tukey depth into our concept of data depth and analyse it using the introduced
structural properties. Thus, this article presents the mathematical formalisation of centrality
and outlyingness for non-standard data and increases the number of spaces in which centrality
can be discussed. In particular, we provide a basis for defining further depth functions and
statistical inference methods for non-standard data.

. Introduction

Data depth functions generalise the concept of centrality and outlyingness to multivariate data and provide therefore a useful
oncept to define nonparametric and robust statistical methods. To achieve this, depth functions denote the center and outlying areas
ased on an underlying distribution or a data cloud. Moreover, they classify how near other areas are to the outlying or center ones.
ince there does not exist one unique perspective on centrality, several different depth functions on R𝑑 have been developed. Some
xamples are simplicial depth, see [1], zonoid depth, see [2], or Tukey depth, see [3,4]. To give a systematic basis on the notion
f depth functions [5,6] set up properties to mathematically formalise the existing intuition about centrality and outlyingness in
𝑑 . In addition to R𝑑 , the scope of data types on which depth functions are defined increased in the last years. For example, in [7]

he authors discuss properties of depth functions on functional data. [8] developed a depth function for total orders. [9] went the
ext step and defined depth functions for general metric spaces. In recent years, this concept has been used to construct statistical
ethods and to analyse different application settings. For example, [10,11] developed statistical nonparametric and robust tests
sing depth functions. Using the robust central-outward order [12] studied anomaly detection. In [13], data depth functions are
sed to visualise and describe features of hydrologic events given two real world streamflow data sets from Canada.

However, all these depth functions and analyses have in common that they build on spaces that have a strong underlying
tructure, like Banach spaces. Thus, to apply the concept of depth and resulting statistical methods, the data has to be embedded into
tatistical standard data formats, like numeric or spatial. The aim of this article is to consider depth functions without assuming one
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specific data type in advance. This includes data types like, e.g., set of partial orders or mixed spatial and ordinal data. We call data
that cannot be embedded into statistical standard data formats non-standard data. To give a notion of centrality and outlyingness for
non-standard data, a unified, flexible and general applicable data representation is needed. Therefore, we use the theory of formal
concept analysis which transforms the data set into a closure system on the entire data set itself. In particular, it does not force the
user to make assumptions about the data that are not necessarily true, simply for the sake of mathematical feasibility. We use this
unified representation of the data to generally define depth functions for non-standard data. To clarify the notion of centrality and
outlyingness for data represented via formal concept analysis we introduce structural properties. Thereby, we use the structure of the
closure system to transfer the properties given by [5,6] and develop further properties representing the connections between the
data points. In this context, we investigate that, unlike R𝑑 , non-standard data can have data elements that are naturally outlying or
central based on the structure of the underlying space. Finally, we embed the generalised Tukey depth given in [14] into our concept
of depth functions for non-standard data. Moreover, we use the provided structural properties to analyse the generalised Tukey
depth. Note that, analogous to the generalised Tukey depth, the concrete outlier measures developed in [15] can also be analysed
using the structural properties introduced here. These outlier measures are also based on formal concept analysis. Therefore, only
a slight adaptation to the concept of depth introduced here is necessary.

This article is intended to give a systematic basis on depth functions for non-standard data. By introducing structural properties
we give a notion of centrality and outlyingness. Furthermore, we provide a framework to analyse depth functions for non-standard
data and start a discussion on the notion of centrality for such kind of data.

The structure of this article is as follows: We begin with concrete motivation examples. Since formal concept analysis is the
basis of our general notion of a depth function, we give a short introduction to the theory of formal concept analysis in Section 3.
Based on this, Section 4 introduces the general definition of depth functions for non-standard data by use of formal concept analysis.
There we define the Tukey depth within our concept of depth functions. The next section states the structural properties and their
restriction strength. Afterwards, we analyse the generalised Tukey depth using structural properties. In Section 7, we collect our
concluding remarks.

2. Motivation

The purpose of this section is to present motivating examples to show that depth functions based on formal concept analysis
cover a wider range of data types than the currently discussed depth functions known to the authors. Instead of using observations
directly to define a depth function, we first apply formal concept analysis. This gives us a definition of depth functions that can be
applied to a wide variety of data types simultaneously. Most importantly, it is simple for the practitioner to use, as it only relys on
the definition of a cross-table, as will be seen in this section.

One of the goals of formal concept analysis is to discover relational connections between observations. Therefore, the observations
are grouped according to the observed values. For example, consider the Titanic data set, where each passenger’s age, sex and the
passenger’s class of travel is recorded. One group might be all passengers aged between 20 and 40 who are female. Another smaller
group are all female passengers between the ages of 20 and 40 travelling in first class. In this case, the smaller group is more specific,
e.g. in the smaller group the passengers also fulfil the condition that they all travel in first class. Formal concept analysis formalises
the arrangement into different groups. The first step is to define a formal context that represents the data set. In a nutshell, a formal
context is a generalisation of a cross-table.

To provide an intuitive introduction to the main concepts of formal concept analysis and to illustrate the motivation for defining
depth functions based on formal concept analysis, we give now two examples. These examples also demonstrate the variety of
different data types that can be represented by a formal context.

Example 1. For the Titanic data example provided by the Titanic machine learning competition, see [16], we get the formal context
in Table 1 (this is just a snippet). Here each row represents an observation/passenger (i.e. called objects in formal concept analysis).
The columns are binary attributes that can be either true or false. Transforming the non-binary observations (such as age, spatial
values, etc.) into binary attributes is called conceptual scaling, see [17, p. 36ff]. Since the number of attributes can be infinite, this is
a flexible, but also accessible approach to data representation. For classical data types there are already standard scaling methods,
see [17, p. 36ff]. As an example, consider Table 1. The first two columns represent the sex of the passenger (f: female and m: male).
The next three columns are the class level of the passenger (I, II and III). These two nominal observations are included via nominal
scaling, see [17, p. 42]. The remaining columns represent the age of the passenger, e.g. 𝑔1 is 34.5 years old. The corresponding
ttributes are the statements ‘‘≤𝑥’’ and ‘‘≥𝑥’’ for all 𝑥 ∈ R. This scaling method is called interordinal scaling, see [17, p. 42]. Note

that this scaling method implies that there exists no object that has every attribute. The crosses in Table 1 indicate that the attribute
applies to the passenger/observation. How different observation values are represented as a set of binary attributes depends on the
scaling method used, see [17, p. 36ff].

We obtain the groups that represent the relationship between the observations by considering all possible combinations of
attributes and summarising all the observations that agree on all these attributes. Note that these groups may overlap. They also
have a certain mathematical structure, i.e. they show the implications between the passengers/observations. For example, in Table 1
we see that if 𝑔3 and 𝑔4 are in a group, we can directly imply that 𝑔2 is also in the group, since there is no group with 𝑔3 and 𝑔4
hat does not also contain 𝑔2. By collecting all these implications, we can fully determine the arrangement of the groups given by

he formal context. For further details see Section 3.
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Table 1
This formal context contains five observations/passengers of the Titanic. Each row represents a passenger. The data is from the Titanic machine learning
competition, see [16], with PassengerIds 892, 893, 894, 904 and 908. Note that the age 34.5 is due to the encoding notation. With ‘‘…’’, we denote that
the attribute set is indeed infinite and not all attributes are denoted within the table. The same is true for the objects as this is only a snippet of the titanic
data set.

f m I II III … ‘≤23’ … ‘≤24’ … ‘≤34.5’ … ‘≤35’ … ‘≤47’

𝑔1 x x x … x … x
𝑔2 x x x
𝑔3 x x
𝑔4 x x x … x … x … x … x
𝑔5 x x x … x
… … … … … … … … … … … … … … … …

… ‘≤67’ … … ‘≥67’ … ‘≥47’ … ‘≥35’ … ‘≥34.5’ … ‘≥24’ …

𝑔1 x x x x x x x
𝑔2 x x x x x x x x x x x
𝑔3 x x x x x x x x x x x x
𝑔4 x x x
𝑔5 x x x x x x x x x
… … … … … … … … … … … … … … …

We emphasise that the choice of binary attributes, as well as the decision which observation has an attribute and which does
ot, results in a concrete, easily accessible representation of the data. In particular, it exposes many implicit assumptions about
he data. Moreover, the data are represented in such a way that we do not impose assumptions that are not present in the data,
.g. that the data can be embedded in a normed vector space. However, we want to point out that the choice of attributes can have
strong influence on the arrangement of the groups and therefore on the depth values. Instead of using interordinal scaling for the

ge component in the Titanic data set, another approach called ordinal scaling, which includes only the upper bound ‘≤𝑥’, can be
used, see [17, p. 42]. With this smaller formal context, age can only influence the groups through its upper bound. Thus, instead
of looking at all passengers between the ages of, e.g., 20 and 40, with this smaller formal context, only all passengers with an age
smaller than or equal to 40 are grouped without a lower bound.

We now use the structure given by the different groups and the resulting implications to give a notion of depth to the observations.
In the Titanic example, we want to rank the five passengers according to how central or outlying they are compared to the other
passengers. In the spirit of [18], in this paper we introduce properties that represent the notion of centrality and outlyingness. For
example, Property (P1) states that if we use different scaling methods of the observations (i.e., use different binary attributes in the
formal context) that lead to the same groups, the depth function should stay the same. As another example, consider the relationship
between 𝑔2, 𝑔3, and 𝑔4. Since any group that includes 𝑔3 and 𝑔4 also includes 𝑔2, we have that 𝑔2 has all the properties that 𝑔3 and 𝑔4
hare. So we can say that 𝑔2 is at least as specific as 𝑔3 and 𝑔4 combined. Following the idea of the quasiconcavity property in R𝑑 ,
ee [6], Property (P7i and ii) states that the depth of 𝑔2 must be at least as high as the minimum depth of 𝑔3 or 𝑔4. Other properties
iscuss that non-standard data may inherit a natural center-outward order, which is not present in R𝑑 . For example, Property (P4)
tates that an object lying in every group must be central, regardless of the probability measure.

xample 2. Another example that illustrates the wide range of data types that can be discussed using formal concept analysis is
he set of partial orders. A data example for partial orders is given in [19], where the objects are partial orders of classifiers. In
hat article, we considered a set of classifiers applied to a set of data sets. These classifiers were evaluated for each individual data
et by several performance measures. Then an algorithm 𝑖 outperforms another algorithm 𝑗 on a given data set if and only if there
xists one performance measure that states that algorithm 𝑖 is better than algorithm 𝑗 and all other performance measures agree
hat algorithm 𝑖 is not worse than algorithm 𝑗. This gives us a partial order for each single data set that represents the performance
tructure of the classifiers for that data set. Thus, a benchmark suite of 80 data sets results in 80 observed partial orders. Now,
o represent this kind of data, in [14] we introduced a formal context for partial orders in general. Here, each row corresponds
o a partial order. The columns of the formal context are the binary attributes needed to describe the partial order. In [14], the
irst 𝑛 ⋅ (𝑛 − 1), where 𝑛 is the number of classifiers/items being compared, denotes all possible pairs where we have stated that
ne classifier dominates the other. The next 𝑛 ⋅ (𝑛 − 1) rows indicate the reverse, i.e. that one classifier does not dominate another.
ote that including the second part as binary attributes is by no means straightforward. But as in [14,19] we decided to state that
on-existence of dominance is indeed a precise observation and we do not want a push towards the linear extensions of the partial
rders (which exists when deleting the second 𝑛 ⋅ (𝑛 − 1) columns), we have therefore included this part.

As can be seen in the two examples above, and also in Examples 4 and 5 below, defining a formal context gives us a flexible
ool for evaluating data ranging from mixed nominal and ordinal observations to spatial data or partial orders. These examples
emonstrate that formal concept analysis clearly reveals the relationships between data points, providing a simple and unified view
f the underlying data structure. Finally, we want to highlight differences and connections between our approach and other existing
pproaches. In contrast to [8,9], we have completely turned away from a metric approach in our definition of depth functions. [8]
iscusses total orders and therefore a translation to our approach is straightforward, just restrict the space of all partial orders to the
otal orders, see Example 2. This is not so clear for [9] as the representation via a formal context depends on the concrete structure

𝑑
f the space. Example 5 gives an approach for R equipped with the Euclidean distance.

3 
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3. Formal concept analysis

This section briefly describes the parts of formal concept analysis (FCA) required for this article and illustrates them using the
wo examples above. It is based on [17]. For further readings, we refer to [20]. FCA was developed by Rudolf Wille, Bernhard
anter and Peter Burmeister to build a bridge between mathematical lattice theory and applied users. It enables the analysis of

elationships between the data points by representing the data in a unified and user-friendly manner.
The fundamental definition of FCA is the representation of a data set as a cross-table, see [17, p. 17].

efinition 1. A formal context K is a triple (𝐺,𝑀, 𝐼) with 𝐺 being the object set, 𝑀 the set of attributes and 𝐼 ⊆ 𝐺 × 𝑀 a binary
elation between 𝐺 and 𝑀 .

In our case, the objects are the data points and the attributes are characteristics of these data points. The relation 𝐼 then states
hether an object 𝑔 has an attribute 𝑚, if (𝑔, 𝑚) ∈ 𝐼 , or not, if (𝑔, 𝑚) ∉ 𝐼 . Thus, these attributes need to be binary-valued, whether

hey occur or not. Naturally, there exist characteristics of the data points which are many-valued, like sex or age. To include these
any-valued characteristics as well into the formal context, we use conceptual scaling methods, see [17, p. 36ff] and Section 2,
hich transfers many-valued characteristics into a set of binary-valued attributes. By using scaling methods, we can represent a

arge variety of different data sets through a formal context. This allows us to transfer the most diverse data types into a uniform
tructure. Also, data sets which are not given in standard statistical data formats. We call such data non-standard data. Examples
re given in Examples 1, 2, 4 and 5. The scaling method can also be used to reduce data complexity. This can lead to a conceptual
caling error, see for example [21].

Based on this user-friendly representation of the data set by a formal context, we can now define so-called derivation operators,
ee [17, p. 18]:

𝛹 ∶ 2𝐺 → 2𝑀 , 𝐴 ↦ 𝐴′ ⋅⋅= {𝑚 ∈ 𝑀 ∣ ∀𝑔 ∈ 𝐴∶ (𝑔, 𝑚) ∈ 𝐼},

𝛷 ∶ 2𝑀 → 2𝐺 , 𝐵 ↦ 𝐵′ ⋅⋅= {𝑔 ∈ 𝐺 ∣ ∀𝑚 ∈ 𝐵∶ (𝑔, 𝑚) ∈ 𝐼}.

he function 𝛹 maps a set of objects 𝐴 onto every attribute which every object in 𝐴 has. So, 𝐴′ = 𝛹 (𝐴) = ∩{𝑚 ∈ 𝑀 ∣ (𝑔, 𝑚) ∈ 𝐼}
s the maximal set of attributes that every object in 𝐴 has. The reverse, from attribute set to object set, is provided by the function
. We set 𝛷(∅) = 𝐺 and 𝛹 (∅) = 𝑀 . The composition of these two functions 𝛾 ⋅⋅= 𝛷◦𝛹 ∶ 2𝐺 → 2𝐺 gives us then a family of sets
hich denotes the relationship between the data points. We have 𝛾(𝐴) = 𝛷◦𝛹 (𝐴) = ∩𝑚∈𝛹 (𝐴){𝑔 ∈ 𝐺 ∣ (𝑔, 𝑚) ∈ 𝐼}. In other words,
very object set 𝐸 ⊆ 𝐺 which is an element of the codomain of 𝛾 = 𝛷◦𝛹 is the maximal set of objects which have all the same
ttributes 𝛹 (𝐸) in common. Thus, the composition groups all those objects together that have the same attributes. With slight abuse
f notation, for any 𝑚 ∈ 𝑀 we write 𝛷(𝑚) for 𝛷({𝑚}). The same convention holds for 𝛹 (𝑔) and 𝛾(𝑔) with 𝑔 ∈ 𝐺.

efinition 2. The set 𝛾(2𝐺) is called the set of extents, see [17, p. 18]. The set 𝛾(𝐴) is mentioned as extent set, shortly extent, of
⊆ 𝐺.

To take advantage of this slightly different representation of the data set as a family of sets, we use that 𝛾 defines a closure
perator, see [17, p. 8]. In what follows, we use the term closure always in the context of a closure operator or a closure system.
hen referring to a closed set based on a topology, metric, or norm we denote this by topological(-ly) closed/closure.

efinition 3. A closure operator 𝛾 ∶ 2𝐺 → 2𝐺 is defined as a function on a power set to itself. A closure operator needs to be extensive
i.e. for all 𝐴 ⊆ 𝐺, 𝐴 ⊆ 𝛾(𝐴)), isotone (i.e. if 𝐴 ⊆ 𝐵 ⊆ 𝐺, then 𝛾(𝐴) ⊆ 𝛾(𝐵)) and idempotent (i.e. for all 𝐴 ⊆ 𝐺, 𝛾(𝐴) = 𝛾(𝛾(𝐴))).

In particular, a closure operator always induces a closure system 𝛾(2𝐺). A closure system  ⊆ 2𝐺 is a family of sets which contains
he entire space (i.e. 𝐺 ∈ ) and any intersection of sets in  is again in  (for all 𝑆 ⊆  with 𝑆 ≠ ∅ we have ⋂

𝑠∈𝑆 𝑠 ∈ ).

Note that there exists a one-to-one correspondence between the closure system and the closure operator. Since 𝛾 = 𝛷◦𝛹 is a
losure operator, the set of extents is a closure system. Thus, the closure operator 𝛾 describes the closure system and vice versa. For
ore details on closure systems see [17, Chapter 0.3].

xample 3. Recall the Titanic Example 1. We obtain 𝛹 (𝑔2) = {f, III, ‘≤47’,… , ‘≤67’,… , ‘≥47’,… , ‘≥35’}. Therefore, we get 𝛾(𝑔2) =
{𝑔2}. One can show that the set of extents 𝛾

(

2{𝑔1 ,𝑔2 ,𝑔3 ,𝑔4 ,𝑔5}
)

equals

{∅, {𝑔1}, {𝑔2}, {𝑔3}, {𝑔4}, {𝑔5}, {𝑔1, 𝑔4}, {𝑔1, 𝑔5}, {𝑔2, 𝑔5}, {𝑔2, 𝑔3}

{𝑔1, 𝑔4, 𝑔5},{𝑔1, 𝑔2, 𝑔5}, {𝑔2, 𝑔3, 𝑔5}, {𝑔1, 𝑔2, 𝑔4, 𝑔5}, {𝑔1, 𝑔2, 𝑔3, 𝑔5}, {𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5}}.

Let us take a closer look at how the closure operator describes the connection between the data points. This is the basic idea of
how we will later use the closure operator to define structural properties for depth functions. As we pointed out above the closure
operator groups data points together which have certain attributes in common. This means if 𝑎 ∈ 𝛾(𝐴)⧵𝐴 the object 𝑎 has all attributes
which every object in 𝐴 has as well. Thus, one can say that 𝐴 implies 𝑎 based on the relationship structure given by the formal context
which is then included in the definition of 𝛾. Therefore using the closure system or closure operator (both describe the same since
they have a one-to-one correspondence) to define the structural properties of the depth function illustrates the relationship between
the data points. For further details on implications see [17, Chapter 2.3]. Note that in [17] attribute implications are discussed and
we focus here on object implications. Nevertheless, the concepts can be transferred to object implications.
4 
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Table 2
Minimal example of a hierarchical nominal scaling with two levels (1, 2) and two categories (𝑎, 𝑏, respectively).

𝑎1 𝑏1 𝑎1𝑎2 𝑎1𝑏2 𝑏1𝑎2 𝑏1𝑏2
𝑎1𝑎2 x x
𝑎1𝑏2 x x
𝑏1𝑎2 x x
𝑏1𝑏2 x x

Example 4. Now, we introduce a further scaling method, the so-called hierarchical nominal scaling. This scaling method is inspired
by the occupations of persons within a social survey. Usually occupations are categorised within a hierarchy of different levels,
for example within the International Standard Classification of Occupations (ISCO) of 2008, see https://www.ilo.org/publications/
international-standard-classification-occupations-2008-isco-08-structure (accessed: 24.09.2024). On a first level occupations are
split into different categories (𝑎1, 𝑏1,…). For example category 𝑎1 could be ‘‘Managers’’, category 𝑏1 ‘‘Professionals’’, etc. Each of
these categories is then split again on a more fine-grained level (Level 2) into further subcategories. In this case, category 𝑎1 is
split into 𝑎1𝑎2 ‘‘Managers: Chief executives, senior officials, and legislators’’ and 𝑎1𝑏2 ‘‘Managers: Administrative and commercial
managers’’ and so on. Note that the Level 2 subcategories based on the first level 𝑏1 split do not have to match those of the Level 2
splits based on the Level 1 𝑎1 split. Subsequently, the Level 2 categories are again subdivided into subcategories, and so on. Such
data structure can be conceptually scaled in a natural way. For every level, we introduce attributes describing every single category
based on the higher level classification, see Table 2. Here, for simplicity, we used only two levels with two categories, respectively.

Now, let us take a closer look at the extents given by Table 2 which are

{∅, {𝑎1𝑎2}, {𝑎1𝑏2}, {𝑏1𝑎2}, {𝑏1𝑏2}, {𝑎1𝑎2, 𝑎1𝑏2}, {𝑏1𝑎2, 𝑏1𝑏2}, 𝐺}.

Furthermore, we obtain that 𝑎1𝑎2 ∈ 𝛾({𝑎1𝑏2, 𝑏1𝑎2}) = 𝛷◦𝛹 ({𝑎1𝑏2, 𝑏1𝑎2}) = 𝛷(∅) = 𝐺.

Example 5. In the next sections, we want to transfer the idea of depth functions from R𝑑 to general non-standard data which are
represented by a formal context. Before looking at this, we now show how one can represent the elements in R𝑑 as objects of a
formal context. We consider R𝑑 together with the topology induced by the Euclidean norm. The scaling method introduced here is
inspired by [22,23]. Let 𝐺 = R𝑑 be the object set and the attribute set 𝑀 = {𝐻 ⊆ R𝑑 ∣ 𝐻 topologically closed halfspace}. Define
the relation 𝐼 between 𝑀 and 𝐺 by (𝑔,𝐻) ∈ 𝐼 ⇔ 𝑔 ∈ 𝐻 , and let K = (𝐺,𝑀, 𝐼) denote the corresponding formal context.

With this definition, let us consider 𝛾(2𝐺) induced by K. Let 𝐴 ⊆ 𝐺 = R𝑑 , then 𝛹 (𝐴) are all halfspaces containing every
object/point in 𝐴. Further on, 𝛾(𝐴) = 𝛷◦𝛹 (𝐴) are then every object/point which lies in every halfspace in 𝛹 (𝐴). Thus 𝛾(𝐴) is
the intersection of all halfspaces in 𝛹 (𝐴) and therefore a topologically closed convex set. More generally, one can show that for
every topologically closed convex set in 2R𝑑 there exists a set 𝐴 ⊆ 𝐺 = R𝑑 such that this convex set equals 𝛾(𝐴). Thus, 𝛾 is the
convex closure operator on R𝑑 and the extent set 𝛾(2𝐺) is the set of all topologically closed convex sets.

More concretely, assume that 𝑑 = 2 and 𝑓 ∈ 𝛾({𝑎, 𝑏, 𝑐}). This means that 𝑓 lies in every topologically closed halfspace which
contains also 𝑎, 𝑏 and 𝑐. In other words, 𝑓 shares the same attributes as 𝑎, 𝑏, 𝑐 share. Thus, one can say that 𝑓 is implied by 𝑎, 𝑏
and 𝑐 based on 𝛾. If 𝑒 ∉ 𝛾({𝑎, 𝑏, 𝑐}), there exists a halfspace which contains 𝑎, 𝑏 and 𝑐 but not 𝑒. To summarise, an object 𝑔 lies in
𝛾({𝑎, 𝑏, 𝑐}) if and only if 𝑔 lies within the triangle given by the vertices 𝑎, 𝑏 and 𝑐. This shows how the concrete definition of the
closure system enhances the connection between single objects.

Finally, as we have now introduced several different data situations with different scaling methods, see Example 1 (nominal,
numeric data), Example 2 (partial orders), Example 4 (hierarchical nominal data) and Example 5 (spatial data), we want to point
out the importance of the scaling method used. First of all, deciding which observations (age, spatial, etc.) to include in the analysis
is a general issue in statistics. At first sight, FCA may seem to add a further difficulty by requiring the definition of binary attributes.
However, FCA provides a clear understanding of the relationships between observations. Thus, to check whether the scaling method
represents the objective, one can look at all the extents as well as all the implications. If the groups do not represent an important
fact about the data (e.g. the non-dominance part of the partial orders or the lower bound of the age value), then more attributes
are needed. Conversely, if the extents are close to the power set of 𝐺, one should examine the data set to see if there really are no
implications between the data points. If so, some sets of attributes need to be replaced or even deleted. While nominal, ordinal and
interordinal scaling are commonly used scaling methods, it is important to discuss carefully for each data set how fine/coarse the
arrangement of the groups should be and to consider several different scaling methods.

4. Definition of depth functions for non-standard data using formal concept analysis

Our aim in this section is to give a general definition of data depth functions for non-standard data using FCA. By representing
the data points 𝐺 via a formal context, with 𝐺 being the object set, we obtain a unified structure that is not tailored to one specific
data type. In particular, the newly provided depth function allows to analyse a large variety of different data types on centrality
and outlyingness issues. With this, nonparametric methods can be developed for all these data.

The depth function presented here only specifies the domain and codomain but not the exact mapping rule. Thus, the structural

properties presented later, see Section 5, can be seen as generic properties for this kind of depth functions.
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Definition 4. We define a depth function using FCA by

𝐷𝐺 ∶ 𝐺 × 𝜘𝐺 × P𝐺 → R≥0

or a fixed set of objects 𝐺 and a set of formal contexts 𝜘𝐺 ⊆ {K ∣ 𝐺 is object set of K}. P𝐺 is a set of probability measures on 𝐺
defined on a 𝜎-field which contains all extent sets of formal contexts in 𝜘𝐺.

Thus, we compute the depth of an object set based on a probability measure and formal context representing the object
relationships. We want to emphasise that 𝐺, 𝜘𝐺 and P𝐺 depend on each other. Note that Definition 4 allows the restrictions of
𝜘𝐺 and P𝐺 to a subset of all possible formal contexts or probability measures, which is sometimes necessary. For example, assume
that 𝐺 = [0, 1], then for every subset of 𝐺 there exists a formal context such that this subset is an extent. Thus, in this case, a
restriction to a subset of contexts is necessary if we want to allow the uniform distribution to be an element of P𝐺. This follows
from [24, Chapter 1.1] which shows that there cannot exist a probability measure on [0, 1] which formalises the intuition of volume
and has the entire power set of [0, 1] as input. Another aspect is that restriction can lead to a set of formal contexts fulfilling
additional structural requirements. With this, it can be possible to define mapping rules which are not possible in general. (See
Section 5: Property (P8) does not hold for every formal context, but only for a subset.) Another example is given in [14,19] where
we considered one single formal context on the set of partial orders, see also Example 2. There, we used the structure given by this
concrete formal context to define the mapping rule. The same reasoning can be applied to the probability set P𝐺. Thus, for a proper
definition of the depth function, not only the exact mapping rule is important, but the considered formal contexts and probability
measures as well.

A data set can be represented by different attribute sets and corresponding binary relations. Thus, Definition 4 can lead to many
different depth functions even if the object set 𝐺, the probability Pr ∈ P𝐺 and a concrete mapping rule are specified. Hence, the
choice of formal context and scaling method can have a huge impact on the depth values, i.e. this can also be seen in Section 5.

The empirical depth function corresponds to the depth function in Definition 4 with the empirical probability measure as input.
To ensure that the empirical depth function is well defined we need to assume that every empirical probability measure Pr(𝑛)𝐺 of
every probability measure Pr𝐺 ∈ P𝐺 is again an element of P𝐺.

Definition 5. Let 𝐺 be a set and 𝜘𝐺 ⊆ {K ∣ 𝐺 is object set of K} a set of formal contexts on 𝐺. We assume that P𝐺 consists of
probability measures that are defined on a 𝜎-field containing all extents of 𝜘𝐺. Furthermore, for every sample 𝑔1,… , 𝑔𝑛 based on a
probability measure Pr𝐺 ∈ P𝐺, we have Pr(𝑛)𝐺 ∈ P𝐺, where Pr(𝑛)𝐺 is the empirical probability measure based on the sample. Then
the empirical depth function for a sample 𝑔1,… , 𝑔𝑛 with corresponding empirical probability measure Pr(𝑛)𝐺 is given by

𝐷(𝑛)
𝐺 ∶ 𝐺 × 𝜘𝐺 → R≥0, (𝑔,K) ↦ 𝐷𝐺(𝑔,K,Pr(𝑛)𝐺 ).

Serving as an example, we consider the generalised Tukey depth, based on [22,23] and introduced in [14]. The Tukey depth on
R𝑑 of a point 𝑔 ∈ R𝑑 , c. f. [3,4], is the smallest probability of a halfspace containing 𝑔. To build the bridge to FCA, we consider the
formal context K with the object set 𝐺 = R𝑑 , attribute set 𝑀 = {𝐻 ⊆ R𝑑 ∣ 𝐻 topologically closed halfspace} and binary relation 𝐼
with (𝑔,𝐻) ∈ 𝐼 if and only if 𝑔 ∈ 𝐻 , see Example 5. Based on this the Tukey depth for a point 𝑔 ∈ R𝑑 and probability measure PrR𝑑

on R𝑑 can be written as

inf
𝐻∈(𝑔)

PrR𝑑 (𝐻) = inf
𝐻∈𝛹 (𝑔)

PrR𝑑 (𝐻) = 1 − sup
𝐻∈𝛹 (𝑔)

PrR𝑑 (𝐺 ⧵𝐻) = 1 − sup
𝐻∈𝑀⧵𝛹 (𝑔)

PrR𝑑 (𝐻) = 1 − sup
𝑚∈𝑀⧵𝛹 (𝑔)

PrR𝑑 (𝛷(𝑚)) (1)

where (𝑔) is the set of all topologically closed halfspaces containing 𝑔 and 𝛷,𝛹 correspond to the derivation operators given by
the formal context K defined in Example 5. The first and the last equality are translations into FCA language, where importantly the
final right hand side does not involve the notion of a halfspace, which allows the generalisation of the Tukey depth to any arbitrary
FCA setting. The third equality holds because 𝐺 ⧵ 𝐻 is a topologically open halfspace and the supremum does not change when
considering topologically open halfspaces instead. The right hand side of Eq. (1) will now be the basis of the generalisation of Tukey
depth to arbitrary formal contexts. Before we proceed, we shortly indicate, why we do not use directly the left hand side of Eq. (1):
Generally, the topologically closed convex sets in R𝑑 correspond to the extents within our approach to use FCA to define data depth
functions. On the other hand, the topologically closed halfspaces of R𝑑 have no general natural equivalent in FCA. On the left hand
side, if we replace the family of topologically closed halfspaces with the family of all extents, we obtain a depth value of zero for
all 𝑔 ∈ R𝑑 when, e.g., the probability measure is continuous w.r.t. the Lebesgue measure. This is of course unsatisfying. Moreover,
note that unlike halfspaces, the complement of extents in FCA are generally not extents. This further separates the left and the right
hand side of Eq. (1). Therefore, we take the right hand side of Eq. (1). As will be shown later in Theorem 6 of Section 6, taking the
supremum over all halfspaces or taking it over all topologically closed convex sets in R𝑑 gives the same result, which also translates
to the generalised Tukey depth where the supremum over all extents and the supremum over all extents generated by one single
attribute coincide.

Additionally, the supremum of the right hand side of Eq. (1) has a natural interpretation as a measure of outlyingness that
can be expressed in the language of FCA, see [23, Section 2] and [22, Section 5]. In these articles, the author constructs special
representative extents: For given 𝛼 ∈ [0, 1] we say that an extent is 𝛼-extensive if it contains at least a proportion of 𝛼 ⋅ 100% of
data points or probability mass. Of course, for given 𝛼 there are many such extents but one can take for one 𝛼 the intersection
of all these extents. This intersection is again an extent which is then in a certain sense a representative extent w.r.t. a level
𝛼. The outlyingness of a point 𝑔 is then given by the (empirical) probability mass of the most specific depth contour (i.e., the
most specific representative extent that corresponds to the smallest possible 𝛼) that still contains 𝑔. A slightly different, but order-
theoretically equivalent, definition is to take the least specific depth contour not containing 𝑔. This is exactly what is expressed by

sup𝑚∈𝑀⧵𝛹 (𝑔) PrR𝑑 (𝛷(𝑚)) in Eq. (1). With this motivation (and with the insight of Theorem 6) we get as generalised Tukey depth:
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Definition 6. Let 𝐺 be a set, 𝜘𝐺 a subset of formal contexts and P𝐺 a subset of probability measures on 𝐺. Assume that 𝜘𝐺 and
P𝐺 are defined as in Definition 4. The generalised Tukey depth is given by

𝑇𝐺 ∶ 𝐺 × 𝜘𝐺 × P𝐺 → [0, 1],
(𝑔,K,Pr𝐺) ↦ 1 − sup𝑚∈𝑀⧵𝛹 (𝑔) Pr𝐺(𝛷(𝑚))

where K defines the operator 𝛷 and 𝛹 . We set sup𝑡∈∅ 𝑓 (𝑡) ⋅⋅= 0 for every function 𝑓 .

Note that here, we take the supremum only over all extents generated by one single attribute, as this gives the same result as
taking the supremum over all extents (c.f., Theorem 6) and is at the same time easier to compute. Additionally, from this definition
it becomes clear that the (generalised) Tukey depth does not dependent on the dependence structure between the attributes, but
only on the marginal distribution of the attributes. Observe that the term marginal is meant here as the probability of lying in a
certain halfspace and should not be confused with the marginal distribution of points in R𝑑 in the sense of the distribution of one
coordinate. In the sequel, we will always refer to the marginal distribution as the distribution of the attributes.

Furthermore, note that 𝜘𝐺 is not restricted to any subset and, in particular, Pr𝐺 is only restricted by 𝜘𝐺, see Definition 4. The
second part of the mapping rule in Definition 6, sup𝑚∈𝑀⧵𝛹 (𝑔) Pr𝐺(𝛷(𝑚)), corresponds to the supremum of the probabilities of the
events which consists of all objects having an attribute the object of interest does not have. Thus, if 𝑔 ∈ 𝐺 is an object that has all
the attributes which occur, then 𝑔 has a maximal depth of value one. Note, however, that there are usually no objects that have all
attributes. For example, consider the spatial context described in Example 5, where the generalised Tukey depth corresponds to the
well-known Tukey depth on R𝑑 . Thus, in this situation, the (generalised) Tukey depth is bounded by 0.5 and, in particular, strictly
below 1. Another example is the interordinal scaling described in Section 2.

Now, we define the empirical version. Analogously to Definition 5, let 𝑔1,… , 𝑔𝑛 be a sample of 𝐺 based on Pr𝐺 ∈ P𝐺. Then the
empirical generalised Tukey depth function corresponds to 𝑇𝐺 by inserting the corresponding empirical probability measure Pr(𝑛)𝐺 .
This gives us:

Definition 7. Let 𝐺, 𝜘𝐺 and P𝐺 be defined as in Definition 5. Let (𝑔1,… , 𝑔𝑛) be a sample from 𝐺 according to Pr𝐺 ∈ P𝐺 with
associated empirical measure Pr(𝑛)𝐺 . Then the empirical generalised Tukey depth is given by

𝑇 (𝑛)
𝐺 ∶

𝐺 × 𝜘𝐺 → R≥0,
(𝑔,K) ↦ 1 − sup𝑚∈𝑀⧵𝛹 (𝑔)

∑

𝑔̃∈𝛷(𝑚) Pr(𝑛)𝐺 (𝑔̃) = 1 − 1
𝑛 sup𝑚∈𝑀⧵𝛹 (𝑔) #𝛷(𝑚).

As derived above, the generalised Tukey depth applied to the spatial context defined in Example 5 gives us the well-known
ukey depth on R𝑑 , see [3]. In particular, on R1 we get the ranking given by the classical quantiles, with the median being the
entral one and the depth values decreasing outwards.

xample 6. Recall Examples 1 and 3. Let us assume that the probability measure Pr𝐺 in 𝐺 = {𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5} is uniform and the
ormal context K is given by Table 1. Then the generalised Tukey depths are

𝑇𝐺(𝑔2,K,Pr𝐺) = 1 − sup
𝑚∈𝑀⧵𝛹 (𝑔2)

Pr𝐺(𝛷(𝑚)) = 1 − 3
5
= 2

5
= 𝑇𝐺(𝑔1,K,Pr𝐺) = 𝑇𝐺(𝑔5,K,Pr𝐺),

𝑇𝐺(𝑔4,K,Pr𝐺) = 1 − sup
𝑚∈𝑀⧵𝛹 (𝑔4)

Pr𝐺(𝛷(𝑚)) = 1 − 4
5
= 1

5
= 𝑇𝐺(𝑔3,K,Pr𝐺).

Example 7. In Example 2 we briefly described the formal context in which partial orders are represented. See also [14,19]. Recall
that the attributes represent the existence or non-existence of a dominance structure between two different algorithms 𝑖 and 𝑗.
Thus, each pair of algorithms 𝑖 and 𝑗 gives rise to four binary attributes: First, whether 𝑖 dominates 𝑗 or vice versa, and second,
whether 𝑖 does not dominate 𝑗 and vice versa. As can be seen from the definition, the generalised Tukey depth only considers the
marginal distribution of the attributes. Thus, based on the formal context describing partial orders, the generalised Tukey depth
relies only on the probability of how often dominance between two classifiers occurs and how often it does not. More specifically,
if we consider a sample, then the marginal distribution is given by the proportion of observed dominance between two classifiers,
or the proportion of observed non-dominances. In the following, we omit the case where all partial orders have exactly the same
probability, see [14] for details on this. This assumption implies that the partial order(s) with the minimum depth value are those
that do not fulfil a (non-)dominance structure that has the highest proportion. There is no such simple answer for the maximum
depth partial order. This is due to the transitivity assumption on the dominance structure. A partial order with highest depth value
is one that summarises the most dominance and non-dominance structures that are most often observed.

Example 8. Recall the nominal hierarchical data structure discussed in Example 4. Note that the groups are already disjoint after
the first partition and are then successively partitioned into smaller subsets. In the following we assume that the probability mass is
not strongly focused on a small subset of possible observations, see the proof of Theorem 10 for details. Since the generalised Tukey
depth includes only the maximum marginal probability of the attributes that are not true for the object of interest, we can observe
that only the first partition is used for the generalised Tukey depth. Therefore, dropping all other attributes (representing the finer
splits) and thus considering a smaller and less informative formal context does not change the generalised Tukey depth based on

this nominal hierarchical formal context. In other words, the generalised Tukey depth ignores the further information of the data.
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Fig. 1. Overview of the structural properties together with their mathematical connections. Th is Theorem and Sec is Section for short. This overview contains
all direct implications between the properties. Further results like, e.g., limitations of the properties, see, e.g., Theorem 4, are not presented in the Figure.

Before presenting the structural properties, we define when two depth functions are isomorph and thus represent the same
center-outward order.

Definition 8. Let 𝐺 be a set and 𝐷𝐺 and 𝐷̃𝐺 be two depth functions based on 𝜘𝐺 and P𝐺, 𝜘𝐺 and P̃𝐺 respectively, see Definition 4.
Let K ∈ 𝜘𝐺, K̃ ∈ 𝜘̃𝐺, Pr𝐺 ∈ P𝐺 and P̃r𝐺 ∈ P̃𝐺. Then 𝐷𝐺(⋅,K,Pr𝐺) and 𝐷̃𝐺(⋅, K̃, P̃r𝐺) on 𝐺 are isomorph if and only if there exists a
bijective and bimeasureable function 𝑖 ∶ 𝐺 → 𝐺 such that

𝐷𝐺(𝑔,K,Pr𝐺) ≤ 𝐷𝐺(𝑔̃,K,Pr𝐺) ⟺ 𝐷̃𝐺(𝑖(𝑔), K̃, P̃r𝐺) ≤ 𝐷̃𝐺(𝑖(𝑔̃), K̃, P̃r𝐺)

is true for all 𝑔, 𝑔̃ ∈ 𝐺. We call a bijective function bimeasurable if and only if 𝑖 and 𝑖−1 are measurable w.r.t. the corresponding
𝜎-fields. In what follows, ≅ denotes the isomorphism between two depth functions.

For simplicity of notation, we write 𝐷, 𝐷(𝑛), 𝑇 , 𝑇 (𝑛), 𝜘, P, Pr and Pr(𝑛) instead of 𝐷𝐺, 𝐷(𝑛)
𝐺 , 𝑇𝐺, 𝑇 (𝑛)

𝐺 , 𝜘𝐺, P𝐺, Pr𝐺 and Pr(𝑛)𝐺 in
the following if the underlying object set 𝐺 is clear.

5. Structural properties characterising the depth function using formal concept analysis

After this general definition of depth functions based on FCA, we want to discuss some structural properties a depth function
can have. With this, we tackle the question of what centrality is and which object is - in some sense - closer to the center than
another object. In particular, we provide concepts to discuss centrality and outlyingness for different data types without necessarily
presupposing one specific data structure. Thus, this section gives a starting point for a discussion on centrality, outlyingness and
depth functions based on FCA. Furthermore, we define a framework upon which newly introduced depth functions can be studied
and compared.

For normed vector spaces, there is already an ongoing discussion about this. The authors of [1,5,6,25] are concerned about these
questions for data depth functions defined on R𝑑 . Furthermore, [7,26] discuss depth functions and centrality topics for functional
data. All these examples have in common that they are based on a normed vector space and that the clarification of centrality
and outlyingness is done by defining properties. For example, [5,6] demand that the depth of a point 𝑥 ∈ R𝑑 should converge to
zero as the norm of 𝑥, i.e. ‖𝑥‖, tends to infinity. This reflects the intuition about outlyingness in unbounded spaces. In contrast to
outlyingness, the definition of a center point does not immediately follow. Basically, every point in R𝑑 can be the center. This follows
from the fact that after translation, rotation, etc. the structure of a normed vector space does not change. The center generally seems
to be only naturally specified in special cases. For example [5] assumes that for a probability measure that is symmetric around a
point 𝑐, see [27], this point 𝑐 should then be the center. In the case of a multivariate normal distribution, the center point is the
mean vector. Since a depth function should represent a center-outward order, this point 𝑐 needs to have a maximal depth value.
Together with the center, one needs to discuss what it means that one point is further away from the center than another. In R𝑑 ,
this is achieved by the use of line segments, see [5,6]. A point 𝑝1 which lies on the line segment between the center and a further
point 𝑝2 is said to be closer to the center than 𝑝2. In other words, 𝑝2 is more outlying than 𝑝1. At the first glance, here we also use
the normed vector space structure.

It follows from the above that the definition of the terms centrality and outlyingness seem to highly rely on the underlying
distribution. In particular, the part defining the center point which is based on a symmetric distribution, see [27]. Slightly different
to [5,27] is the approach of [6]. The properties given by [6] put emphasis on the structure of the underlying spaces and not on
the probability measure. Thus, in contrast to e.g., [5,27], the definition of centrality of a point is more detached from the notion of
symmetry/centrality of the underlying probability measure. Note that [6] gives an even stronger definition of depth functions. In

the following, we discuss the term centrality and outlyingness from the perspective of the approach in [6].
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In this article, we consider a space 𝐺 where the structure of the data points is given by a formal context. In the style of [5]
nd [6] for depth functions in R𝑑 , we define structural properties of a depth function based on FCA to clarify the notion of centrality

and outlyingness. These properties express characteristics of the data set when represented via a formal context and how these
characteristics are included in the depth function. Some of the structural properties build upon the existing ones in R𝑑 that we
transfer to our new situation. To achieve this, we use that the set of all topologically closed convex sets is a natural closure system
on R𝑑 . Since the extent set also defines a closure system, we obtain a direct translation to FCA by representing the properties by
use of the convex closure system on R𝑑 . For example, we transfer the idea of a line segment to our data representation via a formal
context, see Property (P6). Moreover, the ‘‘quasiconcavity’’ property, see [6, p. 19] has a natural translation to FCA by use of the
closure system, see Property (P7i and ii). Other structural properties introduced discuss the possibility that the data itself may have
a center-outward order. This inherited order is then represented by the formal context. For example, consider the extreme case that
an object lies in every set of the closure system. This means that it has every attribute that is true for any element of the data set.
Thus, this object is implied by every other object and is therefore more specific than any other object. So it should have maximum
depth for any possible probability measure, see Property (P4). Of course, the other extreme case, where an object lies only in the
extent corresponding to the entire set and therefore shares no attributes with the other data elements, should have minimal depth
by default, see Property (P3). Note that these two extremes do not necessarily occur. For example, there is no such element in R𝑑

together with the convex sets. All in all, one can say that the introduced structural properties are defined and discussed within two
perspectives: The transfer of already existing properties in R𝑑 and the new development of properties based on the theory of FCA,
reflecting the inherited center-outward structure of the data.

In total 13 structural properties are presented which can be covered under four different categories: Representation properties,
order preserving properties, empirical (sequence) properties and universality properties. An overview of the structural properties
together with their mathematical connections can be seen in Fig. 1. In what follows, we fix the set of objects 𝐺 and consider the
depth function 𝐷 ∶ 𝐺 × 𝜘 × P → R≥0. Furthermore, we refer to Definition 4 when we say that 𝐷 is a depth function. We use the
term empirical depth function when considering a depth function in the style of Definition 5. Afterwards, in Section 6 we check
these properties based on the introduced generalised Tukey depth, see Section 4.

5.1. Representation properties

Depth functions satisfying the following properties are structure preserving on 𝐺. This includes two parts: First, assume that
we represent the data set by two formal contexts and that we consider two probability measures. Let us assume that between the
corresponding extent sets and therefore the structure of the objects exists a bijective function. Furthermore, if additionally the
probability values are preserved by this bijective function, then the depth function should be preserved as well. In other words, the
order given by the depth function should not rely on the used scaling method unless it does substantially change the structure
of the extent sets. Also, the influence of the probability measure is only based on the extent sets. In Section 2 we motivated
this property by illustrating that the observation values are represented within the arrangement of the different groups of the
passengers/observations. Thus, if neither the groups nor the probabilities of these groups change, then the depth value should
also remain the same. This can be seen as an adaptation of the ‘‘affine invariance’’ property of depth functions in R𝑑 , see [5, p.
463]. There, the depth function equals the depth of the shifted version if the probability measure is shifted accordingly.

The second part of the representation properties considers the attribute values. Here, we say that the depth function preserves
the structure if and only if two objects with the same attributes have the same depth value. From the perspective of FCA, two objects
with the same attributes are duplicates. Therefore they should be assigned to the same depth value. In the formal context of the
Titanic example, see Example 1, this means that two passengers of exactly the same age, sex and class of travel must have the same
depth values.

(P1) Invariance on the extents: Let K, K̃ ∈ 𝜘 be two formal contexts on 𝐺 and let Pr, P̃r ∈ P be two probability measures on 𝐺.
If there exists a bijective and bimeasureable function 𝑖 ∶ 𝐺 → 𝐺 such that the extents are preserved (i.e. 𝐸 extent w.r.t. K
⇔ 𝑖(𝐸) extent w.r.t. K̃) and the probability is also preserved (i.e. Pr(𝐸) = P̃r(𝑖(𝐸))), then

𝐷(⋅,K,Pr) ≅ 𝐷(⋅, K̃, P̃r)

is true.

(P2) Invariance on the attributes: For every K ∈ 𝜘, Pr ∈ P and 𝑔1, 𝑔2 ∈ 𝐺 with 𝛹 ({𝑔1}) = 𝛹 ({𝑔2}),

𝐷(𝑔1,K,Pr) = 𝐷(𝑔2,K,Pr)

holds.

Remark 1. Property (P1) is the only property that directly discusses the connection between two different formal contexts. This is due
to the fact that even just adding more attributes can strongly change the implications and the whole data structure representation,
even though this procedure ‘‘only’’ adds more extent sets. Therefore, in general, it is not clear how the depth function should
behave when more attributes are added. However, for example for interordinal scaling, which is ‘‘finer’’ than ordinal scaling, see
Example 1, it can be shown that the following Property (P7i and ii) together with Property (P1) in many cases already cover the

desired changes in the order of the data elements. More precisely, for ordinal scaling, Property (P7i and ii) ensures that the smallest
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value has maximum depth, while for interordinal scaling it gives more flexibility and, depending on the underlying probability
measure, any element can have the highest depth value. In particular, in many cases (e.g. uniform distribution) Properties (P1) and
(P7i and ii) imply that the classical median has the highest depth. For the generalised Tukey depth, we always obtain the classical
median as the highest depth for interordinal scaling.

5.2. Order preserving properties

While the representation properties ensure that similar structures on 𝐺 lead to the same depth function, the next order preserving
properties consider the obtained order by the depth function. These properties increase in their strength of restriction.

These properties are defined along the lines of ‘‘monotonicity relative to the deepest point’’ and ‘‘maximality at the center’’
properties, see [5, p. 463], and the ‘‘quasiconcavity’’ properties, see [6, p. 19], defined for R𝑑 . In contrast to R𝑑 we neither have
a norm nor a concept of translation and symmetry, but we can make use of the closure system and closure operator given by the
extent set. When considering the properties defined for R𝑑 in the context of the convex sets which define a closure system, we can
uild a bridge to FCA. In particular, the ‘‘quasiconcavity’’ property, see [6, p. 19], has therefore a natural adaptation. Nevertheless,
he convex sets are a special case of closure sets: For example, the affine invariance is reflected in the set since by shifting the set of
onvex sets the family of sets does not change. This does not hold in general for closure systems. For example, there exist closure
ystems where one point occurs more often in the sets of the closure system than another point. We use the concept of a formal
ontext where two natural extreme opposite characteristics of the objects can occur. The first one: If an object has every attribute
hen it lies in every extent set. Conversely, if an object has no attribute at all, then the only extent containing this object is the
ntire set 𝐺. Property (P3) and (P4) now ensure that these two opposite characteristics are also reflected in the depth function.

(P3) Minimality: Let K ∈ 𝜘,Pr ∈ P. Further, let 𝑔𝑛𝑜𝑛 ∈ 𝐺 such that for every extent 𝐸 ⊊ 𝐺 of K we have that 𝑔𝑛𝑜𝑛 ∉ 𝐸, then

𝐷(𝑔𝑛𝑜𝑛,K,Pr) = min
𝑔∈𝐺

𝐷(𝑔,K,Pr)

is true.
(P4) Maximality: Let K ∈ 𝜘,Pr ∈ P. Assume there exists 𝑔𝑎𝑙𝑙 ∈ 𝐺 such that for every extent 𝐸 of K we have that 𝑔𝑎𝑙𝑙 ∈ 𝐸. Then

𝐷(𝑔𝑎𝑙𝑙 ,K,Pr) = max
𝑔∈𝐺

𝐷(𝑔,K,Pr)

holds.

Note that a depth function which fulfils these two properties does not rely on the probability measure to set the values of the two
extreme cases. On the other hand, there exist formal contexts such that the objects 𝑔𝑛𝑜𝑛 or 𝑔𝑎𝑙𝑙 do not exist at all. Recall Example 5
where we considered the spatial data.

Nevertheless, since we have now predefined the maximal depth value in specific cases, this has to be in line with adapting
properties like ‘‘monotone on rays’’ or ‘‘quasiconcavity’’, see [6, p. 19]. In what follows we start with less restricting properties and
increase their restriction strength slowly. We show that they imply Properties (P4) and (P3).

Property (P5) is inspired by the fact that in FCA, an object 𝑔2 which lies in the closure of an other object 𝑔1 implies that this
bject is more specific than 𝑔2. In other words, 𝑔2 has all attributes and possibly even more attributes than 𝑔1. This is analogous to
he assumption that 𝛾({𝑔1}) ⊇ 𝛾({𝑔2}) is true. Thus, Property (P5) says that an object 𝑔2 must have a depth value as least as high as
1.

(P5) Isotonicity : For every Pr ∈ P and formal context K ∈ 𝜘 with 𝑔1, 𝑔2 ∈ 𝐺 such that 𝛾K({𝑔1}) ⊇ 𝛾K({𝑔2}),

𝐷(𝑔1,K,Pr) ≤ 𝐷(𝑔2,K,Pr)

is fulfilled.

here exists a natural strengthening of the isotonicity property (P5) which leads to the adaptation of the ‘‘monotonicity relative to
eepest point’’, see [5, p. 463], property in R𝑑 . For start, let us assume that the depth function is bounded from above. Furthermore,
e assume that the depth function has its maximum at center 𝑐 ∈ 𝐺. The ‘‘monotone on rays’’ in R𝑑 definition in [6, p. 19] states

hat the depth of a point that moves further away from the center 𝑐 on a fixed ray should decrease. Since we do neither have a
orm nor a vector space, we cannot generally define what further away as well as ray means. Thus, we translate the definition to a
etting using the convex closure operator instead. In this case, if a point/object 𝑔̃ lies on the line segment given by a further point
and the center 𝑐, then the depth of 𝑔̃ must be at least as high as the depth of 𝑔. In other words, when a point 𝑔̃ lies in the convex

losure of another point 𝑔 and the center, then we have a lower bound for the depth of 𝑔̃. Thus, the points/objects with depth values
arger or equal to a fixed value form a starshaped set. This gives the name of the property. With the definition based on the convex
losure system, we can easily transfer this property to FCA and obtain Property (P6).

(P6) Starshapedness: Let K ∈ 𝜘 and Pr ∈ P. If there exists at least one center point 𝑐 ∈ 𝐺 such that for all 𝑔 ∈ 𝐺 and all
𝑔̃ ∈ 𝛾K({𝑐, 𝑔}) we have

𝐷(𝑔̃,K,Pr) ≥ 𝐷(𝑔,K,Pr),

then we call 𝐷 starshaped.
10 
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In the above explanation, we assumed that the center point 𝑐 has a maximal depth value. This assumption is not included in the
definition of Property (P6) as the boundedness of the depth function, as well as the maximality at the center, follow directly. Let
us fix 𝑐 ∈ 𝐺 to be one center point. Since for every closure operator the isotonicity assumption (see Section 3, not to be confused
with Property (P5)) holds, we get that for every object 𝑔 we have 𝑐 ∈ 𝛾({𝑐, 𝑔}). Thus, by Property (P6) for every 𝑔 ∈ 𝐺 we obtain

𝐷(𝑐,K,Pr) ≥ 𝐷(𝑔,K,Pr).

With this, 𝑐 must have the highest depth value. Since the depth function maps to R, this gives us also the upper bound of the
depth function. Note that a center 𝑐 is not always naturally given. Besides the spatial data, see Example 5, where one can use the
probability measure to get a center, in the framework of FCA one can say that 𝑔𝑎𝑙𝑙 in Property (P4) could be such a center. In
contrast, in the example of the Titanic data, see Table 1, there is no passenger who is naturally a center. Each passenger has at least
one component where their observation is not in the center (median for age and modus for sex and class of travel).

Furthermore, the starshaped property (P6) together with the invariance on the extents property (P1) has some implications on
the point of maximal depth when the underlying probability measure has some symmetry property. As already indicated at the
beginning of Section 5, because of the lack of a translation operation, etc., it is difficult to define symmetry in our setting. However,
one can still define some notion of point symmetry, see the next theorem.

Theorem 1. Let K ∈ 𝜘 and Pr ∈ P. We assume that Pr is point symmetric around 𝑠 ∈ 𝐺 in the following sense: There exists a bimeasurable
involutory function 𝑖 ∶ 𝐺 ⟶ 𝐺 (i.e. 𝑖(𝑖(𝑔)) = 𝑔 for all 𝑔 ∈ 𝐺) such that

1. Pr(𝑖(𝐸)) = Pr(𝐸) for all extents 𝐸 ⊆ 𝐺 and
2. for all 𝑔 ∈ 𝐺 we have 𝑠 ∈ 𝛾({𝑔, 𝑖(𝑔)}).

Then for every depth function which fulfils Properties (P1) and (P6), the center of symmetry 𝑠 of Pr has maximal depth.

Proof. Let 𝑐 be one center point. First note that by the second assumption of this theorem we get 𝑠 ∈ 𝛾({𝑐, 𝑖(𝑐)}). Because 𝐷 is
starshaped, we have 𝐷(𝑠,K,Pr) ≥ 𝐷(𝑖(𝑐),K,Pr). Now, we use that there exists a bimeasurable involutory function 𝑖 and that 𝐷 is
invariant on the extents (P1) to get 𝐷(𝑖(𝑐),K,Pr) = 𝐷(𝑐,K,Pr). With this, we conclude that 𝐷(𝑠,K,Pr) ≥ 𝐷(𝑐,K, 𝑃 𝑟). This proves that
𝑠 has maximal depth. □

Note that object 𝑠 of Theorem 1 is not necessarily a center point in the style of Property (P6).
These properties are written down in their order of strength. More precisely, Property (P6) implies Property (P5) and Property

(P5) implies Properties (P4) and (P3), see Theorem 2. Thus, if Property (P6) is satisfied and if there exists an object 𝑔 which has
every attribute, then 𝑐 must be one of the center point 𝑐 discussed in Property (P6).

Theorem 2. Let K ∈ 𝜘 and Pr ∈ P. Let 𝐷 be a depth function then the following implications hold for 𝐷:

1. Let 𝑐 ∈ 𝐺 be a center object. If 𝐷 satisfies Property (P6), then Property (P5) is true for 𝐷.
2. If 𝐷 satisfies Property (P5), then Properties (P4) and (P3) are true for 𝐷.

Proof. Assume that K ∈ 𝜘 and Pr ∈ P. Let 𝐷 be a depth function.
We begin by proving that Property (P6) implies Property (P5). Therefore assume that Property (P6) is true for 𝐷 and let 𝑐 ∈ 𝐺

be one center point. Further let 𝑔1, 𝑔2 ∈ 𝐺 such that 𝛾K({𝑔1}) ⊇ 𝛾K({𝑔2}). Then we get that 𝑔2 ∈ 𝛾({𝑐, 𝑔1}) and therefore we have
𝐷(𝑔1,K,Pr) ≤ 𝐷(𝑔2,K,Pr).

The next step is to show that Property (P5) implies Property (P4). Assume that Property (P5) is satisfied and that 𝑔𝑎𝑙𝑙 lies in
every extent set. Then, we get for every 𝑔 ∈ 𝐺 that 𝛾K({𝑔𝑎𝑙𝑙}) ⊇ 𝛾K({𝑔}) holds. Thus, 𝐷(𝑔𝑎𝑙𝑙 ,K,Pr) ≥ max{𝑔∈𝐺} 𝐷(𝑔,K,Pr) is true and
Property (P4) follows.

Finally, we show that Property (P3) follows from Property (P5). Let 𝑔𝑛𝑜𝑛 ∈ 𝐺 be an object which lies only in the entire set and
in no other extent set. Furthermore, we suppose that Property (P5) is true for 𝐷. Since 𝛾({𝑔𝑛𝑜𝑛}) = 𝐺 for every 𝑔 ∈ 𝐺 we have
𝛾({𝑔}) ⊆ 𝛾({𝑔𝑛𝑜𝑛}). Due to Property (P5) we follow that 𝐷(𝑔𝑛𝑜𝑛,K,Pr) ≤ 𝐷(𝑔,K,Pr) for every 𝑔 ∈ 𝐺. This gives us Property (P3). □

Remark 2. Let us point out some consequences of Property (P6). In contrast to [5, p. 463] we do not assume that the center 𝑐 is
unique. For example, the depth function is allowed to have a plateau at the highest point. In particular, we allow the depth function
to be constant. Especially 𝑔𝑛𝑜𝑛 can only be the center point if the function is constant, due to Properties (P3), (P4) and Theorem 2.
Moreover, we get that when the depth function has at least two different values, then 𝑔𝑛𝑜𝑛 must have the minimal value and 𝑔𝑎𝑙𝑙 the
maximal value. This allows us to specify a center point and an outlying point without relying on the other observed points/objects
by defining the scaling method. Note that this situation does not occur often. For example, all scaling methods described in Section 3
do not have an object 𝑔𝑛𝑜𝑛 and 𝑔𝑎𝑙𝑙.

Nevertheless, this stresses the importance of a meaningful and carefully chosen scaling method. Observe that the difference
between having an attribute and not having an attribute is not symmetric and cannot be switched without eventually fundamentally
changing the characteristic of the corresponding closure system.

The next order preserving properties are in the style of the ‘‘quasiconcavity’’ property, see, e.g., [6, p. 19]. In the context of
R𝑑 quasiconcavity states that the set of all points with a larger (or equal) depth value than 𝛼 ≥ 0 needs to be a convex set. These
11 
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sets are called contour sets. In this case, there is a direct transfer to FCA by the extent set as a closure system. Therefore, we first
have to define the contour sets within the theory of FCA. Let K ∈ 𝜘 be a formal context and Pr ∈ P be a probability measure. For
𝛼 ∈ im(𝐷(⋅,K,Pr)) the contour set 𝐶𝑜𝑛𝑡𝛼 is defined as follows

𝐶𝑜𝑛𝑡𝛼 ⋅⋅= {𝑔 ∈ 𝐺 ∣ 𝐷(𝑔,K,Pr) ≥ 𝛼}.

Now, we say the depth function is countourclosed if every contour set is an extent set. This is stated in Property (P7i). Instead of
considering the contour sets, an analogous statement for Property (P7i) is given in Property (P7ii). Here, we assure that the depth
of an observation that lies in the closure of an input set is larger or equal to the infimum of the input. Property (P7ii) has a natural
strengthening by assuming strict inequalities instead, see Property (P8).

(P7i) Countourclosed: For every formal context K ∈ 𝜘, probability measure Pr ∈ P and every 𝛼 ∈ im(𝐷(⋅,K,Pr)) the contour set
𝐶𝑜𝑛𝑡𝛼 is an extent of the formal context K.

P7ii) Quasiconcave: Let K ∈ 𝜘 and Pr ∈ P. If for all 𝐴 ⊆ 𝐺 and all 𝑔 ∈ 𝛾K(𝐴) ⧵ 𝐴 we have

𝐷(𝑔,K,Pr) ≥ inf
𝑔̃∈𝐴

𝐷(𝑔̃,K,Pr),

we call 𝐷 quasiconcave.
(P8) Strictly quasiconcave: Let K ∈ 𝜘 and Pr ∈ P. If for all 𝐴 ⊆ 𝐺 and all 𝑔 ∈ 𝛾K(𝐴) ⧵ 𝐴 we have

𝐷(𝑔,K,Pr) > inf
𝑔̃∈𝐴

𝐷(𝑔̃,K,Pr),

𝐷 is strictly quasiconcave.

Recall Example 1. We showed that a group containing 𝑔3 and 𝑔4 must also contain 𝑔2. Property (P7i and ii) now formalises the
statement in Example 1 that the depth of 𝑔2 is at least as high as the minimum depth of 𝑔3 and 𝑔4. In Example 6 we saw that this is
true for the generalised Tukey depth. In the next section we will prove that Property (P7i and ii) holds in general for the generalised
Tukey depth, but that this is not true for Property (P8).

Again these properties have mathematical connections to each other. First of all, Property (P7i) and (P7ii) are equivalent.
Secondly, Property (P8) is indeed stronger and implies Property (P7i and ii). Thirdly, if 𝑐 is a center point with maximal depth, then
with this 𝑐 we can show that (P7i and ii) imply the starshaped property (P6). Moreover, Property (P7ii) implies Property (P5).

Theorem 3. Let K ∈ 𝜘 be a formal context and Pr ∈ P a probability measure. Let 𝐷(⋅,K,Pr) be a depth function.

1. Statement (P7i) and (P7ii) are equivalent.
2. Property (P8) implies (P7ii).
3. If their exists 𝑐 ∈ 𝐺 with maximal depth value, then Property (P7ii) implies (P6) with 𝑐 being a center object.
4. Property (P7ii) implies (P5).

Proof. Let K ∈ 𝜘 and Pr ∈ P. Let 𝐷(⋅,K,Pr) a depth function. Note that the claim that Property (P8) implies (P7ii) is given
immediately. Thus, we only show Part 1., 3. and 4. of Theorem 3.

1. First assume that Property (P7ii) is true and let 𝛼 ∈ im(𝐷(⋅,K,Pr)) be arbitrary. We prove that Property (P7i) follows.
Assume, by contradiction that 𝐶𝑜𝑛𝑡𝛼 is not an extent set. Since 𝛾 is a closure operator and therefore idempotent, there exists
𝑔 ∈ 𝛾(𝐶𝑜𝑛𝑡𝛼) ⧵ 𝐶𝑜𝑛𝑡𝛼 . Since Property (P7ii) is true, 𝐷(𝑔,K,Pr) ≥ inf 𝑔̃∈𝐶𝑜𝑛𝑡𝛼 𝐷(𝑔̃,K,Pr) ≥ 𝛼 holds. This contradicts 𝑔 ∉ 𝐶𝑜𝑛𝑡𝛼
and we get that Property (P7i) is fulfilled.
For the reverse let (P7i) be true and let 𝐴 ⊆ 𝐺 be arbitrary. We set 𝛼 = inf 𝑔̃∈𝐴 𝐷(𝑔̃,K,Pr) and we know that 𝐴 ⊆ 𝐶𝑜𝑛𝑡𝛼 . By
(P7i) we know that 𝐶𝑜𝑛𝑡𝛼 is an extent set. Since 𝛾(𝐴) is the smallest extent set containing 𝐴 and the set of extents is a closure
system, we follow that 𝛾(𝐴) ⊆ 𝐶𝑜𝑛𝑡𝛼 . Thus the depth of every object 𝑔 ∈ 𝛾(𝐴) must be larger or equal to 𝛼 which implies
(P7ii).

3. Now, we assume that Property (P7ii) is true and we show that Property (P6) holds as well. Therefore, we assume that
𝑐 ∈ 𝐺 has maximal depth value. Let 𝑔, 𝑔̃ ∈ 𝐺 such that 𝑔̃ ∈ 𝛾({𝑐, 𝑔}) is true. Due to Property (P7ii) we get 𝐷(𝑔̃,K,Pr) ≥
min{𝐷(𝑐,K,Pr), 𝐷(𝑔,K,Pr)} ≥ 𝐷(𝑔,K,Pr). The last inequality follows from the assumption that 𝑐 has maximal depth value.
This gives us Property (P6) with 𝑐 being one center object.

4. Finally, assume that Property (P7ii) holds. Let 𝑔1, 𝑔2 ∈ 𝐺 with 𝑔1 ≠ 𝑔2 such that 𝛾(𝑔2) ⊇ 𝛾(𝑔1). Then the quasiconcavity
property implies that 𝐷(𝑔1,K,Pr) ≥ 𝐷(𝑔2,K,Pr). This shows Property (P5). □

Property (P8), the strictly quasiconcavity, is indeed a very strong assumption. In particular, there exist formal contexts such that
Property (P8) can never be fulfilled. An example can be found in [14] and Example 2. There, we discussed the special case of depth
functions for partial orders and analysed Properties (P7i and ii) and (P8) in this case. We showed that the quasiconcavity cannot
be fulfilled by the formal context of partial orders. Another example is given by Table 3 (left). Here, let 𝐺 = {𝑔1, 𝑔2, 𝑔3} and let
Pr be an arbitrary probability measure. In contradiction, let us assume that Property (P8) is true for a depth function 𝐷 on 𝐺. We
have 𝛾({𝑔𝑖, 𝑔𝑗}) = {𝑔1, 𝑔2, 𝑔3} for all 𝑖, 𝑗 ∈ {1, 2, 3} with 𝑖 ≠ 𝑗. With this, we obtain that min{𝐷(𝑔1,K,Pr), 𝐷(𝑔2,K,Pr)} < 𝐷(𝑔3,K,Pr).
W.l.o.g. let 𝐷(𝑔1,K,Pr) < 𝐷(𝑔3,K,Pr). Together with min{𝐷(𝑔2,K,Pr), 𝐷(𝑔3,K,Pr)} < 𝐷(𝑔1,K,Pr) due to Property (P8), we have

𝐷(𝑔2,K,Pr) < 𝐷(𝑔1,K,Pr) < 𝐷(𝑔3,K,Pr). However, this is a contradiction to min{𝐷(𝑔1,K,Pr), 𝐷(𝑔3,K,Pr)} < 𝐷(𝑔2,K,Pr). Hence,
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Property (P8) cannot hold for this context. In contrast, the quasiconcavity property (P7ii) allows equality which solves such problems.
Note that in the case of the formal context given by Table 3 (left), Property (P7ii) leads to a constant depth function.

More generally, one can say that the strictly quasiconcavity assumption on 𝐷 can never be satisfied if one formal context K ∈ 𝜘
s an element of the following set:

C�𝑃8 =
{

(𝐺,𝑀, 𝐼) formal context
|

|

|

|

exist 𝐴, 𝐴̃ ⊆ 𝐺 such that #𝐴 < ∞, #𝐴̃ < ∞ and 𝐴 ∩ 𝐴̃ = ∅
and 𝐴 ⊆ 𝛾(𝐴̃), 𝐴̃ ⊆ 𝛾(𝐴)

}

.

Theorem 4 proves that for every K ∈ C�𝑃8 there exists no strictly quasiconcave depth function. Here, we get a contradiction with
he strict larger assumption. This case occurs naturally when the scaling method assigns to two different objects the same attribute
alues.

heorem 4. For every K ∈ C�𝑃8 and every Pr ∈ P there exists no depth function 𝐷 such that Property (P8) is fulfilled.

roof. Let K ∈ C�𝑃8. We assume that there exists a depth function 𝐷 and a probability measure Pr such that Property (P8) is satisfied.
ince 𝐴 ⊆ 𝛾(𝐴̃) and 𝐴̃ ⊆ 𝛾(𝐴) we get ∀𝑎 ∈ 𝐴 ⧵ 𝐴̃∶𝐷(𝑎,K,Pr) > inf 𝑎̃∈𝐴̃ 𝐷(𝑎̃,K,Pr) and ∀𝑎̃ ∈ 𝐴̃ ⧵ 𝐴∶ inf𝑎∈𝐴 𝐷(𝑎,K,Pr) < 𝐷(𝑎̃,K,Pr).
urthermore, we assumed that #𝐴 < ∞, #𝐴̃ < ∞ is true. Thus, the infimum is attained in 𝐴 and 𝐴̃. Let 𝑎𝑚 ∈ 𝐴 be an argument of the
inimum of 𝐷(𝑎,K,Pr), and analogously we set 𝑎̃𝑚 ∈ 𝐴̃. Since 𝐴 ∩ 𝐴̃ = ∅, we obtain that 𝑎̃𝑚 ∈ 𝐴̃ ⧵ 𝐴 and 𝑎𝑚 ∉ 𝐴 ⧵ 𝐴̃. But with this
e get 𝐷(𝑎𝑚,K,Pr) > 𝐷(𝑎̃𝑚,K,Pr) and 𝐷(𝑎𝑚,K,Pr) < 𝐷(𝑎̃𝑚,K,Pr). This cannot be true which contradicts the assumption of Property

(P8) being true. □

We want to point out that 𝐴 and 𝐴̃ being finite is crucial since in the proof we used that the infimum is attained and not only
the largest lower bound of the sets. Secondly, the intersection of 𝐴 and 𝐴̃ being empty is also necessary since else one can set the
elements in the intersection to the minimal depth value. This is then following Property (P8).

While the importance of a meaningful scaling method for Properties (P3) and (P4) is easily seen, this comes also into account for
the last properties. For example Property (P7ii) and (P8) state that the depth of an object 𝑔 which is implied by a set 𝐴, i.e. 𝑔 ∈ 𝛾(𝐴),

ust have larger (or equal) depth than the minimal depth value of the elements in 𝐴. In the context of FCA, one can say that 𝑔
ontains all characteristics/similarities having the objects in 𝐴 in common or even more. Therefore it is at least as specific (or more)
han all the elements in 𝐴 together. Thus, when defining the scaling method, not only the individual attribute values should be taken
nto account, but also which object combination is more specific than others.

All these order preserving properties aim at representing the underlying data structure in the depth function. This includes
tructures that are also valid for R𝑑 , e.g. quasiconcavity, but also the extreme cases where a natural center or outlying point is given
y the data structure itself, see maximality and minimality property. This emphasises that non-standard data can be very different
rom R𝑑 , and these properties aim to preserve the different structures. In the next section, we focus on the set of probability measures

directly.

.3. Empirical (sequence) properties

In this section, we consider the reverse of the above section. For a fixed formal context K we are interested in the behaviour
f the depth function when the (empirical) probability measure changes. In what follows, we regard different empirical probability
easures Pr(𝑛) induced by different samples 𝑔1,… , 𝑔𝑛 ∈ 𝐺 with 𝑛 ∈ N. We assume that Pr(𝑛) ∈ P holds. Hence, in this section, we

consider the empirical depth function, recall Definition 5.
The first two properties discuss how two empirical depth functions differ if the two corresponding samples differ in a specific

manner. The first one considers the influence of duplicates in the sample in comparison to deleting the duplicates. In this case,
the depth value of the duplicated object should be higher based on the sample where the duplicates exists. The second property
studies the impact of one single sample element on the resulting center-outward order. Here we consider two empirical probability
measures. The first empirical probability measure is based on a sample that has an object which greatly differs from the other object.
The second empirical probability measure is based on the same sample but without this greatly different object. An object 𝑔𝑑𝑖𝑓𝑓
differs greatly from the other objects if this object has no attribute that any other object has. Or, equivalently, 𝑔𝑑𝑖𝑓𝑓 and a further
object of the sample 𝑔𝑠 are both elements of an extent 𝐸 if and only if 𝐸 = 𝐺 is true. Thus, this object 𝑔𝑑𝑖𝑓𝑓 should have no impact
on the center-outward order of the other objects. Note that there are scaling methods that exclude the existence of an object 𝑔𝑑𝑖𝑓𝑓 .
In the Titanic example, see Table 1, we used the interordinal scaling method to include the numerical observation. This tells us that
for two objects/passengers there must be at least one attribute that both objects have in common. Conversely, if ordinal scaling is
used instead in the Titanic example, object 𝑔𝑑𝑖𝑓𝑓 may occur.

(P9) Respecting duplicates: Let K ∈ 𝜘. Let 𝑔1,… , 𝑔𝑛 be a sample of 𝐺 with 𝑛 ∈ N. Assume that there exist 𝑔𝑖 and 𝑔𝑗 in the sample
with 𝑖 ≠ 𝑗 which have identical attribute set (so 𝛹 (𝑔𝑖) = 𝛹 (𝑔𝑗 )). We set

• Pr(𝑛) to be the empirical probability measure of 𝑔1,… , 𝑔𝑛 with Pr(𝑛) ∈ P, and
• Pr(𝑛,−𝑖) to be the empirical probability measure 𝑔1,… , 𝑔𝑖−1, 𝑔𝑖+1,… , 𝑔𝑛 (without 𝑔𝑖) and Pr(𝑛,−𝑖) ∈ P.

Then
(𝑛,−𝑖) (𝑛)
𝐷 (𝑔𝑗 ,K) < 𝐷 (𝑔𝑗 ,K).
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(P10) Stability of the order : Let K ∈ 𝜘 and let 𝑔1,… , 𝑔𝑛 be a sample of 𝐺 with 𝑛 ∈ N. Assume that there exists an 𝑖 ∈ {1,… , 𝑛} such
that 𝑔𝑖 is greatly different from all other objects 𝑔1,… , 𝑔𝑖−1, 𝑔𝑖+1,… , 𝑔𝑛 of the sample. This means that the only extents which
contain 𝑔𝑖 and a further object 𝑔𝑗 with 𝑗 ∈ {1,… , 𝑖−1, 𝑖+1,… , 𝑛} is 𝐺. Then the center-outward order of 𝑔1,… , 𝑔𝑖−1, 𝑔𝑖+1,… , 𝑔𝑛
given by 𝐷(𝑛) and 𝐷(𝑛,−𝑖) are the same. Recalling Definition 8 and the notation in Property (P9), we get

𝐷(𝑛)(⋅,K)
|

|

|

{𝑔1 ,…,𝑔𝑖−1 ,𝑔𝑖+1 ,𝑔𝑛}
≅ 𝐷(𝑛,−𝑖)(⋅,K)

|

|

|

{𝑔1 ,…,𝑔𝑖−1 ,𝑔𝑖+1 ,𝑔𝑛}
.

Let us take a look at Definition 5 of the empirical depth function. There, the empirical probability measure is used for the
definition. Thus, we start with a discussion on how duplicates or greatly different object effect the empirical probability measure of
the extents. First, let us consider the case of Property (P9) where two objects 𝑔1 and 𝑔2 are duplicates. This means that they have the
same attributes and therefore lie in the same extent set. If the invariance on the attribute Property (P2) is fulfilled, then 𝑔1 and 𝑔2
have the same depth. Furthermore, the probability reflects the duplicates for every extent which contains 𝑔1 (and therefore also 𝑔2).

Let us now consider Property (P10) and let 𝑔1,… , 𝑔𝑛 be a sample with 𝑔𝑖 = 𝑔𝑑𝑖𝑓𝑓 the greatly different object w.r.t. the rest of the
sample. One can observe that there exist three distinctive cases on how the empirical probability measures differ on 𝐸 ⊊ 𝐺 extent:

• Case 1: 𝑔𝑑𝑖𝑓𝑓 ∈ 𝐸. Then 𝑔1,… , 𝑔𝑖, 𝑔𝑖+1,… , 𝑔𝑛 ∉ 𝐸 and Pr(𝑛)(𝐸) = 1∕𝑛 ≠ 0 = Pr(𝑛,−𝑖)(𝐸).
• Case 2: 𝑔𝓁 ∈ 𝐸 for some 𝓁 ∈ {1,… , 𝑖 − 1, 𝑖 + 1,… , 𝑛}. Then 𝑔𝑑𝑖𝑓𝑓 ∉ 𝐸 and Pr(𝑛)(𝐸) = ((𝑛 − 1)∕𝑛) Pr(𝑛,−𝑖)(𝐸).
• Case 3: 𝑔𝓁 ∉ 𝐸 for all 𝓁 ∈ {1,… , 𝑛}. Then Pr(𝑛)(𝐸) = 0 = Pr(𝑛,−𝑖)(𝐸).

Thus, Cases 2 and 3 show that the order of the extents which do not contain 𝑔𝑑𝑖𝑓𝑓 based on the probability measure Pr(𝑛) is the same
as for Pr(𝑛,−𝑖). Hence, the order structure given by the probability values of extents containing 𝑔1,… , 𝑔𝑖, 𝑔𝑖+1,… , 𝑔𝑛 is not influenced
by 𝑔𝑑𝑖𝑓𝑓 .

These are observations on the empirical probability measure, but we only generally defined the (empirical) depth function. Thus,
the question if a depth function fulfils these properties is concerned with how these connections between the empirical probability
distributions are included in the precise definition of the mapping rule.

Properties (P9) and (P10) focus on two empirical probability measures and how their difference influences the empirical depth
function. We end this subsection by discussing the behaviour of the depth function based on a sequence of empirical probability
measures. Let (Pr(𝑛))𝑛∈N be a sequence of empirical probability measures, with Pr(𝑛) being given by an independent and identical
distributed (i.i.d.) sample of Pr ∈ P with size 𝑛 ∈ N. By assumption we have that for all 𝑛 ∈ N, Pr(𝑛) ∈ P. Property (P11) discusses
the consistency based on the empirical depth function towards the (population) depth function.

(P11) Consistency : Let K ∈ 𝜘 and Pr ∈ P be a probability measure on 𝐺. Let Pr(𝑛) be the empirical probability measure of an
i.i.d. sample 𝑔1,… , 𝑔𝑛 of 𝐺 with 𝑛 ∈ N which is drawn based on Pr. Then,

sup
𝑔∈𝐺

∣ 𝐷(𝑛)(𝑔,K) −𝐷(𝑔,K,Pr) ∣→ 0 almost surely.

5.4. Universality properties

Finally, we introduce a notion of universality of depth functions. The main motivation is that in general there exists no strictly
quasiconcave depth function, see Theorem 4. If one refrains from strict quasiconcavity, then a natural demand is to stick to
quasiconcavity. However, the depth function that assigns every object the value zero is also quasiconcave but useless. The idea
behind these properties is now the wish for a depth function to be as strictly quasiconcave as possible. While the following motivation
is based on the strictly quasiconcavity property, one can generalise this idea to all properties defined above.

Before we introduce our notion of a richness of a depth function, we first indicate that defining this notion in a more naive way
does not lead to an adequate notion of richness. For now, let the formal context K and probability measure Pr be fixed. An intuitive
way to concretising the property of a quasiconcave depth function 𝐷 of being as strictly quasiconcave as possible is to demand that
there exists no other quasiconcave depth function 𝐸 that is more strictly quasiconcave than 𝐷. This can be formalised by saying that
𝐸 is more strictly quasiconcave than 𝐷 if everywhere, where 𝐸 violates strict quasiconcavity, also 𝐷 violates strict quasiconcavity.
By violations of the strict quasiconcavity property, we mean that only equality and not strict inequality is fulfilled. More precisely,
a depth function 𝐸 is more strictly quasiconcave than 𝐷 if

𝑞𝑢𝑎𝑠𝑖𝑘𝑒𝑟(𝐸(⋅,K,Pr)) ⋅⋅=
{

(𝐴, 𝑔)
|

|

|

|

𝐴 ⊆ 𝐺, 𝑔 ∈ 𝐺 such that 𝑔 ∈ 𝛾(𝐴) ⧵ 𝐴, 𝐸(𝑔,K,Pr) = inf
𝑔̃∈𝐴

𝐸(𝑔̃,K,Pr)
}

⊊ 𝑞𝑢𝑎𝑠𝑖𝑘𝑒𝑟(𝐷(⋅,K,Pr)).

In other words, there exists a pair (𝐴, 𝑔) ∈ 𝑞𝑢𝑎𝑠𝑖𝑘𝑒𝑟(𝐷(⋅,K,Pr)) ⧵ 𝑞𝑢𝑎𝑠𝑖𝑘𝑒𝑟(𝐸(⋅,K,Pr)) with 𝑔 ∈ 𝛾(𝐴) such that the depth function 𝐷
violates for this pair the strictly quasiconcave property but 𝐸 does not.

However, this definition leads to a problem. The following situation can occur: Assume we have a quasiconcave depth function
𝐷 and (𝐴, 𝑔) ∈ 𝑞𝑢𝑎𝑠𝑖𝑘𝑒𝑟(𝐷(⋅,K,Pr)) as well as (𝐴̃, 𝑔̃) ∈ 𝑞𝑢𝑎𝑠𝑖𝑘𝑒𝑟(𝐷(⋅,K,Pr)). Then it may be the case that increasing the depth
value 𝐷(𝑔,K,Pr) by some small amount 𝜀 leads to a depth function 𝐸(⋅,K,Pr) that is still quasiconcave and that now fulfils
𝑞𝑢𝑎𝑠𝑖𝑘𝑒𝑟(𝐸(⋅,K,Pr)) ⊊ 𝑞𝑢𝑎𝑠𝑖𝑘𝑒𝑟(𝐷(⋅,K,Pr)). Now, assume that the same is true for increasing the depth of 𝑔̃ (without increasing the
depth of 𝑔), but increasing the depth values of both 𝑔 and 𝑔̃ at the same time is not possible without violating the quasiconcavity

property. However, assume further that both the underlying probability measure Pr as well as the underlying context K are perfectly
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symmetric w.r.t. 𝑔 and 𝑔̃. In this case, it is not reasonable to arbitrarily increase one depth value to be more strictly quasiconcave.
his means that according to the above definition of being as strictly quasiconcave as possible, there does not exist a possible
nd reasonable depth function that is as strictly quasiconcave as possible. This underlines the importance to emphasise that a depth
unction always inherently codifies both the structure of the underlying space as well as the concrete underlying probability measure.

We now introduce our notion of richness of a depth function. The following two universality properties are stated in a more
eneral way such that they do not only capture the richness of a depth function w.r.t. the property of being quasiconcave. The
ntroduced universality properties are also applicable to other properties of depth functions. Concretely, we take inspiration from a
asic notion that is folklore in category theory. We adopt here the notion of an universal or a free object: Very roughly speaking,
e say that a depth function 𝐷 is free w.r.t. a set of some structural properties, if for every other depth function 𝐸 that obeys these
roperties, we can obtain 𝐸(⋅,K,Pr) from 𝐷 as a composition of 𝐷(⋅,K, P̃r) and an isotone function 𝑓 ∶ R → R. Here, P̃r is a suitable
urther probability measure. Informally, this means that we allow a meaningful depth function to have identical depth values if and
nly if the underlying probability measure and the structure of the space support this. In other words, a depth function is free if
t is flexible enough to imitate every other depth function (with the same properties) by supplying it with a suitable probability
easure P̃r. With this idea in mind we now state two different notions of freeness, one weak and one strong notion. Therefore, let
⊆ {(𝑃 1),… , (𝑃10)} be a set of properties from Sections 5.1, 5.2 and 5.3 and recall Definition 8. A depth function 𝐷 is called

(P12) weakly free w.r.t. a family P of probability measures on the object set 𝐺 and w.r.t. 𝑄, if it satisfies every property from 𝑄
and if for every probability measure Pr and every depth function 𝐸 on K that also satisfies all properties in 𝑄, there exists a
probability measure P̃r ∈ P and an isotone function 𝑓 ∶ R ⟶ R such that

𝑓◦𝐷(⋅,K, P̃r) ≅ 𝐸(⋅,K,Pr).

(P13) strongly free w.r.t. a family P of probability measures on the object set 𝐺 and w.r.t. 𝑄, if it satisfies all properties from 𝑄
and if for every 𝜀 > 0, there exists a class P𝜀 of probability measures from P with a diameter 𝑑(P𝜀) lower than or equal to
𝜀 such that for every other depth function 𝐸 on K that also satisfies all properties in 𝑄 and for every Pr ∈ P there exists a
probability measure P̃r ∈ P𝜀 and an isotone function 𝑓 ∶ R ⟶ R with

𝑓◦𝐷(⋅,K, P̃r) = 𝐸(⋅,K,Pr).

Here, the diameter of a set P of probability measures is defined as 𝑑(P) ⋅⋅= sup𝑃 ,𝑄∈P sup𝐴∈𝛴 |𝑃 (𝐴) −𝑄(𝐴)| where 𝛴 is the
assumed underlying 𝜎-field.

emark 3. We say that a depth function 𝐷 is richer than a depth function 𝐸 if and only if we can modify 𝐷 in such a manner
hat the center-outward order given by 𝐸 can be reconstructed by 𝐷. This means that we can find a probability measure P̃r and an
sotone function 𝑓 such that 𝑓◦𝐷(⋅,K, P̃r) equals 𝐸. Note that 𝑓 only needs to be isotone and not bijective. Therefore, 𝐷 must be at
east as rich as 𝐸 in distinguishing the individual objects of 𝐺. Finally, observe that P̃r and 𝑓 depend on 𝑄,Pr,K, 𝐷 and 𝐸.

Within the notion weakly free we completely detach from Pr by allowing P̃r to be any probability measure from P. For the
otion strongly free we restrict the allowed probability measures P̃r. Therefore, strongly free implies weakly free. The idea behind
estricting the probability measure P̃r is the requirement that a depth function should be able to detach itself to some degree from
he underlying probability measure Pr. More precisely, there exists a balanced measure Pr∗ such that any structure within the depth
alues that is not due to the structure of the formal context can already be modified by an arbitrarily small modification of this
alanced measure Pr∗. The reason why we did not explicitly use such a balanced measure Pr∗ in the definition is a technical one. The
alanced measure does not need to be a probability measure (e.g., there is no uniform distribution on the real numbers). Therefore
e work here with the set P𝜀 with arbitrary 𝜀 > 0.

heorem 5. For the hierarchical nominal context given in Table 2 of Example 4, there exists a depth function 𝐷 that is strongly free
.r.t. quasiconcavity (and w.r.t. the family of all probability measures on 𝐺), namely the function 𝐷 given by:

𝐷(𝑔,K,Pr) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if 𝑔 = 𝑔∗ ⋅⋅= arg max
𝑔̃∈𝐺

Pr({𝑔̃})

1∕2 if on the first level, 𝑔 has the same category as 𝑔∗

0 else .

ere we assume that the argument of the maximum is unique. Otherwise we arbitrarily choose one of the arguments of the maximum.

roof. First observe that 𝐷 is indeed quasiconcave, because the contour sets are extent sets. The reason is that the images of 𝛾 are
xactly the one element sets, the whole set 𝐺 and the two element sets {𝑎1𝑎2, 𝑎1𝑏2} and {𝑏1𝑎1, 𝑏1𝑎2}. Now, for 𝜀 > 0 define the class
f probability measures P𝜀 ⋅⋅= {Pr ∣ ∀𝑔 ∈ 𝐺 we have Pr({𝑔}) ∈ [1∕4 − 𝜀∕4, 1∕4 + 𝜀∕4]}. This class has in fact diameter lower than or
qual to 𝜀. Now, let 𝜀 > 0, let Pr be an arbitrary probability measure on 𝐺, and let 𝐸 be an arbitrary quasiconcave depth function.
et further 𝑔 be the object with the highest depth according to 𝐸. Without loss of generality we assume that 𝑔 = 𝑎1𝑎2. Additionally,
e assume that there exists exactly one 𝑔 with maximal depth (otherwise, arbitrarily choose from the objects with maximal depth).

̃ 𝜀 ̃ ⋅ ̃ ⋅
hen define Pr ∈ P by 𝑃𝑟({𝑔}) ⋅= 1∕4 + 𝜀 and Pr({𝑔̃}) ⋅= 1∕4 − 𝜀∕3 for 𝑔̃ ≠ 𝑔. If 𝜀 > 3∕4, we set 𝜀 to 3∕4. Because 𝐸 is assumed
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to be quasiconcave, and since the contour sets are always nested, the contour sets of 𝐸 are exactly the sets {𝑎1𝑎2}, {𝑎1𝑎2, 𝑎1𝑏2}
nd 𝐺. (For 𝐸 it could also be the case that the set of contour sets is only a subset of these three sets). At the same time, due to
onstruction, the contour sets of 𝐷 are exactly the same which means that we can construct an isotone function 𝑓 ∶ R → R with
◦𝐷(⋅,K, P̃r) = 𝐸(⋅,K,Pr). Since in particular 𝜀 > 0 was arbitrary, 𝐷 is in fact strongly free w.r.t. quasiconcavity and w.r.t. the family
f all probability measures on 𝐺. □

Also for a finite hierarchical nominal context with more than two levels and with more than two categories in every level, one
an show that there exists a depth function that is strongly free w.r.t. quasiconcavity and w.r.t. the family of all probability measures.

emark 4. Note that while for example quasiconcavity implies starshapedness, freeness w.r.t. quasiconcavity generally does not
mply freenness w.r.t. starshapedness. This is because a quasiconcave depth function 𝐷 is not able to imitate a depth function 𝐸

that is starshaped but not quasiconcave, if such a depth function 𝐸 exists at all. In our concrete Example 4 of the hierarchical
nominal context with two levels and two categories on every level, quasiconcavity is accidentally equivalent to starshapedness. For
more than two levels this is not the case anymore.

6. Example: Generalised Tukey depth function

In Section 5, we generally introduced structural properties for depth functions based on FCA. One purpose of these structural
properties is to give a systematic basis to analyse depth functions using FCA. Therefore, in this section, we take the opportunity to
analyse the generalised Tukey depth given in Section 4. Before we begin with discussing the structural properties, we look at some
general aspects of the generalised Tukey depth. Here and in the following, we assume that 𝐺 is a set, 𝜘 a set of formal contexts and
P a set of probability measures on 𝜎-fields which contain every extent set given by 𝜘.

In Definition 6 the generalised Tukey depth is defined by using the extent sets of single attributes. Thus, in the computation one
pparently only takes a proper subset of all possible extents into account, see, e.g., Examples 6 and 7. The reason for this is that
onsidering all extent sets instead of only those induced by a single attribute does not change the depth value. Compare to Section 4
here this has already been mentioned.

heorem 6. Let 𝐺 be an object set. For every formal context K with object set 𝐺 and every probability measure Pr on 𝐺 we get for the
eneralised Tukey depth function

𝑇 (𝑔,K,Pr) = 1 − sup
𝑚∈𝑀⧵𝛹 (𝑔)

Pr(𝛷(𝑚)) = 1 − sup
𝐵⊆𝑀⧵𝛹 (𝑔)

Pr(𝛷(𝐵)).

roof. We have to show that

sup
𝑚∈𝑀⧵𝛹 (𝑔)

Pr(𝛷(𝑚)) = sup
𝐵⊆𝑀⧵𝛹 (𝑔)

Pr(𝛷(𝐵)). (2)

ince 𝐵 ⊆ 𝑀 ⧵ 𝛹 (𝑔) is a superset of 𝑚 ∈ 𝑀 ⧵ 𝛹 (𝑔) we immediately get ≤ in Eq. (2). For the reverse inequality let 𝐵 ⊆ 𝑀 ⧵ 𝛹 (𝑔) be
rbitrary. Then for every 𝑚 ∈ 𝐵 we get that 𝛷(𝑚) ⊇ 𝛷(𝐵) and thus Pr(𝛷(𝑚)) ≥ Pr(𝛷(𝐵)). Note that 𝑚 ∈ 𝑀 ⧵ 𝛹 (𝑔). Together with the
roperties of a supremum, we get ≥ in Eq. (2). □

emark 5. Analogously to Theorem 6 one can show that

𝑇 (𝑔,K,Pr) = 1 − sup
𝑚∈𝑀⧵𝛹 (𝑔)

Pr(𝛷(𝑚)) = 1 − sup
𝐴⊆𝐺⧵{𝑔}
𝐴 extent

Pr(𝐴)

s true for 𝑔 ∈ 𝐺, K a formal context and probability measure Pr. Again, we obtain ≤ immediately. For the reverse, assume for
simplicity that the supremum is attained at extent 𝐴 ⊆ 𝐺 ⧵ {𝑔}. Since 𝑔 ∉ 𝐴 holds, there exists 𝑚 ∈ 𝛹 (𝐴) such that 𝑔 ∉ 𝛷(𝑚). In
articular, we get for this 𝑚 that Pr(𝛷(𝑚)) ≥ Pr(𝐴) is true which gives indeed equality above.

emark 6. Theorem 6 shows that the generalised Tukey depth uses only the marginal distribution over the attributes. Thus, it is
ossible to change the incidence relation 𝐼 and thereby change the dependency structures of the objects, but the generalised Tukey
epth remains the same. Obviously, this statement is particularly true if the marginal distribution remains the same. However, since
nly the supremum of the extents sets of single attributes is used, even the marginal distribution can change and still the generalised
ukey depth remains the same. An example is given in Table 3 (middle and right). Here, we have 𝑇 (𝑔,K1,Pr) = 𝑇 (𝑔,K2,Pr) for all
∈ {𝑔1, 𝑔2, 𝑔3} (with uniform probability measure on {𝑔1, 𝑔2, 𝑔3}), although in the second formal context, we have that 𝑔2 implies 𝑔3.

.1. Representation properties

The first two structural properties, the representation properties, aim to ensure that the structure in the extent set is reflected
n the depth function. The generalised Tukey depth function is based on the set of extents, see Theorem 6 and Remark 5. More
recisely, for each 𝑔 the depth is based on the probabilities of those extents which do not contain 𝑔. Since the function 𝑖 in Property
P1) is bijective and preserves extents and probabilities, this implies that the depth values are preserved as well. This shows that
roperty (P1) holds. Furthermore, since two objects which equal in their attributes, always lie in the same extent sets, they have to

ave the same depth values. Thus, Property (P2) is true for the generalised Tukey depth.
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Table 3
For the formal context on the left Property (P8) is never true (see Section 5.2). The middle (K1) and right (K2) formal contexts show the effect of the supremum
in the definition of the generalised Tukey depth.

𝑚1 𝑚2 𝑚3 𝑚1 𝑚2 𝑚3 𝑚4 𝑚1 𝑚2 𝑚3 𝑚4

𝑔1 × 𝑔1 × × 𝑔1 × ×

𝑔2 × 𝑔2 × × 𝑔2 × ×

𝑔3 × 𝑔3 × × 𝑔3 × × ×

Table 4
For the formal context on the left holds Property (P8) for the generalised Tukey depth. The formal context does not fulfil
Property (P10) for the generalised Tukey depth.

𝑚1 𝑚2 𝑚3 𝑚4 𝑚1 𝑚2 𝑚3

𝑔1 × × × 𝑔1 ×

𝑔2 × × × 𝑔2 ×

𝑔3 × × × × 𝑔3 × ×

6.2. Order preserving properties

In Section 5, the order preserving properties are ordered in their strength. Thus, we prove that the contourclosed property (P7i)
olds and with this further order preserving properties follow by Theorems 2 and 3.

heorem 7. The generalised Tukey depth fulfils Property (P7i).

roof. We prove Property (P7i) by contradiction. Assume that there exists a formal context K on an object set 𝐺 and a probability
measure Pr together with an 𝛼 ∈ 𝑖𝑚(𝑇 (⋅,K,Pr)) such that 𝐶𝑜𝑛𝑡𝛼 is not an extent set. This means that 𝛾(𝐶𝑜𝑛𝑡𝛼) ⊋ 𝐶𝑜𝑛𝑡𝛼 since 𝛾
is a closure operator. Thus, there exists 𝑔 ∈ 𝛾(𝐶𝑜𝑛𝑡𝛼) ⧵ 𝐶𝑜𝑛𝑡𝛼 . The generalised Tukey depth, see Definition 6, is based on the
extent sets induced by a single attribute that the object 𝑔 does not have. Since 𝑔 ∈ 𝛾(𝐶𝑜𝑛𝑡𝛼) we know that for every attribute
which 𝑔 does not have there exists at least one 𝑔̃ ∈ 𝐶𝑜𝑛𝑡𝛼 which does not have this attribute either. Hence, we have for all
𝑚 ∈ 𝑀 ⧵ 𝛹 (𝑔) there exists 𝑔̃ ∈ 𝐶𝑜𝑛𝑡𝛼 such that 1 − Pr(𝛷(𝑚)) ≥ 1 − sup𝑚̃∈𝑀⧵𝛹 (𝑔̃) Pr(𝛷(𝑚)). By definition of the contour set 𝛼, we get
𝑇 (𝑔,K,Pr) = 1 − sup𝑚∈𝑀⧵𝛹 (𝑔) Pr(𝛷(𝑚)) ≥ inf 𝑔̃∈𝐶𝑜𝑛𝑡𝛼

(

1 − sup𝑚̃∈𝑀⧵𝛹 (𝑔̃) Pr(𝛷(𝑚̃))
)

= inf 𝑔̃∈𝐶𝑜𝑛𝑡𝛼 𝑇 (𝑔̃,K,Pr). This is contradicting 𝑔 ∉ 𝐶𝑜𝑛𝑡𝛼
and we can conclude that Property (P7i) holds for every formal context K and probability measure Pr. □

Remark 7. Now we apply Theorems 2 and 3, see overview in Fig. 1, and obtain that since Property (P7i) is true for the generalise
Tukey depth, the following properties hold as well: minimality property (P3), maximality property (P4), isotonicity property (P5),
starshapedness property (P6) and the quasiconcavity property (P7ii).

In Section 5 we showed that there exist formal contexts such that the strictly quasiconcavity property (P8) does not hold for
any depth function and any probability measure. Hence, here we are interested in formal contexts such that the generalised Tukey
depth is strictly quasiconcave. A small example of a formal context such that the quasiconcavity is fulfilled is given in Table 4 (left).

To check this claim, we take a look at Property (P8) applied on the generalised Tukey depth. Thus, Property (P8) is satisfied if
and only if for all 𝐴 ⊆ 𝐺 we have for all 𝑔̃ ∈ 𝛾(𝐴) ⧵ 𝐴

1 − sup
𝑚∈𝑀⧵𝛹 (𝑔̃)

Pr(𝛷(𝑚)) > inf
𝑔∈𝐴

(

1 − sup
𝑚∈𝑀⧵𝛹 (𝑔)

Pr(𝛷(𝑚))

)

⇔ sup
𝑚∈𝑀⧵𝛹 (𝑔̃)

Pr(𝛷(𝑚)) < sup
𝑔∈𝐴

sup
𝑚∈𝑀⧵𝛹 (𝑔)

Pr(𝛷(𝑚)). (3)

Note that ≤ in Inequality (3) follows by Property (P7ii). To check whether the generalised Tukey depth based on the formal context
given in Table 4 (left) is strictly quasiconcave, we go through every subset 𝐴 ⊆ 𝐺 with 𝛾(𝐴)⧵𝐴 ≠ ∅. This is only true for 𝐴 = {𝑔1, 𝑔2}
with 𝛾(𝐴) = {𝑔1, 𝑔2, 𝑔3}. The attributes of 𝑔3 are a superset of the union of the attributes of 𝑔1 and 𝑔2 (i.e. 𝛹 ({𝑔3}) ⊇ 𝛹 ({𝑔1})∪𝛹 ({𝑔2})).
Observe that the attributes of 𝑔1 and 𝑔2 which maximise the supremum of the corresponding generalised Tukey depth function are
attributes of 𝑔3. Thus, when ensuring that there exists an attribute 𝑚 ∈ 𝛹 (𝑔3)⧵𝛹 (𝑔2) ∩𝛹 (𝑔1) such that Pr(𝛷(𝑚)) is strictly larger than
Pr(𝛷(𝑚̃)) based on those attributes 𝑚̃ which are not an element of 𝛹 (𝑔3), the generalised Tukey depth is strictly quasiconcave. Note
that it is sufficient that the depth of either 𝑔1 or 𝑔2 must be below the depth of 𝑔3. Furthermore, we want to point out that we also
have to assume that there does not exist a further object 𝑔4 which is a duplicate of 𝑔3, because then 𝛹 (𝑔3) ⧵𝛹 (𝑔2) ∩𝛹 (𝑔1) = ∅. With
this, we get the strict part in Inequality (3). Based on the idea above, we can say that the generalised Tukey depth satisfies Property
(P8) for every formal context which is an element of the following set:

C 𝑃8 =
{

(𝐺,𝑀, 𝐼) formal context without |

|

|

for every subset 𝐴 and 𝑔 ∈ 𝛾(𝐴) ⧵ 𝐴 we have 𝛹 (𝑔) ⊇ ∪𝑎∈𝐴𝛹 (𝑎) and
}

.
duplicates according to attributes
|

∃𝑚 ∈ 𝛹 (𝑔) ⧵ ∩𝑎∈𝐴𝛹 (𝑎)∶ Pr(𝛷(𝑚)) > sup𝑚∈𝑀⧵𝛹 (𝑔) Pr(𝛷(𝑚))
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6.3. Empirical (sequence) properties

The discussion about empirical (sequence) properties profits from the strong impact of the (empirical) probability measure on
he definition of the generalised Tukey depth, see Definitions 6 and 7. With this we can immediately follow that Property (P9) is
ulfilled by the generalised Tukey depth. The stability of the order property does not hold. Consider again the formal context given
y Table 4 (right). Then 𝑔1 is an outlier w.r.t. {𝑔2, 𝑔3}. For the empirical generalised Tukey depth based on Pr(2) for {𝑔2, 𝑔3} we get

𝑇 (2)(𝑔3,K) = 1 > 1∕2 = 𝑇 (2)(𝑔2,K). When adding object 𝑔1 to the probability measure Pr(3) we get that 𝑇 (3)(𝑔3,K) = 2∕3 = 𝑇 (3)(𝑔2,K).
The order of 𝑔2 and 𝑔3 is not stable. Since this can always occur for small 𝑛 ∈ N, we cannot restrict the set of probability measures
or formal contexts.

It remains to discuss the consistency property (P11). One can show that if the set of extents induced by single attributes
 ⋅⋅= {𝛷(𝑚) ∣ 𝑚 ∈ 𝑀} is a Glivenko–Cantelli class w.r.t. the underlying probability measure Pr, see [28], then the generalised
Tukey depth is indeed consistent. This, for example, is given when  has a finite VC dimension.

Theorem 8. Let K be a formal context with 𝐺 as object set. Let Pr(𝑛) be the empirical probability measure given by an i.i.d. sample of sizes
𝑛 ∈ N and based on probability measure Pr. When  is a Glivenko–Cantelli class w.r.t. Pr, then 𝑇 (𝑛) is consistent and Property (P11) is
fulfilled with

sup
𝑔∈𝐺

|

|

|

𝑇 (𝑛)(𝑔,K) − 𝑇 (𝑔,K,Pr)||
|

𝑛→∞
⟶ 0 almost surely.

Proof. The proof is similar to the proof given by [4, p. 1816f]. Since we assume that  is a Glivenko–Cantelli class w.r.t. Pr, we
get sup𝐸∈

|

|

|

Pr(𝑛)(𝐸) − Pr(𝐸)||
|

𝑛→∞
⟶ 0 almost surely. With this, the claim follows from

sup
𝑔∈𝐺

|

|

|

|

|

|

1 − sup
𝑚∈𝑀⧵𝛹 (𝑔)

Pr(𝑛)(𝛷(𝑚)) −

(

1 − sup
𝑚∈𝑀⧵𝛹 (𝑔)

Pr(𝛷(𝑚))

)

|

|

|

|

|

|

= sup
𝑔∈𝐺

|

|

|

|

|

sup
𝑚∈𝑀⧵𝛹 (𝑔)

Pr(𝑛)(𝛷(𝑚)) − sup
𝑚∈𝑀⧵𝛹 (𝑔)

Pr(𝛷(𝑚))
|

|

|

|

|

≤ sup
𝐸∈

|

|

|

Pr(𝑛)(𝐸) − Pr(𝐸)||
|

𝑛→∞
⟶ 0 almost surely. □

Remark 8. If  has a finite VC dimension, then the convergence stated in Theorem 8 is additionally uniform over all possible
underlying probability measures. A finite VC dimension of  is given, for example, if 𝑀 is finite.

Remark 9. We know that the generalised Tukey depth fulfils Property (P1). Let us assume that for a formal context K̃ the set of all
extents induced by one single attribute is not a Glivenko–Cantelli class w.r.t. some probability measure P̃r. Then, in some cases, one
can define a second formal context K and probability measure Pr such that there exists a bijective and bimeasurable function 𝑖 which
preserves the extents and the probability measure. If the extents based on a single attribute given by K is a Glivenko–Cantelli class
w.r.t. probability measure Pr, then we can transfer the consistency based on K onto K̃. An example for this is given by the following
two formal contexts: Let 𝐺 = R𝑑 and K be the formal context defined in Example 5. For K̃ let 𝑀̃ be the set of all topologically
closed convex sets and 𝐼 the binary relation with (𝑔, 𝑚̃) ∈ 𝐼 if and only if 𝑔 is an element of the corresponding convex set 𝑚̃. The
extents equal again all topologically closed convex sets. Thus by applying Property (P1) we can replace K̃ with K and can prove
hat also for K̃ the generalised Tukey depth is consistent.

.4. Universality properties

Let us end this discussion on the generalised Tukey depth by considering the universality properties. The next two theorems
rove that the generalised Tukey depth is weakly free but not strongly free w.r.t. the quasiconcavity property. Therefore, recall the
ierarchical nominal example, see Examples 4 and 8.

heorem 9. Let 𝐺 be finite. Then the generalised Tukey depth is weakly free w.r.t. the family of all probability measures on 𝐺 and w.r.t. the
uasiconcavity property (P7ii).

roof. Let 𝐺 be finite, let K be an arbitrary context with object set 𝐺 and let Pr be an arbitrary probability measure on 𝐺.
oreover, let 𝐸 be an arbitrary quasiconcave depth function. We set 𝐸1,… , 𝐸𝐾 to be the unique increasingly ordered depth values

of 𝐸(⋅,K,Pr) and let 𝑘𝑖 be the number of objects with depth value 𝐸𝑖. Furthermore, let 𝐺𝑖 denote the boundaries of the contour
ets, i.e., the set of objects with depth 𝐸𝑖. We now have to construct a probability measure P̃r and an isotone function 𝑓 such that
◦𝑇 (⋅,K, P̃r) = 𝐸(⋅,K,Pr).

To achieve this, we first consider properties this probability function needs to fulfil. Let P̃r ∈ P be a possible candidate. We set
𝑖 ⋅⋅= P̃r(𝐺𝑖) and 𝑝𝑚𝑖𝑛𝑖

⋅⋅= min𝑔∈𝐺𝑖
P̃r({𝑔}). Since 𝐸 is quasiconcave, we have 𝑔 ∉ 𝛾(𝐺𝓁+1∪⋯∪𝐺𝐾 ) for all 𝑔 ∈ 𝐺𝓁 with 𝓁 ∈ {1,… , 𝐾−1}.

This implies that for every 𝓁 ∈ {1,… , 𝐾 − 1} and every 𝑔 ∈ 𝐺𝓁 there exists an attribute 𝑚 ∈ 𝑀 with (𝑔, 𝑚) ∉ 𝐼 , but (ℎ,𝑚) ∈ 𝐼 for all
ℎ ∈ 𝐺𝓁+1 ∪⋯ ∪ 𝐺𝐾 . Therefore, we get for 𝑔 ∈ 𝐺𝓁

𝑝𝑚𝑖𝑛𝓁 ≤ 𝑇 (𝑔,K, P̃r) ≤
𝓁
∑

𝑝𝑖. (4)

𝑖=1
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Now, we construct probability measure P̃r needed for Property (P12) in three steps: First set P̃r(𝑔) = 1 for 𝑔 ∈ 𝐺1. Then recursively
set P̃r(𝑔) =

∑𝓁
𝑖=1 P̃r(𝐺𝑖) + 1 for 𝑔 ∈ 𝐺𝓁+1. Finally, we normalise P̃r by P̃r(𝑔) ⋅⋅= 𝑃𝑟(𝑔)∕

∑

𝑔∈𝐺 P̃r(𝑔) to get a probability measure. Due
o construction and Inequality (4), it is ensured that 𝑇 (𝑔,K, 𝑃 𝑟) < 𝑇 (ℎ,K, 𝑃 𝑟) for 𝑔 ∈ 𝐺𝓁 and ℎ ∈ 𝐺𝓁+1. Thus, one can define

function 𝑓 by setting 𝑓 (𝑇 (𝑔,K, P̃r)) = 𝐸𝓁 for 𝑔 ∈ 𝐺𝓁 and isotonically extending it to function 𝑓 ∶ R → R. With this, we get
𝑓◦𝑇 (⋅,K, 𝑃 𝑟) = 𝐸(⋅,K,Pr) which shows that claim. □

Theorem 10. For the context describing hierarchical nominal data given in Table 2 the generalised Tukey depth is not strongly free w.r.t
quasiconcavity and w.r.t. the family of all probability measures on 𝐺.

Proof. First note that the depth function 𝐷 from Theorem 5 is quasiconcave. Furthermore, 𝐷 is flexible enough to assign every
arbitrary object 𝑔 the highest depth 1. This implies that the object ℎ with the same category on Level 1 as 𝑔 has the second
highest depth 1∕2 and all other objects have depth 0. Now, the generalised Tukey depth 𝑇 (⋅,K,Pr) needs to be as flexible as 𝐷
to be strongly free w.r.t. quasiconcavity. Looking at Table 2, first observe that for object 𝑔 = 𝑎1𝑎2 to have the highest generalised
Tukey depth, it is necessary that Pr({𝑎1𝑎2, 𝑎1, 𝑏2}) ≥ 0.5. This is because if we have Pr({𝑎1𝑎2, 𝑎1, 𝑏2}) < 0.5, we can conclude that
𝑇 (𝑎1𝑎2,K,Pr) ≤ 1 − Pr({𝑏1𝑎2, 𝑏1𝑏2}) = Pr({𝑎1𝑎2, 𝑎1, 𝑏2}) < 0.5. Since either Pr({𝑏1𝑎2}) or Pr({𝑏1𝑏2}) is smaller or equal to 0.5, we
get that one of the objects 𝑏1𝑎2 or 𝑏1𝑏2 has a generalised Tukey depth of larger or equal to 0.5. Now, for object ℎ = 𝑎1𝑏2 to have
the second highest depth, it is necessary that the corresponding supremum in Definition 6 is attained for an attribute that differs
from 𝑔 = 𝑎1𝑎2. Because both 𝑔 and ℎ do not have attribute 𝑏1, it is clear that attribute 𝑏1 is relevant for the supremum within the
generalised Tukey depth both for objects 𝑔 and ℎ. For ℎ to have the second highest depth, it is therefore necessary that for ℎ the
supremum is attained for attribute 𝑎1𝑎2. But for this it is necessary that

Pr({𝑎1𝑏2}) ≥ Pr({𝑏1𝑎2, 𝑏1𝑏2}). (5)

Now, let 𝜀 = 0.1 and assume that 𝑇 is strongly free w.r.t. quasiconcavity. Thus, we can find a family P𝜀 of diameter 𝜀 = 0.1
with the corresponding properties. Now take Pr∗ ∈ P𝜀 such that the generalised Tukey depth has the highest depth at 𝑔 = 𝑎1𝑎2
and for ℎ = 𝑎1𝑏2 the second highest depth. With the above considerations we can conclude first that 𝑃𝑟({𝑎1𝑎2, 𝑎1𝑏2}) ≥ 0.5 and,
thus, Pr∗({𝑎1𝑎2, 𝑎1𝑏2}) ≥ 0.5 − 𝜀 = 0.4. Additionally, because also object 𝑏1𝑎2 could be the object with highest depth w.r.t. 𝐷 and
some probability measure Pr, an analogous argumentation implies that also Pr∗({𝑏1𝑎2, 𝑏1𝑏2}) ≥ 0.5 − 𝜀 = 0.4. But this, together with
Inequality (5) implies that Pr∗(𝑎1𝑏2) ≥ 0.4. With analogous argumentations, one can also show Pr∗({𝑔}) ≥ 0.4 for all other objects.
But this is a contradiction to Pr∗ being a probability measure because Pr∗(𝐺) = 0.4 ∗ 4 = 1.6. This provides the claim. □

7. Conclusions

This article introduced a general notion of depth functions for non-standard data based on FCA. This covers the analysis of
centrality and outlyingness for a wide variety of different data types. In order to enable a discussion, especially about these non-
standard data, which are not given in a standard statistical data format, we used FCA and introduced structural properties. In addition
to adopting the properties discussed in R𝑑 , we also addressed the issue that non-standard data may inherit a central-outward order
that should also be reflected in the depth function. We also provided a framework for analysing depth functions based on FCA.
Finally, we used this framework to discuss and analyse the generalised Tukey depth. Building on this, there are several promising
areas for further research, including (but not limited to)

Further concrete mapping rules for depth functions: In Theorem 5 we defined a depth function 𝐷 which is strongly free
w.r.t. Property (P8) and the formal context defined in Table 2. One can show that this depth function 𝐷 only uses the probabilities
of Level 1 to obtain the object 𝑔 with the highest depth value. In further research, it is of interest to define mapping rules for depth
functions which take more levels into account. We already introduced the union-free generic depth function for the special case of
𝐺 being the set of partial orders, see [19]. This is an adaptation of the simplicial depth in R𝑑 , see [1], to the set of all partial orders.
As shortly denoted there this can be generalised to general formal contexts. [15] give another examples for a depth function using
FCA. The authors there propose concrete outlier measures based on formal concept analysis. Since there is a strong relationship
between outlier measures and depth functions, the properties here can also be used to analyse this measure.

Larger scale application: In this article the focus lies on the general analysis of depth functions and the generalised Tukey
depth. Hence, the examples discussed here aim to support and clarify claims of theoretical/structural properties of depth functions.
In further research, a discussion based on the perspective of a larger scale application is of interest. For example, in [19] we applied
the union-free generic depth function, which can be embedded into our concept of depth upon partial orders that represent the
performance of machine learning algorithms.

Statistical inference: Building on this not only a descriptive analysis, but also statistical inference methods can be developed.
Since depth functions describe in a robust and nonparametric manner the order of the data this can be used to define statistical tests
and models. Analogously to the approach here, where we, among others, transferred already existing properties to our concept, this
can be done for statistical inference methods, see [10] as starting point.

Analysis of generalised Tukey depth based on one specific scaling method: Here, we generally analysed the generalised
Tukey depth function without focus on one specific scaling method. In [14] we discussed the special case of 𝐺 being the set of
partial orders and one scaling method. Since one fixed scaling method on a set 𝐺 gives us more structure on the corresponding

closure system an analysis can lead to more structural properties of the depth function.
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